1
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
2
|
Li X, Ke Q, Qu A, Wang J, Zhao J, Xu P, Zhou T. Effects of Gene Alternative Splicing Events on Resistance to Cryptocaryonosis of Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:741-753. [PMID: 38969905 DOI: 10.1007/s10126-024-10342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Large yellow croaker (L. crocea) is a productive species in marine aquaculture with great economic value in China. However, the sustainable development of large yellow croaker is hampered by various diseases including cryptocaryonosis caused by Cryptocaryon irritans. The genetic regulation processes for cryptocaryonosis in large yellow croaker are still unclear. In this present study, we analyzed differential alternative splicing events between a C. irritans resistance strain (RS) and a commercial strain (CS). We identified 678 differential alternative splicing (DAS) events from 453 genes in RS and 719 DAS events from 500 genes in CS. A set of genes that are specifically alternatively spliced in RS was identified including mfap5, emp1, and trim33. Further pathway analysis revealed that the specifically alternative spliced genes in RS were involved in innate immune responses through the PRR pathway and the Toll and Imd pathway, suggesting their important roles in the genetic regulation processes for cryptocaryonosis in large yellow croaker. This study would be helpful for the studies of the pathogenesis of cryptocaryonosis and dissection of C. irritans resistance for L. crocea.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaying Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Bebianno MJ, Mendes VM, O'Donovan S, Carteny CC, Keiter S, Manadas B. Effects of microplastics alone and with adsorbed benzo(a)pyrene on the gills proteome of Scrobicularia plana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156895. [PMID: 35753444 DOI: 10.1016/j.scitotenv.2022.156895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are globally present in the marine environment, but the biological effects on marine organisms at the molecular and cellular levels remain scarce. Due to their lipophilic nature, MPs can adsorb other contaminants present in the marine environment, which may increase their detrimental effects once ingested by organisms. This study investigates the effects of low-density polyethylene (PE) MPs with and without adsorbed benzo[a]pyrene (BaP) in the gills proteome of the peppery furrow shell clam, Scrobicularia plana. Clams were exposed to PE MPs (11-13 μm; 1 mg L-1) for 14 days. BaP was analyzed in whole clams' soft tissues, and a proteomic approach was applied in the gills using SWATH/DIA analysis. Proteomic responses suggest that virgin MPs cause disturbance by altering cytoskeleton and cell structure, energy metabolism, conformational changes, oxidative stress, fatty acids, DNA binding and, neurotransmission highlighting the potential risk of this type of MPs for the clam health. Conversely, when clam gills were exposed to MPs adsorbed with BaP a higher differentiation of protein expression was observed that besides changes in cytoskeleton and cell structure, oxidative stress, energy metabolism and DNA binding also induce changes in glucose metabolism, RNA binding and apoptosis. These results indicate that the presence of both stressors (MPs and BaP) have a higher toxicological risk to the health of S. plana.
Collapse
Affiliation(s)
- M J Bebianno
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8000-397 Faro, Portugal.
| | - Vera M Mendes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sarit O'Donovan
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8000-397 Faro, Portugal
| | - Camila C Carteny
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Stephen Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Dahal S, Clayton K, Been T, Fernet-Brochu R, Ocando AV, Balachandran A, Poirier M, Maldonado RK, Shkreta L, Boligan KF, Guvenc F, Rahman F, Branch D, Bell B, Chabot B, Gray-Owen SD, Parent LJ, Cochrane A. Opposing roles of CLK SR kinases in controlling HIV-1 gene expression and latency. Retrovirology 2022; 19:18. [PMID: 35986377 PMCID: PMC9389714 DOI: 10.1186/s12977-022-00605-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.
Collapse
Affiliation(s)
- Subha Dahal
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Kiera Clayton
- grid.168645.80000 0001 0742 0364Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Terek Been
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Raphaële Fernet-Brochu
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Alonso Villasmil Ocando
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139 USA
| | - Ahalya Balachandran
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Mikaël Poirier
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Rebecca Kaddis Maldonado
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lulzim Shkreta
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Kayluz Frias Boligan
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Furkan Guvenc
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Fariha Rahman
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Donald Branch
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Brendan Bell
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Benoit Chabot
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Scott D. Gray-Owen
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Leslie J. Parent
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Alan Cochrane
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| |
Collapse
|
5
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Weidman T, Nagengast AA, DiAngelo JR. The splicing factor 9G8 regulates the expression of NADPH-producing enzyme genes in Drosophila. Biochem Biophys Res Commun 2022; 620:92-97. [DOI: 10.1016/j.bbrc.2022.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
7
|
Habib EB, Mathavarajah S, Dellaire G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front Genet 2022; 13:839963. [PMID: 35281802 PMCID: PMC8912934 DOI: 10.3389/fgene.2022.839963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential kinase first identified in the fission yeast Schizosaccharomyces pombe that is evolutionarily conserved from amoebae to animals. During spliceosomal assembly, PRP4K interacts with and phosphorylates PRPF6 and PRPF31 to facilitate the formation of the spliceosome B complex. However, over the past decade additional evidence has emerged that PRP4K has many diverse cellular roles beyond splicing that contribute to tumour suppression and chemotherapeutic responses in mammals. For example, PRP4K appears to play roles in regulating transcription and the spindle assembly checkpoint (SAC), a key pathway in maintaining chromosomes stability and the response of cancer cells to taxane-based chemotherapy. In addition, PRP4K has been revealed to be a haploinsufficient tumour suppressor that promotes aggressive cancer phenotypes when partially depleted. PRP4K is regulated by both the HER2 and estrogen receptor, and its partial loss increases resistance to the taxanes in multiple malignancies including cervical, breast and ovarian cancer. Moreover, ovarian and triple negative breast cancer patients harboring tumours with low PRP4K expression exhibit worse overall survival. The depletion of PRP4K also enhances both Yap and epidermal growth factor receptor (EGFR) signaling, the latter promoting anoikis resistance in breast and ovarian cancer. Finally, PRP4K is negatively regulated during epithelial-to-mesenchymal transition (EMT), a process that promotes increased cell motility, drug resistance and cancer metastasis. Thus, as we discuss in this review, PRP4K likely plays evolutionarily conserved roles not only in splicing but in a number of cellular pathways that together contribute to tumour suppression.
Collapse
Affiliation(s)
- Elias B. Habib
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
| | | | - Graham Dellaire
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- *Correspondence: Graham Dellaire,
| |
Collapse
|
8
|
The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation. Viruses 2021; 14:v14010060. [PMID: 35062264 PMCID: PMC8779516 DOI: 10.3390/v14010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.
Collapse
|
9
|
Jia T, Jacquet T, Dalonneau F, Coudert P, Vaganay E, Exbrayat-Héritier C, Vollaire J, Josserand V, Ruggiero F, Coll JL, Eymin B. FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biol 2021; 19:173. [PMID: 34433435 PMCID: PMC8390225 DOI: 10.1186/s12915-021-01103-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Background Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs. SRSFs belong to the SR protein family and are regulated by serine/threonine kinases such as SRPK1. Up to now, the role of SR proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression. Results By combining 2D endothelial cells cultures, 3D collagen sprouting assay, a model of angiogenesis in cellulose sponges in mice and a model of angiogenesis in zebrafish, we collectively show that FGF-2 promotes proliferation, survival, and sprouting of endothelial cells by activating a SRSF1/SRSF3/SRPK1-dependent axis. In vitro, we further demonstrate that this FGF-2-dependent signaling pathway controls VEGFR1 pre-mRNA splicing and leads to the generation of soluble VEGFR1 splice variants, in particular a sVEGFR1-ex12 which retains an alternative last exon, that contribute to FGF-2-mediated angiogenic functions. Finally, we show that sVEGFR1-ex12 mRNA level correlates with that of FGF-2/FGFR1 in squamous lung carcinoma patients and that sVEGFR1-ex12 is a poor prognosis marker in these patients. Conclusions We demonstrate that FGF-2 promotes angiogenesis by activating a SRSF1/SRSF3/SRPK1 network that regulates VEGFR1 alternative splicing in endothelial cells, a process that could also contribute to lung tumor progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01103-3.
