1
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
2
|
Akiyoshi S, Nomura KH, Dejima K, Murata D, Matsuda A, Kanaki N, Takaki T, Mihara H, Nagaishi T, Furukawa S, Ando KG, Yoshina S, Mitani S, Togayachi A, Suzuki Y, Shikanai T, Narimatsu H, Nomura K. RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 2015; 25:8-20. [PMID: 25091817 PMCID: PMC4245905 DOI: 10.1093/glycob/cwu080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In this study, we selected 181 nematode glycogenes that are orthologous to human glycogenes and examined their RNAi phenotypes. The results are deposited in the Caenorhabditis elegans Glycogene Database (CGGDB) at AIST, Tsukuba, Japan. The most prominent RNAi phenotypes observed are disruptions of cell cycle progression in germline mitosis/meiosis and in early embryonic cell mitosis. Along with the previously reported roles of chondroitin proteoglycans, glycosphingolipids and GPI-anchored proteins in cell cycle progression, we show for the first time that the inhibition of the functions of N-glycan synthesis genes (cytoplasmic alg genes) resulted in abnormal germline formation, ER stress and small body size phenotypes. The results provide additional information on the roles of glycoconjugates in the cell cycle progression mechanisms of germline and embryonic cells.
Collapse
Affiliation(s)
| | - Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsufumi Dejima
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Nanako Kanaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsuro Takaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroyuki Mihara
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Takayuki Nagaishi
- Graduate School of Systems Life Sciences, and Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Furukawa
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Keiko-Gengyo Ando
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Akira Togayachi
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoshinori Suzuki
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Toshihide Shikanai
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Kazuya Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
3
|
Zhang X, Wang B, Li JP. Implications of heparan sulfate and heparanase in neuroinflammation. Matrix Biol 2014; 35:174-81. [PMID: 24398134 DOI: 10.1016/j.matbio.2013.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs), expressed on the cell surface and in the extracellular matrix of most animal tissues, have essential functions in development and homeostasis, and have been implicated in several pathological conditions. The functions of HSPGs are mainly mediated through interactions of the heparan sulfate (HS) polysaccharide side chains with different protein ligands. The molecular structure of HS is highly diverse, expressed in a cell-type specific manner. The flexible yet controlled structure of HS is primarily generated through a strictly regulated biosynthesis process and is further modified post-synthetically, such as desulfation by endosulfatases and fragmentation by heparanase. Heparanase is an endo-glucuronidase expressed in all tissues. The enzyme has been found up-regulated in a number of pathological conditions, implying a role in diseases mainly through degradation of HS. Emerging evidence demonstrates important roles of HS and heparanase in inflammatory reactions, particularly in the regulation of leukocyte activation and extravasation. Neuroinflammation is a common feature of various central nervous system disorders, thus it is a great interest to understand the implications of HS and heparanase in neuroinflammation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neuroscience Pharmacology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Bo Wang
- Department of Neuropharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden.
| |
Collapse
|
4
|
Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, Malasit P, Atkinson JP, Diamond MS. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 2008; 3:e183. [PMID: 18052531 PMCID: PMC2092380 DOI: 10.1371/journal.ppat.0030183] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/19/2007] [Indexed: 12/02/2022] Open
Abstract
Dengue virus (DENV) nonstructural protein-1 (NS1) is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection. Dengue virus (DENV) is a mosquito-transmitted virus that infects humans and has become a global emerging infectious disease threat. Four serotypes of DENV exist, and the most severe cases are associated with secondary infection with a different virus serotype. Clinical deterioration is characterized by bleeding and selective vascular leakage from endothelium in specific tissue sites. An increased understanding of how DENV proteins contribute to this phenotype is vital to developing novel vaccines and identifying individuals at risk for severe disease. DENV nonstructural protein-1 (NS1) is one such protein: during infection, it is secreted and accumulates in the supernatant and on the surface of cells. In this study, we demonstrate that soluble DENV NS1 attaches to subsets of cells, including some but not all endothelial cells, primarily via an interaction with specific glycosaminoglycans (heparan sulfate and chondroitin sulfate E). This was confirmed in tissue binding studies as DENV NS1 bound to lung and liver but not intestine or brain endothelium. Our findings suggest that the selective vascular leakage that occurs in severe DENV infection may be related to the relative ability of endothelial cells in different tissues to bind soluble NS1 and to be targeted by cross-reactive anti-NS1 antibodies during secondary infection.
