1
|
Fu Y, Zhao C, Lin C, Zhang B, Yan L, Zhang B, Wang P, Qiu L. Characterization and immune role of class B scavenger receptor member 1 in spotted sea bass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109811. [PMID: 39117126 DOI: 10.1016/j.fsi.2024.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Scavenger receptors (SRs) are integral to the innate immune system and function as pattern-recognition receptors that facilitate pathogen clearance and mediate anti-inflammatory responses. However, the role of SRs in the immune response of Lateolabrax maculatus against Aeromonas veronii is unclear. Here, we cloned scavenger receptor B1 from L. maculatus (LmSRB1) and performed bioinformatics analysis to study its potential functions. The open reading frame spans 1530 base pairs and encodes a 509-amino acid protein with a molecular mass of 57.44 kDa. Comparative analysis revealed high sequence conservation among fish species. Expression profiling revealed strong LmSRB1 transcription in various tissues, especially in head kidney and spleen. Following A. veronii exposure, LmSRB1 expression initially increased, peaking after 4-8 h, with a notable secondary peak at 72 h. Fluorescence in situ hybridization indicated that LmSRB1 mainly localized to the cytoplasm, and subcellular-localization studies confirmed LmSRB1 protein expression in the cytoplasm and cell membrane. Enzyme-linked immunosorbent assay data showed dose-dependent binding of LmSRB1 to A. veronii. Modulating LmSRB1 expression significantly altered the levels of IL-8, IL-1β, TRAF6, and NIK. These results highlight the crucial role of LmSRB1 in L. maculatus's innate immune response to A. veronii and offer insights into improving the management of bacterial infections in aquaculture.
Collapse
Affiliation(s)
- Yichen Fu
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Changhong Lin
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China.
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China.
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
2
|
Lu X, Yarbrough WG. Negative regulation of RelA phosphorylation: emerging players and their roles in cancer. Cytokine Growth Factor Rev 2014; 26:7-13. [PMID: 25438737 DOI: 10.1016/j.cytogfr.2014.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/03/2014] [Indexed: 01/25/2023]
Abstract
NF-κB signaling contributes to human disease processes, notably inflammatory diseases and cancer. Many advances have been made in understanding mechanisms responsible for abnormal NF-κB activation with RelA post-translational modification, particularly phosphorylation, proven to be critical for RelA function. While the majority of studies have focused on identifying kinases responsible for NF-κB phosphorylation and pathway activation, recently progress has also been made in understanding the negative regulators important for restraining RelA activity. Here we summarize negative regulators of RelA phosphorylation, their targeting sites in RelA and biological functions through negative regulation of RelA activation. Finally, we emphasize the tumor suppressor-like roles that these negative regulators can assume in human cancers.
Collapse
Affiliation(s)
- Xinyuan Lu
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Wendell G Yarbrough
- Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA; Department of Pathology, Yale University, New Haven, CT, USA; Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
3
|
Liu H, Yang J, Yuan Y, Xia Z, Chen M, Xie L, Ma X, Wang J, Ouyang S, Wu Q, Yu F, Zhou X, Yang Y, Cao Y, Hu J, Yin B. Regulation of Mcl-1 by constitutive activation of NF-κB contributes to cell viability in human esophageal squamous cell carcinoma cells. BMC Cancer 2014; 14:98. [PMID: 24529193 PMCID: PMC3930545 DOI: 10.1186/1471-2407-14-98] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies with a 5-year survival rate less than 15%. Understanding of the molecular mechanisms involved in the pathogenesis of ESCC becomes critical to develop more effective treatments. METHODS Mcl-1 expression was measured by reverse transcription (RT)-PCR and Western blotting. Human Mcl-1 promoter activity was evaluated by reporter gene assay. The interactions between DNA and transcription factors were confirmed by electrophoretic mobility shift assay (EMSA) in vitro and by chromatin immunoprecipitation (ChIP) assay in cells. RESULTS Four human ESCC cell lines, TE-1, Eca109, KYSE150 and KYSE510, are revealed increased levels of Mcl-1 mRNA and protein compare with HaCaT, an immortal non-tumorigenic cell line. Results of reporter gene assays demonstrate that human Mcl-1 promoter activity is decreased by mutation of kappaB binding site, specific NF-kappaB inhibitor Bay11-7082 or dominant inhibitory molecule DNMIkappaBalpha in TE-1 and KYSE150 cell lines. Mcl-1 protein level is also attenuated by Bay11-7082 treatment or co-transfection of DNMIkappaBalpha in TE-1 and KYSE150 cells. EMSA results indicate that NF-kappaB subunits p50 and p65 bind to human Mcl-1-kappaB probe in vitro. ChIP assay further confirm p50 and p65 directly bind to human Mcl-1 promoter in intact cells, by which regulates Mcl-1 expression and contributes to the viability of TE-1 cells. CONCLUSIONS Our data provided evidence that one of the mechanisms of Mcl-1 expression in human ESCC is regulated by the activation of NF-kappaB signaling. The newly identified mechanism might provide a scientific basis for developing effective approaches to treatment human ESCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jianguo Hu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China.
