1
|
Gomaa AE, El Mounadi K, Parperides E, Garcia-Ruiz H. Cell Fractionation and the Identification of Host Proteins Involved in Plant-Virus Interactions. Pathogens 2024; 13:53. [PMID: 38251360 PMCID: PMC10819628 DOI: 10.3390/pathogens13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.
Collapse
Affiliation(s)
- Amany E. Gomaa
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Kaoutar El Mounadi
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA
| | - Eric Parperides
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| |
Collapse
|
2
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Xu M, Mazur MJ, Tao X, Kormelink R. Cellular RNA Hubs: Friends and Foes of Plant Viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:40-54. [PMID: 31415225 DOI: 10.1094/mpmi-06-19-0161-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA granules are dynamic cellular foci that are widely spread in eukaryotic cells and play essential roles in cell growth and development, and immune and stress responses. Different types of granules can be distinguished, each with a specific function and playing a role in, for example, RNA transcription, modification, processing, decay, translation, and arrest. By means of communication and exchange of (shared) components, they form a large regulatory network in cells. Viruses have been reported to interact with one or more of these either cytoplasmic or nuclear granules, and act either proviral, to enable and support viral infection and facilitate viral movement, or antiviral, protecting or clearing hosts from viral infection. This review describes an overview and recent progress on cytoplasmic and nuclear RNA granules and their interplay with virus infection, first in animal systems and as a prelude to the status and current developments on plant viruses, which have been less well studied on this thus far.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Magdalena J Mazur
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Morales JA, Gonzalez-Kantun WA, Rodriguez-Zapata LC, Ramón-Ugalde J, Castano E. The effect of plant stress on phosphoinositides. Cell Biochem Funct 2019; 37:553-559. [PMID: 31478243 DOI: 10.1002/cbf.3432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are very versatile molecules with a plethora of functions such as cytokinesis, chemotaxis, cell survival, and cell death. Their functions depend on the proteins with which they interact. Thus, when interacting with phospholipases, phosphatases, or kinases, they can be precursors of second messengers in different signalling pathways. They could be second messengers themselves and interact directly with other proteins to modulate their functions trough changing its localization and activity or enhancing its synthesis rate. Because they are more abundant in animal cells and their importance in diseases such as cancer has taken priority, the study of the phosphoinositides in plants has not evolved to the same extent. Nevertheless, several studies have shown the significance of these lipids in plant cells viability and environmental response. This review focuses on phosphoinositides response to abiotic and biotic stress, showing their implication in plant survival during different stages of development. SIGNIFICANCE OF THE STUDY: This review is focused on plant PIPs functions in stress, highlighting in the main differences between plant and mammal PIPs and the novel interactions that could be extrapolated to animal models to contribute in a better understanding of these pivotal molecules.