Collapse
Affiliation(s)
- Panisadee Avirutnan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Medical Molecular Biology Unit, Office for Research and Development, Mahidol University, Bangkok, Thailand
| | - Lijuan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nuntaya Punyadee
- Medical Molecular Biology Unit, Office for Research and Development, Mahidol University, Bangkok, Thailand
| | - Ananya Manuyakorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathumthani, Thailand
| | - Watchara Kasinrerk
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathumthani, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Prida Malasit
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathumthani, Thailand
| | - John P Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Cadwallader AB, Yost HJ. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. Dev Dyn 2007; 235:3423-31. [PMID: 17075882 DOI: 10.1002/dvdy.20991] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 3-O-sulfotransferases (3-OST) catalyze the transfer of sulfate groups to the 3-O position of glucosamine residues of HS, a rare, but essential HS chain modification required for HS fine structure. We report here the first characterization and developmental expression analysis of the 3-OST gene family in a vertebrate. There are eight 3-OST genes in zebrafish: seven genes with homology to known 3-OST genes in mouse and human, as well as a novel, 3-OST-7. A phylogenetic comparison of human, mouse, and zebrafish indicates the 3-OST family can be subdivided into two distinct subgroups. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, somites, brain, internal body organ primordial, and pectoral fin development. The 3-OST gene family has both specifically expressed and ubiquitously expressed genes, suggesting in vivo functional differences exist between members of this family.
Collapse
Affiliation(s)
- Adam B Cadwallader
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
6
|
Cadwallader AB, Yost HJ. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases. Dev Dyn 2007; 236:581-6. [PMID: 17195182 DOI: 10.1002/dvdy.21051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains, termed the HS fine structure, which give HS specific binding affinities for extracellular ligands. HS 2-O-sulfotransferase (2-OST) catalyzes the transfer of sulfate groups to the 2-O position of uronic acid residues of HS. We report here the characterization and developmental expression patterns of 2-OST in several tissues/organs throughout early zebrafish development, including early cleavage stages, eyes, somites, brain, internal organ primordial, and pectoral fin. The 2-OST gene has spatially and temporally distinct expression, which is a surprise given the essential role of 2-OST in HS fine structure formation. Furthermore, although 2-OST and C5-epimerase are predicted to be interdependent for protein translocation from the endoplasmic reticulum to the Golgi, their expression is not coordinately regulated during zebrafish development.
Collapse
Affiliation(s)
- Adam B Cadwallader
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
7
|
Cadwallader AB, Yost HJ. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family. Dev Dyn 2006; 235:3432-7. [PMID: 17075883 DOI: 10.1002/dvdy.20990] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 6-O-sulfotransferases (6-OST) catalyze the transfer of sulfate groups to the 6-O position of glucosamine residues of HS. We report here the characterization and developmental expression analysis of the 6-OST gene family in the zebrafish. The zebrafish 6-OST gene family consists of four conserved vertebrate orthologues, including a gene duplication specific to zebrafish. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, eyes, somites, brain, internal organ primordial, and pectoral fin development. Members of the 6-OST gene family have spatially and temporally distinct restricted expression, suggesting in vivo functional differences exist between members of this family.
Collapse
Affiliation(s)
- Adam B Cadwallader
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
8
|
Warda M, Toida T, Zhang F, Sun P, Munoz E, Xie J, Linhardt RJ. Isolation and characterization of heparan sulfate from various murine tissues. Glycoconj J 2006; 23:555-63. [PMID: 17006646 PMCID: PMC4140570 DOI: 10.1007/s10719-006-7668-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 11/25/2022]
Abstract
Heparan sulfate (HS), is a proteoglycan (PG) found both in the extracellular matrix and on cell surface. It may represent one of the most biologically important glycoconjugates, playing an essential role in a variety of different events at molecular level. The publication of the mouse genome, and the intensive investigations aimed at understanding the proteome it encodes, has motivated us to initiate studies in mouse glycomics focused on HS. The current study is aimed at determining the quantitative and qualitative organ distribution of HS in mice. HS from brain, eyes, heart, lung, liver, kidney, spleen, intestine and skin was purified from 6-8 week old male and female mice. The recovered yield of HS from these organs is compared with the recovered whole body yield of HS. Structural characterization of the resulting HS relied on disaccharide analysis and (1)H-NMR spectroscopy. Different organs revealed a characteristic HS structure. These data begin to provide a structural understanding of the role of HS in cell-cell interactions, cell signaling and sub-cellular protein trafficking as well as a fundamental understanding of certain aspects of protein-carbohydrate interactions.
