1
|
Zhou Y, Chen T, Pan Y, Liu J. Exploring the mechanism of fibronectin extra domain B in the tumor microenvironment and implications for targeted immunotherapy and diagnostics (Review). Mol Med Rep 2025; 31:160. [PMID: 40211711 PMCID: PMC12015389 DOI: 10.3892/mmr.2025.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/17/2025] [Indexed: 04/25/2025] Open
Abstract
Fibronectin extra domain B (FN‑EDB) is a unique domain of FN), whose expression is significantly upregulated in the tumor microenvironment (TME). FN‑EDB plays a key role in tumor cell adhesion, angiogenesis and invasion, and is closely related to tumor malignancy and poor prognosis. Moreover, the high expression of FN‑EDB in multiple cancer types makes it a potential therapeutic target. However, comprehensive studies of the mechanism of FN‑EDB in different cancer types and its potential as therapeutic targets are lacking. The present study aimed to explore the general role of FN‑EDB in multiple types of cancer and to integrate the knowledge of cell biology, molecular biology and immunology, so as to give a comprehensive understanding of the role of FN‑EDB in TME. Furthermore, by focusing on the use of FN‑EDB in clinical diagnosis and treatment, the potential of targeting FN‑EDB as a diagnostic and therapeutic target was evaluated and the progress in clinical trials of these drugs was discussed. By searching web sites such as PubMed and web of science, various high‑quality studies including RNA sequencing, drug experiments, cell experiments, animal models, clinical randomized controlled experiments and large‑scale cohort studies were collected, with sufficient evidence to support a comprehensive evaluation of the function and potential application of FN‑EDB. The present study revealed the general role of FN‑EDB in multiple types of cancer and evaluated its potential as a diagnostic and therapeutic target. It also provided a basis for future development of more effective and precise cancer therapies.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of General Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Tao Chen
- Department of Vascular Surgery, Jining Medical College, Jining, Shandong 272000, P.R. China
| | - Yawen Pan
- Department of Geriatric Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Jing Liu
- Department of General Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| |
Collapse
|
2
|
Hahn J, Gögele C, Schulze-Tanzil G. Could an Anterior Cruciate Ligament Be Tissue-Engineered from Silk? Cells 2023; 12:2350. [PMID: 37830564 PMCID: PMC10571837 DOI: 10.3390/cells12192350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Silk has a long history as an exclusive textile, but also as a suture thread in medicine; nowadays, diverse cell carriers are manufactured from silk. Its advantages are manifold, including high biocompatibility, biomechanical strength and processability (approved for nearly all manufacturing techniques). Silk's limitations, such as scarcity and batch to batch variations, are overcome by gene technology, which allows for the upscaled production of recombinant "designed" silk proteins. For processing thin fibroin filaments, the sericin component is generally removed (degumming). In contrast to many synthetic biomaterials, fibroin allows for superior cell adherence and growth. In addition, silk grafts demonstrate superior mechanical performance and long-term stability, making them attractive for anterior cruciate ligament (ACL) tissue engineering. Looking at these promising properties, this review focusses on the responses of cell types to silk variants, as well as their biomechanical properties, which are relevant for ACL tissue engineering. Meanwhile, sericin has also attracted increasing interest and has been proposed as a bioactive biomaterial with antimicrobial properties. But so far, fibroin was exclusively used for experimental ACL tissue engineering approaches, and fibroin from spider silk also seems not to have been applied. To improve the bone integration of ACL grafts, silk scaffolds with osteogenic functionalization, silk-based tunnel fillers and interference screws have been developed. Nevertheless, signaling pathways stimulated by silk components remain barely elucidated, but need to be considered during the development of optimized silk cell carriers for ACL tissue engineering.
Collapse
Affiliation(s)
- Judith Hahn
- Workgroup BioEngineering, Institute of Polymer Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany;
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany;
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany;
| |
Collapse
|
3
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
4
|
Cavenague MF, Teixeira AF, Fernandes LGV, Nascimento ALTO. LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif. Trop Med Infect Dis 2023; 8:tropicalmed8050249. [PMID: 37235297 DOI: 10.3390/tropicalmed8050249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Pathogenic leptospires can bind to receptors on mammalian cells such as cadherins and integrins. Leptospira effectively adheres to cells, overcomes host barriers and spreads into the bloodstream, reaching internal target organs such as the lungs, liver and kidneys. Several microorganisms produce proteins that act as ligands of integrins through the RGD motif. Here, we characterized a leptospiral RGD-containing protein encoded by the gene lic12254. In silico analysis of pathogenic, intermediate and saprophytic species showed that LIC12254 is highly conserved among pathogenic species, and is unique in presenting the RGD motif. The LIC12254-coding sequence is greatly expressed in the virulent Leptospira interrogans L1-130 strain compared with the culture-attenuated L. interrogans M20 strain. We also showed that the recombinant protein rLIC12254 binds to αVβ8 and α8 human integrins most likely via the RGD motif. These interactions are dose-dependent and saturable, a typical property of receptor-ligand interactions. The binding of the recombinant protein lacking this motif-rLIC12254 ΔRAA-to αVβ8 was almost totally abolished, while that with the α8 human integrin was decreased by 65%. Taken together, these results suggest that this putative outer membrane protein interacts with integrins via the RGD domain and may play a key role in leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Maria F Cavenague
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Aline F Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
| | - Luis G V Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| |
Collapse
|
5
|
Wu Z, Wang X, Liang H, Liu F, Li Y, Zhang H, Wang C, Wang Q. Identification of Signature Genes of Dilated Cardiomyopathy Using Integrated Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24087339. [PMID: 37108502 PMCID: PMC10139023 DOI: 10.3390/ijms24087339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by left ventricular or biventricular enlargement with systolic dysfunction. To date, the underlying molecular mechanisms of dilated cardiomyopathy pathogenesis have not been fully elucidated, although some insights have been presented. In this study, we combined public database resources and a doxorubicin-induced DCM mouse model to explore the significant genes of DCM in full depth. We first retrieved six DCM-related microarray datasets from the GEO database using several keywords. Then we used the "LIMMA" (linear model for microarray data) R package to filter each microarray for differentially expressed genes (DEGs). Robust rank aggregation (RRA), an extremely robust rank aggregation method based on sequential statistics, was then used to integrate the results of the six microarray datasets to filter out the reliable differential genes. To further improve the reliability of our results, we established a doxorubicin-induced DCM model in C57BL/6N mice, using the "DESeq2" software package to identify DEGs in the sequencing data. We cross-validated the results of RRA analysis with those of animal experiments by taking intersections and identified three key differential genes (including BEX1, RGCC and VSIG4) associated with DCM as well as many important biological processes (extracellular matrix organisation, extracellular structural organisation, sulphur compound binding, and extracellular matrix structural components) and a signalling pathway (HIF-1 signalling pathway). In addition, we confirmed the significant effect of these three genes in DCM using binary logistic regression analysis. These findings will help us to better understand the pathogenesis of DCM and may be key targets for future clinical management.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Liang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangfang Liu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingxuan Li
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunying Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Qiao Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Zhang T, Song C, Zheng C, Chen X, Zhang Y. Extracellular Amyloid β-protein (1-42) Oligomers Anchor Brain Cells and Make them inert as an Unconventional Integrin-Coupled Ligand. Cell Mol Neurobiol 2023; 43:841-858. [PMID: 35445880 PMCID: PMC11415169 DOI: 10.1007/s10571-022-01219-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the effect of extracellular Aβ42 on neural cell migration, and the possible molecular mechanisms. Extracellular Aβ42 monomers did not negatively affect the motility of neural cells; however, they could promote cell migration from toxic extracellular Aβ42 oligomers. Contrastingly, extracellular Aβ42 aggregates, especially Aβ42 oligomers, significantly decreased neural cell migration while reducing their survival. Further, their soluble and deposited states showed different effects in causing the neural cells to become inert (incapable of moving). These findings were consistent with that of binding of Aβ42 oligomers to the plasma membrane or integrin receptors of the inert cells. By combining the protection of cell migratory capability by anti-oligomeric Aβ42 scFv antibody with the information obtained from our docking model of the Aβ42 trimer and integrin molecule, our findings suggest that extracellular Aβ42 aggregates disrupt the function of integrins mainly through the RHDS motif of Aβ42 chain, which eventually causes neural cells to become inert. Thus, we propose an "anchor" opinion, where Aβ42 aggregates in the ECM serve as the adverse "anchors" in the brain for anchoring neurons and for making neural cells inert, which causes their dysfunction. The neural cells with damaged motility could be restored or repaired if these anchoring effects of extracellular Aβ42 aggregates on the neural cells were severed or reduced, even if the "anchors" themselves were not completely eliminated. Medicines targeting soluble and deposited anchors of Aβ42 aggregates could be developed into effective treatments for Alzheimer disease.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China
| | - Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China
| | - Xu Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, China.