Collapse
Affiliation(s)
- Javier Adrian Morales
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Wilma A Gonzalez-Kantun
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | | | - Julio Ramón-Ugalde
- Centro de Selección y Reproducción Ovina (CeSyRO), Instituto Tecnológico de Conkal (ITC), Mérida, Mexico
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
5
|
Abstract
Most of the major fungal families including plant-pathogenic fungi, yeasts, and mushrooms are infected by mycoviruses, and many double-stranded RNA (dsRNA) mycoviruses have been recently identified from diverse plant-pathogenic Fusarium species. The frequency of occurrence of dsRNAs is high in Fusarium poae but low in other Fusarium species. Most Fusarium mycoviruses do not cause any morphological changes in the host but some mycoviruses like Fusarium graminearum virus 1 (FgV1) cause hypovirulence. Available genomic data for seven of the dsRNA mycoviruses infecting Fusarium species indicate that these mycoviruses exist as complexes of one to five dsRNAs. According to phylogenetic analysis, the Fusarium mycoviruses identified to date belong to four families: Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae. Proteome and transcriptome analysis have revealed that FgV1 infection of Fusarium causes changes in host transcriptional and translational machineries. Successful transmission of FgV1 via protoplast fusion suggests the possibility that, as biological control agents, mycoviruses could be introduced into diverse species of fungal plant pathogens. Research is now needed on the molecular biology of mycovirus life cycles and mycovirus-host interactions. This research will be facilitated by the further development of omics technologies.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
6
|
Zakri AM, Ziegler A, Commandeur U, Fischer R, Torrance L. In vivo expression and binding activity of scFv-RWAV, which recognizes the coat protein of tomato leaf curl New Delhi virus (family Geminiviridae). Arch Virol 2012; 157:1291-9. [PMID: 22491815 DOI: 10.1007/s00705-012-1310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
Abstract
Recombinant antibodies expressed in plants have the potential to interrupt virus infections by blocking essential stages of the infection cycle. Here, we show that the expression of a recombinant single-chain variable fragment (scFv) that recognizes the coat protein of tomato leaf curl New Delhi virus (ToLCNDV) in vitro can also bind to a recombinant coat protein in vivo in the reducing environment of the plant cytosol. The scFv and its target were both expressed as fluorescent protein fusions, one incorporating green fluorescent protein (GFP) and the other DsRed. We found that the incorporation of a nuclear localization signal into the scFv construct resulted in the nuclear import of the antibody-antigen complex, as shown by colocalization of the two fluorescent signals. This demonstrates that recombinant antibodies can be targeted to the nucleus and will bind to geminivirus coat proteins therein, allowing the virus infection cycle to be interrupted during its critical replicative phase.
Collapse
Affiliation(s)
- Adel M Zakri
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
7
|
Cho WK, Yu J, Lee KM, Son M, Min K, Lee YW, Kim KH. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genomics 2012; 13:173. [PMID: 22559730 PMCID: PMC3478160 DOI: 10.1186/1471-2164-13-173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21) is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB) disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. RESULTS Using a 3'-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. CONCLUSION This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together, our data aid in the understanding of how FgV1-DK21 regulates the transcriptional reprogramming of F. graminearum.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Crivelli G, Ciuffo M, Genre A, Masenga V, Turina M. Reverse genetic analysis of Ourmiaviruses reveals the nucleolar localization of the coat protein in Nicotiana benthamiana and unusual requirements for virion formation. J Virol 2011; 85:5091-104. [PMID: 21411534 PMCID: PMC3126195 DOI: 10.1128/jvi.02565-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/07/2011] [Indexed: 01/27/2023] Open
Abstract
Ourmia melon virus (OuMV) is the type member of the genus Ourmiavirus. These viruses have a trisegmented genome, each part of which encodes a single protein. Ourmiaviruses share a distant similarity with other plant viruses only in their movement proteins (MP), whereas their RNA-dependent RNA polymerase (RdRP) shares features only with fungal viruses of the family Narnaviridae. Thus, ourmiaviruses are in a unique phylogenetic position among existing plant viruses. Here, we developed an agroinoculation system to launch infection in Nicotiana benthamiana plants. Using different combinations of the three segments, we demonstrated that RNA1 is necessary and sufficient for cis-acting replication in the agroinfiltrated area. RNA2 and RNA3, encoding the putative movement protein and the coat protein (CP), respectively, are both necessary for successful systemic infection of N. benthamiana. The CP is dispensable for long-distance transport of the virus through vascular tissues, but its absence prevents efficient systemic infection at the exit sites. Virion formation occurred only when the CP was translated from replication-derived RNA3. Transient expression of a green fluorescent protein-MP (GFP-MP) fusion via agroinfiltration showed that the MP is present in cytoplasmic connections across plant cell walls; in protoplasts the GFP-MP fusion stimulates the formation of tubular protrusions. Expression through agroinfiltration of a GFP-CP fusion displays most of the fluorescence inside the nucleus and within the nucleolus in particular. Nuclear localization of the CP was also confirmed through Western blot analysis of purified nuclei. The significance of several unusual properties of OuMV for replication, virion assembly, and movement is discussed in relation to other positive-strand RNA viruses.