Collapse
Affiliation(s)
- Mohamad Warda
- Department of Biochemistry- Faculty of Veterinary Medicine, Cairo University
| | | | - Fuming Zhang
- Biotechnology Center and Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering and Biology, Rensselaer Polytechnic Institute
| | - Peilong Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology
| | - Eva Munoz
- Biotechnology Center and Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering and Biology, Rensselaer Polytechnic Institute
| | - Jin Xie
- Biotechnology Center and Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering and Biology, Rensselaer Polytechnic Institute
| | - Robert J. Linhardt
- Biotechnology Center and Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering and Biology, Rensselaer Polytechnic Institute
| |
Collapse
|
9
|
The Fibroblast Growth Factor (FGF) – FGF Receptor Complex: Progress Towards the Physiological State. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Su G, Meyer K, Nandini CD, Qiao D, Salamat S, Friedl A. Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:2014-26. [PMID: 16723715 PMCID: PMC1606624 DOI: 10.2353/ajpath.2006.050800] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signaling by fibroblast growth factor 2 (FGF-2), an autocrine stimulator of glioma growth, is regulated by heparan sulfate proteoglycans (HSPGs) via a ternary complex with FGF-2 and the FGF receptor (FGFR). To characterize glioma growth signaling, we examined whether altered HSPGs contribute to loss of growth control in gliomas. In a screen of five human glioma cell lines, U118 and U251 cell HSPGs activated FGF-2 signaling via FGFR1c. The direct comparison of U251 glioma cells with normal astrocyte HSPGs demonstrated that the glioma HSPGs had a significantly elevated ability to promote FGF-2-dependent mitogenic signaling via FGFR1c. This enhanced activity correlated with a higher level of overall sulfation, specifically the abundance of 2S- and 6S-containing disaccharides. Glioma cell expression of the cell-surface HSPG glypican-1 closely mirrored the FGF-2 coactivator activity. Furthermore, forced expression of glypican-1 in (glypican-1-deficient) U87 glioma cells enhanced their FGF-2 response. Immunohistochemical analysis revealed a highly significant overexpression of glypican-1 in human astrocytoma and oligodendroglioma samples compared with nonneoplastic gliosis. In summary, these observations suggest that altered HSPGs contribute to enhanced signaling of FGF-2 via FGFR1c in gliomas with glypican-1 playing a significant role in this mitogenic pathway.
Collapse
Affiliation(s)
- Gui Su
- University of Wisconsin-Madison, Department of Pathology and Laboratory Medicine, Clinical Sciences Center K4/850, 600 Highland Ave., Madison, WI 53792-8550, USA
| | | | | | | | | | | |
Collapse
|
11
|
Reizes O, Clegg DJ, Strader AD, Benoit SC. A role for syndecan-3 in the melanocortin regulation of energy balance. Peptides 2006; 27:274-80. [PMID: 16289473 DOI: 10.1016/j.peptides.2005.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Accepted: 02/15/2005] [Indexed: 11/23/2022]
Abstract
Since the discovery that central melanocortin peptides play an important role in the control of body weight, an impressive amount of research has focused on understanding this complex neuroendocrine system. However, this research has also uncovered new complexities. One of these complexities is the recently discovered putative melanocortin "co-receptor," syndecan-3. In this review, we present an overview of the biology and potential functions of syndecan-3 and describe a novel hypothesis for its regulation of energy balance.
Collapse
Affiliation(s)
- Ofer Reizes
- Procter & Gamble Pharmaceuticals Inc. Health Care Research Center, Mason, OH 45040, USA
| | | | | | | |
Collapse
|
12
|
Pavão MSG, Vilela-Silva AC, Mourão PAS. Biosynthesis of Chondroitin Sulfate: From the Early, Precursor Discoveries to Nowadays, Genetics Approaches. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:117-40. [PMID: 17239764 DOI: 10.1016/s1054-3589(05)53006-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mauro S G Pavão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Instituto de Bioquímica Médica and Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ 21941-590, Brazil
| | | | | |
Collapse
|
13
|
Do AT, Smeds E, Spillmann D, Kusche-Gullberg M. Overexpression of heparan sulfate 6-O-sulfotransferases in human embryonic kidney 293 cells results in increased N-acetylglucosaminyl 6-O-sulfation. J Biol Chem 2005; 281:5348-56. [PMID: 16326709 DOI: 10.1074/jbc.m509584200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) interacts with a variety of proteins and thus mediates numerous complex biological processes. These interactions critically depend on the patterns of O-sulfate groups within the HS chains that determine binding sites for proteins. In particular the distribution of 6-O-sulfated glucosamine residues influences binding and activity of HS-dependent signaling molecules. The protein binding domains of HS show large structural variability, potentially because of differential expression patterns of HS biosynthetic enzymes along with differences in substrate specificity. To investigate whether different isoforms of HS glucosaminyl 6-O-sulfotransferase (6-OST) give rise to differently sulfated domains, we have introduced mouse 6-OST1, 6-OST2, and 6-OST3 in human embryonic kidney 293 cells and compared the effects of overexpression on HS structure. High expression of any one of the 6-OST enzymes resulted in appreciably increased 6-O-sulfation of N-sulfated as well as N-acetylated glucosamine units. The increased 6-O-sulfation was accompanied by a decrease in nonsulfated as well as in iduronic acid 2-O-sulfated disaccharide structures. Furthermore, overexpression led to an altered HS domain structure, the most striking effect was the formation of extended 6-O-sulfated predominantly N-acetylated HS domains. Although the effect was most noticeable in 6-OST3-expressing cells, these results were largely independent of the particular 6-OST isoform expressed and mainly influenced by the level of overexpression.