- School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
7
|
Kuwabara R, Qin T, Alberto Llacua L, Hu S, Boekschoten MV, de Haan BJ, Smink AM, de Vos P. Extracellular matrix inclusion in immunoisolating alginate-based microcapsules promotes longevity, reduces fibrosis, and supports function of islet allografts in vivo. Acta Biomater 2023; 158:151-162. [PMID: 36610609 DOI: 10.1016/j.actbio.2022.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Immunoisolation of pancreatic-islets in alginate-microcapsules is applied to treat diabetes. However, long-term islet function is limited, which might be due to damaged and lack of contact with pancreatic extracellular matrix (ECM) components. Herein we investigated the impact of collagen IV combined with laminin sequences, either RGD, LRE, or PDSGR, on graft-survival of microencapsulated bioluminescent islets in vivo. Collagen IV with RGD had the most pronounced effect. It enhanced after 8-week implantation in immune-incompetent mice the bioluminescence of allogeneic islets by 3.2-fold, oxygen consumption rate by 14.3-fold and glucose-induced insulin release by 9.6-fold. Transcriptomics demonstrated that ECM enhanced canonical pathways involving insulin-secretion and that it suppressed pathways related to inflammation and hypoxic stress. Also, 5.8-fold fewer capsules were affected by fibrosis. In a subsequent longevity study in immune-competent mice, microencapsulated allografts containing collagen IV and RGD had a 2.4-fold higher functionality in the first week after implantation and remained at least 2.1-fold higher during the study. Islets in microcapsules containing collagen IV and RGD survived 211 ± 24.1 days while controls survived 125 ± 19.7 days. Our findings provide in vivo evidence for the efficacy of supplementing immunoisolating devices with specific ECM components to enhance functionality and longevity of islet-grafts in vivo. STATEMENT OF SIGNIFICANCE: Limitations in duration of survival of immunoisolated pancreatic islet grafts is a major obstacle for application of the technology to treat diabetes. Accumulating evidence supports that incorporation of extracellular matrix (ECM) molecules in the capsules enhances longevity of pancreatic islets. After selection of the most efficacious laminin sequence in vitro, we show in vivo that inclusion of collagen IV and RGD in alginate-based microcapsules enhances survival, insulin secretion function, and mitochondrial function. It also suppresses fibrosis by lowering proinflammatory cytokines secretion. Moreover, transcriptomic analysis shows that ECM-inclusion promotes insulin-secretion related pathways and attenuates inflammation and hypoxic stress related pathways in islets. We show that inclusion of ECM in immunoisolating devices is a promising strategy to promote long-term survival of islet-grafts.
Collapse
Affiliation(s)
- Rei Kuwabara
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands; Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tian Qin
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands.
| | - L Alberto Llacua
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Shuxian Hu
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| | - Bart J de Haan
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Alexandra M Smink
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| | - Paul de Vos
- Section Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, and University Medical Center Groningen, Hanzeplein 1, EA 11, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
8
|
Zhao Y, Zhang X, Zhang X, Shen G, Li W, Wang Q. Integrinβ1/FAK/ERK signalling pathway is essential for Chinese mitten crab Eriocheir sinensis hemocyte survival. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108473. [PMID: 36470403 DOI: 10.1016/j.fsi.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Integrins are cellular adhesion molecules that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrins can stimulate various signaling pathways by binding to different ligands, thereby exerting immunological functions. While integrins have been found to primarily play a role in bacterial agglutination, phagocytosis, and inhibition of apoptosis in invertebrates, the specific signaling pathway and mechanism of action remain unclear. In vertebrates, β1 integrin and extracellular matrix interactions can associate with focal adhesion kinase (FAK) to initiate MAPK/ERK signaling and regulate cell survival; however, in invertebrates (e.g., Chinese mitten crab), the mechanisms of integrins are poorly understood. The purpose of this study was to investigate whether integrinβ1/FAK activation of the MAPK/ERK pathway regulates hemocyte survival and the associated mechanism. Treatment with an integrinβ1 inhibitor RGD (a conserved tripeptide Arg-Gly-Asp), decreased the levels of FAK and ERK expression and phosphorylation, followed by an intensification of apoptosis. Similar results were obtained following siRNA knockdown of integrinβ1 expression. We further found that the attenuation of ERK phosphorylation enhanced the level of Caspase-3 expression. Together, these findings suggest that integrinβ1 activates the FAK/ERK signaling cascade and is involved in the survival of Chinese mitten crab hemocytes.
Collapse
Affiliation(s)
- Yuehong Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoli Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaona Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
9
|
Gao Y, Fang Y, Huang Y, Ma R, Chen X, Wang F, Pei X, Gao Y, Chen X, Liu X, Shan J, Li P. MIIP functions as a novel ligand for ITGB3 to inhibit angiogenesis and tumorigenesis of triple-negative breast cancer. Cell Death Dis 2022; 13:810. [PMID: 36130933 PMCID: PMC9492696 DOI: 10.1038/s41419-022-05255-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/23/2023]
Abstract
Migration and invasion inhibitory protein (MIIP) has been identified as a tumor suppressor in various cancer types. Although MIIP is reported to exert tumor suppressive functions by repressing proliferation and metastasis of cancer cells, the detailed mechanism is poorly understood. In the present study, we found MIIP is a favorable indicator of prognosis in triple-negative breast cancer. MIIP could inhibit tumor angiogenesis, proliferation, and metastasis of triple-negative breast cancer cells in vivo and in vitro. Mechanistically, MIIP directly interacted with ITGB3 and suppressed its downstream signaling. As a result, β-catenin was reduced due to elevated ubiquitin-mediated degradation, leading to downregulated VEGFA production and epithelial mesenchymal transition. More importantly, we found RGD motif is essential for MIIP binding with ITGB3 and executing efficient tumor-suppressing effect. Our findings unravel a novel mechanism by which MIIP suppresses tumorigenesis in triple-negative breast cancer, and MIIP is thus a promising molecular biomarker or therapeutic target for the disease.
Collapse
Affiliation(s)
- Yujing Gao
- grid.412194.b0000 0004 1761 9803National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Yujie Fang
- grid.412194.b0000 0004 1761 9803National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yongli Huang
- grid.412194.b0000 0004 1761 9803National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Rui Ma
- grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xixi Chen
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wang
- grid.413385.80000 0004 1799 1445Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanqi Gao
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinrui Liu
- grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jingxuan Shan
- grid.5386.8000000041936877XDepartment of Genetic Medicine, Weill Cornell Medicine, New York, NY USA
| | - Pu Li
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Vernaz ZJ, Lottero-Leconte RM, Alonso CAI, Rio S, Morales MF, Arroyo-Salvo C, Valiente CC, Lovaglio Diez M, Bogetti ME, Arenas G, Rey-Valzacchi G, Perez-Martinez S. Evaluation of sperm integrin α5β1 as a potential marker of fertility in humans. PLoS One 2022; 17:e0271729. [PMID: 35917320 PMCID: PMC9345343 DOI: 10.1371/journal.pone.0271729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Sperm selection for assisted reproduction techniques is generally based on basic parameters, while key aspects of sperm competence and its journey from the deposition site to the fertilization site are overlooked. Consequently, identifying molecular markers in spermatozoa that can efficiently predict the fertility of a semen sample could be of great interest, particularly in cases of idiopathic male infertility. When spermatozoa reach the female reproductive tract, it provides to them the cellular and molecular microenvironment needed to acquire fertilizing ability. In this sense, considering the role that integrin α5β1 of spermatozoa plays in reproduction-related events, we investigated the correlation between the subcellular localization of sperm integrin α5β1 and early embryo development outcome after in vitro fertilization (IVF) procedures in human. Twenty-four semen samples from normozoospermic men and metaphase II (MII) oocytes from healthy women aged under 38 years, from couples who underwent IVF cycles, were used in this work. Sperm α5β1 localization was evaluated by immunofluorescence assay using an antibody against integrin α5 subunit. Integrin α5β1 was mainly localized in the sperm acrosomal region (45.33±7.89%) or the equatorial segment (30.12±7.43%). The early embryo development rate (data obtained from the Fertility Center) correlated positively with the localization of α5β1 in the acrosomal region (number of usable embryos / inseminated oocytes: ρ = 0.75; p<0.01 and number of usable embryos/total number of two pronuclear zygotes: ρ = 0.80; p<0.01). However, this correlation was not significant when the equatorial segment mark was evaluated. In addition, human sperm released from co-culture with bovine oviductal epithelial cells (BOEC) showed a significant enrichment in the acrosomal localization pattern of α5β1 compared to those sperm that were not co-cultured with BOEC (85.20±5.35% vs 35.00±17.09%, respectively, p<0.05). In conclusion, the evaluation of sperm integrin α5β1 immunolocalization could be a useful tool to select sperm with fertilizing ability from human semen samples before IVF procedures.
Collapse
Affiliation(s)
- Zoilo José Vernaz
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Raquel María Lottero-Leconte
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Carlos Agustín Isidro Alonso
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Sofía Rio
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | - Camila Arroyo-Salvo
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Carla C. Valiente
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | - María Lovaglio Diez
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Gabriela Arenas
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | | | - Silvina Perez-Martinez
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
11
|
Gao L, Li X, Tan R, Cui J, Schmull S. Human-derived decellularized extracellular matrix scaffold incorporating autologous bone marrow stem cells from patients with congenital heart disease for cardiac tissue engineering. Biomed Mater Eng 2022; 33:407-421. [PMID: 35180106 DOI: 10.3233/bme-211368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stem cells are used as an alternative treatment option for patients with congenital heart disease (CHD) due to their regenerative potential, but they are subject to low retention rate in the injured myocardium. Also, the diseased microenvironment in the injured myocardium may not provide healthy cues for optimal stem cell function. OBJECTIVE In this study, we prepared a novel human-derived cardiac scaffold to improve the functional behaviors of stem cells. METHODS Decellularized extracellular matrix (ECM) scaffolds were fabricated by removing cells of human-derived cardiac appendage tissues. Then, bone marrow c-kit+ progenitor cells from patients with congenital heart disease were seeded on the cardiac ECM scaffolds. Cell adhesion, survival, proliferation and cardiac differentiation on human cardiac decellularized ECM scaffold were evaluated in vitro. Label-free mass spectrometry was applied to analyze cardiac ECM proteins regulating cell behaviors. RESULTS It was shown that cardiac ECM scaffolds promoted stem cell adhesion and proliferation. Importantly, bone marrow c-kit+ progenitor cells cultured on cardiac ECM scaffold for 14 days differentiated into cardiomyocyte-like cells without supplement with any inducible factors, as confirmed by the increased protein level of Gata4 and upregulated gene levels of Gata4, Nkx2.5, and cTnT. Proteomic analysis showed the proteins in cardiac ECM functioned in multiple biological activities, including regulation of cell proliferation, regulation of cell differentiation, and cardiovascular system development. CONCLUSION The human-derived cardiac scaffold constructed in this study may help repair the damaged myocardium and hold great potential for tissue engineering application in pediatric patients with CHD.