Collapse
Affiliation(s)
- Tao Jia
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Thibault Jacquet
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Fabien Dalonneau
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Pauline Coudert
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Elisabeth Vaganay
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Julien Vollaire
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Véronique Josserand
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Jean-Luc Coll
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Béatrice Eymin
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France.
| |
Collapse
|
10
|
Chen X, Huang S, Jiang M, Chen Y, XuHan X, Zhang Z, Lin Y, Lai Z. Genome-wide identification and expression analysis of the SR gene family in longan (Dimocarpus longan Lour.). PLoS One 2020; 15:e0238032. [PMID: 32841304 PMCID: PMC7447046 DOI: 10.1371/journal.pone.0238032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/05/2022] Open
Abstract
Longan (Dimocarpus longan Lour.) is an important commercial fruit tree in southern China. The embryogenesis of longan affects the quality and yield of fruit. A large number of alternative splicing events occurs during somatic embryogenesis (SE), which is regulated by serine/arginine-rich (SR) proteins. However, the functions of SR proteins in longan are poorly understood. In this study, 21 Dlo-SR gene family members belonging to six subfamilies were identified, among which Dlo-RSZ20a, Dlo-SR30, Dlo-SR17, Dlo-SR53 and Dlo-SR32 were localized in the nucleus, Dlo-RSZ20b, Dlo-RSZ20c, Dlo-RSZ20d, Dlo-SC18, Dlo-RS2Z29, Dlo-SCL41, and Dlo-SR33 were localized in chloroplasts, and Dlo-RS43, Dlo-SC33, Dlo-SC37, Dlo-RS2Z33, Dlo-RS2Z16, Dlo-RS2Z24, Dlo-SCL43, Dlo-SR112, and Dlo-SR59 were localized in the nucleus and chloroplasts. The Dlo-SR genes exhibited differential expression patterns in different tissues of longan. The transcript levels of Dlo-RSZ20a, Dlo-SC18, Dlo-RS2Z29, DLo-SR59, Dlo-SR53, and Dlo-SR17 were low in all analyzed tissues, whereas Dlo-RS43, Dlo-RS2Z16, Dlo-RS2Z24, and Dlo-SR30 were highly expressed in all tissues. To clarify their function during SE, the transcript levels of Dlo-SR genes were analyzed at different four stages of SE, comprising non-embryonic callus (NEC), friable-embryogenic callus (EC), incomplete compact pro-embryogenic culture (ICpEC) and globular embryo (GE). Interestingly, the transcript levels of Dlo-RS2Z29 and Dlo-SR112 were increased in embryogenic cells compared with the NEC stage, whereas transcript levels of Dlo-RSZ20a, Dlo-RS43, Dlo-SC37, and Dlo-RS2Z16 were especially increased at the GE stage compared with the other stages. Alternative splicing events of Dlo-SR mRNA precursors (pre-mRNAs) was detected during SE, with totals of 41, 29, 35, and 44 events detected during NEC, EC, ICpEC, and GE respectively. Protein–protein interaction analysis showed that SR proteins were capable of interaction with each other. The results indicate that the alternative splicing of Dlo-SR pre-mRNAs occurs during SE and that Dlo-SR proteins may interact to regulate embryogenesis of longan.
Collapse
Affiliation(s)
- Xiaodong Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Huang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengqi Jiang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yukun Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu XuHan
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute de la Recherche Interdisciplinaire de Toulouse, Toulouse, France
| | - Zihao Zhang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| | - Zhongxiong Lai
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| |
Collapse
|
11
|
Li G, Zhou K, Zhao G, Qian H, Xu A. Transcriptome-wide analysis of the difference of alternative splicing in susceptible and resistant silkworm strains after BmNPV infection. 3 Biotech 2019; 9:152. [PMID: 30944799 DOI: 10.1007/s13205-019-1669-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/05/2019] [Indexed: 10/27/2022] Open
Abstract
Novel alternative splicing events were identified from BmNPV-susceptible and -resistant silkworm strains after BmNPV infection using high-throughput RNA-sequencing strategy. In total, 12.82 Gb clean RNA-seq data were generated for the two midgut samples from BmNPV-susceptible and -resistant silkworm strains, and 14.78 Gb clean data for the two fat body samples. The number of alternative splicing events and isoforms in the BmNPV-susceptible silkworm strain was more than that in the BmNPV-resistant silkworm strain. Furthermore, alternative splicing genes uniquely present in BmNPV-resistant silkworm strain were involved in functions about ribosome, whereas, alternative splicing genes uniquely present in BmNPV-susceptible silkworm strain were implicated in functions like DNA helicase activity and signal transduction. Additionally, 33 expressed SR or SR-like proteins were identified, and three genes encoding SR or SR-like proteins (tetratricopeptide repeat protein 14 homolog, ubiquitin carboxyl-terminal hydrolase 32 and zinc finger CCCH domain-containing protein 18) have a higher number of different alternative splicing events between two silkworm strains. The present study suggested BmNPV treatment may have a smaller effect on the mRNA transcription in BmNPV-resistant silkworms than that in BmNPV-susceptible silkworms, and functions of alternative splicing genes are different between the two silkworm strains.
Collapse
|
12
|
Lee SD, Yu D, Lee DY, Shin HS, Jo JH, Lee YC. Upregulated microRNA-193a-3p is responsible for cisplatin resistance in CD44(+) gastric cancer cells. Cancer Sci 2018; 110:662-673. [PMID: 30485589 PMCID: PMC6361556 DOI: 10.1111/cas.13894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is a well‐known anticancer drug used to treat various cancers. However, development of cisplatin resistance has hindered the efficiency of this drug in cancer treatment. Development of chemoresistance is known to involve many signaling pathways. Recent attention has focused on microRNAs (miRNAs) as potentially important upstream regulators in the development of chemoresistance. CD44 is one of the gastric cancer stem cell markers and plays a role in regulating self‐renewal, tumor initiation, metastasis and chemoresistance. The purpose of the present study was to examine the mechanism of miRNA‐mediated chemoresistance to cisplatin in CD44‐positive gastric cancer stem cells. We sorted gastric cancer cells according to level of CD44 expression by FACS and analyzed their miRNA expression profiles by microarray analysis. We found that miR‐193a‐3p was significantly upregulated in CD44(+) cells compared with CD44(−) cells. Moreover, SRSF2 of miR‐193a‐3p target gene was downregulated in CD44(+) cells. We studied the modulation of Bcl‐X and caspase 9 mRNA splicing by SRSF2 and found that more pro‐apoptotic variants of these genes were generated. We also found that downstream anti‐apoptotic genes such as Bcl‐2 were upregulated, whereas pro‐apoptotic genes such as Bax and cytochrome C were downregulated in CD44(+) cells compared to CD44(−) cells. In addition, we found that an elevated level of miR‐193a‐3p triggered the development of cisplatin resistance in CD44(+) cells. Inhibition of miR‐193a‐3p in CD44(+) cells increased SRSF2 expression and also altered the levels of multiple apoptotic genes. Furthermore, inhibition of miR‐193a‐3p reduced cell viability and increased the number of apoptotic cells. Therefore, miR‐193a‐3p may be implicated in the development of cisplatin resistance through regulation of the mitochondrial apoptosis pathway. miR‐193a‐3p could be a promising target for cancer therapy in cisplatin‐resistant gastric cancer.
Collapse
Affiliation(s)
- So D Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Dayeon Yu
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Do Y Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Soo Shin
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Hyeon Jo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong C Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Chen H, Diao X, Wang H, Zhou H. An integrated metabolomic and proteomic study of toxic effects of Benzo[a]pyrene on gills of the pearl oyster Pinctada martensii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:330-336. [PMID: 29573723 DOI: 10.1016/j.ecoenv.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the most important polycyclic aromatic hydrocarbons (PAHs), which are widely present in the marine environment. Because of its teratogenic, mutagenic, and carcinogenic effects on various organisms, the toxicity of BaP is of great concern. In this study, we focused on the toxic effects of BaP (1 µg/L and 10 µg/L) on gills of the pearl oyster Pinctada martensii using combined metabolomic and proteomic approaches. At the metabolome level, the high concentration of BaP mainly caused abnormal energy metabolism, osmotic regulation and immune response marked by significantly altered metabolites in gills. At the proteome level, both concentrations of BaP mainly induced signal transduction, transcription regulation, cell growth, stress response, and energy metabolism. Overall, the research demonstrated that the combination of proteomic and metabolomic approaches could provide a significant way to elucidate toxic effects of BaP on P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Alternative Splicing as a Target for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19020545. [PMID: 29439487 PMCID: PMC5855767 DOI: 10.3390/ijms19020545] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.
