1
|
Chaubal A, Waldern JM, Taylor C, Laederach A, Marzluff WF, Duronio RJ. Coordinated expression of replication-dependent histone genes from multiple loci promotes histone homeostasis in Drosophila. Mol Biol Cell 2023; 34:ar118. [PMID: 37647143 PMCID: PMC10846616 DOI: 10.1091/mbc.e22-11-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA. How all five RD histone genes within these clusters are coordinately regulated such that neither too few nor too many histones are produced, a process referred to as histone homeostasis, is not fully understood. Here, we explored the mechanisms of coordinate regulation between multiple RD histone loci in Drosophila melanogaster and Drosophila virilis. We provide evidence for functional competition between endogenous and ectopic transgenic histone arrays located at different chromosomal locations in D. melanogaster that helps maintain proper histone mRNA levels. Consistent with this model, in both species we found that individual histone gene arrays can independently assemble an HLB that results in active histone transcription. Our findings suggest a role for HLB assembly in coordinating RD histone gene expression to maintain histone homeostasis.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Justin M. Waldern
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Colin Taylor
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - William F. Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
2
|
Katahira J, Ohmae T, Yasugi M, Sasaki R, Itoh Y, Kohda T, Hieda M, Yokota Hirai M, Okamoto T, Miyamoto Y. Nsp14 of SARS-CoV-2 inhibits mRNA processing and nuclear export by targeting the nuclear cap-binding complex. Nucleic Acids Res 2023; 51:7602-7618. [PMID: 37260089 PMCID: PMC10415132 DOI: 10.1093/nar/gkad483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023] Open
Abstract
To facilitate selfish replication, viruses halt host gene expression in various ways. The nuclear export of mRNA is one such process targeted by many viruses. SARS-CoV-2, the etiological agent of severe acute respiratory syndrome, also prevents mRNA nuclear export. In this study, Nsp14, a bifunctional viral replicase subunit, was identified as a novel inhibitor of mRNA nuclear export. Nsp14 induces poly(A)+ RNA nuclear accumulation and the dissolution/coalescence of nuclear speckles. Genome-wide gene expression analysis revealed the global dysregulation of splicing and 3'-end processing defects of replication-dependent histone mRNAs by Nsp14. These abnormalities were also observed in SARS-CoV-2-infected cells. A mutation introduced at the guanine-N7-methyltransferase active site of Nsp14 diminished these inhibitory activities. Targeted capillary electrophoresis-mass spectrometry analysis (CE-MS) unveiled the production of N7-methyl-GTP in Nsp14-expressing cells. Association of the nuclear cap-binding complex (NCBC) with the mRNA cap and subsequent recruitment of U1 snRNP and the stem-loop binding protein (SLBP) were impaired by Nsp14. These data suggest that the defects in mRNA processing and export arise from the compromise of NCBC function by N7-methyl-GTP, thus exemplifying a novel viral strategy to block host gene expression.
Collapse
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Tatsuya Ohmae
- Laboratory of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Mayo Yasugi
- Laboratory of Veterinary Public Health, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, Mass Spectrometry and Microscopy Unit, 1-7-22 Suehiro. Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoko Kohda
- Laboratory of Veterinary Epidemiology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543 Tobe-Cho Takaoda, Iyo, Ehime791-2102, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Mass Spectrometry and Microscopy Unit, 1-7-22 Suehiro. Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
3
|
Bradford BR, Jin C. Stem-loop binding protein and metal carcinogenesis. Semin Cancer Biol 2021; 76:38-44. [PMID: 34416372 PMCID: PMC8627438 DOI: 10.1016/j.semcancer.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
Pre-mRNA processing of the replication-dependent canonical histone mRNAs requires an endonucleolytic cleavage immediately after a conserved stem loop structure which occurs before RNA Pol II encounters any poly(A) signal. Thus, in contrast to all other eukaryotic mRNAs, the canonical histone mRNAs are not polyadenylated in their 3' ends. The binding of stem-loop binding protein (SLBP) to the stem loop structure of the histone mRNAs is required for this process. SLBP is also involved in regulation of histone mRNA nuclear export, degradation, and translation. Depletion of SLBP has been shown to induce polyadenylation of histone mRNAs and alteration of histone protein levels, which are considered to contribute to the observed aberrant cell cycle progress and genomic instability resulting from the loss of SLBP function. Recent studies have demonstrated that some heavy metal carcinogens, including arsenic and nickel, can induce the loss of SLBP and the gain of polyadenylation of canonical histone mRNAs. Polyadenylated canonical histone H3 can result in abnormal transcription, cell cycle arrest, genomic instability, and cell transformation, which links SLBP depletion and subsequent histone mRNA misprocessing to cancer. This review seeks to briefly summarize what is known about regulation of SLBP expression, consequences of SLBP depletion, its roles in cancer-related end points, with particular focus on metal-induced SLBP depletion and the potential of SLBP depletion as a new mechanism for metal-induced carcinogenesis.