Collapse
Affiliation(s)
- Liping Gao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experiment Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuexia Li
- Department of Endocrinology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experiment Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experiment Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sebastian Schmull
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Wong HM, Zhang YY, Li QL. An enamel-inspired bioactive material with multiscale structure and antibacterial adhesion property. Bioact Mater 2021; 7:491-503. [PMID: 34466748 PMCID: PMC8379364 DOI: 10.1016/j.bioactmat.2021.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Conventional dental materials lack of the hierarchical architecture of enamel that exhibits excellent intrinsic-extrinsic mechanical properties. Moreover, restorative failures frequently occur due to physical and chemical mismatch between artificial materials and native dental hard tissue followed by recurrent caries which is caused by sugar-fermenting, acidogenic bacteria invasion of the defective cite. In order to resolve the limitations of the conventional dental materials, the aim of this study was to establish a non-cell-based biomimetic strategy to fabricate a novel bioactive material with enamel-like structure and antibacterial adhesion property. The evaporation-based, bottom-up and self-assembly method with layer-by-layer technique were used to form a large-area fluorapatite crystal layer containing antibacterial components. The multilayered structure was constructed by hydrothermal growth of the fluorapatite crystal layer and highly conformal adsorption to the crystal surface of a polyelectrolyte matrix film. Characterization and mechanical assessment demonstrated that the synthesized bioactive material resembled the native enamel in chemical components, mechanical properties and crystallographic structure. Antibacterial and cytocompatibility evaluation demonstrated that this material had the antibacterial adhesion property and biocompatibility. In combination with the molecular dynamics simulations to reveal the effects of variables on the crystallization mechanism, this study brings new prospects for the synthesis of enamel-inspired materials. A simple chemistry approach was offered to synthesize a enamel-like material without using cells or proteins. A macroscopic bioactive material resembled the native enamel with the antibacterial adhension propery was fabricated. Combining experiments and molecular dynamics simulations revealed effects of variables on the crystallization mechanism.
Collapse
Affiliation(s)
- Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Yu Yuan Zhang
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Quan Li Li
- Collage and Hospital of Stomatology, Anhui Medical University, No. 69, Meishan Road, Heifei, China
| |
Collapse
|
13
|
Abstract
INTRODUCTION Integrins are a family of 24 cell adhesion receptors that play a role in the biggest unmet needs in medicine - cardiovascular disease, immunology and cancer. Their discovery promised huge potential for the pharmaceutical industry. Areas covered. Over 35-years since their discovery, there is little to show for the hundreds of billions of dollars of investment in anti-integrin drug discovery programmes. In this review the author discusses the reasons for the failure of this promising class of drugs and the future for this class of drugs. Expert opinion. Within 10-years, there was a plethora of potent, specific anti-integrin molecules and since their discovery, many of these agents have entered clinical trials. The success in discovering these agents was due to recently discovered monoclonal antibody technology. The integrin-recognition domain Arg-Gly-Asp (RGD) provided the basis for discovering small molecule inhibitors to integrins - both cyclic peptides and peptidomimetics. Most agents failed in the Phase III clinical trials and those agents that did make it to the market were plagued with issues of toxicity and limited efficacy and were soon replaced with non-integrin targeting agents. Their failure was due to a combination of poor pharmacokinetics and pharmacodynamics, complicated by the complex pathophysiology of integrins.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland , Dublin, Ireland
| |
Collapse
|
14
|
Lv Z, Qiu L, Wang W, Liu Z, Liu Q, Wang L, Song L. The Members of the Highly Diverse Crassostrea gigas Integrin Family Cooperate for the Generation of Various Immune Responses. Front Immunol 2020; 11:1420. [PMID: 32793197 PMCID: PMC7390872 DOI: 10.3389/fimmu.2020.01420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
Studies on invertebrate immune receptors can provide insights into characteristics specific to innate immune system. Here, eight α and three β integrins are identified from an invertebrate, the Pacific oyster Crassostrea gigas, and their possible immune functions are studied. Oyster α/β integrins exhibit a higher degree of sequence and structural variability than the members from Homo sapiens and Drosophila melanogaster. The analysis reveals that oyster RGD- and laminin-binding receptor homologs are present in the phylogenetic tree of α integrins, but the other six oyster α integrins mainly form a species-specific branch; meanwhile, oyster β integrins are clustered with insect β integrins but distinct from a member from the mollusk Biomphalaria glabrata. Although phylogenetically lacking the important α integrin branches of LDV-binding, PS3-type, and αI-containing integrins, oyster integrins can bind to most ECM ligands, including RGDCP, LDVCP, GFOGERCP, and laminin protein in a distinct binding pattern. Besides, oyster integrins are distributed in different hemocyte subpopulations, while only specific integrins are selectively involved in hemocyte phagocytosis, migration, and encapsulation, and some of them participate in more than one immune response in a sophisticated pattern. Especially, oyster β integrins are arranged in the core to mediate complex immune responses, unlike the counterparts in humans that mainly depend on αI-containing integrins to incite immune reactions. This study represents the first comprehensive attempt to reveal the structural and evolutionary features of the integrin family and their involvement in cellular immune responses in the non-model invertebrate C. gigas and sheds light on the characteristics specific to the innate immune system in the integrin family.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Weilin Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhaoqun Liu
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Qing Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
15
|
Mao F, Liu K, Bao Y, Lin Y, Zhang X, Xu D, Xiang Z, Li J, Zhang Y, Yu Z. Opsonic character of the plasma proteins in phagocytosis-dependent host response to bacterial infection in a marine invertebrate, Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103596. [PMID: 31877328 DOI: 10.1016/j.dci.2019.103596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Phagocytosis is an evolutionarily conserved immune response, whose efficiency is fundamentally coupled with opsonization of extracellular microbes. How marine mollusks cells recognize and selectively capture pathogens during phagocytosis to clear them is not completely understood. In this study, we observed that plasma is extremely effective for oyster hemocyte phagocytosis, so we investigated candidate proteins among plasma proteins with binding affinity for Vibrio parahaemolyticus in Pacific oyster (Crassostrea gigas) by subjecting them to mass spectroscopy analysis for protein identification and characterization, and address the complex regulatory network to engulf invaders. There were 620 identified proteins potentially associated with bacteria binding and phagocytosis which could be quantified. Our results showed that C1q and lectins identified in Pacific oyster plasma held binding ability to bacteria, clearly suggesting their potent to be opsonins. The dominant expressed plasma protein p1-CgC1q (Complement component 1q)-like protein was identified and its opsonic role was confirmed in this study. The cell surface receptor Cgintegrin interacts directly with p1-CgC1q to mediate phagocytosis. We further confirmed that the interaction between C1q and integrin not rely on the typical recognition site RGD but on the RGE. Evidence exist revealed that p1-CgC1q could coat bacteria via the endotoxin LPS (lipopolysaccharide) and subsequently bind the receptor integrin to significantly enhance hemocytic phagocytosis and bacteria clearance. This study has thus furnished clear evidence for the importance of plasma proteins in mollusk, shedding light on the humoral immunity and an underappreciated strategy in marine host-pathogen interactions.