Collapse
|
15
|
Grau-Bové X, Torruella G, Donachie S, Suga H, Leonard G, Richards TA, Ruiz-Trillo I. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 2017; 6:26036. [PMID: 28726632 PMCID: PMC5560861 DOI: 10.7554/elife.26036] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest unicellular relatives (the Holozoa), including four new genomes: three Ichthyosporea and Corallochytrium limacisporum. Here, we show that the earliest animals were shaped by dynamic changes in genome architecture before the emergence of multicellularity: an early burst of gene diversity in the ancestor of Holozoa, enriched in transcription factors and cell adhesion machinery, was followed by multiple and differently-timed episodes of synteny disruption, intron gain and genome expansions. Thus, the foundations of animal genome architecture were laid before the origin of complex multicellularity – highlighting the necessity of a unicellular perspective to understand early animal evolution. DOI:http://dx.doi.org/10.7554/eLife.26036.001 Hundreds of millions of years ago, some single-celled organisms gained the ability to work together and form multicellular organisms. This transition was a major step in evolution and took place at separate times in several parts of the tree of life, including in animals, plants, fungi and algae. Animals are some of the most complex organisms on Earth. Their single-celled ancestors were also quite genetically complex themselves and their genomes (the complete set of the organism’s DNA) already contained many genes that now coordinate the activity of the cells in a multicellular organism. The genome of an animal typically has certain features: it is large, diverse and contains many segments (called introns) that are not genes. By seeing if the single-celled relatives of animals share these traits, it is possible to learn more about when specific genetic features first evolved, and whether they are linked to the origin of animals. Now, Grau-Bové et al. have studied the genomes of several of the animal kingdom’s closest single-celled relatives using a technique called whole genome sequencing. This revealed that there was a period of rapid genetic change in the single-celled ancestors of animals during which their genes became much more diverse. Another ‘explosion’ of diversity happened after animals had evolved. Furthermore, the overall amount of the genomic content inside cells and the number of introns found in the genome rapidly increased in separate, independent events in both animals and their single-celled ancestors. Future research is needed to investigate whether other multicellular life forms – such as plants, fungi and algae – originated in the same way as animal life. Understanding how the genetic material of animals evolved also helps us to understand the genetic structures that affect our health. For example, genes that coordinate the behavior of cells (and so are important for multicellular organisms) also play a role in cancer, where cells break free of this regulation to divide uncontrollably. DOI:http://dx.doi.org/10.7554/eLife.26036.002
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Barcelona, Catalonia, Spain
| | - Guifré Torruella
- Unité d'Ecologie, Systématique et Evolution, Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Stuart Donachie
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, United States.,Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, United States
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Guy Leonard
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Thomas A Richards
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys, Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Zhou J, Gao G, Hou P, Li CM, Guo D. Regulation of the Alternative Splicing and Function of Cyclin T1 by the Serine-Arginine-Rich Protein ASF/SF2. J Cell Biochem 2017; 118:4020-4032. [PMID: 28422315 DOI: 10.1002/jcb.26058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
Abstract
Positive transcription elongation factor-b (P-TEFb) is required for the release of RNA polymerase II (RNAPII) from its pause near the gene promoters and thus for efficient proceeding to the transcription elongation. It consists of two core subunits-CDK9 and one of T-typed or K-typed cyclin, of which, cyclin T1/CDK9 is the major and most studied combination. We have previously identified a novel splice variant of cyclin T1, cyclin T1b, which negatively regulates the transcription elongation of HIV-1 genes as well as several host genes. In this study, we revealed the serine-arginine-rich protein, ASF/SF2, as a regulatory factor of the alternative splicing of cyclin T1 gene. ASF/SF2 promotes the production of cyclin T1b versus cyclin T1a and regulates the expression of cyclin T1-depedent genes at the transcription level. We further found that a cis-element on exon 8 is responsible for the skipping of exon 7 mediated by ASF/SF2. Collectively, ASF/SF2 is identified as a splicing regulator of cyclin T1, which contributes to the control of the subsequent transcription events. J. Cell. Biochem. 118: 4020-4032, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jieqiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guozhen Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Panpan Hou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chun-Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Suppression of Adenovirus Replication by Cardiotonic Steroids. J Virol 2017; 91:JVI.01623-16. [PMID: 27881644 DOI: 10.1128/jvi.01623-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complete genome potentially makes it vulnerable to modulators of RNA splicing, such as digoxin and digitoxin. Both drugs reduced the yields of four human adenoviruses (HAdV-A31, -B35, and -C5 and a species D conjunctivitis isolate) by at least 2 to 3 logs by affecting one or more steps needed for genome replication. Immediate early E1A protein levels are unaffected by the drugs, but synthesis of the delayed protein E4orf6 and the major late capsid protein hexon is compromised. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that both drugs altered E1A RNA splicing (favoring the production of 13S over 12S RNA) early in infection and partially blocked the transition from 12S and 13S to 9S RNA at late stages of virus replication. Expression of multiple late viral protein mRNAs was lost in the presence of either drug, consistent with the observed block in viral DNA replication. The antiviral effect was dependent on the continued presence of the drug and was rapidly reversible. RIDK34, a derivative of convallotoxin, although having more potent antiviral activity, did not show an improved selectivity index. All three drugs reduced metabolic activity to some degree without evidence of cell death. By blocking adenovirus replication at one or more steps beyond the onset of E1A expression and prior to genome replication, digoxin and digitoxin show potential as antiviral agents for treatment of serious adenovirus infections. Furthermore, understanding the mechanism(s) by which digoxin and digitoxin inhibit adenovirus replication will guide the development of novel antiviral therapies. IMPORTANCE Despite human adenoviruses being a common and, in some instances, life-threating pathogen in humans, there are few well-tolerated therapies. In this report, we demonstrate that two cardiotonic steroids already in use in humans, digoxin and digitoxin, are potent inhibitors of multiple adenovirus species. A synthetic derivative of the cardiotonic steroid convallotoxin was even more potent than digoxin and digitoxin when tested with HAdV-C5. These drugs alter the cascade of adenovirus gene expression, acting after initiation of early gene expression to block viral DNA replication and synthesis of viral structural proteins. These findings validate a novel approach to treating adenovirus infections through the modulation of host cell processes.
Collapse
|
18
|
Asselman J, De Coninck DI, Beert E, Janssen CR, Orsini L, Pfrender ME, Decaestecker E, De Schamphelaere KA. Bisulfite Sequencing with Daphnia Highlights a Role for Epigenetics in Regulating Stress Response to Microcystis through Preferential Differential Methylation of Serine and Threonine Amino Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:924-931. [PMID: 27983812 DOI: 10.1021/acs.est.6b03870] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Little is known about the influence that environmental stressors may have on genome-wide methylation patterns, and to what extent epigenetics may be involved in environmental stress response. Yet, studies of methylation patterns under stress could provide crucial insights on stress response and toxicity pathways. Here, we focus on genome-wide methylation patterns in the microcrustacean Daphnia magna, a model organism in ecotoxicology and risk assessment, exposed to the toxic cyanobacterium Microcystis aeruginosa. Bisulfite sequencing of exposed and control animals highlighted differential methylation patterns in Daphnia upon exposure to Microcystis primarily in exonic regions. These patterns are enriched for serine/threonine amino acid codons and genes related to protein synthesis, transport and degradation. Furthermore, we observed that genes with differential methylation corresponded well with genes susceptible to alternative splicing in response to Microcystis stress. Overall, our results suggest a complex mechanistic response in Daphnia characterized by interactions between DNA methylation and gene regulation mechanisms. These results underscore that DNA methylation is modulated by environmental stress and can also be an integral part of the toxicity response in our study species.
Collapse
Affiliation(s)
- Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Ghent University , Ghent, B-9000, Belgium
- Department of Biological Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Dieter Im De Coninck
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Ghent University , Ghent, B-9000, Belgium
| | - Eline Beert
- Laboratory of Aquatic Biology, KU Leuven-Kulak , Kortrijk, B-8500, Belgium
| | - Colin R Janssen
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Ghent University , Ghent, B-9000, Belgium
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham , Birmingham, B15 2TT, United Kingdom
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
- Environmental Change Initiative, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, KU Leuven-Kulak , Kortrijk, B-8500, Belgium
| | - Karel Ac De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Ghent University , Ghent, B-9000, Belgium
| |
Collapse
|
19
|
Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, Daniel JA, Jensen LJ, Nielsen ML. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 2016; 9:rs9. [DOI: 10.1126/scisignal.aaf7329] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Lee SH, Jaganath IB, Atiya N, Manikam R, Sekaran SD. Suppression of ERK1/2 and hypoxia pathways by four Phyllanthus species inhibits metastasis of human breast cancer cells. J Food Drug Anal 2016; 24:855-865. [PMID: 28911625 PMCID: PMC9337293 DOI: 10.1016/j.jfda.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapies remain far from ideal due to drug resistance; therefore, novel chemotherapeutic agents with higher effectiveness are crucial. The extracts of four Phyllanthus species, namely Phyllanthus niruri, Phyllanthus urinaria, Phyllanthus watsonii, and Phyllanthus amarus, were shown to induce apoptosis and inhibit metastasis of breast carcinoma cells (MCF-7). The main objective of this study was to determine the pathways utilized by these four Phyllanthus species to exert anti-metastatic activities. A cancer 10-pathway reporter was used to investigate the pathways affected by the four Phyllanthus species. Results indicated that these Phyllanthus species suppressed breast carcinoma metastasis and proliferation by suppressing matrix metalloprotein 2 and 9 expression via inhibition of the extracellular signal-related kinase (ERK) pathway. Additionally, inhibition of hypoxia-inducible factor 1-α in the hypoxia pathway caused reduced vascular endothelial growth factor and inducible nitric oxide synthase expression, resulting in anti-angiogenic effects and eventually anti-metastasis. Two-dimensional gel electrophoresis identified numerous proteins suppressed by these Phyllanthus species, including invasion proteins, anti-apoptotic protein, protein-synthesis proteins, angiogenic and mobility proteins, and various glycolytic enzymes. Our results indicated that ERK and hypoxia pathways are the most likely targets of the four Phyllanthus species for the inhibition of MCF-7 metastasis.