Collapse
Affiliation(s)
- Beatrix R Bradford
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
4
|
Albrecht TR, Shevtsov SP, Wu Y, Mascibroda LG, Peart NJ, Huang KL, Sawyer IA, Tong L, Dundr M, Wagner EJ. Integrator subunit 4 is a 'Symplekin-like' scaffold that associates with INTS9/11 to form the Integrator cleavage module. Nucleic Acids Res 2019; 46:4241-4255. [PMID: 29471365 PMCID: PMC5934644 DOI: 10.1093/nar/gky100] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/17/2018] [Indexed: 12/14/2022] Open
Abstract
Integrator (INT) is a transcriptional regulatory complex associated with RNA polymerase II that is required for the 3′-end processing of both UsnRNAs and enhancer RNAs. Integrator subunits 9 (INTS9) and INTS11 constitute the catalytic core of INT and are paralogues of the cleavage and polyadenylation specificity factors CPSF100 and CPSF73. While CPSF73/100 are known to associate with a third protein called Symplekin, there is no paralog of Symplekin within INT raising the question of how INTS9/11 associate with the other INT subunits. Here, we have identified that INTS4 is a specific and conserved interaction partner of INTS9/11 that does not interact with either subunit individually. Although INTS4 has no significant homology with Symplekin, it possesses N-terminal HEAT repeats similar to Symplekin but also contains a β-sheet rich C-terminal region, both of which are important to bind INTS9/11. We assess three functions of INT including UsnRNA 3′-end processing, maintenance of Cajal body structural integrity, and formation of histone locus bodies to conclude that INTS4/9/11 are the most critical of the INT subunits for UsnRNA biogenesis. Altogether, these results indicate that INTS4/9/11 compose a heterotrimeric complex that likely represents the Integrator ‘cleavage module’ responsible for its endonucleolytic activity.
Collapse
Affiliation(s)
- Todd R Albrecht
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Sergey P Shevtsov
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA
| | - Yixuan Wu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Lauren G Mascibroda
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Natoya J Peart
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA.,Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| |
Collapse
|
5
|
Turner KJ, Hoyle J, Valdivia LE, Cerveny KL, Hart W, Mangoli M, Geisler R, Rees M, Houart C, Poole RJ, Wilson SW, Gestri G. Abrogation of Stem Loop Binding Protein (Slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PLoS One 2019; 14:e0211073. [PMID: 30695021 PMCID: PMC6350959 DOI: 10.1371/journal.pone.0211073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
Through forward genetic screening for mutations affecting visual system development, we identified prominent coloboma and cell-autonomous retinal neuron differentiation, lamination and retinal axon projection defects in eisspalte (ele) mutant zebrafish. Additional axonal deficits were present, most notably at midline axon commissures. Genetic mapping and cloning of the ele mutation showed that the affected gene is slbp, which encodes a conserved RNA stem-loop binding protein involved in replication dependent histone mRNA metabolism. Cells throughout the central nervous system remained in the cell cycle in ele mutant embryos at stages when, and locations where, post-mitotic cells have differentiated in wild-type siblings. Indeed, RNAseq analysis showed down-regulation of many genes associated with neuronal differentiation. This was coincident with changes in the levels and spatial localisation of expression of various genes implicated, for instance, in axon guidance, that likely underlie specific ele phenotypes. These results suggest that many of the cell and tissue specific phenotypes in ele mutant embryos are secondary to altered expression of modules of developmental regulatory genes that characterise, or promote transitions in, cell state and require the correct function of Slbp-dependent histone and chromatin regulatory genes.