Collapse
Affiliation(s)
- Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
| | - Kunna Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yue Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Duo Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
| |
Collapse
|
16
|
Yang Z, Liu M, Yang Y, Zheng M, Yang Y, Liu X, Tan J. Biofunctionalization of zirconia with cell-adhesion peptides via polydopamine crosslinking for soft tissue engineering: effects on the biological behaviors of human gingival fibroblasts and oral bacteria. RSC Adv 2020; 10:6200-6212. [PMID: 35495985 PMCID: PMC9049673 DOI: 10.1039/c9ra08575k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022] Open
Abstract
Rapid soft tissue integration is essential for long-term dental implant success. Zirconia is increasingly used as an abutment material owing to its excellent aesthetic properties and biocompatibility; however, it is bioinert, and tissue integration is poor. We developed a feasible surface modification method, exploiting the reactivity of polydopamine (PDA) films to immobilize cell-adhesion peptides (Arg-Gly-Asp, RGD) onto zirconia abutment surfaces. Further, we evaluated the effect thereof on human gingival fibroblast (HGF) behavior and oral bacterial adhesion, which influence the peri-implant soft tissue seal. HGF responses to linear KGGRGDSP and cyclic RGDfK sequences were compared. PDA deposition and covalent coupling of RGD were verified by X-ray photoelectron spectroscopy and fluorescence microscopy. The biological behaviors of HGFs on the modified zirconia; i.e., adhesion, spreading, proliferation, gene and protein expression, were elucidated. Biofunctionalization of zirconia with the adhesion peptides significantly enhanced the biological activities of HGFs. Cyclic RGD induced slightly improved cell attachment, spreading, and proliferation, but similar cell differentiation when compared to linear RGD peptides. To assess their antimicrobial properties, the different substrates were exposed to cultures of the early colonizer Streptococcus mutans or the periodontal pathogen Porphyromonas gingivalis, and bacterial adhesion was evaluated by scanning electron microscopy and live/dead staining. PDA and PDA-RGD coatings decreased zirconia surface colonization by both bacterial species to similar extents. Thus, PDA-RGD-functionalized zirconia modulates specific HGF responses, while maintaining the antimicrobial activity of the PDA coating. The selective bio-interaction pattern of this surface modification holds great promise for improving soft-tissue integration around zirconia abutments in clinical applications.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Mingyue Liu
- First Clinical Division, Peking University School and Hospital of Stomatology Beijing 100034 P. R. China
| | - Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Miao Zheng
- Department of Stomatology, Peking University Third Hospital Beijing 100191 P. R. China
| | - Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Xiaoqiang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China +86-10-62173402 +86-10-82195364
| |
Collapse
|
17
|
Bipartite mechanism for laminin-integrin interactions: Identification of the integrin-binding site in LG domains of the laminin α chain. Matrix Biol 2019; 87:66-76. [PMID: 31669520 DOI: 10.1016/j.matbio.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/02/2023]
Abstract
Laminins are major cell-adhesive proteins consisting of α, β, and γ chains, in which the three C-terminal globular domains of the α chain (LMα/LG1-3) and the C-terminal tail region of the γ1 chain (LMγ1-tail) are required for binding to integrin. Despite the recent progress on the role of LMγ1-tail in coordinating the metal ion-dependent adhesion site of the integrin β subunit, the mechanism by which LMα/LG1-3 interacts with integrin remains to be elucidated. We found that basic residues on the bottom face of LMα5/LG2 are required for binding laminin-511 to α6β1 integrin. Intermolecular cysteine scanning assays demonstrated that the basic residues in LMα5/LG2 were in contact with the acidic residues within the laminin-binding X1 region of the integrin α subunit in the laminin-integrin complex. These results indicate that LMα5/LG2 interacts directly with the integrin α subunit and comprises a bipartite integrin binding site of laminin-511 with the LMγ1-tail.
Collapse
|
18
|
Lv Z, Qiu L, Jia Z, Wang W, Liu Z, Wang L, Song L. The activated β-integrin (CgβV) enhances RGD-binding and phagocytic capabilities of hemocytes in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 87:638-649. [PMID: 30753917 DOI: 10.1016/j.fsi.2019.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Integrins are an important family of cell receptors that can bind foreign particles and promote cell phagocytosis after they are activated. In the present study, a novel β integrin was identified from pacific oyster Crassostrea gigas with an extracellular domain, a single transmembrane segment, and a short cytoplasmic domain. It was phylogenetically clustered with phagocytosis-related insecta βV, and designated as CgβV. CgβV shared a conserved NPX[Y/F] motif related to integrin activation with other phagocytosis-related β integrins. The mRNA transcripts of CgβV were widely detected in oyster tissues including hemocytes, gonad, adductor muscle, mantle, gill, and hepatopancreas, and the expression level in hemocytes was significantly up-regulated at 12 h after lipopolysaccharide (LPS) stimulation (p < 0.05), which was 2.29-fold higher than that in the control group. CgβV proteins were mainly observed on the hemocytes surface. The oyster hemocytes were found to bind fluorescein isothiocyanate (FITC)-labeled Arg-Gly-Asp-containing peptides (RGDCPs), and the binding capability was significantly up-regulated with the peak percentage of 37.6% at 12 h post LPS stimulation, which was higher than that in the control group (8.8%, p < 0.05), suggesting the activation of RGD-binding integrins on oyster hemocytes surface. The label-free RGDCPs and anti-CgβV antibody inhibited the binding capability of hemocytes towards FITC-labeled RGDCPs, which were significant lower in RGD blocking group (7.4%, p < 0.05) and anti-CgβV blocking group (22.1%, p < 0.05) than that in the control group (37.6%), indicating that CgβV could be a RGD-binding integrin. Phagocytosis assay demonstrated that LPS could enhance the phagocytosis of hemocytes towards Escherichia coli and fluorescent beads with the phagocytic rate (PR) of 18.3% and 17.4%, and phagocytic index (PI) of 5.29 and 37.71, respectively, which were significant higher than that in the control group (11.0% and 3.65 for E. coli, 9.8% and 29.26 for fluorescent beads, respectively, p < 0.05). In addition, both the label-free RGDCPs and anti-CgβV antibody significantly hindered the phagocytosis of hemocytes towards E. coli and fluorescent beads. After the E. coli and fluorescent beads were opsonized by oyster serum, the label-free RGDCPs still inhibited the phagocytosis of hemocytes towards them, while the anti-CgβV antibody could only inhibit the phagocytosis of hemocytes towards E. coli, suggesting that only the activated CgβV was involved in the enhancing phagocytosis for bacteria in oyster. Moreover, the key components of conserved integrin-mediated phagocytosis pathway including GTPases, talin proteins, Ca2+ and cAMP were all induced by LPS in hemocytes of oyster. All these results suggested that the activated CgβV enhanced RGD-binding and phagocytic capabilities of hemocytes, shedding lights on the mechanisms of integrin-mediated phagocytosis in mollusks.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weilin Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Zur Y, Rosenfeld L, Keshelman CA, Dalal N, Guterman-Ram G, Orenbuch A, Einav Y, Levaot N, Papo N. A dual-specific macrophage colony-stimulating factor antagonist of c-FMS and αvβ3 integrin for osteoporosis therapy. PLoS Biol 2018; 16:e2002979. [PMID: 30142160 PMCID: PMC6126843 DOI: 10.1371/journal.pbio.2002979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/06/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
There is currently a demand for new highly efficient and specific drugs to treat osteoporosis, a chronic bone disease affecting millions of people worldwide. We have developed a combinatorial strategy for engineering bispecific inhibitors that simultaneously target the unique combination of c-FMS and αvβ3 integrin, which act in concert to facilitate bone resorption by osteoclasts. Using functional fluorescence-activated cell sorting (FACS)-based screening assays of random mutagenesis macrophage colony-stimulating factor (M-CSF) libraries against c-FMS and αvβ3 integrin, we engineered dual-specific M-CSF mutants with high affinity to both receptors. These bispecific mutants act as functional antagonists of c-FMS and αvβ3 integrin activation and hence of osteoclast differentiation in vitro and osteoclast activity in vivo. This study thus introduces a versatile platform for the creation of new-generation therapeutics with high efficacy and specificity for osteoporosis and other bone diseases. It also provides new tools for studying molecular mechanisms and the cell signaling pathways that mediate osteoclast differentiation and function. Many bone diseases—including osteoporosis, in which the bones become brittle and fragile from loss of tissue—are characterized by excessive and uncontrolled bone resorption by bone-destroying cells known as osteoclasts. Therefore, controlled and specific inhibition of osteoclast activity is a desired outcome in treatments for bone diseases. Osteoclast differentiation and function are coordinated by cell surface receptors, including c-FMS and αvβ3 integrin, which cooperate with one another to drive signals that are essential for osteoclast functions. Here, we describe the engineering, characterization, and testing of novel proteins that can target and inhibit both c-FMS and αvβ3 integrin at the same time, thereby providing a way of controlling osteoclast function. The study represents the first example of engineering a natural ligand, which acts as a signaling molecule, as a scaffold for binding not only its target protein but also a second target. We show that these engineered proteins inhibit osteoclast activity in a mouse model of osteoporosis. Our study describes potential inhibitors that target all the known functions resulting from c-FMS/integrin αvβ3 crosstalk and paves the way to create novel targeting proteins that could be used to treat osteoporosis. It also expands our understanding of the role of the c-FMS/αvβ3 integrin pathway in the regulation of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Yuval Zur
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Rosenfeld
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chen Anna Keshelman
- The National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Nofar Dalal
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gali Guterman-Ram
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ayelet Orenbuch
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Einav
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| | - Noam Levaot
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (NL)
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (NL)
| |
Collapse
|
20
|
Tang B, Zhang B, Zhuang J, Wang Q, Dong L, Cheng K, Weng W. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomater 2018; 74:291-301. [PMID: 29729416 DOI: 10.1016/j.actbio.2018.04.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. STATEMENT OF SIGNIFICANCE The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding state of integrin α5β1 with fibronectin induces effective activation of integrin-mediated FAK/ERK signaling pathway to upregulate cellular osteogenic differentiation. This work provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Bolin Tang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Bo Zhang
- Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Junjun Zhuang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Qi Wang
- Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
21
|
Van den Bogerd B, Ní Dhubhghaill S, Zakaria N. Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering. J Tissue Eng Regen Med 2018; 12:e2020-e2028. [PMID: 29430874 PMCID: PMC5947733 DOI: 10.1002/term.2633] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/07/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
The idea of transplanting a sheet of laboratory-grown corneal endothelium dates back to 1978; however, the ideal scaffold is still lacking. We hypothesized that human crystalline lens capsules (LCs) could qualify as a scaffold and aimed to characterize the properties of this material for endothelial tissue engineering. LCs were isolated from donor eyes, stored at -80 °C, and decellularized with water and trypsin-EDTA. The decellularization was investigated by nuclear staining and counting and the capsule thickness was determined by optical coherence tomography and compared with Descemet's membrane (DM). Transparency was examined by spectrometry, and collagenase degradation was performed to evaluate its resistance to degradation. Cell-scaffold interaction was assessed by measuring focal adhesions surface area on LC and plastic. Finally, primary corneal endothelial cells were grown on LCs to validate the phenotype. Trypsin-EDTA decellularized most effectively, removing 99% of cells. The mean LC thickness was 35.76 ± 0.43 μm, whereas DM measured 25.93 ± 0.26 μm (p < .0001). Light transmission was 90% for both LC and DM. On a collagenase challenge, LC and amniotic membrane were digested after 13 hr, whereas DM was digested after 17 hr. The surface area of focal adhesions for cells grown on coated LCs was at least double that compared with other conditions, whereas tight junctions, ion pumps, and hexagonal morphology were well maintained when endothelial cells were cultured on LCs. In conclusion, LCs demonstrate excellent scaffolding properties for tissue engineering and sustain the cell phenotype and can be considered a suitable substrate for ocular tissue engineering or as a template for future scaffolds.