Collapse
Affiliation(s)
| | | | - Andrea Genre
- Dipartimento di Biologia Vegetale, Universitá di Torino, Torino, Italy
| | - Vera Masenga
- Istituto di Virologia Vegetale, CNR, Torino, Italy
| | | |
Collapse
|
9
|
Wright KM, Cowan GH, Lukhovitskaya NI, Tilsner J, Roberts AG, Savenkov EI, Torrance L. The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1486-97. [PMID: 20923354 DOI: 10.1094/mpmi-05-10-0105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.
Collapse
Affiliation(s)
- Kathryn M Wright
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
11
|
Emmott E, Dove BK, Howell G, Chappell LA, Reed ML, Boyne JR, You JH, Brooks G, Whitehouse A, Hiscox JA. Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus. Virology 2008; 380:191-202. [PMID: 18775548 PMCID: PMC7103397 DOI: 10.1016/j.virol.2008.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/22/2008] [Accepted: 05/30/2008] [Indexed: 02/08/2023]
Abstract
Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.
Collapse
Affiliation(s)
- Edward Emmott
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Gareth Howell
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Lucy A. Chappell
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Mark L. Reed
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Jae-Hwan You
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Adrian Whitehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Ghazala W, Waltermann A, Pilot R, Winter S, Varrelmann M. Functional characterization and subcellular localization of the 16K cysteine-rich suppressor of gene silencing protein of tobacco rattle virus. J Gen Virol 2008; 89:1748-1758. [PMID: 18559946 DOI: 10.1099/vir.0.83503-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The 16 kDa cysteine-rich protein (16K) of tobacco rattle virus (TRV) is known to partially suppress RNA silencing in Drosophila cells. In this study, we show that 16K suppresses RNA silencing in green fluorescent protein (GFP)-transgenic Nicotiana benthamiana plants using an Agrobacterium-mediated transient assay. 16K slightly reduced the accumulation of short interfering RNAs (siRNA) of GFP, suggesting that the protein may interfere with the initiation and/or maintenance of RNA silencing. Deletion of either the N- or C-terminal part of 16K indicated that the entire 16K open reading frame (ORF) is necessary for its silencing suppression function. Pentapeptide insertion scanning mutagenesis (PSM) revealed that only two short regions of 16K tolerated five extra amino acid insertions without considerable reduction in its silencing suppression function. The tolerant regions coincide with sequence variability between tobravirus cysteine-rich proteins, indicating a strong functional and/or structural conservation of TRV 16K. Confocal laser scanning microscopy of transiently expressed 16K fusions to red fluorescent protein (RFP) revealed a predominant cytoplasmic localization and, in addition, a nuclear localization. In contrast, fusions of RFP with the N-terminal region of 16K localized exclusively to the cytoplasm, whereas fusions between RFP and the C-terminal region of 16K displayed an exclusive nuclear localization. Further analysis of 16K-derived peptide fusions demonstrated that the 16K C-terminal region contained at least two functional bipartite nuclear localization signals which were independently capable of nuclear targeting.
Collapse
Affiliation(s)
- Walid Ghazala
- Department of Crop Sciences, Section Plant Virology, Universität Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany
| | - Angelika Waltermann
- Institute of Plant Diseases and Plant Protection, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Ruth Pilot
- Department of Crop Sciences, Section Plant Virology, Universität Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany
| | - Stephan Winter
- Plant Virus Department, German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, D-38124 Braunschweig, Germany
| | - Mark Varrelmann
- Department of Crop Sciences, Section Plant Virology, Universität Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|
13
|
Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007; 8:574-85. [PMID: 17519961 DOI: 10.1038/nrm2184] [Citation(s) in RCA: 1202] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.