| | | |
Collapse
|
4
|
Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol Cell Biol 2010; 31:924-34. [PMID: 21189284 DOI: 10.1128/mcb.00576-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor κB (NF-κB) signaling controls a wide range of cellular functions such as tumor progression and invasion by inducing gene expression. Upon stimulation, NF-κB is translocated to the nucleus and binds to its target gene promoters to activate transcription by recruiting transcription coactivators. Although significant progress has been made in understanding NF-κB-mediated transactivation, little is known about how NF-κB is recruited to its target gene promoters. Here, we report that transducin β-like protein 1 (TBL1) controls the expression of NF-κB target genes by directly binding with NF-κB and facilitating its recruitment to target gene promoters. Tumor necrosis factor alpha stimulation triggered the formation of an NF-κB and TBL1 complex and subsequent target gene promoter binding. Knockdown of TBL1 impaired the recruitment of NF-κB to its target gene promoters. Interestingly, analysis of the Oncomine database revealed that TBL1 mRNA levels were significantly higher in invasive breast cancer tissues than in breast adenocarcinoma tissue. Consistently, TBL1 knockdown significantly reduced the invasive potential of breast cancer cells by inhibiting NF-κB. Our results reveal a new mechanism for the regulation of NF-κB activation, with important implications for the development of novel strategies for cancer therapy by targeting NF-κB.
Collapse
|
5
|
Dąbek J, Kułach A, Gąsior Z. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB): a new potential therapeutic target in atherosclerosis? Pharmacol Rep 2010; 62:778-83. [DOI: 10.1016/s1734-1140(10)70338-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 03/09/2010] [Indexed: 01/04/2023]
|
6
|
Pepper C, Hewamana S, Brennan P, Fegan C. NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 2009; 5:1027-37. [PMID: 19792971 DOI: 10.2217/fon.09.72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia is the most common adult leukemia and is currently incurable with conventional chemotherapeutic agents. Over the last few years, significant discoveries have been made regarding the biology that underpins this disease. These new insights have allowed us to develop more rational prognostic tools and identify promising novel therapeutic targets. In this review, we highlight the importance of both constitutive and inducible DNA binding of the transcription factor NF-kappaB in chronic lymphocytic leukemia. We describe the current knowledge regarding the activity and function of specific NF-kappaB subunits in this disease, and discuss the complex mechanisms that regulate NF-kappaB activation in vivo. In addition, we provide compelling evidence for the utility of the NF-kappaB subunit, Rel A, as a prognostic marker and as a therapeutic target in this disease, and we also describe how this protein may contribute to the drug resistance commonly encountered with this condition.