Collapse
Affiliation(s)
- Bert Van den Bogerd
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
- Department of OphthalmologyAntwerp University HospitalEdegemBelgium
| | - Nadia Zakaria
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
- Department of OphthalmologyAntwerp University HospitalEdegemBelgium
- Centre for Cell Therapy and Regenerative MedicineAntwerp University HospitalEdegemBelgium
| |
Collapse
|
22
|
Tang B, Zhuang J, Wang L, Zhang B, Lin S, Jia F, Dong L, Wang Q, Cheng K, Weng W. Harnessing Cell Dynamic Responses on Magnetoelectric Nanocomposite Films to Promote Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7841-7851. [PMID: 29412633 DOI: 10.1021/acsami.7b19385] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The binding of cell integrins to proteins adsorbed on the material surface is a highly dynamic process critical for guiding cellular responses. However, temporal dynamic regulation of adsorbed proteins to meet the spatial conformation requirement of integrins for a certain cellular response remains a great challenge. Here, an active CoFe2O4/poly(vinylidene fluoride-trifluoroethylene) nanocomposite film, which was demonstrated to be an obvious surface potential variation (Δ V ≈ 93 mV) in response to the applied magnetic field intensity (0-3000 Oe), was designed to harness the dynamic binding of integrin-adsorbed proteins by in situ controlling of the conformation of adsorbed proteins. Experimental investigation and molecular dynamics simulation confirmed the surface potential-induced conformational change in the adsorbed proteins. Cells cultured on nanocomposite films indicated that cellular responses in different time periods (adhesion, proliferation, and differentiation) required distinct magnetic field intensity, and synthetically programming the preferred magnetic field intensity of each time period could further enhance the osteogenic differentiation through the FAK/ERK signaling pathway. This work therefore provides a distinct concept that dynamically controllable modulation of the material surface property fitting the binding requirement of different cell time periods would be more conducive to achieving the desired osteogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | | | | | | |
Collapse
|
23
|
|
24
|
Colon S, Page-McCaw P, Bhave G. Role of Hypohalous Acids in Basement Membrane Homeostasis. Antioxid Redox Signal 2017; 27:839-854. [PMID: 28657332 PMCID: PMC5647493 DOI: 10.1089/ars.2017.7245] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Basement membranes (BMs) are sheet-like structures of specialized extracellular matrix that underlie nearly all tissue cell layers including epithelial, endothelial, and muscle cells. BMs not only provide structural support but are also critical for the development, maintenance, and repair of organs. Animal heme peroxidases generate highly reactive hypohalous acids extracellularly and, therefore, target BMs for oxidative modification. Given the importance of BMs in tissue structure and function, hypohalous acid-mediated oxidative modifications of BM proteins represent a key mechanism in normal development and pathogenesis of disease. Recent Advances: Peroxidasin (PXDN), a BM-associated animal heme peroxidase, generates hypobromous acid (HOBr) to form sulfilimine cross-links within the collagen IV network of BM. These cross-links stabilize BM and are critical for animal tissue development. These findings highlight a paradoxical anabolic role for HOBr, which typically damages protein structure leading to dysfunction. CRITICAL ISSUES The molecular mechanism whereby PXDN uses HOBr as a reactive intermediate to cross-link collagen IV, yet avoid collateral damage to nearby BM proteins, remains unclear. FUTURE DIRECTIONS The exact identification and functional impact of specific hypohalous acid-mediated modifications of BM proteins need to be addressed to connect these modifications to tissue development and pathogenesis of disease. As seen with the sulfilimine cross-link of collagen IV, hypohalous acid oxidative events may be beneficial in select situations rather than uniformly deleterious. Antioxid. Redox Signal. 27, 839-854.
Collapse
Affiliation(s)
- Selene Colon
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patrick Page-McCaw
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gautam Bhave
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
25
|
Heller M, Kumar VV, Pabst A, Brieger J, Al-Nawas B, Kämmerer PW. Osseous response on linear and cyclic RGD-peptides immobilized on titanium surfaces in vitro and in vivo. J Biomed Mater Res A 2017; 106:419-427. [PMID: 28971567 DOI: 10.1002/jbm.a.36255] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Biomimetic surface modifications of titanium (Ti) implants using the Arg-Gly-Asp-sequence (RGD) are promising to accelerate bone healing in cases of medical implants. Therefore, we compared the impact of linear and cyclic RGD (l- and c-RGD) covalently coupled onto Ti surfaces on the osseous response in vitro and in vivo. In vitro, osteoblasts' behavior on different surfaces (unmodified, amino-silanized [APTES], l- and c-RGD) was analysed regarding adhesion (fluorescence microscopy), proliferation (resazurin stain) and differentiation (reverse transcription polymerase chain reaction on alkaline phosphatase and osteocalcin). In vivo, osteosynthesis screws (unmodified n = 8, l-RGD n = 8, c-RGD n = 8) were inserted into the proximal tibiae of 12 rabbits and evaluated for bone growth parameters (bone implant contact [%] and vertical bone apposition [VBA;%]) at 3 and 6 weeks. In vitro, c- as well as l-RGD surfaces stimulated osteoblasts' adherence, proliferation and differentiation in a similar manner, with only subtle evidence of superiority of the c-RGD modifications. In vivo, c-RGD-modifications led to a significantly increased VBA after 3 and 6 weeks. Thus, coating with c-RGD appears to play an important role influencing osteoblasts' behaviour in vitro but especially in vivo. These findings can be applied prospectively to implantable biomaterials with hypothetically improved survival and success rates. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 106A: 419-427, 2018.
Collapse
Affiliation(s)
- M Heller
- Department of Otorhinolaryngology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - V V Kumar
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - A Pabst
- Department of Oral, Maxillofacial and Plastic Surgery, Federal Armed Forces Hospital Koblenz, Germany
| | - J Brieger
- Department of Otorhinolaryngology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - B Al-Nawas
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Halle (Saale), Germany
| | - P W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
26
|
Llacua LA, de Haan BJ, de Vos P. Laminin and collagen IV inclusion in immunoisolating microcapsules reduces cytokine-mediated cell death in human pancreatic islets. J Tissue Eng Regen Med 2017; 12:460-467. [PMID: 28508555 DOI: 10.1002/term.2472] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/05/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) molecules have several functions in pancreatic islets, including provision of mechanical support and prevention of cytotoxicity during inflammation. During islet isolation, ECM connections are damaged, and are not restored after encapsulation and transplantation. Inclusion of specific combinations of collagen type IV and laminins in immunoisolating capsules can enhance survival of pancreatic islets. Here we investigated whether ECM can also enhance survival and lower susceptibility of human islets to cytokine-mediated cytotoxicity. To this end, human islets were encapsulated in alginate with collagen IV and either RGD, LRE or PDSGR, i.e. laminin sequences. Islets in capsules without ECM served as control. The encapsulated islets were exposed to IL-1β, IFN-γ and TNF-α for 24 and 72 h. All combinations of ECM improved the islet cell survival, and reduced necrosis and apoptosis after cytokine exposure (P < 0.01). Collagen IV-RGD and collagen IV-LRE reduced danger-associated molecular patterns (DAMPs) release from islets (P < 0.05). Moreover, collagen IV-RGD and collagen IV-PDSGR, but not collagen IV-LRE, reduced NO release from encapsulated human islets (P < 0.05). This reduction correlated with a higher oxygen consumption rate (OCR) of islets in capsules containing collagen IV-RGD and collagen IV-PDSGR. Islets in capsules with collagen IV-LRE showed more dysfunction, and OCR was not different from islets in control capsules without ECM. Our study demonstrates that incorporation of specific ECM molecules such as collagen type IV with the laminin sequences RGD and PDSGR in immunoisolated islets can protect against cytokine toxicity.