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Jacqueline Hoyle
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- Department of Paediatrics and Child Health, University College London, London, United Kingdom
| | - Leonardo E. Valdivia
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Kara L. Cerveny
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Wendy Hart
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Maryam Mangoli
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Robert Geisler
- Karlsruhe Institute of Technology (KIT) Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Michele Rees
- Department of Paediatrics and Child Health, University College London, London, United Kingdom
| | - Corinne Houart
- Department of Developmental Neurobiology and MRC Centre for Developmental Disorders, Kings College London, London, United Kingdom
| | - Richard J. Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- * E-mail: (GG); (SWW)
| | - Gaia Gestri
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
- * E-mail: (GG); (SWW)
| |
Collapse
|
6
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
7
|
Christopher A, Hameister H, Corrigall H, Ebenhöh O, Müller B, Ullner E. Modelling Robust Feedback Control Mechanisms That Ensure Reliable Coordination of Histone Gene Expression with DNA Replication. PLoS One 2016; 11:e0165848. [PMID: 27798685 PMCID: PMC5087906 DOI: 10.1371/journal.pone.0165848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/18/2016] [Indexed: 01/26/2023] Open
Abstract
Histone proteins are key elements in the packing of eukaryotic DNA into chromosomes. A little understood control system ensures that histone gene expression is balanced with DNA replication so that histone proteins are produced in appropriate amounts. Disturbing or disrupting this system affects genome stability and gene expression, and has detrimental consequences for human development and health. It has been proposed that feedback control involving histone proteins contributes to this regulation and there is evidence implicating cell cycle checkpoint molecules activated when DNA synthesis is impaired in this control. We have developed mathematical models that incorporate these control modes in the form of inhibitory feedback of histone gene expression from free histone proteins, and alternatively a direct link that couples histone RNA synthesis to DNA synthesis. Using our experimental evidence and related published data we provide a simplified description of histone protein synthesis during S phase. Both models reproduce the coordination of histone gene expression with DNA replication during S phase and the down-regulation of histone RNA when DNA synthesis is interrupted, but only the model incorporating histone protein feedback control was able to effectively simulate the coordinate expression of a simplified histone gene family. Our combined theoretical and experimental approach supports the hypothesis that the regulation of histone gene expression involves feedback control.
Collapse
Affiliation(s)
- Andrea Christopher
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Heike Hameister
- Department of Physics (SUPA) and Institute for Complex Systems and Mathematical Biology (ICSMB), University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Holly Corrigall
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Oliver Ebenhöh
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom.,Institute of Quantitative and Theoretical Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Ekkehard Ullner
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom.,Department of Physics (SUPA) and Institute for Complex Systems and Mathematical Biology (ICSMB), University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
8
|
Djakbarova U, Marzluff WF, Köseoğlu MM. DDB1 and CUL4 associated factor 11 (DCAF11) mediates degradation of Stem-loop binding protein at the end of S phase. Cell Cycle 2016; 15:1986-96. [PMID: 27254819 DOI: 10.1080/15384101.2016.1191708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3' ends of canonical histone mRNAs, is a key factor in histone biosynthesis. SLBP is mainly expressed in S phase and this is a major mechanism to limit bulk histone production to the S phase. At the end of S phase, SLBP is rapidly degraded by proteasome, depending on two phosphorylations on Thr 60 and Thr 61. Previously, we showed that SLBP fragment (aa 51-108) fused to GST, is sufficient to mimic the late S phase (S/G2) degradation of SLBP. Here, using this fusion protein as bait, we performed pull-down experiments and found that DCAF11, which is a substrate receptor of CRL4 complexes, binds to the phosphorylated SLBP fragment. We further confirmed the interaction of full-length SLBP with DCAF11 and Cul4A by co-immunoprecipitation experiments. We also showed that DCAF11 cannot bind to the Thr61/Ala mutant SLBP, which is not degraded at the end of S phase. Using ectopic expression and siRNA experiments, we demonstrated that SLBP expression is inversely correlated with DCAF11 levels, consistent with the model that DCAF11 mediates SLBP degradation. Finally, we found that ectopic expression of the S/G2 stable mutant SLBP (Thr61/Ala) is significantly more toxic to the cells, in comparison to wild type SLBP. Overall, we concluded that CRL4-DCAF11 mediates the degradation of SLBP at the end of S phase and this degradation is essential for the viability of cells.