Collapse
Affiliation(s)
- Sau H. Lee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
| | - Indu B. Jaganath
- Biotechnology Centre, Malaysia Agricultural Research and Development Institute (MARDI), 43400, Serdang,
Malaysia
| | - Nadia Atiya
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, 50603, Kuala Lumpur,
Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, 50603, Kuala Lumpur,
Malaysia
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
- Corresponding author. Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. E-mail address: (S.D. Sekaran)
| |
Collapse
|
21
|
Association of a TDRD1 variant with spermatogenic failure susceptibility in the Han Chinese. J Assist Reprod Genet 2016; 33:1099-104. [PMID: 27233649 PMCID: PMC4974230 DOI: 10.1007/s10815-016-0738-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/13/2016] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Piwi-interacting RNAs (piRNAs) are a broad group of noncoding small RNAs that have important biological functions in germline cells and can maintain genome integrity via silencing of retrotransposons. In this study, we aimed to explore the associations between genetic variants of important genes involved in piRNA biogenesis and male infertility with spermatogenic impairment. METHODS To this end, five single-nucleotide polymorphisms (SNPs) in the ASZ1, PIWIL1, TDRD1, and TDRD9 genes were genotyped by TaqMan allelic discrimination assays in 342 cases of nonobstructive azoospermia (NOA) and 493 controls. RESULTS The SNP rs77559927 in TDRD1 was associated with a reduced risk of spermatogenic impairment. The genotypes TC and TC + CC showed odds ratios and 95 % confidence intervals of 0.73 (0.55-0.98, P = 0.034) and 0.73 (0.56-0.97, P = 0.030), respectively, in patients with NOA compared with those in the controls. CONCLUSION Thus, our results provided the first epidemiological evidence supporting the involvement of TDRD1 genetic polymorphisms in piRNA processing genes in determining the risk of spermatogenic impairment in a Han Chinese population.
Collapse
|
22
|
Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene 2016; 587:107-19. [PMID: 27154819 DOI: 10.1016/j.gene.2016.04.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 01/04/2023]
Abstract
Alternative pre-mRNA splicing provides a source of vast protein diversity by removing non-coding sequences (introns) and accurately linking different exonic regions in the correct reading frame. The regulation of alternative splicing is essential for various cellular functions in both pathological and physiological conditions. In eukaryotic cells, this process is commonly used to increase proteomic diversity and to control gene expression either co- or post-transcriptionally. Alternative splicing occurs within a megadalton-sized, multi-component machine consisting of RNA and proteins; during the splicing process, this complex undergoes dynamic changes via RNA-RNA, protein-protein and RNA-protein interactions. Co-transcriptional splicing functionally integrates the transcriptional machinery, thereby enabling the two processes to influence one another, whereas post-transcriptional splicing facilitates the coupling of RNA splicing with post-splicing events. This review addresses the structural aspects of spliceosomes and the mechanistic implications of their stepwise assembly on the regulation of pre-mRNA splicing. Moreover, the role of phosphorylation-based, signal-induced changes in the regulation of the splicing process is demonstrated.
Collapse
|
23
|
Wan J, Bauman JA, Graziewicz MA, Sazani P, Kole R. Oligonucleotide therapeutics in cancer. Cancer Treat Res 2016; 158:213-33. [PMID: 24222360 DOI: 10.1007/978-3-642-31659-3_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in pre-mRNA splicing can have profound effects on gene expression and lead to cellular transformation. Oligonucleotide therapeutics are drugs that manipulate gene expression and improve the disease state. Antisense oligonucleotides hybridize with a target mRNA to downregulate gene expression via an RNase H-dependent mechanism. Additionally, RNase H-independent splice switching oligonucleotides (SSO) modulate alternative or aberrant splicing, to favor the therapeutically relevant splicing product. This chapter summarizes the progress made in the application of these oligonucleotide drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Jing Wan
- AVI Biopharma, 3450 Monte Villa Parkway, Bothell, WA 98021, USA
| | | | | | | | | |
Collapse
|
24
|
Eckert D, Andrée N, Razanau A, Zock-Emmenthal S, Lützelberger M, Plath S, Schmidt H, Guerra-Moreno A, Cozzuto L, Ayté J, Käufer NF. Prp4 Kinase Grants the License to Splice: Control of Weak Splice Sites during Spliceosome Activation. PLoS Genet 2016; 12:e1005768. [PMID: 26730850 PMCID: PMC4701394 DOI: 10.1371/journal.pgen.1005768] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/03/2015] [Indexed: 12/02/2022] Open
Abstract
The genome of the fission yeast Schizosaccharomyces pombe encodes 17 kinases that are essential for cell growth. These include the cell-cycle regulator Cdc2, as well as several kinases that coordinate cell growth, polarity, and morphogenesis during the cell cycle. In this study, we further characterized another of these essential kinases, Prp4, and showed that the splicing of many introns is dependent on Prp4 kinase activity. For detailed characterization, we chose the genes res1 and ppk8, each of which contains one intron of typical size and position. Splicing of the res1 intron was dependent on Prp4 kinase activity, whereas splicing of the ppk8 intron was not. Extensive mutational analyses of the 5’ splice site of both genes revealed that proper transient interaction with the 5’ end of snRNA U1 governs the dependence of splicing on Prp4 kinase activity. Proper transient interaction between the branch sequence and snRNA U2 was also important. Therefore, the Prp4 kinase is required for recognition and efficient splicing of introns displaying weak exon1/5’ splice sites and weak branch sequences. Prp4 is an essential protein kinase that is involved in the splicing of some introns. Using a conditional mutant of Prp4, we showed that a subset of genes, including several cell cycle–regulatory genes, are dependent on Prp4 for splicing. Furthermore, we could convert genes between Prp4-dependent and -independent states by introducing single-nucleotide mutations in the exon1/5’ splice sites and branch sequence of introns. This work shows that Prp4 activity is required for splicing surveillance in a subset of mRNAs.
Collapse
Affiliation(s)
- Daniela Eckert
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicole Andrée
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aleh Razanau
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Martin Lützelberger
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susann Plath
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Schmidt
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (JA); (NFK)
| | - Norbert F. Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail: (JA); (NFK)
| |
Collapse
|
25
|
Movahedi A, Sun W, Zhang J, Wu X, Mousavi M, Mohammadi K, Yin T, Zhuge Q. RNA-directed DNA methylation in plants. PLANT CELL REPORTS 2015; 34:1857-1862. [PMID: 26183954 DOI: 10.1007/s00299-015-1839-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In plants, many small interfering RNAs (siRNAs) direct de novo methylation by DNA methyltransferase. DNA methylation typically occurs by RNA-directed DNA methylation (RdDM), which directs transcriptional gene silencing of transposons and endogenous transgenes. RdDM is driven by non-coding RNAs (ncRNAs) produced by DNA-dependent RNA polymerases IV and V (PolIV and PolV). The production of siRNAs is initiated by PolIV and ncRNAs produced by PolIV are precursors of 24-nucleotide siRNAs. In contrast, ncRNAs produced by PolV are involved in scaffolding RNAs. In this review, we summarize recent studies of RdDM. In particular, we focus on the mechanisms involved in chromatin remodeling by PolIV and PolV.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibu Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaxin Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaolong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohaddesseh Mousavi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kourosh Mohammadi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
26
|
Du JL, Zhang SW, Huang HW, Cai T, Li L, Chen S, He XJ. The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis. MOLECULAR PLANT 2015; 8:1053-68. [PMID: 25684655 DOI: 10.1016/j.molp.2015.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/11/2015] [Accepted: 02/05/2015] [Indexed: 05/10/2023]
Abstract
Although DNA methylation is known to play an important role in the silencing of transposable elements (TEs) and introduced transgenes, the mechanisms that generate DNA methylation-independent transcriptional silencing are poorly understood. Previous studies suggest that RNA-directed DNA methylation (RdDM) is required for the silencing of the RD29A-LUC transgene in the Arabidopsis ros1 mutant background with defective DNA demethylase. Loss of function of ARGONAUTE 4 (AGO4) gene, which encodes a core RdDM component, partially released the silencing of RD29A-LUC in the ros1/ago4 double mutant plants. A forward genetic screen was performed to identify the mutants with elevated RD29A-LUC transgene expression in the ros1/ago4 mutant background. We identified a mutation in the homologous gene of PRP31, which encodes a conserved pre-mRNA splicing factor that regulates the formation of the U4/U6.U5 snRNP complex in fungi and animals. We previously demonstrated that the splicing factors ZOP1 and STA1 contribute to transcriptional gene silencing. Here, we reveal that Arabidopsis PRP31 associates with ZOP1, STA1, and several other splicing-related proteins, suggesting that these splicing factors are both physically and functionally connected. We show that Arabidopsis PRP31 participates in transcriptional gene silencing. Moreover, we report that PRP31, STA1, and ZOP1 are required for development and stress response. Under cold stress, PRP31 is not only necessary for pre-mRNA splicing but also for regulation of cold-responsive gene expression. Our results suggest that the splicing machinery has multiple functions including pre-mRNA splicing, gene regulation, transcriptional gene silencing, and stress response.