Collapse
Affiliation(s)
- L Alberto Llacua
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, RB, Groningen, The Netherlands
| |
Collapse
|
27
|
Dilmac S, Erin N, Demir N, Tanriover G. Nephronectin is Decreased in Metastatic Breast Carcinoma and Related to Metastatic Organs. Pathol Oncol Res 2017; 24:679-688. [PMID: 28842827 DOI: 10.1007/s12253-017-0289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/09/2017] [Indexed: 01/07/2023]
Abstract
Breast cancer causes death mostly due to distant metastasis. During metastasis, cancer cells create new conditions in which normal tissue structure can be disturbed. Nephronectin, which is the primary ligand for α8β1 integrin, plays an important role in kidney development. There are conflicting findings regarding its role in cancer progression and metastasis, especially in breast carcinoma. The aim of this study was to determine changes in nephronectin expression in primary tumor tissues and metastatic visceral organs, using metastatic and non-metastatic cell lines in a mouse model of breast cancer. In our study, 4T1-Liver Metastatic and 4T1-Heart Metastatic cells, originally derived from 4T1-murine breast carcinoma, and non-metastatic 67NR carcinoma cells were used. Cancer cells were injected orthotopically into the mammary gland of 8-10 week-old Balb-c mice. Primary tumors, lung, liver tissues were collected on 12th and 25th days after the tumor injection. Immunohistochemistry was used to determine expression of nephronectin in tissues. We also investigated the expression levels of the protein by using western blot technique. We found that lung and liver tissue of control animals (not-injected with tumor cells) expressed nephronectin which was lost in animals bearing metastatic tumor for 25 days. In accordance, nephronectin staining of lung and liver was preserved in animals injected with non-metastatic 67NR tumors. These results demonstrate that loss of nephronectin may play an important role in formation metastatic milieu for cancer cells. This is the first study demonstrating that tumor-induced loss of nephronectin expression in visceral organs in which metastatic growth takes place.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Nuray Erin
- Department of Medical Pharmacology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
28
|
Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: A systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A 2017; 105:2343-2354. [PMID: 28387995 DOI: 10.1002/jbm.a.36087] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022]
Abstract
Osteoarthritis results in irreparable loss of articular cartilage. Due to its avascular nature and low mitotic activity, cartilage has little intrinsic capacity for repair. Cartilage loss leads to pain, physical disability, movement restriction, and morbidity. Various treatment strategies have been proposed for cartilage regeneration, but the optimum treatment is yet to be defined. Tissue engineering with engineered constructs aimed towards developing a suitable substrate may help in cartilage regeneration by providing the mechanical, biological and chemical support to the cells. The use of scaffold as a substrate to support the progenitor cells or autologous chondrocytes has given promising results. Leakage of cells, poor cell survival, poor cell differentiation, inadequate integration into the host tissue, incorrect distribution of cells, and dedifferentiation of the normal cartilage are the common problems in tissue engineering. Current research is focused on improving mechanical and biochemical properties of scaffold to make it more efficient. The aim of this review is to provide a critical discussion on existing challenges, scaffold type and properties, and an update on ongoing recent developments in the architecture and composition of scaffold to enhance the proliferation and viability of mesenchymal stem cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2343-2354, 2017.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
| | - Matthew F Dilisio
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
- Department of Orthopedics, Creighton University School of Medicine, Omaha, Nebraska, 68178
| | - Nicholas E Dietz
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska, 68178
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
| |
Collapse
|
29
|
Early and late gene expression profiles of the ovine mucosa in response to Haemonchus contortus infection employing Illumina RNA-seq technology. Parasitol Int 2017; 66:681-692. [PMID: 28552633 DOI: 10.1016/j.parint.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/03/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
We conducted herein transcriptome sequencing of the ovine abomasal tissues using the Illumina HiSeq 4000 platform to segregate early and late H. contortus-infected sheep (7 and 50days post-infected groups, respectively) from the control naive ones. A total of 548, 357 and 7 were substantially induced genes in 7days post-infection versus uninfected-control group, 50days post-infection versus 7days post-infection (7dpi), and 50days post-infection (50dpi) versus uninfected-control group, respectively. However, a total of 301, 355 and 11 were significantly repressed genes between 7dpi versus uninfected-control group, 50dpi versus 7dpi, and 50dpi versus uninfected-control group, correspondingly. This indicates that H. contortus infection induced a more potent activation of abomasal gene expression in the early stage of infection as compared to the late stage. Seven pathways were annotated by Kyoto Encyclopedia of Genes, and Genomes pathway analysis accounted for the significant percentage in early H. contortus infection. This study shows for the first time that both galectin-11 and matricellular protein osteopontin are up-regulated in abomasal tissue after chronic H. contortus infection, while galectin-4 is specifically down-regulated in the early infection. Additionally, our results showed that the induction or repression of these molecules is likely to determine the infection progression.
Collapse
|
30
|
Buscemi S, Palumbo V, Maffongelli A, Fazzotta S, Palumbo F, Licciardi M, Fiorica C, Puleio R, Cassata G, Fiorello L, Buscemi G, lo Monte A. Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in Vivo Evaluation. Transplant Proc 2017; 49:716-721. [DOI: 10.1016/j.transproceed.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Wang Y, Chen X, Tian B, Liu J, Yang L, Zeng L, Chen T, Hong A, Wang X. Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer. Theranostics 2017; 7:1360-1372. [PMID: 28435471 PMCID: PMC5399599 DOI: 10.7150/thno.16532] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Small interfering RNAs (siRNA)/microRNAs (miRNA) have promising therapeutic potential, yet their clinical application has been hampered by the lack of appropriate delivery systems. Herein, we employed extracellular vesicles (EVs) as a targeted delivery system for small RNAs. EVs are cell-derived small vesicles that participate in cell-to-cell communication for protein and RNA delivery. We used the aptamer AS1411-modified EVs for targeted delivery of siRNA/microRNA to breast cancer tissues. Tumor targeting was facilitated via AS1411 binding to nucleolin, which is highly expressed on the surface membrane of breast cancer cells. This delivery vesicle targeted let-7 miRNA delivery to MDA-MB-231 cells in vitro as confirmed with fluorescent microscopic imaging and flow cytometry. Also, intravenously delivered AS1411-EVs loaded with miRNA let-7 labeled with the fluorescent marker, Cy5, selectively targeted tumor tissues in tumor-bearing mice and inhibited tumor growth. Importantly, the modified EVs were well tolerated and showed no evidence of nonspecific side effects or immune response. Thus, the RNAi nanoplatform is versatile and can deliver siRNA or miRNA to breast cancer cells both in vitro and in vivo. Our results suggest that the AS1411-EVs have a great potential as drug delivery vehicles to treat cancers.
Collapse
Affiliation(s)
- Yayu Wang
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Baoqing Tian
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Jiafan Liu
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Li Yang
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Lilan Zeng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Tianfen Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Xiaogang Wang
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| |
Collapse
|
32
|
Januskevicius A, Gosens R, Sakalauskas R, Vaitkiene S, Janulaityte I, Halayko AJ, Hoppenot D, Malakauskas K. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma. Front Physiol 2017; 7:680. [PMID: 28119625 PMCID: PMC5220051 DOI: 10.3389/fphys.2016.00680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin-ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell-cell and cell-extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion: Suppression of eosinophil-ASM interaction via RGD-binding integrins attenuates eosinophil-induced ASM remodeling in asthma. Trial Registration: ClinicalTrials.gov Identifier: NCT02648074.
Collapse
Affiliation(s)
- Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences (LSMU)Kaunas, Lithuania
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands
| | - Raimundas Sakalauskas
- Department of Pulmonology, Lithuanian University of Health Sciences (LSMU)Kaunas, Lithuania
| | - Simona Vaitkiene
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences (LSMU)Kaunas, Lithuania
| | - Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences (LSMU)Kaunas, Lithuania
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of ManitobaWinnipeg, MB, Canada
| | - Deimante Hoppenot
- Department of Pulmonology, Lithuanian University of Health Sciences (LSMU)Kaunas, Lithuania
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences (LSMU)Kaunas, Lithuania
- Department of Pulmonology, Lithuanian University of Health Sciences (LSMU)Kaunas, Lithuania
| |
Collapse
|
33
|
Liu C, Zhang T, Wang L, Wang M, Wang W, Jia Z, Jiang S, Song L. The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:163-170. [PMID: 27268574 DOI: 10.1016/j.dci.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Extracellular superoxide dismutase (EcSOD) is a copper-containing glycoprotein playing an important role in antioxidant defense of living cells exposed to oxidative stress, and also participating in microorganism internalization and cell adhesion in invertebrates. EcSOD from oyster (designated CgEcSOD) had been previously reported to bind lipopolysaccharides (LPS) and act as a bridge molecule in Vibrio splendidus internalization. Its mRNA expression pattern, PAMP binding spectrum and microorganism binding capability were examined in the present study. The mRNA expression of CgEcSOD in hemocytes was significantly up-regulated at the initial phase and decreased sharply at 48 h post V. splendidus stimulation. The recombinant CgEcSOD protein (rCgEcSOD) could bind LPS, PGN and poly (I:C), as well as various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibrio anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica at the presence of divalent metal ions Cu(2+). After the secondary V. splendidus stimulation, the mRNA and protein of CgEcSOD were both down-regulated significantly. The results collectively indicated that CgEcSOD could not only function in the immune recognition, but also might contribute to the immune priming of oyster by inhibiting the foreign microbe invasion through a specific down-regulation.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
34
|
Sato C, Aoki M, Tanaka M. Blood-compatible poly(2-methoxyethyl acrylate) for the adhesion and proliferation of endothelial and smooth muscle cells. Colloids Surf B Biointerfaces 2016; 145:586-596. [DOI: 10.1016/j.colsurfb.2016.05.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
|
35
|
Shan M, Su Y, Kang W, Gao R, Li X, Zhang G. Aberrant expression and functions of protocadherins in human malignant tumors. Tumour Biol 2016; 37:12969-12981. [PMID: 27449047 DOI: 10.1007/s13277-016-5169-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Protocadherins (PCDHs) are a group of transmembrane proteins belonging to the cadherin superfamily and are subdivided into "clustered" and "non-clustered" groups. PCDHs vary in both structure and interaction partners and thus regulate multiple biological responses in complex and versatile patterns. Previous researches showed that PCDHs regulated the development of brain and were involved in some neuronal diseases. Recently, studies have revealed aberrant expression of PCDHs in various human malignant tumors. The down-regulation or absence of PCDHs in malignant cells has been associated with cancer progression. Further researches suggest that PCDHs may play major functions as tumor suppressor by inhibiting the proliferation and metastasis of cancer cells. In this review, we focus on the altered expression of PCDHs and their roles in the development of cancer progression. We also discuss the potential mechanisms, by which PCDHs are aberrantly expressed, and its implications in regulating cancers.