Collapse
MESH Headings
- Animals
- Cell Nucleolus/chemistry
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- Cell Nucleolus/physiology
- Cell Nucleolus/ultrastructure
- DNA, Ribosomal/analysis
- DNA, Ribosomal/biosynthesis
- Fluorescent Dyes
- Humans
- Indoles
- Microscopy, Fluorescence
- Mitosis
- Models, Biological
- Nucleolus Organizer Region/physiology
- Nucleolus Organizer Region/ultrastructure
- RNA Precursors/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
|
14
|
Peleg G, Malter D, Wolf S. Viral infection enables phloem loading of GFP and long-distance trafficking of the protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:165-72. [PMID: 17559510 DOI: 10.1111/j.1365-313x.2007.03128.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It is generally accepted that viral systemic infection follows the source-to-sink symplastic pathway of sugar translocation. In plants that are classified as apoplastic loaders, the boundary between the companion cell-sieve element (CC-SE) complex and neighboring cells is symplastically restricted, and the potential passage of macromolecules between the two domains has yet to be explored. Transgenic tobacco plants expressing green fluorescence protein (GFP) and cucumber mosaic virus (CMV)-encoded proteins fused to GFP under the control of the fructose-1,6-bisphosphatase (FBPase) promoter were produced in order to localize the encoded proteins in mesophyll and bundle sheath cells and to explore the influence of viral infection on the functioning of plasmodesmata interconnecting the two domains. GFP produced outside the vascular tissue could overcome the symplastic barrier between the CC-SE complex and the surrounding cells to enter the vasculature in CMV-infected plants. Grafting of control (non-transgenic) tobacco scions to CMV-infected FBPase-GFP-expressing root stocks confirmed that GFP could move long distances in the phloem. No movement of the gfp mRNA was noticeable in this set of experiments. The ability of GFP to enter the vasculature and move long distances was also evident upon infection of the grafting plants with other viruses. These results provide experimental evidence for alteration of the functioning of plasmodesmata interconnecting the CC-SE complex and neighboring cells by viral infection to enable non-selective trafficking of macromolecules from the mesophyll into the sieve tube.
Collapse
Affiliation(s)
- Gadi Peleg
- Institute of Plant Sciences and Genetics in Agriculture and Otto Warburg Minerva Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot, Israel
| | | | | |
Collapse
|
15
|
Fondong VN, Reddy RVC, Lu C, Hankoua B, Felton C, Czymmek K, Achenjang F. The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:380-91. [PMID: 17427808 DOI: 10.1094/mpmi-20-4-0380] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Some geminiviruses encode a small protein, AC4, whose role in pathogenesis has only recently attracted attention. A few studies have shown that this protein is involved in pathogenesis and suppresses RNA silencing. Here, using Nicotiana benthamiana, we show that East African cassava mosaic Cameroon virus (EACMCV) AC4 is a pathogenicity determinant and that it suppresses the systemic phase of RNA silencing. Furthermore, confocal imaging analyses show that it binds preferentially to the plasma membrane as well as to cytosolic membranes including the perinucleus but is excluded from the nucleus. A computational examination of the AC4 protein encoded by the EACMCV, a bipartite geminivirus, shows that it encodes a consensus N-myristoylation motif and is likely posttranslationally myristoylated and palmitoylated. Replacement of Gly-2 and Cys-3 (sites of posttranslational attachment of myristic and palmatic acids, respectively) with alanine affected AC4 membrane binding and pathogenesis. Furthermore, replacement of Ile-5, a nonessential myristoylation residue, with alanine did not affect AC4 function. Together, these data indicate that EACMCV AC4 is likely dually acylated at Gly-2 and Cys-3 and that these modifications are intrinsic signals for membrane targeting and pathogenesis. This is the first report of a membrane protein to be involved in pathogenesis and RNA silencing suppression.