Collapse
Affiliation(s)
- Anh-Tri Do
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, P. O. Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
14
|
Sedita J, Izvolsky K, Cardoso WV. Differential expression of heparan sulfate 6-O-sulfotransferase isoforms in the mouse embryo suggests distinctive roles during organogenesis. Dev Dyn 2005; 231:782-94. [PMID: 15499561 DOI: 10.1002/dvdy.20173] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heparan sulfate (HS) interactions with secreted morphogens such as fibroblast growth factors, hedgehogs, and Wnts are essential for embryonic development. Formation of biologically relevant HS structures is a result of the coordinated action of various biosynthetic enzymes. HS 6-O-sulfotransferases (6OST) catalyze the transfer of sulfate groups to the 6-O position of glucosamine residues in HS. Three 6OST isoforms have been described in the mouse; however, little is known about their role in generating specific HS protein-binding sequences, expression pattern, and function in vivo. To gain insights into the distribution of these isoforms and their potential role in development, we mapped 6OST1-3 gene expression during mouse organogenesis. We report dynamic expression of these isoforms with striking differences in tissue distribution in many developing organs. We show that 6OST transcripts are differentially expressed in several sites where heparin-binding growth factors are critical for development. 6OST1 is predominantly transcribed in epithelial and neural-derived tissues, whereas 6OST2 is more mesenchymal. 6OST3 appears at later stages and in a more restricted manner. The patterns reported here strongly suggest that the HS structures modified by these enzymes have different roles in growth factor-induced developmental processes.
Collapse
Affiliation(s)
- Jeff Sedita
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
15
|
Abstract
A high-density coding system is essential to allow cells to communicate efficiently and swiftly through complex surface interactions. All the structural requirements for forming a wide array of signals with a system of minimal size are met by oligomers of carbohydrates. These molecules surpass amino acids and nucleotides by far in information-storing capacity and serve as ligands in biorecognition processes for the transfer of information. The results of work aiming to reveal the intricate ways in which oligosaccharide determinants of cellular glycoconjugates interact with tissue lectins and thereby trigger multifarious cellular responses (e.g. in adhesion or growth regulation) are teaching amazing lessons about the range of finely tuned activities involved. The ability of enzymes to generate an enormous diversity of biochemical signals is matched by receptor proteins (lectins), which are equally elaborate. The multiformity of lectins ensures accurate signal decoding and transmission. The exquisite refinement of both sides of the protein-carbohydrate recognition system turns the structural complexity of glycans--a demanding but essentially mastered problem for analytical chemistry--into a biochemical virtue. The emerging medical importance of protein-carbohydrate recognition, for example in combating infection and the spread of tumors or in targeting drugs, also explains why this interaction system is no longer below industrial radarscopes. Our review sketches the concept of the sugar code, with a solid description of the historical background. We also place emphasis on a distinctive feature of the code, that is, the potential of a carbohydrate ligand to adopt various defined shapes, each with its own particular ligand properties (differential conformer selection). Proper consideration of the structure and shape of the ligand enables us to envision the chemical design of potent binding partners for a target (in lectin-mediated drug delivery) or ways to block lectins of medical importance (in infection, tumor spread, or inflammation).