Collapse
Affiliation(s)
- Umidahan Djakbarova
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| | - William F Marzluff
- c Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,d Program in Molecular Biology and Biotechnology , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - M Murat Köseoğlu
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| |
Collapse
|
9
|
Prado F, Jimeno-González S, Reyes JC. Histone availability as a strategy to control gene expression. RNA Biol 2016; 14:281-286. [PMID: 27211514 DOI: 10.1080/15476286.2016.1189071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Histone proteins are main structural components of the chromatin and major determinants of gene regulation. Expression of canonical histone genes is strictly controlled during the cell cycle in order to couple DNA replication with histone deposition. Indeed, reductions in the levels of canonical histones or defects in chromatin assembly cause genetic instability. Early data from yeast demonstrated that severe histone depletion also causes strong gene expression changes. We have recently reported that a moderated depletion of canonical histones in human cells leads to an open chromatin configuration, which in turn increases RNA polymerase II elongation rates and causes pre-mRNA splicing defects. Interestingly, some of the observed defects accompany the scheduled histone depletion that is associated with several senescence and aging processes. Thus, our comparison of induced and naturally-occurring histone depletion processes suggests that a programmed reduction of the level of canonical histones might be a strategy to control gene expression during specific physiological processes.
Collapse
Affiliation(s)
- Félix Prado
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| | - Silvia Jimeno-González
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| | - José C Reyes
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| |
Collapse
|
10
|
Toompuu M, Kärblane K, Pata P, Truve E, Sarmiento C. ABCE1 is essential for S phase progression in human cells. Cell Cycle 2016; 15:1234-47. [PMID: 26985706 DOI: 10.1080/15384101.2016.1160972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
ABCE1 is a highly conserved protein universally present in eukaryotes and archaea, which is crucial for the viability of different organisms. First identified as RNase L inhibitor, ABCE1 is currently recognized as an essential translation factor involved in several stages of eukaryotic translation and ribosome biogenesis. The nature of vital functions of ABCE1, however, remains unexplained. Here, we study the role of ABCE1 in human cell proliferation and its possible connection to translation. We show that ABCE1 depletion by siRNA results in a decreased rate of cell growth due to accumulation of cells in S phase, which is accompanied by inefficient DNA synthesis and reduced histone mRNA and protein levels. We infer that in addition to the role in general translation, ABCE1 is involved in histone biosynthesis and DNA replication and therefore is essential for normal S phase progression. In addition, we analyze whether ABCE1 is implicated in transcript-specific translation via its association with the eIF3 complex subunits known to control the synthesis of cell proliferation-related proteins. The expression levels of a few such targets regulated by eIF3A, however, were not consistently affected by ABCE1 depletion.