Collapse
Affiliation(s)
- Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yonghui Su
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Wenli Kang
- Department of Oncology, General Hospital of Hei Longjiang Province Land Reclamation Headquarter, Harbin, China
| | - Ruixin Gao
- Department of Breast Surgery, The First Hospital of Qiqihaer City, Qiqihaer, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guoqiang Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
36
|
Ribeiro AJS, Denisin AK, Wilson RE, Pruitt BL. For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods 2016; 94:51-64. [PMID: 26265073 PMCID: PMC4746112 DOI: 10.1016/j.ymeth.2015.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 01/16/2023] Open
Abstract
While performing several functions, adherent cells deform their surrounding substrate via stable adhesions that connect the intracellular cytoskeleton to the extracellular matrix. The traction forces that deform the substrate are studied in mechanotrasduction because they are affected by the mechanics of the extracellular milieu. We review the development and application of two methods widely used to measure traction forces generated by cells on 2D substrates: (i) traction force microscopy with polyacrylamide hydrogels and (ii) calculation of traction forces with arrays of deformable microposts. Measuring forces with these methods relies on measuring substrate displacements and converting them into forces. We describe approaches to determine force from displacements and elaborate on the necessary experimental conditions for this type of analysis. We emphasize device fabrication, mechanical calibration of substrates and covalent attachment of extracellular matrix proteins to substrates as key features in the design of experiments to measure cell traction forces with polyacrylamide hydrogels or microposts. We also report the challenges and achievements in integrating these methods with platforms for the mechanical stimulation of adherent cells. The approaches described here will enable new studies to understand cell mechanical outputs as a function of mechanical inputs and advance the understanding of mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States
| | - Aleksandra K Denisin
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Bioengineering, Stanford University, Stanford, CA 94305, United States
| | - Robin E Wilson
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
37
|
Heris HK, Daoud J, Sheibani S, Vali H, Tabrizian M, Mongeau L. Investigation of the Viability, Adhesion, and Migration of Human Fibroblasts in a Hyaluronic Acid/Gelatin Microgel-Reinforced Composite Hydrogel for Vocal Fold Tissue Regeneration. Adv Healthc Mater 2016; 5:255-65. [PMID: 26501384 PMCID: PMC4885111 DOI: 10.1002/adhm.201500370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Indexed: 12/13/2022]
Abstract
The potential use of a novel scaffold biomaterial consisting of cross-linked hyaluronic acid (HA)-gelatin (Ge) composite microgels is investigated for use in treating vocal fold injury and scarring. Cell adhesion integrins and kinematics of cell motion are investigated in 2D and 3D culture conditions, respectively. Human vocal fold fibroblast (hVFF) cells are seeded on HA-Ge microgels attached to a HA hydrogel thin film. The results show that hVFF cells establish effective adhesion to HA-Ge microgels through the ubiquitous expression of β1 integrin in the cell membrane. The microgels are then encapsulated in a 3D HA hydrogel for the study of cell migration. The cells within the HA-Ge microgel-reinforced composite hydrogel (MRCH) scaffold have an average motility speed of 0.24 ± 0.08 μm min(-1) . The recorded microscopic images reveal features that are presumably associated with lobopodial and lamellipodial cell migration modes within the MRCH scaffold. Average cell speed during lobopodial migration is greater than that during lamellipodial migration. The cells move faster in the MRCH than in the HA-Ge gel without microgels. These findings support the hypothesis that HA-Ge MRCH promotes cell adhesion and migration; thereby they constitute a promising biomaterial for vocal fold repair.
Collapse
Affiliation(s)
- Hossein K. Heris
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montreal (QC)
| | - Jamal Daoud
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal (QC)
| | - Sara Sheibani
- Biological Threat Defence Section, Defence R&D Canada-Suffield, Medicine Hat, (AB)
| | | | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal (QC)
- Faculty of Dentistry, McGill University, Montreal (QC)
| | - Luc Mongeau
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montreal (QC)
| |
Collapse
|
38
|
Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol 2016; 91:228-37. [PMID: 26778458 DOI: 10.1016/j.yjmcc.2016.01.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) is a complex and dynamic scaffold that maintains tissue structure and dynamics. However, the view of the ECM as an inert architectural support has been increasingly challenged. The ECM is a vibrant meshwork, a crucial organizer of cellular microenvironments. It plays a direct role in cellular interactions regulating cell growth, survival, spreading, proliferation, differentiation and migration through the intricate relationship among cellular and acellular tissue components. This complex interrelationship preserves cardiac function during homeostasis; however it is also responsible for pathologic remodeling following myocardial injury. Therefore, enhancing our understanding of this cross-talk may provide mechanistic insights into the pathogenesis of heart failure and suggest new approaches to novel, targeted pharmacologic therapies. This review explores the implications of ECM-cell interactions in myocardial cell behavior and cardiac function at baseline and following myocardial injury.
Collapse
|
39
|
Ahmadzai M, Small M, Sehmi R, Gauvreau G, Janssen LJ. Integrins are Mechanosensors That Modulate Human Eosinophil Activation. Front Immunol 2015; 6:525. [PMID: 26539194 PMCID: PMC4611147 DOI: 10.3389/fimmu.2015.00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 01/21/2023] Open
Abstract
Eosinophil migration to the lung is primarily regulated by the eosinophil-selective family of eotaxin chemokines, which mobilize intracellular calcium (Ca2+) and orchestrate myriad changes in cell structure and function. Eosinophil function is also known to be flow-dependent, although the molecular cognate of this mechanical response has yet to be adequately characterized. Using confocal fluorescence microscopy, we determined the effects of fluid shear stress on intracellular calcium concentration ([Ca2+]i) in human peripheral blood eosinophils by perfusing cells in a parallel-plate flow chamber. Our results indicate that fluid perfusion evokes a calcium response that leads to cell flattening, increase in cell area, shape change, and non-directional migration. None of these changes are seen in the absence of a flow stimulus, and all are blocked by chelation of intracellular Ca2+ using BAPTA. These changes are enhanced by stimulating the cells with eotaxin-1. The perfusion-induced calcium response (PICR) could be blocked by pre-treating cells with selective (CDP-323) and non-selective (RGD tripeptides) integrin receptor antagonists, suggesting that α4β7/α4β1 integrins mediate this response. Overall, our study provides the first pharmacological description of a molecular mechanosensor that may collaborate with the eotaxin-1 signaling program in order to control human eosinophil activation.
Collapse
Affiliation(s)
- Mustafa Ahmadzai
- Firestone Institute for Respiratory Health, St. Joseph's Hospital , Hamilton, ON , Canada ; Department of Biomedical Sciences, McMaster University , Hamilton, ON , Canada
| | - Mike Small
- Firestone Institute for Respiratory Health, St. Joseph's Hospital , Hamilton, ON , Canada ; Department of Medicine, McMaster University , Hamilton, ON , Canada
| | - Roma Sehmi
- Firestone Institute for Respiratory Health, St. Joseph's Hospital , Hamilton, ON , Canada ; Department of Medicine, McMaster University , Hamilton, ON , Canada
| | - Gail Gauvreau
- Firestone Institute for Respiratory Health, St. Joseph's Hospital , Hamilton, ON , Canada ; Department of Medicine, McMaster University , Hamilton, ON , Canada
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital , Hamilton, ON , Canada ; Department of Medicine, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
40
|
A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices. Biomaterials 2015; 74:256-66. [PMID: 26461118 DOI: 10.1016/j.biomaterials.2015.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
The cell binding motif RGD is the most widely used peptide to improve cell binding properties of various biomaterials, including recombinant spider silk. In this paper we use genetic engineering to further enhance the cell supportive capacity of spider silk by presenting the RGD motif as a turn loop, similar to the one found in fibronectin (FN), but in the silk stabilized by cysteines, and therefore denoted FNCC. Human primary cells cultured on FNCC-silk showed increased attachment, spreading, stress fiber formation and focal adhesions, not only compared to RGD-silk, but also to silk fused with linear controls of the RGD containing motif from fibronectin. Cell binding to FNCC-silk was shown to involve the α5β1 integrin, and to support proliferation and migration of keratinocytes. The FNCC-silk protein allowed efficient assembly, and could even be transformed into free standing films, on which keratinocytes could readily form a monolayer culture. The results hold promise for future applications within tissue engineering.