Collapse
Affiliation(s)
- Chris Pepper
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | | | |
Collapse
|
7
|
Ishaq M, Ma L, Wu X, Mu Y, Pan J, Hu J, Hu T, Fu Q, Guo D. The DEAD-box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB-mediated transcription. J Cell Biochem 2009; 106:296-305. [PMID: 19058135 DOI: 10.1002/jcb.22004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DEAD-box RNA helicases constitute the largest family of RNA helicases and are involved in many aspects of RNA metabolism. In this study, we identified RelA (p65), a subunit of nuclear factor-kappaB (NF-kappaB), as a cellular co-factor of DEAD-box RNA helicase DDX1, through mammalian two hybrid system and co-immunoprecipitation assay. Additionally, confocal microscopy and chromatin immunoprecipitation assays confirmed this interaction. In NF-kappaB dependent reporter gene assay, DDX1 acted as a co-activator to enhance NF-kappaB-mediated transcription activation. The functional domains involved were mapped to the carboxy terminal transactivation domain of RelA and the amino terminal ATPase/helicase domain of DDX1. The DDX1 trans-dominant negative mutant lacking ATP-dependent RNA helicase activity lost it transcriptional inducer activity. Moreover, depletion of endogenous DDX1 by specific small interfering RNAs significantly reduced NF-kappaB-dependent transcription. Taken together, the results suggest that DDX1 may play an important role in NF-kappaB-mediated transactivation, and revelation of this regulatory pathway may help to explore the novel mechanisms for regulating NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Musarat Ishaq
- State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
UVB-induced activation of NF-kappaB is regulated by the IGF-1R and dependent on p38 MAPK. J Invest Dermatol 2007; 128:1022-9. [PMID: 18059487 DOI: 10.1038/sj.jid.5701127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To manage the frequent exposure to carcinogenic UVB wavelengths found in sunlight, keratinocytes have extensive protective measures to handle UVB-induced DNA damage. Recent in vitro evidence and epidemiological data suggest that one possible protective mechanism is dependent on the functional status of the IGF-1R signaling network. A second important signaling pathway regulating the response of keratinocytes to UVB involves the activation of the NF-kappaB transcription factor. Although it is clear that proper functioning of both the IGF-1R and NF-kappaB signaling networks are critical for the appropriate response of keratinocytes to UVB irradiation, it is currently uncertain if these two pathways interact. We now demonstrate that the activation of the NF-kappaB transcription factor by UVB is altered by the functional status of the IGF-1R. In the absence of ligand-activated IGF-1R, UVB-induced NF-kappaB consisted primarily of p50:p50 homodimers. Furthermore, the p38 kinase MAPK directs the subunit composition of NF-kappaB following UVB irradiation, most likely in an IGF-1R-dependent manner. We hypothesize that UVB irradiation leads to an activated p38 MAPK that is regulated in an IGF-1R-dependent manner, leading to NF-kappaB p50:RelA/p65 activation and a survival phenotype. In the absence of ligand-activated IGF-1R, UVB irradiation leads to the induction of NF-kappaB p50:p50 homodimers and a p38-dependent increased susceptibility to apoptosis.