Collapse
Affiliation(s)
- Marina Toompuu
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Kairi Kärblane
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Pille Pata
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Erkki Truve
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Cecilia Sarmiento
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| |
Collapse
|
11
|
von Moeller H, Lerner R, Ricciardi A, Basquin C, Marzluff WF, Conti E. Structural and biochemical studies of SLIP1-SLBP identify DBP5 and eIF3g as SLIP1-binding proteins. Nucleic Acids Res 2013; 41:7960-71. [PMID: 23804756 PMCID: PMC3763545 DOI: 10.1093/nar/gkt558] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/24/2022] Open
Abstract
In metazoans, replication-dependent histone mRNAs end in a stem-loop structure instead of the poly(A) tail characteristic of all other mature mRNAs. This specialized 3' end is bound by stem-loop binding protein (SLBP), a protein that participates in the nuclear export and translation of histone mRNAs. The translational activity of SLBP is mediated by interaction with SLIP1, a middle domain of initiation factor 4G (MIF4G)-like protein that connects to translation initiation. We determined the 2.5 Å resolution crystal structure of zebrafish SLIP1 bound to the translation-activation domain of SLBP and identified the determinants of the recognition. We discovered a SLIP1-binding motif (SBM) in two additional proteins: the translation initiation factor eIF3g and the mRNA-export factor DBP5. We confirmed the binding of SLIP1 to DBP5 and eIF3g by pull-down assays and determined the 3.25 Å resolution structure of SLIP1 bound to the DBP5 SBM. The SBM-binding and homodimerization residues of SLIP1 are conserved in the MIF4G domain of CBP80/20-dependent translation initiation factor (CTIF). The results suggest how the SLIP1 homodimer or a SLIP1-CTIF heterodimer can function as platforms to bridge SLBP with SBM-containing proteins involved in different steps of mRNA metabolism.
Collapse
Affiliation(s)
- Holger von Moeller
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Munich, D-82152 Germany and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel Lerner
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Munich, D-82152 Germany and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adele Ricciardi
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Munich, D-82152 Germany and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Claire Basquin
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Munich, D-82152 Germany and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William F. Marzluff
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Munich, D-82152 Germany and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Munich, D-82152 Germany and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Kerzendorfer C, Colnaghi R, Abramowicz I, Carpenter G, O'Driscoll M. Meier-Gorlin syndrome and Wolf-Hirschhorn syndrome: two developmental disorders highlighting the importance of efficient DNA replication for normal development and neurogenesis. DNA Repair (Amst) 2013; 12:637-44. [PMID: 23706772 DOI: 10.1016/j.dnarep.2013.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microcephaly represents one of the most obvious clinical manifestations of impaired neurogenesis. Defects in the DNA damage response, in DNA repair, and structural abnormalities in centrosomes, centrioles and the spindle microtubule network have all been demonstrated to cause microcephaly in humans. Work describing novel functional defects in cell lines from individuals with either Meier-Gorlin syndrome or Wolf-Hirschhorn syndrome highlight the significance of optimal DNA replication and S phase progression for normal human development, including neurogenesis. These findings illustrate how different primary defects in processes impacting upon DNA replication potentially influence similar phenotypic outcomes, including growth retardation and microcephaly. Herein, we will describe the nature of the S phase defects uncovered for each of these conditions and highlight some of the overlapping cellular features.
Collapse
Affiliation(s)
- Claudia Kerzendorfer
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
O'Sullivan RJ, Karlseder J. The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 2012; 37:466-76. [PMID: 22959736 DOI: 10.1016/j.tibs.2012.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 02/01/2023]
Abstract
During embryogenesis, the establishment of chromatin states permits the implementation of genetic programs that allow the faithful development of the organism. However, these states are not fixed and there is much evidence that stochastic or chronic deterioration of chromatin organization, as correlated by transcriptional alterations and the accumulation of DNA damage in cells, occurs during the lifespan of the individual. Whether causal or simply a byproduct of macromolecular decay, these changes in chromatin states have emerged as potentially central conduits of mammalian aging. This review explores the current state of our understanding of the links between chromatin organization and aging.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
14
|
CSR-1 RNAi pathway positively regulates histone expression in C. elegans. EMBO J 2012; 31:3821-32. [PMID: 22863779 DOI: 10.1038/emboj.2012.216] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/13/2012] [Indexed: 02/08/2023] Open
Abstract
Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.