Collapse
|
41
|
Knapik DM, Perera P, Nam J, Blazek AD, Rath B, Leblebicioglu B, Das H, Wu LC, Hewett TE, Agarwal SK, Robling AG, Flanigan DC, Lee BS, Agarwal S. Mechanosignaling in bone health, trauma and inflammation. Antioxid Redox Signal 2014; 20:970-85. [PMID: 23815527 PMCID: PMC3924811 DOI: 10.1089/ars.2013.5467] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Mechanosignaling is vital for maintaining the structural integrity of bone under physiologic conditions. These signals activate and suppress multiple signaling cascades regulating bone formation and resorption. Understanding these pathways is of prime importance to exploit their therapeutic potential in disorders associated with bone loss due to disuse, trauma, or disruption of homeostatic mechanisms. RECENT ADVANCES In the case of cells of the bone, an impressive amount of data has been generated that provides evidence of a complex mechanism by which mechanical signals can maintain or disrupt cellular homeostasis by driving transcriptional regulation of growth factors, matrix proteins and inflammatory mediators in health and inflammation. Mechanical signals act on cells in a magnitude dependent manner to induce bone deposition or resorption. During health, physiological levels of these signals are essential for maintaining bone strength and architecture, whereas during inflammation, similar signals can curb inflammation by suppressing the nuclear factor kappa B (NF-κB) signaling cascade, while upregulating matrix synthesis via mothers against decapentaplegic homolog and/or Wnt signaling cascades. Contrarily, excessive mechanical forces can induce inflammation via activation of the NF-κB signaling cascade. CRITICAL ISSUES Given the osteogenic potential of mechanical signals, it is imperative to exploit their therapeutic efficacy for the treatment of bone disorders. Here we review select signaling pathways and mediators stimulated by mechanical signals to modulate the strength and integrity of the bone. FUTURE DIRECTIONS Understanding the mechanisms of mechanotransduction and its effects on bone lay the groundwork for development of nonpharmacologic mechanostimulatory approaches for osteodegenerative diseases and optimal bone health.
Collapse
Affiliation(s)
- Derrick M Knapik
- 1 Department of Orthopaedic Surgery, The Ohio State University College of Medicine , Columbus, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chandra D, Sankalia N, Arcibal I, Banta S, Cropek D, Karande P. Design of affinity peptides from natural protein ligands: A study of the cardiac troponin complex. Biopolymers 2014; 102:97-106. [DOI: 10.1002/bip.22436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Divya Chandra
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy NY
| | - Nitesh Sankalia
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
| | - Imee Arcibal
- U.S. Army Engineer Research and Development Center; Construction Engineering Research Laboratory (CERL); Champaign IL
| | - Scott Banta
- Department of Chemical Engineering; Columbia University; New York NY
| | - Donald Cropek
- U.S. Army Engineer Research and Development Center; Construction Engineering Research Laboratory (CERL); Champaign IL
| | - Pankaj Karande
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy NY
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy NY
| |
Collapse
|
43
|
|
44
|
Wang XW, Zhao XF, Wang JX. C-type lectin binds to β-integrin to promote hemocytic phagocytosis in an invertebrate. J Biol Chem 2013; 289:2405-14. [PMID: 24324258 DOI: 10.1074/jbc.m113.528885] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis is a conserved cellular response among metazoans. Opsonins are some molecules that label targets to increase their susceptibility to phagocytosis. Opsonins are usually captured by receptors on the surface of phagocytes. Our previous study found the C-type lectin FcLec4 from Chinese white shrimp Fenneropenaeus chinensis might function as an opsonin to facilitate bacterial clearance. In the present study we purified the native FcLec4 protein and confirmed its opsonic activity in the near relation, kuruma shrimp Marsupenaeus japonicus. The possible receptor of FcLec4 was identified as β-integrin by panning a T7 phage display library of shrimp hemocytes and then confirmed by co-immunoprecipitation assay. We further proved that the interaction between FcLec4 and β-integrin did not rely on the carbohydrate recognition domain but on the N terminus of FcLec4. In addition, inhibition of FcLec4 expression using RNAi delayed bacterial clearance, and β-integrin knockdown suppressed the opsonic activity of FcLec4. This study is the first to show the direct interaction between an opsonin and its receptor in crustaceans. Our study provides new insights into invertebrate phagocytosis and the functions of C-type lectins.
Collapse
Affiliation(s)
- Xian-Wei Wang
- From the Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | |
Collapse
|
45
|
Lorion C, Faye C, Maret B, Trimaille T, Régnier T, Sommer P, Debret R. Biosynthetic support based on dendritic poly(L-lysine) improves human skin fibroblasts attachment. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 25:136-49. [DOI: 10.1080/09205063.2013.843966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Dong S, Guo H, Zhang Y, Li Z, Kang F, Yang B, Kang X, Wen C, Yan Y, Jiang B, Fan Y. rFN/Cad-11-modified collagen type II biomimetic interface promotes the adhesion and chondrogenic differentiation of mesenchymal stem cells. Tissue Eng Part A 2013; 19:2464-77. [PMID: 23919505 DOI: 10.1089/ten.tea.2012.0447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7-10 of fibronectin module III (heterophilic motif) and extracellular domains 1-2 of cadherin-11 (rFN/Cad-11) (homophilic motif), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo.
Collapse
Affiliation(s)
- Shiwu Dong
- 1 National & Regional United Engineering Laboratory of Tissue Engineering, Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University , Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Batra N, Jiang JX. "INTEGRINating" the connexin hemichannel function in bone osteocytes through the action of integrin α5. Commun Integr Biol 2013; 5:516-8. [PMID: 23739985 PMCID: PMC3502221 DOI: 10.4161/cib.21322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanical loading influences skeletal structural integrity and bone remodeling. Application of a mechanical stimulus such as fluid flow shear stress to the bone osteocytes activates the cascade of mechanotransduction mediated by multiple signaling molecules. Hemichannels formed by connexin molecules are emerging as a candidate mechanosensor. Connexin 43 (Cx43) hemichannels open in response to mechanical stimulation to release bone modulators which influence bone remodeling. Our study identified a direct interaction between integrin α5 and Cx43 which was essential for hemichannels to open. Uncoupling the interaction blocked the hemichannels and shear stress enhanced the interaction between the two proteins to promote channel opening. More importantly, integrin α5, independent of its association with fibronectin, was activated upon shear stress through a PI3K signaling pathway. These results suggest a critical regulatory mechanism for Cx43 hemichannel opening through the association of integrin α5, resulting in release of bone anabolic factors required for bone development.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry; University of Texas Heath Science Center; San Antonio, TX USA
| | | |
Collapse
|
48
|
Ranyuk E, Cauchon N, Klarskov K, Guérin B, van Lier JE. Phthalocyanine–Peptide Conjugates: Receptor-Targeting Bifunctional Agents for Imaging and Photodynamic Therapy. J Med Chem 2013; 56:1520-34. [DOI: 10.1021/jm301311c] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Elena Ranyuk
- Department of Nuclear Medicine and Radiobiology and ‡Department of Pharmacology Faculty
of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec,
Canada
| | - Nicole Cauchon
- Department of Nuclear Medicine and Radiobiology and ‡Department of Pharmacology Faculty
of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec,
Canada
| | - Klaus Klarskov
- Department of Nuclear Medicine and Radiobiology and ‡Department of Pharmacology Faculty
of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec,
Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology and ‡Department of Pharmacology Faculty
of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec,
Canada
| | - Johan E. van Lier
- Department of Nuclear Medicine and Radiobiology and ‡Department of Pharmacology Faculty
of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec,
Canada
| |
Collapse
|
49
|
Hirayama T, Yagi T. Clustered protocadherins and neuronal diversity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:145-67. [PMID: 23481194 DOI: 10.1016/b978-0-12-394311-8.00007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal diversity is a fundamental requirement for complex neuronal networks and brain function. The clustered protocadherin (Pcdh) family possesses several characteristic features that are important for the molecular basis of neuronal diversity. Clustered Pcdhs are expressed predominantly in the central nervous system, in neurites, growth cones, and synapses. They consist of about 60 isoforms, and their expression is stochastically and combinatorially regulated in individual neurons. The multiple clustered Pcdhs expressed in individual neurons form heteromultimeric protein complexes that exhibit homophilic adhesion properties. Theoretically, the clustered Pcdhs could generate more than 3×10(10) possible variations in each neuron and 12,720 types of cis-tetramers per neuron. The clustered Pcdhs are important for normal neuronal development. The clustered Pcdh genes have also attracted attention as a target for epigenetic regulation.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- KOKORO Biology Group and JST-CREST, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | | |
Collapse
|
50
|
Georgoulis A, Havaki S, Drosos Y, Goutas N, Vlachodimitropoulos D, Aleporou-Marinou V, Kittas C, Marinos E, Kouloukoussa M. RGD binding to integrin alphavbeta3 affects cell motility and adhesion in primary human breast cancer cultures. Ultrastruct Pathol 2012. [PMID: 23181508 DOI: 10.3109/01913123.2012.681834] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Integrins mediate cell adhesion to the extracellular matrix. Integrin alphavbeta3 recognizes the RGD motif as a ligand-binding site and has been associated with high malignant potential in breast cancer cells, signaling the onset of widespread metastasis. In recent years, several antagonists of integrin alphavbeta3, including RGD peptides, have been used as potential anti-cancer agents. In the present work, the effect of the linear RGD hexapeptide GRGDSP was studied, for the first time, on breast tumor explants, as well as on well-spread human breast cancer cells from primary cultures, using the explant technique, to clarify the role of this peptide in the suppression of breast cancer cell migration. The results showed that incubation of breast tumor explants with RGD peptide at the beginning of culture development inhibited completely the migration of cancer cells out of the tissue fragment as revealed by electron microscopy. RGD incubation of well-spread breast cancer cells from primary culture resulted in rounding and shrinkage of the cells accompanied by altered distribution of integrin alphavbeta3 and concomitant F-actin cytoskeletal disorganization, as revealed by immunofluorescence. Electron immunocytochemistry showed aggregation of integrin alphavbeta3 at the cell periphery and its detection in noncoated vesicles. However, Western immunoblotting showed no change in beta3 subunit expression, despite the altered distribution of the integrin alphavbeta3. In light of the above, it appears that the RGD peptide plays an important role in the modulation of cell motility and in the perturbation of cell attachment affecting the malignant potential of breast cancer cells in primary cultures.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Laboratory of Histology and Embryology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|