Collapse
Affiliation(s)
- Jin-Lu Du
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Su-Wei Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
27
|
Feng D, Su RC, Zou L, Triggs-Raine B, Huang S, Xie J. Increase of a group of PTC(+) transcripts by curcumin through inhibition of the NMD pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1104-15. [PMID: 25934542 DOI: 10.1016/j.bbagrm.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism, eliminates premature termination codon-containing (PTC⁺) transcripts. For instance, it maintains the homeostasis of splicing factors and degrades aberrant transcripts of human genetic disease genes. Here we examine the inhibitory effect on the NMD pathway and consequent increase of PTC+ transcripts by the dietary compound curcumin. We have found that several PTC⁺ transcripts including that of serine/arginine-rich splicing factor 1 (SRSF1) were specifically increased in cells by curcumin. We also observed a similar curcumin effect on the PTC⁺ mutant transcript from a Tay-Sachs-causing HEXA allele or from a beta-globin reporter gene. The curcumin effect was accompanied by significantly reduced expression of the NMD factors UPF1, 2, 3A and 3B. Consistently, in chromatin immunoprecipitation assays, curcumin specifically reduced the occupancy of acetyl-histone H3 and RNA polymerase II at the promoter region (-376 to -247nt) of human UPF1, in a time- and dosage-dependent way. Importantly, knocking down UPF1 abolished or substantially reduced the difference of PTC(+) transcript levels between control and curcumin-treated cells. The disrupted curcumin effect was efficiently rescued by expression of exogenous Myc-UPF1 in the knockdown cells. Together, our data demonstrate that a group of PTC⁺ transcripts are stabilized by a dietary compound curcumin through the inhibition of UPF factor expression and the NMD pathway.
Collapse
Affiliation(s)
- Dairong Feng
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005, China; Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada
| | - Liping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada
| | - Shangzhi Huang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005, China.
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg MB R3E 0J9, Canada.
| |
Collapse
|
28
|
Nevo Y, Sperling J, Sperling R. Heat shock activates splicing at latent alternative 5' splice sites in nematodes. Nucleus 2015; 6:225-35. [PMID: 25634319 DOI: 10.1080/19491034.2015.1010956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pre-mRNA splicing is essential for the regulation of gene expression in eukaryotes and is fundamental in development and cancer, and involves the selection of a consensus sequence that defines the 5' splice site (5'SS). Human introns harbor multiple sequences that conform to the 5'SS consensus, which are not used under normal growth conditions. Under heat shock conditions, splicing at such intronic latent 5'SSs occurred in thousands of human transcripts, resulting in pre-maturely terminated aberrant proteins. Here we performed a survey of the C. elegans genome, showing that worm's introns contain latent 5'SSs, whose use for splicing would have resulted in pre-maturely terminated mRNAs. Splicing at these latent 5'SSs could not be detected under normal growth conditions, while heat shock activated latent splicing in a number of tested C. elegans transcripts. Two scenarios could account for the lack of latent splicing under normal growth conditions (i) Splicing at latent 5'SSs do occur, but the nonsense mRNAs thus formed are rapidly and efficiently degraded (e.g. by NMD); and (ii) Splicing events at intronic latent 5'SSs are suppressed. Here we support the second scenario, because, nematode smg mutants that are devoid of NMD-essential factors, did not show latent splicing under normal growth conditions. Hence, these experiments together with our previous experiments in mammalian cells, indicate the existence of a nuclear quality control mechanism, termed Suppression Of Splicing (SOS), which discriminates between latent and authentic 5'SSs in an open reading frame dependent manner, and allows splicing only at the latter. Our results show that SOS is an evolutionary conserved mechanism, probably shared by most eukaryotes.
Collapse
Affiliation(s)
- Yuval Nevo
- a Department of Genetics; The Hebrew University of Jerusalem ; Jerusalem , Israel
| | | | | |
Collapse
|
29
|
Schrimpf R, Metzger J, Martinsson G, Sieme H, Distl O. Implication of FKBP6
for Male Fertility in Horses. Reprod Domest Anim 2014; 50:195-199. [DOI: 10.1111/rda.12467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/16/2014] [Indexed: 11/29/2022]
Affiliation(s)
- R Schrimpf
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Hannover; Hannover Germany
| | - J Metzger
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Hannover; Hannover Germany
| | | | - H Sieme
- Clinic for Horses; Unit for Reproduction Medicine; University of Veterinary Medicine Hannover; Hannover Germany
| | - O Distl
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Hannover; Hannover Germany
| |
Collapse
|
30
|
Bartels H, Luban J. Gammaretroviral pol sequences act in cis to direct polysome loading and NXF1/NXT-dependent protein production by gag-encoded RNA. Retrovirology 2014; 11:73. [PMID: 25212909 PMCID: PMC4174252 DOI: 10.1186/s12977-014-0073-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/11/2014] [Indexed: 11/21/2022] Open
Abstract
Background All retroviruses synthesize essential proteins via alternatively spliced mRNAs. Retrovirus genera, though, exploit different mechanisms to coordinate the synthesis of proteins from alternatively spliced mRNAs. The best studied of these retroviral, post-transcriptional effectors are the trans-acting Rev protein of lentiviruses and the cis-acting constitutive transport element (CTE) of the betaretrovirus Mason-Pfizer monkey virus (MPMV). How members of the gammaretrovirus genus translate protein from unspliced RNA has not been elucidated. Results The mechanism by which two gammaretroviruses, XMRV and MLV, synthesize the Gag polyprotein (Pr65Gag) from full-length, unspliced mRNA was investigated here. The yield of Pr65Gag from a gag–only expression plasmid was found to be at least 30-fold less than that from an otherwise isogenic gag-pol expression plasmid. A frameshift mutation disrupting the pol open reading frame within the gag-pol expression plasmid did not decrease Pr65Gag production and 398 silent nucleotide changes engineered into gag rendered Pr65Gag synthesis pol-independent. These results are consistent with pol-encoded RNA acting in cis to promote Pr65Gag translation. Two independently-acting pol fragments were identified by screening 17 pol deletion mutations. To determine the mechanism by which pol promoted Pr65Gag synthesis, gag RNA in total and cytoplasmic fractions was quantitated by northern blot and by RT-PCR. The pol sequences caused, maximally, three-fold increase in total or cytoplasmic gag mRNA. Instead, pol sequences increased gag mRNA association with polyribosomes ~100-fold, a magnitude sufficient to explain the increase in Pr65Gag translation efficiency. The MPMV CTE, an NXF1-binding element, substituted for pol in promoting Pr65Gag synthesis. A pol RNA stem-loop resembling the CTE promoted Pr65Gag synthesis. Over-expression of NXF1 and NXT, host factors that bind to the MPMV CTE, synergized with pol to promote gammaretroviral gag RNA loading onto polysomes and to increase Pr65Gag synthesis. Conversely, Gag polyprotein synthesis was decreased by NXF1 knockdown. Finally, overexpression of SRp20, a shuttling protein that binds to NXF1 and promotes NXF1 binding to RNA, also increased gag RNA loading onto polysomes and increased Pr65Gag synthesis. Conclusion These experiments demonstrate that gammaretroviral pol sequences act in cis to recruit NXF1 and SRp20 to promote polysome loading of gag RNA and, thereby license the synthesis of Pr65Gag from unspliced mRNA.