Collapse
|
15
|
Kerzendorfer C, Hannes F, Colnaghi R, Abramowicz I, Carpenter G, Vermeesch JR, O'Driscoll M. Characterizing the functional consequences of haploinsufficiency of NELF-A (WHSC2) and SLBP identifies novel cellular phenotypes in Wolf-Hirschhorn syndrome. Hum Mol Genet 2012; 21:2181-93. [PMID: 22328085 DOI: 10.1093/hmg/dds033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion disorder associated with the distal part of the short arm of chromosome 4 (4p16.3). Employing a unique panel of patient-derived cell lines with differing-sized 4p deletions, we provide evidence that haploinsufficiency of SLBP and/or WHSC2 (NELF-A) contributes to several novel cellular phenotypes of WHS, including delayed progression from S-phase into M-phase, reduced DNA replication in asynchronous culture and altered higher order chromatin assembly. The latter is evidenced by reduced histone-chromatin association, elevated levels of soluble chaperone-bound histone H3 and increased sensitivity to micrococcal nuclease digestion in WHS patient-derived cells. We also observed increased camptothecin-induced inhibition of DNA replication and hypersensitivity to killing. Our work provides a novel pathogenomic insight into the aetiology of WHS by describing it, for the first time, as a disorder of impaired chromatin reorganization. Delayed cell-cycle progression and impaired DNA replication likely underlie or contribute to microcephaly, pre- and postnatal growth retardation, which constitute the core clinical features of WHS.
Collapse
Affiliation(s)
- Claudia Kerzendorfer
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Ruepp MD, Schweingruber C, Kleinschmidt N, Schümperli D. Interactions of CstF-64, CstF-77, and symplekin: implications on localisation and function. Mol Biol Cell 2010; 22:91-104. [PMID: 21119002 PMCID: PMC3016980 DOI: 10.1091/mbc.e10-06-0543] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Important interactions controlling the function of CstF-64 in histone RNA processing and general mRNA cleavage/polyadenylation are identified, and an interesting coregulation of CstF-64 and its paralogue CstF-64Tau leads to a model for CstF regulation and its role in modulating poly(A) site choice. Cleavage/polyadenylation of mRNAs and 3′ processing of replication-dependent histone transcripts are both mediated by large complexes that share several protein components. Functional studies of these shared proteins are complicated by the cooperative binding of the individual subunits. For CstF-64, an additional difficulty is that symplekin and CstF-77 bind mutually exclusively to its hinge domain. Here we have identified CstF-64 and symplekin mutants that allowed us to distinguish between these interactions and to elucidate the role of CstF-64 in the two processing reactions. The interaction of CstF-64 with symplekin is limiting for histone RNA 3′ processing but relatively unimportant for cleavage/polyadenylation. In contrast, the nuclear accumulation of CstF-64 depends on its binding to CstF-77 and not to symplekin. Moreover, the CstF-64 paralogue CstF-64Tau can compensate for the loss of CstF-64. As CstF-64Tau has a lower affinity for CstF-77 than CstF-64 and is relatively unstable, it is the minor form. However, it may become up-regulated when the CstF-64 level decreases, which has biological implications for spermatogenesis and probably also for other regulatory events. Thus, the interactions between CstF-64/CstF-64Tau and CstF-77 are important for the maintenance of stoichiometric nuclear levels of the CstF complex components and for their intracellular localization, stability, and function.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
17
|
Sullivan KD, Mullen TE, Marzluff WF, Wagner EJ. Knockdown of SLBP results in nuclear retention of histone mRNA. RNA (NEW YORK, N.Y.) 2009; 15:459-72. [PMID: 19155325 PMCID: PMC2657014 DOI: 10.1261/rna.1205409] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 11/14/2008] [Indexed: 05/23/2023]
Abstract
Histone mRNAs are the only eukaryotic cellular mRNAs that are not polyadenylated. Synthesis of mature histone mRNA requires only a single processing reaction: an endonucleolytic cleavage between a conserved stem-loop and a purine-rich downstream element to form the 3' end. The stem-loop binding protein (SLBP) is required for processing, and following processing, histone mRNA is transported to the cytoplasm, where SLBP participates in translation of the histone mRNA and is also involved in regulation of histone mRNA degradation. Here we present an analysis of histone mRNA metabolism in cells with highly reduced levels of SLBP using RNA interference. Knocking down SLBP in U2OS cells results in a reduction in the rate of cell growth and an accumulation of cells in S-phase. Surprisingly, there is only a modest (twofold) decrease in histone mRNA levels. Much of histone mRNA in the SLBP knockdown cells is properly processed but is retained in the nucleus. The processed histone mRNA in SLBP knockdown cells is not rapidly degraded when DNA replication is inhibited. These results suggest a previously undescribed role for SLBP in histone mRNA export.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