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
16
|
Kinnunen T, Huang Z, Townsend J, Gatdula MM, Brown JR, Esko JD, Turnbull JE. Heparan 2-O-sulfotransferase, hst-2, is essential for normal cell migration in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2005; 102:1507-12. [PMID: 15671174 PMCID: PMC547812 DOI: 10.1073/pnas.0401591102] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The importance of heparan sulfate proteoglycans has been highlighted by a number of human genetic disorders associated with mutations in genes encoding for heparan sulfate proteoglycan protein cores or biosynthetic enzymes required for heparan sulfate (HS) assembly. To study the functional role of HS in Caenorhabditis elegans development cosmid sequence C34F6.4 was identified as the C. elegans ortholog of vertebrate heparan 2-O-sulfotransferase (HS2ST) and the gene named hst-2. HS2ST activity is present in C. elegans and is completely absent in a deletion mutant of hst-2, ok595, and specifically reduced by hst-2 RNA interference. Expression of hst-2 in CHO cells deficient in HS2ST rescues enzyme activity and binding of FGF2 to cell surface HS. hst-2 expression is found in the hypodermis, muscle, distal tip cells (DTCs), and in neurons. A null mutation in hst-2 causes cell migration defects. This work demonstrates sulfotransferase activity in C. elegans and indicates that specific 2-O-sulfate modifications are critical for normal HS functions in controlling cell migration.
Collapse
Affiliation(s)
- Tarja Kinnunen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pankonin MS, Gallagher JT, Loeb JA. Specific structural features of heparan sulfate proteoglycans potentiate neuregulin-1 signaling. J Biol Chem 2004; 280:383-8. [PMID: 15528194 DOI: 10.1074/jbc.m402645200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neuregulins are a family of growth and differentiation factors that act through activation of cell-surface erbB receptor tyrosine kinases and have essential functions both during development and on the growth of cancer cells. One alternatively spliced neuregulin-1 form has a distinct heparin-binding immunoglobulin-like domain that enables it to adhere to heparan sulfate proteoglycans at key locations during development and substantially potentiates its activity. We examined the structural specificity needed for neuregulin-1-heparin interactions using a gel mobility shift assay together with an assay that measures the ability of specific oligosaccharides to block erbB receptor phosphorylation in L6 muscle cells. Whereas the N-sulfate group of heparin was most important, the 2-O-sulfate and 6-O-sulfate groups also contributed to neuregulin-1 binding in these two assays. Optimal binding to neuregulin-1 required eight or more heparin disaccharides; however, as few as two disaccharides were still able to bind neuregulin-1 to a lesser extent. The physiological importance of this specificity was shown both by chemical and siRNA treatment of cultured muscle cells. Pretreatment of muscle cells with chlorate that blocks all sulfation or with an siRNA that selectively blocks N-sulfation significantly reduced erbB receptor activation by neuregulin-1 but had no effect on the activity of neuregulin-1 that lacks the heparin-binding domain. These results suggest that the regulation of glycosaminoglycan sulfation is an important biological mechanism that can modulate both the localization and potentiation of neuregulin-1 signaling.
Collapse
Affiliation(s)
- Mark S Pankonin
- Department of Neurology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
18
|
Wegrzyn G, Wegrzyn A, Tylki-Szymańska A. A general model for genetic regulation of turnover of glycosaminoglycans suggests a possible procedure for prediction of severity and clinical progress of mucopolysaccharidoses. Med Hypotheses 2004; 62:986-92. [PMID: 15142662 DOI: 10.1016/j.mehy.2003.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 12/10/2003] [Indexed: 11/16/2022]
Abstract
Mucopolysaccharidoses are rare genetic diseases from the group of lysosomal storage disorders caused by deficiency of enzymes involved in degradation of mucopolysaccharides (glycosaminoglycans, GAGs). Within each mucopolysaccharidosis, there is a continuous spectrum of clinical features from the very severe to the more mildly affected individuals. Surprisingly, in most cases, it is not possible to predict severity and clinical progress (i.e., the natural history) of the disease on the basis of detection of particular mutations or residual activity of the deficient enzyme. In this article, the reasons for such an unexpected difficulty are discussed. A model for the correlation between residual activity of a lysosomal enzyme and the turnover rate of its substrate(s) has been proposed previously by others, however, in that model it was assumed that substrate concentration in the lysosome is not regulated, thus the residual activity of a hydrolase would be the only determinant of the rate of substrate accumulation. On the other hand, both a general model for genetic regulation of turnover of GAGs and results of very recent studies strongly suggest that expression of genes coding for enzymes involved in GAG synthesis is precisely regulated and may vary between individuals. Therefore, we propose that apart from measurement of residual activity of the enzyme involved in degradation of GAGs, the efficiency of synthesis of these compounds should also be estimated. If the hypothesis presented in this article is true, the ratio of the synthesis of glycosaminoglycans to the residual activity of the deficient enzyme should be of considerable prognostic value.
Collapse
Affiliation(s)
- G Wegrzyn
- Department of Molecular Biology, Laboratory of Molecular Genetics, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland.
| | | | | |
Collapse
|