Collapse
Affiliation(s)
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
31
|
Dippold RP, Fisher SA. A bioinformatic and computational study of myosin phosphatase subunit diversity. Am J Physiol Regul Integr Comp Physiol 2014; 307:R256-70. [PMID: 24898838 PMCID: PMC4121627 DOI: 10.1152/ajpregu.00145.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/25/2014] [Indexed: 01/01/2023]
Abstract
Variability in myosin phosphatase (MP) subunits may provide specificity in signaling pathways that regulate muscle tone. We utilized public databases and computational algorithms to investigate the phylogenetic diversity of MP regulatory (PPP1R12A-C) and inhibitory (PPP1R14A-D) subunits. The comparison of exonic coding sequences and expression data confirmed or refuted the existence of isoforms and their tissue-specific expression in different model organisms. The comparison of intronic and exonic sequences identified potential expressional regulatory elements. As examples, smooth muscle MP regulatory subunit (PPP1R12A) is highly conserved through evolution. Its alternative exon E24 is present in fish through mammals with two invariant features: 1) a reading frame shift generating a premature termination codon and 2) a hexanucleotide sequence adjacent to the 3' splice site hypothesized to be a novel suppressor of exon splicing. A characteristic of the striated muscle MP regulatory subunit (PPP1R12B) locus is numerous and phylogenetically variable transcriptional start sites. In fish this locus only codes for the small (M21) subunit, suggesting the primordial function of this gene. Inhibitory subunits show little intragenic variability; their diversity is thought to have arisen by expansion and tissue-specific expression of different gene family members. We demonstrate differences in the regulatory landscape between smooth muscle enriched (PPP1R14A) and more ubiquitously expressed (PPP1R14B) family members and identify deeply conserved intronic sequence and predicted transcriptional cis-regulatory elements. This bioinformatic and computational study has uncovered a number of attributes of MP subunits that supports selection of ideal model organisms and testing of hypotheses regarding their physiological significance and regulated expression.
Collapse
Affiliation(s)
- Rachael P Dippold
- Department of Medicine, Cardiology, University of Maryland Baltimore, Baltimore, Maryland
| | - Steven A Fisher
- Department of Medicine, Cardiology, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
32
|
Huang CF, Zhu JK. RNA Splicing Factors and RNA-Directed DNA Methylation. BIOLOGY 2014; 3:243-54. [PMID: 24833507 PMCID: PMC4085605 DOI: 10.3390/biology3020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/16/2022]
Abstract
RNA-directed histone and/or DNA modification is a conserved mechanism for the establishment of epigenetic marks from yeasts and plants to mammals. The heterochromation formation in yeast is mediated by RNAi-directed silencing mechanism, while the establishment of DNA methylation in plants is through the RNA-directed DNA methylation (RdDM) pathway. Recently, splicing factors are reported to be involved in both RNAi-directed heterochromatin formation in yeast and the RdDM pathway in plants. In yeast, splicing factors may provide a platform for facilitating the siRNA generation through an interaction with RDRC and thereby affect the heterochromatin formation, whereas in plants, various splicing factors seem to act at different steps in the RdDM pathway.
Collapse
Affiliation(s)
- Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
33
|
Chai Y, Liu X, Dai L, Li Y, Liu M, Zhang JY. Overexpression of HCC1/CAPERα may play a role in lung cancer carcinogenesis. Tumour Biol 2014; 35:6311-7. [PMID: 24643682 DOI: 10.1007/s13277-014-1819-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/04/2014] [Indexed: 12/22/2022] Open
Abstract
HCC1/CAPERα is considered to be a novel human tumor-associated antigen, and the tumor-specific immunity of HCC1/CAPERα has been reported in several types of cancer. However, there was very limited evidence indicating its function in tumorigenesis. In the present study, to elucidate the roles and underlying molecular mechanism of HCC1/CAPERα in lung cancer, we examined the expression of HCC1/CAPERα in human non-small cell lung cancer (NSCLC) cell line and NSCLC tissue microarray (TMA). Immunohistochemistry with TMA was performed to detect HCC1/CAPERα expression in NSCLC and adjacent lung tissues. NSCLC cell line constitutively transfected by pcDNA3.1-HCC1/CAPERα, and empty pcDNA3.1 vector were used. These cells were analyzed by Western blot, MTT, immunofluorescence, wound healing assay, and transwell assays. It was found that HCC1/CAPERα was mainly localized in the nucleus of the lung cancer cells and overexpression of HCC1/CAPERα may promote lung cancer cells proliferation and increase cells migration. The frequency of HCC1/CAPERα expression in NSCLC tissues was significantly higher than that in adjacent and normal tissues (P < 0.01). Our data suggest that overexpression of HCC1/CAPERα may increase the proliferation and migration of NSCLC cells, and HCC1/CAPERα could be a promising biomarker for lung cancer.
Collapse
Affiliation(s)
- Yurong Chai
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | | | | | | | | | | |
Collapse
|
34
|
Roberts JM, Ennajdaoui H, Edmondson C, Wirth B, Sanford J, Chen B. Splicing factor TRA2B is required for neural progenitor survival. J Comp Neurol 2014; 522:372-92. [PMID: 23818142 PMCID: PMC3855887 DOI: 10.1002/cne.23405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Alternative splicing of pre-mRNAs can rapidly regulate the expression of large groups of proteins. The RNA binding protein TRA2B (SFRS10) plays well-established roles in developmentally regulated alternative splicing during Drosophila sexual differentiation. TRA2B is also essential for mammalian embryogenesis and is implicated in numerous human diseases. Precise regulation of alternative splicing is critical to the development and function of the central nervous system; however, the requirements for specific splicing factors in neurogenesis are poorly understood. This study focuses on the role of TRA2B in mammalian brain development. We show that, during murine cortical neurogenesis, TRA2B is expressed in both neural progenitors and cortical projection neurons. Using cortex-specific Tra2b mutant mice, we show that TRA2B depletion results in apoptosis of the neural progenitor cells as well as disorganization of the cortical plate. Thus, TRA2B is essential for proper development of the cerebral cortex.
Collapse
Affiliation(s)
- Jacqueline M Roberts
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Hanane Ennajdaoui
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Carina Edmondson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| | - Jeremy Sanford
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
35
|
Hall MP, Nagel RJ, Fagg WS, Shiue L, Cline MS, Perriman RJ, Donohue JP, Ares M. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation. RNA (NEW YORK, N.Y.) 2013; 19:627-38. [PMID: 23525800 PMCID: PMC3677278 DOI: 10.1261/rna.038422.113] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/20/2013] [Indexed: 05/26/2023]
Abstract
Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA ("STAR" motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3' UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.
Collapse
|
36
|
Wong RW, Balachandran A, Ostrowski MA, Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog 2013; 9:e1003241. [PMID: 23555254 PMCID: PMC3610647 DOI: 10.1371/journal.ppat.1003241] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
To develop new approaches to control HIV-1 replication, we examined the capacity of recently described small molecular modulators of RNA splicing for their effects on viral RNA metabolism. Of the drugs tested, digoxin was found to induce a dramatic inhibition of HIV-1 structural protein synthesis, a response due, in part, to reduced accumulation of the corresponding viral mRNAs. In addition, digoxin altered viral RNA splice site use, resulting in loss of the essential viral factor Rev. Digoxin induced changes in activity of the CLK family of SR protein kinases and modification of several SR proteins, including SRp20 and Tra2β, which could account for the effects observed. Consistent with this hypothesis, overexpression of SRp20 elicited changes in HIV-1 RNA processing similar to those observed with digoxin. Importantly, digoxin was also highly active against clinical strains of HIV-1 in vitro, validating this novel approach to treatment of this infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
37
|
Kalashnikova AA, Winkler DD, McBryant SJ, Henderson RK, Herman JA, DeLuca JG, Luger K, Prenni JE, Hansen JC. Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus. Nucleic Acids Res 2013; 41:4026-35. [PMID: 23435226 PMCID: PMC3627596 DOI: 10.1093/nar/gkt104] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The H1 linker histones are abundant chromatin-associated DNA-binding proteins. Recent evidence suggests that linker histones also may function through protein-protein interactions. To gain a better understanding of the scope of linker histone involvement in protein-protein interactions, we used a proteomics approach to identify H1-binding proteins in human nuclear extracts. Full-length H1.0 and H1.0 lacking its C-terminal domain (CTD) were used for protein pull-downs. A total of 107 candidate H1.0 binding proteins were identified by LC-MS/MS. About one-third of the H1.0-dependent interactions were mediated by the CTD, and two-thirds by the N-terminal domain-globular domain fragment. Many of the proteins pulled down by H1.0 were core splicing factors. Another group of H1-binding proteins functions in rRNA biogenesis. H1.0 also pulled down numerous ribosomal proteins and proteins involved in cellular transport. Strikingly, nearly all of the H1.0-binding proteins are found in the nucleolus. Quantitative biophysical studies with recombinant proteins confirmed that H1.0 directly binds to FACT and the splicing factors SF2/ASF and U2AF65. Our results demonstrate that H1.0 interacts with an extensive network of proteins that function in RNA metabolism in the nucleolus, and suggest that a new paradigm for linker histone action is in order.