18
|
Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 2008; 9:843-54. [PMID: 18927579 PMCID: PMC2715827 DOI: 10.1038/nrg2438] [Citation(s) in RCA: 570] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The canonical histone proteins are encoded by replication-dependent genes and must rapidly reach high levels of expression during S phase. In metazoans the genes that encode these proteins produce mRNAs that, instead of being polyadenylated, contain a unique 3' end structure. By contrast, the synthesis of the variant, replication-independent histones, which are encoded by polyadenylated mRNAs, persists outside of S phase. Accurate positioning of both histone types in chromatin is essential for proper transcriptional regulation, the demarcation of heterochromatic boundaries and the epigenetic inheritance of gene expression patterns. Recent results suggest that the coordinated synthesis of replication-dependent and variant histone mRNAs is achieved by signals that affect formation of the 3' end of the replication-dependent histone mRNAs.
Collapse
Affiliation(s)
- William F Marzluff
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
19
|
SLIP1, a factor required for activation of histone mRNA translation by the stem-loop binding protein. Mol Cell Biol 2007; 28:1182-94. [PMID: 18025107 DOI: 10.1128/mcb.01500-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Replication-dependent histone mRNAs are the only eukaryotic cellular mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. The 3' end of histone mRNA is required for histone mRNA translation, as is the stem-loop binding protein (SLBP), which binds the 3' end of histone mRNA. We have identified five conserved residues in a 15-amino-acid region in the amino-terminal portion of SLBP, each of which is required for translation. Using a yeast two-hybrid screen, we identified a novel protein, SLBP-interacting protein 1 (SLIP1), that specifically interacts with this region. Mutations in any of the residues required for translation reduces SLIP1 binding to SLBP. The expression of SLIP1 in Xenopus oocytes together with human SLBP stimulates translation of a reporter mRNA ending in the stem-loop but not a reporter with a poly(A) tail. The expression of SLIP1 in HeLa cells also stimulates the expression of a green fluorescent protein reporter mRNA ending in a stem-loop. RNA interference-mediated downregulation of endogenous SLIP1 reduces the rate of translation of endogenous histone mRNA and also reduces cell viability. SLIP1 may function by bridging the 3' end of the histone mRNA with the 5' end of the mRNA, similar to the mechanism of translation of polyadenylated mRNAs.
Collapse
|
20
|
Wagner EJ, Marzluff WF. ZFP100, a component of the active U7 snRNP limiting for histone pre-mRNA processing, is required for entry into S phase. Mol Cell Biol 2006; 26:6702-12. [PMID: 16914750 PMCID: PMC1592837 DOI: 10.1128/mcb.00391-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan replication-dependent histone mRNAs are the only eukaryotic mRNAs that are not polyadenylated. The cleavage of histone pre-mRNA to form the unique 3' end requires the U7 snRNP and the stem-loop binding protein (SLBP) that binds the 3' end of histone mRNA. U7 snRNP contains three novel proteins, Lsm10 and Lsm11, which are part of the core U7 Sm complex, and ZFP100, a Zn finger protein that helps stabilize binding of the U7 snRNP to the histone pre-mRNA by interacting with the SLBP/pre-mRNA complex. Using a reporter gene that encodes a green fluorescent protein mRNA ending in a histone 3' end and mimics histone gene expression, we demonstrate that ZFP100 is the limiting factor for histone pre-mRNA processing in vivo. The overexpression of Lsm10 and Lsm11 increases the cellular levels of U7 snRNP but has no effect on histone pre-mRNA processing, while increasing the amount of ZFP100 increases histone pre-mRNA processing but has no effect on U7 snRNP levels. We also show that knocking down the known components of U7 snRNP by RNA interference results in a reduction in cell growth and an unsuspected cell cycle arrest in early G(1), suggesting that active U7 snRNP is necessary to allow progression through G(1) phase to S phase.