Collapse
|
9
|
Wang J, An H, Mayo MW, Baldwin AS, Yarbrough WG. LZAP, a putative tumor suppressor, selectively inhibits NF-kappaB. Cancer Cell 2007; 12:239-51. [PMID: 17785205 DOI: 10.1016/j.ccr.2007.07.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 04/26/2007] [Accepted: 07/06/2007] [Indexed: 12/16/2022]
Abstract
LZAP has been reported to inhibit cellular proliferation and clonogenic growth. Here, we report that decreased LZAP expression promoted cellular transformation, xenograft tumor growth, and xenograft tumor vascularity. Loss of LZAP also increased cellular invasion, and MMP-9 expression dependent on NF-kappaB. LZAP directly bound to RelA, impaired serine 536 phosphorylation of RelA, increased HDAC association with RelA, inhibited basal and stimulated NF-kappaB transcriptional activity, and was found at the promoter of selective NF-kappaB-responsive genes. LZAP protein levels were markedly decreased in 32% of primary HNSCCs (n = 28) and decreased LZAP levels in primary HNSCC correlated with increased expression of the NF-kappaB-regulated genes IL-8 and IkappaBalpha. In aggregate, these data support a role of LZAP in NF-kappaB regulation and tumor suppression.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Lewis DA, Spandau DF. UVB activation of NF-kappaB in normal human keratinocytes occurs via a unique mechanism. Arch Dermatol Res 2007; 299:93-101. [PMID: 17256146 DOI: 10.1007/s00403-006-0729-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/08/2006] [Accepted: 12/11/2006] [Indexed: 11/25/2022]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is comprised of a family of proteins that are implicated in a wide variety of cellular functions, including the control of cell proliferation, cell survival, and cellular differentiation. Although NF-kappaB is activated in response to inflammatory signals or cellular stress, in the skin NF-kappaB is also implicated to play a role in normal epidermal homeostasis. Often the cellular consequences of NF-kappaB activation are dependent on the specific triggering stimuli. Thus, we have compared the activation mechanism and the function of NF-kappaB following two common stimuli of normal human keratinocytes, inflammatory mediators (tumor necrosis factor alpha (TNFalpha)), and cellular stress (ultraviolet light B (UVB) irradiation). These experiments indicate that although both TNFalpha and UVB stimulate NF-kappaB DNA-binding activity in normal human keratinocytes, the mechanisms of NF-kappaB activation by each stimulus is different. In contrast to the NF-kappaB response following TNFalpha, activation of NF-kappaB by UVB is independent of Ikappa Balpha degradation. Analyses of NF-kappaB-dependent gene expression following TNFalpha or UVB treatment demonstrate that each of these stimulatory signals results in a specific subset of genes that are activated or repressed. These studies provide further evidence of the stimuli and cell-type specific nature of NF-kappaB function.
Collapse
Affiliation(s)
- Davina A Lewis
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
12
|
Piotrowska MJ, Widera D, Kaltschmidt B, an der Heiden U, Kaltschmidt C. Mathematical model for NF-kappaB-driven proliferation of adult neural stem cells. Cell Prolif 2007; 39:441-55. [PMID: 17109630 PMCID: PMC6495974 DOI: 10.1111/j.1365-2184.2006.00403.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neural stem cells (NSCs) are early precursors of neuronal and glial cells. NSCs are capable of generating identical progeny through virtually unlimited numbers of cell divisions (cell proliferation), producing daughter cells committed to differentiation. Nuclear factor kappa B (NF-kappaB) is an inducible, ubiquitous transcription factor also expressed in neurones, glia and neural stem cells. Recently, several pieces of evidence have been provided for a central role of NF-kappaB in NSC proliferation control. Here, we propose a novel mathematical model for NF-kappaB-driven proliferation of NSCs. We have been able to reconstruct the molecular pathway of activation and inactivation of NF-kappaB and its influence on cell proliferation by a system of nonlinear ordinary differential equations. Then we use a combination of analytical and numerical techniques to study the model dynamics. The results obtained are illustrated by computer simulations and are, in general, in accordance with biological findings reported by several independent laboratories. The model is able to both explain and predict experimental data. Understanding of proliferation mechanisms in NSCs may provide a novel outlook in both potential use in therapeutic approaches, and basic research as well.
Collapse
Affiliation(s)
- M J Piotrowska
- Institute of Mathematics, University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Nuclear factor kappaB (NF-kappaB), a transcription factor, plays an important role in carcinogenesis as well as in the regulation of immune and inflammatory responses. NF-kappaB induces the expression of diverse target genes that promote cell proliferation, regulate apoptosis, facilitate angiogenesis and stimulate invasion and metastasis. Furthermore, many cancer cells show aberrant or constitutive NF-kappaB activation which mediates resistance to chemo- and radio-therapy. Therefore, the inhibition of NF-kappaB activation and its signaling pathway offers a potential cancer therapy strategy. In addition, recent studies have shown that NF-kappaB can also play a tumor suppressor role in certain settings. In this review, we focus on the role of NF-kappaB in carcinogenesis and the therapeutic potential of targeting NF-kappaB in cancer therapy.