Collapse
Affiliation(s)
- Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
An intracellular fragment of osteoactivin formed by ectodomain shedding translocated to the nucleoplasm and bound to RNA binding proteins. Biosci Biotechnol Biochem 2012; 76:2225-9. [PMID: 23221696 DOI: 10.1271/bbb.120515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoactivin is a type I transmembrane protein upregulated by unloading stresses, including denervation, prolonged bed rest, and space flight, but the regulatory mechanisms of its expression and activation under these conditions remain undefined. Here we report that osteoactivin protein exists in two forms: an intact transmembrane form and a secreted form. The secreted form, the extracellular fragment of osteoactivin, was produced by ectodomain shedding and was released into a culture medium. Amino acid sequence analysis of the carboxy-terminal fragment of osteoactivin (OA-CTF) revealed that cleavage of osteoactivin by proteases occurred both at the cell surface and within the cell membrane. Localization analysis demonstrated translocalization of OA-CTF to the nucleus and the endoplasmic reticulum. Moreover, RNA binding proteins, which regulate pre-mRNA splicing, were identified as OA-CTF binding proteins. These results suggest that OA-CTF formed by ectodomain shedding is involved in the regulation of pre-mRNA splicing.
Collapse
|
39
|
Tripathi V, Song DY, Zong X, Shevtsov SP, Hearn S, Fu XD, Dundr M, Prasanth KV. SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Mol Biol Cell 2012; 23:3694-706. [PMID: 22855529 PMCID: PMC3442416 DOI: 10.1091/mbc.e12-03-0206] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SRSF1 splicing factor and nuclear-localized MALAT1 RNA influence the assembly of nuclear speckles. Depletion of SRSF1 compromises the association of splicing factors to nuclear speckles and influences the levels of other SR proteins. SRSF1 regulates RNA polymerase II–mediated transcription. The mammalian cell nucleus is compartmentalized into nonmembranous subnuclear domains that regulate key nuclear functions. Nuclear speckles are subnuclear domains that contain pre-mRNA processing factors and noncoding RNAs. Many of the nuclear speckle constituents work in concert to coordinate multiple steps of gene expression, including transcription, pre-mRNA processing and mRNA transport. The mechanism that regulates the formation and maintenance of nuclear speckles in the interphase nucleus is poorly understood. In the present study, we provide evidence for the involvement of nuclear speckle resident proteins and RNA components in the organization of nuclear speckles. SR-family splicing factors and their binding partner, long noncoding metastasis-associated lung adenocarcinoma transcript 1 RNA, can nucleate the assembly of nuclear speckles in the interphase nucleus. Depletion of SRSF1 in human cells compromises the association of splicing factors to nuclear speckles and influences the levels and activity of other SR proteins. Furthermore, on a stably integrated reporter gene locus, we demonstrate the role of SRSF1 in RNA polymerase II–mediated transcription. Our results suggest that SR proteins mediate the assembly of nuclear speckles and regulate gene expression by influencing both transcriptional and posttranscriptional activities within the cell nucleus.
Collapse
Affiliation(s)
- Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shao W, Zhao QY, Wang XY, Xu XY, Tang Q, Li M, Li X, Xu YZ. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA (NEW YORK, N.Y.) 2012; 18:1395-1407. [PMID: 22627775 PMCID: PMC3383970 DOI: 10.1261/rna.029751.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. We identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is expressed sex-specifically in silkworm gonads. Trans-splicing of mod(mdg4) in silkworm was experimentally confirmed. We identified integrations from a common 5'-gene with 46 newly identified alternative 3'-exons that are located on both DNA strands over a 500-kb region. Other trans-splicing events in B. mori were predicted by bioinformatic analysis, in which 12 events were confirmed by RT-PCR, six events were further validated by chimeric SNPs, and two events were confirmed by allele-specific RT-PCR in F(1) hybrids from distinct silkworm lines of JS and L10, indicating that trans-splicing is more widespread in insects than previously thought. Analysis of the B. mori transcriptome by RNA-seq provides valuable information of regulatory alternative splicing events. The conservation of splicing events across species and newly identified trans-splicing events suggest that B. mori is a good model for future studies.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiong-Yi Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Ye Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Yan Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muwang Li
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Zhen Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
41
|
Castilla V, Scolaro LA. Involvement of heterogeneous nuclear ribonucleoproteins in viral multiplication. Future Virol 2012. [DOI: 10.2217/fvl.12.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The study of virus–host interactions is a major goal in molecular virology and provides new effective targets for antiviral therapies. Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a group of cellular RNA-binding proteins localized predominantly within the nucleus, which participate in gene transcription and subsequent RNA post-transcriptional modifications. The interaction between hnRNPs and viral components was extensively demonstrated, as well as the ability of virus infections to alter the intracellular localization or the level of expression of different hnRNPs. The involvement of these proteins in the replication of numerous viruses including members from the Retroviridae, Flaviviridae, Coronaviridae, Arenaviridae, Rhabdoviridae, Papillomaviridae, Orthomyxoviridae, Picornaviridae, Togaviridae and Herpesviridae families, has been reported. In order to gain an increased understanding of the interactions between virus and cell that result in the productive infection of the latter, in this review we discuss the main findings about the role of hnRNPs in different steps of viral replication, such as RNA synthesis, translation, RNA processing and egress of newly assembled progeny virus.
Collapse
Affiliation(s)
- Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis A Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Lee J, Zhou J, Zheng X, Cho S, Moon H, Loh TJ, Jo K, Shen H. Identification of a novel cis-element that regulates alternative splicing of Bcl-x pre-mRNA. Biochem Biophys Res Commun 2012; 420:467-72. [PMID: 22440396 DOI: 10.1016/j.bbrc.2012.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Alternative splicing plays an important role in the control of apoptosis. A number of genes related to apoptosis undergo alternative splicing. Among them, the apoptotic regulator Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS, through the alternative splicing of exon 2 in its pre-mRNA. These isoforms have antagonistic function in apoptotic pathway; Bcl-xL is pro-apoptotic, while Bcl-xS is anti-apoptotic. The balanced ratio of two isoforms is important for cell survival. However, regulatory mechanisms of Bcl-x splicing remain poorly understood. Using a mini-gene system, we have found that a 105 nt exonic region (E3b) located within exon 3 affects exon 2 splicing in the Bcl-x gene. Further deletion and mutagenesis studies demonstrate that this 105 nt sequence contains various functional elements which promote skipping of exon 2b. One of these elements forms a stem-loop structure that stimulates skipping of exon 2b. Furthermore our results prove that the stem-loop structure functions as an enhancer in general pre-mRNA splicing. We conclude that we have identified a cis-regulatory element in exon 3 that affects splicing of exon 2 in the Bcl-x gene. This element could be potentially targeted to alter the ratio of Bcl-xL and Bcl-xS for treatment of tumors through an apoptotic pathway.
Collapse
Affiliation(s)
- Jaehoon Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang X, Juan L, Lv J, Wang K, Sanford JR, Liu Y. Predicting sequence and structural specificities of RNA binding regions recognized by splicing factor SRSF1. BMC Genomics 2011; 12 Suppl 5:S8. [PMID: 22369183 PMCID: PMC3287504 DOI: 10.1186/1471-2164-12-s5-s8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) play diverse roles in eukaryotic RNA processing. Despite their pervasive functions in coding and noncoding RNA biogenesis and regulation, elucidating the sequence specificities that define protein-RNA interactions remains a major challenge. Recently, CLIP-seq (Cross-linking immunoprecipitation followed by high-throughput sequencing) has been successfully implemented to study the transcriptome-wide binding patterns of SRSF1, PTBP1, NOVA and fox2 proteins. These studies either adopted traditional methods like Multiple EM for Motif Elicitation (MEME) to discover the sequence consensus of RBP's binding sites or used Z-score statistics to search for the overrepresented nucleotides of a certain size. We argue that most of these methods are not well-suited for RNA motif identification, as they are unable to incorporate the RNA structural context of protein-RNA interactions, which may affect to binding specificity. Here, we describe a novel model-based approach--RNAMotifModeler to identify the consensus of protein-RNA binding regions by integrating sequence features and RNA secondary structures. RESULTS As an example, we implemented RNAMotifModeler on SRSF1 (SF2/ASF) CLIP-seq data. The sequence-structural consensus we identified is a purine-rich octamer 'AGAAGAAG' in a highly single-stranded RNA context. The unpaired probabilities, the probabilities of not forming pairs, are significantly higher than negative controls and the flanking sequence surrounding the binding site, indicating that SRSF1 proteins tend to bind on single-stranded RNA. Further statistical evaluations revealed that the second and fifth bases of SRSF1octamer motif have much stronger sequence specificities, but weaker single-strandedness, while the third, fourth, sixth and seventh bases are far more likely to be single-stranded, but have more degenerate sequence specificities. Therefore, we hypothesize that nucleotide specificity and secondary structure play complementary roles during binding site recognition by SRSF1. CONCLUSION In this study, we presented a computational model to predict the sequence consensus and optimal RNA secondary structure for protein-RNA binding regions. The successful implementation on SRSF1 CLIP-seq data demonstrates great potential to improve our understanding on the binding specificity of RNA binding proteins.