Collapse
Affiliation(s)
- Vincent N Fondong
- Department of Biological Sciences, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The nucleolus is a dynamic subnuclear structure with roles in ribosome subunit biogenesis, mediation of cell-stress responses and regulation of cell growth. The proteome and structure of the nucleolus are constantly changing in response to metabolic conditions. RNA viruses interact with the nucleolus to usurp host-cell functions and recruit nucleolar proteins to facilitate virus replication. Investigating the interactions between RNA viruses and the nucleolus will facilitate the design of novel anti-viral therapies, such as recombinant vaccines and therapeutic molecular interventions, and also contribute to a more detailed understanding of the cell biology of the nucleolus.
Collapse
Affiliation(s)
- Julian A Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
17
|
Dove BK, You JH, Reed ML, Emmett SR, Brooks G, Hiscox JA. Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell Microbiol 2006; 8:1147-57. [PMID: 16819967 PMCID: PMC7162191 DOI: 10.1111/j.1462-5822.2006.00698.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/13/2005] [Accepted: 01/06/2006] [Indexed: 12/28/2022]
Abstract
The nucleolus is a dynamic subnuclear structure involved in ribosome subunit biogenesis, cell cycle control and mediating responses to cell stress, among other functions. While many different viruses target proteins to the nucleolus and recruit nucleolar proteins to facilitate virus replication, the effect of infection on the nucleolus in terms of morphology and protein content is unknown. Previously we have shown that the coronavirus nucleocapsid protein will localize to the nucleolus. In this study, using the avian infectious bronchitis coronavirus, we have shown that virus infection results in a number of changes to the nucleolus both in terms of gross morphology and protein content. Using confocal microscopy coupled with fluorescent labelled nucleolar marker proteins we observed changes in the morphology of the nucleolus including an enlarged fibrillar centre. We found that the tumour suppressor protein, p53, which localizes normally to the nucleus and nucleolus, was redistributed predominately to the cytoplasm.
Collapse
Affiliation(s)
- Brian K Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
18
|
Reed ML, Dove BK, Jackson RM, Collins R, Brooks G, Hiscox JA. Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 2006; 7:833-48. [PMID: 16734668 PMCID: PMC7488588 DOI: 10.1111/j.1600-0854.2006.00424.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 03/10/2006] [Indexed: 01/11/2023]
Abstract
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N-protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N-protein uses these signals to traffic to and from the nucleolus and the cytoplasm.
Collapse
Affiliation(s)
- Mark L. Reed
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Richard M. Jackson
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Collins
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Haupt S, Stroganova T, Ryabov E, Kim SH, Fraser G, Duncan G, Mayo MA, Barker H, Taliansky M. Nucleolar localization of potato leafroll virus capsid proteins. J Gen Virol 2005; 86:2891-2896. [PMID: 16186245 DOI: 10.1099/vir.0.81101-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato leafroll virus (PLRV) encodes two capsid proteins, major protein (CP) and minor protein (P5), an extended version of the CP produced by occasional translational 'readthrough' of the CP gene. Immunogold electron microscopy showed that PLRV CP is located in the cytoplasm and also localized in the nucleus, preferentially targeting the nucleolus. The nucleolar localization of PLRV CP was also confirmed when it was expressed as a fusion with green fluorescent protein (GFP) via an Agrobacterium vector. Mutational analysis identified a particular sequence within PLRV CP involved in nucleolar targeting [the nucleolar localization signal (NoLS)]. Minor protein P5 also contains the same NoLS, and was targeted to the nucleolus when it was expressed as a fusion with GFP from Agrobacterium. However, P5-GFP lost its nucleolar localization in the presence of replicating PLRV.
Collapse
Affiliation(s)
- Sophie Haupt
- University of Dundee, Dundee DD1 4NH, UK
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tanya Stroganova
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eugene Ryabov
- University of Warwick - HRI, Wellesbourne, Warwick CV35 9EF, UK
| | - Sang Hyon Kim
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Gill Fraser
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - George Duncan
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Mike A Mayo
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hugh Barker
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | |
Collapse
|