Collapse
Affiliation(s)
- Chae Hyeong Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
14
|
Chovolou Y, Wätjen W, Kampkötter A, Kahl R. Downregulation of NF-kappaB activation in a H4IIE transfectant insensitive to doxorubicin-induced apoptosis. Toxicology 2006; 232:89-98. [PMID: 17223244 DOI: 10.1016/j.tox.2006.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/11/2006] [Accepted: 12/13/2006] [Indexed: 11/13/2022]
Abstract
Cytostatic drugs are administered to cancer patients in order to drive the tumor cells into apoptosis by DNA damage signalling pathway(s). DNA damage also leads to NF-kappaB activation, and it is controversial whether this is exclusively part of a survival process, thus enabling drug resistance, or whether it can also lead to a pro-apoptotic response, thus supporting the therapeutic purpose of drug administration. In the present work, the pathway and outcome of NF-kappaB activation was compared in the doxorubicin sensitive H4IIE rat hepatoma cell and the H4IIE-derived transfectant Yv2-12 which is insensitive to doxorubicin induced apoptosis. In the wild type H4IIE cell, doxorubicin induces serine 536 phosphorylation and nuclear translocation of p65 which however results in reduced rather than increased expression of the anti-apoptotic protein XIAP. Apoptosis in H4IIE cells is accompanied by rapid production of intracellular reactive oxygen species, caspase activation and increased expression of the pro-apoptotic protein Bax. The doxorubicin-insensitive Yv2-12 transfectant differs from its wild type counterpart by the complete failure to activate NF-kappaB in response to doxorubicin. In contrast, serine 536 phosphorylation and nuclear translocation of p65 are even reduced by doxorubicin treatment while the expression of XIAP and Bax remain virtually unchanged. These results show that NF-kappaB activation by doxorubicin in our experimental system proceeds by an atypical pathway resulting in a pro-apoptotic effect and that insensitivity to doxorubicin-induced apoptosis was accompanied by a loss of NF-kappaB activation.
Collapse
Affiliation(s)
- Yvonni Chovolou
- Institute of Toxicology, Heinrich Heine University of Duesseldorf, P.O. Box 10 10 07, D-40001 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
15
|
Tergaonkar V. NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 2006; 38:1647-53. [PMID: 16766221 DOI: 10.1016/j.biocel.2006.03.023] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 01/01/2023]
Abstract
NFkappaB was identified 20 years ago (Sen, R., & Baltimore, D. (1986) Cell, 46, 705-716) as a nuclear factor that binds the kappa light chain enhancer in B-cells (and hence, the name NFkappaB) and was shown to play roles in innate and adaptive immune responses. More recently, its role in many other cellular processes has become apparent. Perhaps, not surprisingly, deregulated activity of the NFkappaB pathway has been observed and linked to the progression of several human ailments, including cancers. Research in the last two decades has identified the major mechanisms of activation of this pathway and has documented the roles of the key players. Over 200 physiological stimuli are known to activate NFkappaB. These include bacterial and viral products, cellular receptors and ligands, mitogens and growth factors and physical and biochemical stress inducers. The major cellular targets of NFkappaB are chemokines, immune receptors, adhesion molecules, stress response genes, regulators of apoptosis, transcription factors, growth factors, enzymes and cell cycle regulators. In addition, NFkappaB is known to be important for transcription of several viral promoter/enhancers (e.g. HIV-1 and CMV). Given that, such a large number of stimuli can activate NFkappaB, which in turn activates an equally large number of target genes, understanding how specificity generated within the framework of pleiotropic signaling is a major challenge. A thorough understanding of this would be instrumental in designing pathway specific inhibitors of NFkappaB for the treatment of specific human ailments.