Collapse
Affiliation(s)
- Xin Wang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
44
|
Katiyar S, Jiao X, Addya S, Ertel A, Covarrubias Y, Rose V, Casimiro MC, Zhou J, Lisanti MP, Nasim T, Fortina P, Pestell RG. Mammary gland selective excision of c-jun identifies its role in mRNA splicing. Cancer Res 2011; 72:1023-34. [PMID: 22174367 DOI: 10.1158/0008-5472.can-11-3647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The c-jun gene regulates cellular proliferation and apoptosis via direct regulation of cellular gene expression. Alternative splicing of pre-mRNA increases the diversity of protein functions, and alternate splicing events occur in tumors. Here, by targeting the excision of the endogenous c-jun gene within the mouse mammary epithelium, we have identified its selective role as an inhibitor of RNA splicing. Microarray-based assessment of gene expression, on laser capture microdissected c-jun(-/-) mammary epithelium, showed that endogenous c-jun regulates the expression of approximately 50 genes governing RNA splicing. In addition, genome-wide splicing arrays showed that endogenous c-jun regulated the alternate exon of approximately 147 genes, and 18% of these were either alternatively spliced in human tumors or involved in apoptosis. Endogenous c-jun also was shown to reduce splicing activity, which required the c-jun dimerization domain. Together, our findings suggest that c-jun directly attenuates RNA splicing efficiency, which may be of broad biologic importance as alternative splicing plays an important role in both cancer development and therapy resistance.
Collapse
Affiliation(s)
- Sanjay Katiyar
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bertagnolo V, Brugnoli F, Grassilli S, Nika E, Capitani S. Vav1 in differentiation of tumoral promyelocytes. Cell Signal 2011; 24:612-20. [PMID: 22133616 DOI: 10.1016/j.cellsig.2011.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
The multidomain protein Vav1, in addition to promote the acquisition of maturation related properties by normal hematopoietic cells, is a key player in the ATRA- and PMA-induced completion of the differentiation program of tumoral myeloid precursors derived from APL. This review is focussed on the role of Vav1 in differentiating promyelocytes, as part of interconnected networks of functionally related proteins ended to regulate different aspects of myeloid maturation. The role of Vav1 in determining actin cytoskeleton reorganization alternative to the best known function as a GEF for small G proteins is discussed, as well as the binding of Vav1 with cytoplasmic and nuclear signaling molecules which provides a new perspective in the modulation of nuclear architecture and activity. In particular, new hints are provided on the ability of Vav1 to determine the nuclear amount of proteins implicated in modulating mRNA production and stability and in regulating the ATRA-dependent protein expression also by direct interaction with transcription factors known to drive the ATRA-induced maturation of myeloid cells. The reviewed findings summarize the major advances in the understanding of additional, non conventional functions connected with the vast interactive potential of Vav1.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
46
|
Ibrahim F, Nakaya T, Mourelatos Z. RNA dysregulation in diseases of motor neurons. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:323-52. [PMID: 22035195 DOI: 10.1146/annurev-pathol-011110-130307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders that lead to paralysis and typically carry a dismal prognosis. In children, inherited spinal muscular atrophies are the predominant diseases that affect motor neurons, whereas in adults, amyotrophic lateral sclerosis, which is inherited but mostly sporadic, is the most common MND. In recent years, we have witnessed a revolution in this field, sparked by the discovery of the genes that cause MNDs. Remarkably, at least 10 genes, whose products are either RNA-binding proteins or proteins that function in RNA processing and regulation, cause MNDs and place the dysregulation of RNA pathways at the center of motor neuron degeneration pathogenesis.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
47
|
Buratti E, Baralle FE. TDP-43: new aspects of autoregulation mechanisms in RNA binding proteins and their connection with human disease. FEBS J 2011; 278:3530-8. [DOI: 10.1111/j.1742-4658.2011.08257.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Bertagnolo V, Grassilli S, Petretto A, Lambertini E, Astati L, Bruschi M, Brugnoli F, Nika E, Candiano G, Piva R, Capitani S. Nuclear proteome analysis reveals a role of Vav1 in modulating RNA processing during maturation of tumoral promyelocytes. J Proteomics 2011; 75:398-409. [PMID: 21856460 DOI: 10.1016/j.jprot.2011.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/28/2011] [Accepted: 08/06/2011] [Indexed: 01/02/2023]
Abstract
Vav1 is a key molecule in the ATRA-induced acquisition of a mature phenotype by tumoral myeloid precursors. Since ATRA acts throughout events that require extensive changes of nuclear architecture and activity and considering that Vav1 accumulates inside the nuclear compartment of differentiating APL-derived cells, the possible role of this protein in modulating the nuclear proteome was investigated. Membrane-depleted nuclei purified from NB4 cells induced to differentiate with ATRA in the presence of forcedly down-modulated Vav1 were subjected to 2D-DIGE followed by mass spectra analysis. The obtained data demonstrated that, in NB4 cells treated with ATRA, Vav1 is involved in determining the nuclear amount of proteins involved in molecular complexes with DNA and may participate to RNA processing by carrying in the nucleus molecules involved in modulating mRNA production and stability, like hnRNPs and SR proteins. Our results provide the first evidence that, at least in maturation of tumoral myeloid precursors, Vav1 is part of interconnected networks of functionally related proteins ended to regulate different aspects of gene expression. Since defects in mRNA processing are common in tumor development, our data suggest that Vav1 is a potential target molecule for developing new anti-cancer strategies.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Agarwal S, Kern S, Halbert J, Przyborski JM, Baumeister S, Dandekar T, Doerig C, Pradel G. Two nucleus-localized CDK-like kinases with crucial roles for malaria parasite erythrocytic replication are involved in phosphorylation of splicing factor. J Cell Biochem 2011; 112:1295-310. [PMID: 21312235 DOI: 10.1002/jcb.23034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kinome of the human malaria parasite Plasmodium falciparum comprises representatives of most eukaryotic protein kinase groups, including kinases which regulate proliferation and differentiation processes. Despite extensive research on most plasmodial enzymes, little information is available regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family. In other eukaryotes, CLKs regulate mRNA splicing through phosphorylation of Serine/Arginine-rich proteins. Here, we investigate two of the PfCLKs, the Lammer kinase homolog PfCLK-1, and PfCLK-2. Both PfCLKs show homology with the yeast Serine/Arginine protein kinase Sky1p and are transcribed throughout the asexual blood stages and in gametocytes. PfCLK-1/Lammer possesses two nuclear localization signal sites and PfCLK-2 possesses one of these signal sites upstream of the C-terminal catalytic domains. Indirect immunofluorescence, Western blot, and electron microscopy data confirm that the kinases are primarily localized in the parasite nucleus, and PfCLK-2 is further present in the cytoplasm. The two kinases are important for completion of the asexual replication cycle of P. falciparum, as demonstrated by reverse genetics approaches. In vitro kinase assays show substrate phosphorylation by the PfCLKs, including the Sky1p substrate, splicing factor Npl3p, and the plasmodial alternative splicing factor PfASF-1. Mass spectrometric analysis of co-immunoprecipitated proteins indicates assembly of the two PfCLKs with proteins with predicted nuclease, phosphatase, or helicase functions. Our data indicate a crucial role of PfCLKs for malaria blood stage parasites, presumably by participating in gene regulation through the post-transcriptional modification of mRNA.
Collapse
Affiliation(s)
- Shruti Agarwal
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2, Building D15, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yu B, Fey P, Kestin-Pilcher KE, Fedorov A, Prakash A, Chisholm RL, Wu JY. Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae. Protein Cell 2011; 2:395-409. [PMID: 21667333 DOI: 10.1007/s13238-011-1052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/20/2011] [Indexed: 02/05/2023] Open
Abstract
Little is known about pre-mRNA splicing in Dictyostelium discoideum although its genome has been completely sequenced. Our analysis suggests that pre-mRNA splicing plays an important role in D. discoideum gene expression as two thirds of its genes contain at least one intron. Ongoing curation of the genome to date has revealed 40 genes in D. discoideum with clear evidence of alternative splicing, supporting the existence of alternative splicing in this unicellular organism. We identified 160 candidate U2-type spliceosomal proteins and related factors in D. discoideum based on 264 known human genes involved in splicing. Spliceosomal small ribonucleoproteins (snRNPs), PRP19 complex proteins and late-acting proteins are highly conserved in D. discoideum and throughout the metazoa. In non-snRNP and hnRNP families, D. discoideum orthologs are closer to those in A. thaliana, D. melanogaster and H. sapiens than to their counterparts in S. cerevisiae. Several splicing regulators, including SR proteins and CUG-binding proteins, were found in D. discoideum, but not in yeast. Our comprehensive catalog of spliceosomal proteins provides useful information for future studies of splicing in D. discoideum where the efficient genetic and biochemical manipulation will also further our general understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Bing Yu
- Department of Molecular and Clinical Genetics, Royal Prince Alfred Hospital and Sydney Medical School (Central), the University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|