Collapse
Affiliation(s)
- Vinay Tergaonkar
- Institute for Molecular and Cell Biology, 61 Proteos, Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
16
|
Ryou SM, Kang KH, Jeong MH, Kim JW, An JH, Lee SY, Jang S, Song PI, Choi KH. Functional cross-talk between p73β and NF-κB mediated by p300. Biochem Biophys Res Commun 2006; 345:623-30. [PMID: 16696941 DOI: 10.1016/j.bbrc.2006.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
p73beta is associated with induction of apoptosis or cellular growth arrest, while NF-kappaB is closely related with promotion of resistance to programmed cell death. These biologically opposing activities between p73beta and NF-kappaB propose a regulatory mechanism of critical turning on/off in cellular apoptotic or survival responses. In this study, we demonstrate that NF-kappaB-mediated transactivation is specifically downregulated by p73beta; conversely, p73beta-transactivation is negatively regulated by functional expression of p65, NF-kappaB RelA subunit. The p73beta transactivation domain (TA) and p65 NH2-terminus are crucial for their negative regulation of p65- and p73beta-mediated transactivation, respectively. Furthermore, p65- or p73beta-interaction with p300 is reciprocally inhibited by their competitive binding to p300 in a restrict amount-dependent manner. Likewise, both p73beta-activated apoptosis and p65-dependent increase of cell viability are reciprocally repressed by p65 and p73beta, respectively. These results have important implications for p300-mediated regulatory mechanism between p73beta- and p65-transactivation, by which both p73beta and NF-kappaB could mutually affect on their biological activities. Therefore, we propose that p300 is a transactivational regulator of competitively balanced cross-talk between p73beta and p65.
Collapse
Affiliation(s)
- Sang-Mi Ryou
- Laboratory of Molecular Biology, Department of Biology, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Columbano A, Ledda-Columbano GM, Pibiri M, Cossu C, Menegazzi M, Moore DD, Huang W, Tian J, Locker J. Gadd45beta is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology 2005; 42:1118-26. [PMID: 16231353 DOI: 10.1002/hep.20883] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously observed that Gadd45/MyD118, a member of the Gadd45 family of inducible factors, showed the strongest immediate-early induction common to two distinctive proliferation responses of the liver: (1) regeneration induced by surgical partial hepatectomy and (2) hyperplasia induced by the primary mitogen TCPOBOP, a ligand of the constitutive androstane receptor (CAR). Gadd45 is known to be stimulated by nuclear factor (NF) B, which is activated by tumor necrosis factor alpha (TNF) in the early response to partial hepatectomy. We therefore investigated whether TNF and NFB also stimulated Gadd45 as part of the response to CAR ligands, or whether activation occurred by an alternative pathway. TCPOBOP effects were characterized in three mouse genotypes: wild-type, TNFR1-/-, and TNFR1-/-TNFR2-/-. The results showed that TCPOBOP did not activate NFB in any of the mice, but a strong induction of Gadd45 messenger RNA was observed in all three genotypes, where TCPOBOP also induced CyP2b10, a classical target gene of activated CAR, and cyclin D1, a proliferation linked gene. Thus, the absence of TNFR signaling and induction of NFB did not impair CAR-mediated gene induction. Moreover, hepatocyte proliferation was strongly induced, and at significantly higher levels than wild type, in both TNFR1-/- and TNFR1-/-TNFR2-/- mice. Further studies evaluated TCPOBOP-induced gene expression in CAR-/- mice, by microarray expression profiling and Northern blot. The induced changes in gene expression, including the stimulation of Gadd45, were almost completely abolished--hence all were mediated via CAR activation. In conclusion, in the liver, Gadd45 can be induced by a distinctive pathway that requires CAR and is independent of TNF-NFB. The greater induction of proliferation in TNFR-null mice suggests negative cross-talk between the CAR and TNF-NFB controls that regulate proliferation.
Collapse
Affiliation(s)
- Amedeo Columbano
- Department of Toxicology, Oncology and Molecular Pathology Unit, University of Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gélinas C, White E. BH3-only proteins in control: specificity regulates MCL-1 and BAK-mediated apoptosis. Genes Dev 2005; 19:1263-8. [PMID: 15937216 DOI: 10.1101/gad.1326205] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Céline Gélinas
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|