Collapse
Affiliation(s)
- Eric J Wagner
- Program in Molecular Biology and Biotechnology, CB #7100, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
21
|
Jaeger S, Martin F, Rudinger-Thirion J, Giegé R, Eriani G. Binding of human SLBP on the 3'-UTR of histone precursor H4-12 mRNA induces structural rearrangements that enable U7 snRNA anchoring. Nucleic Acids Res 2006; 34:4987-95. [PMID: 16982637 PMCID: PMC1635294 DOI: 10.1093/nar/gkl666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In metazoans, cell-cycle-dependent histones are produced from poly(A)-lacking mRNAs. The 3′ end of histone mRNAs is formed by an endonucleolytic cleavage of longer precursors between a conserved stem–loop structure and a purine-rich histone downstream element (HDE). The cleavage requires at least two trans-acting factors: the stem–loop binding protein (SLBP), which binds to the stem–loop and the U7 snRNP, which anchors to histone pre-mRNAs by annealing to the HDE. Using RNA structure-probing techniques, we determined the secondary structure of the 3′-untranslated region (3′-UTR) of mouse histone pre-mRNAs H4–12, H1t and H2a–614. Surprisingly, the HDE is embedded in hairpin structures and is therefore not easily accessible for U7 snRNP anchoring. Probing of the 3′-UTR in complex with SLBP revealed structural rearrangements leading to an overall opening of the structure especially at the level of the HDE. Electrophoretic mobility shift assays demonstrated that the SLBP-induced opening of HDE actually facilitates U7 snRNA anchoring on the histone H4–12 pre-mRNAs 3′ end. These results suggest that initial binding of the SLBP functions in making the HDE more accessible for U7 snRNA anchoring.
Collapse
Affiliation(s)
| | | | | | | | - Gilbert Eriani
- To whom correspondence should be addressed: Tel: +33 3 88 41 70 42; Fax: +33 3 88 60 22 18;
| |
Collapse
|
22
|
Richardson RT, Alekseev OM, Grossman G, Widgren EE, Thresher R, Wagner EJ, Sullivan KD, Marzluff WF, O'Rand MG. Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. J Biol Chem 2006; 281:21526-21534. [PMID: 16728391 DOI: 10.1074/jbc.m603816200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A multichaperone nucleosome-remodeling complex that contains the H1 linker histone chaperone nuclear autoantigenic sperm protein (NASP) has recently been described. Linker histones (H1) are required for the proper completion of normal development, and NASP transports H1 histones into nuclei and exchanges H1 histones with DNA. Consequently, we investigated whether NASP is required for normal cell cycle progression and development. We now report that without sufficient NASP, HeLa cells and U2OS cells are unable to replicate their DNA and progress through the cell cycle and that the NASP(-/-) null mutation causes embryonic lethality. Although the null mutation NASP(-/-) caused embryonic lethality, null embryos survive until the blastocyst stage, which may be explained by the presence of stored NASP protein in the cytoplasm of oocytes. We conclude from this study that NASP and therefore the linker histones are key players in the assembly of chromatin after DNA replication.
Collapse
Affiliation(s)
- Richard T Richardson
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - Oleg M Alekseev
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - Gail Grossman
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - Esther E Widgren
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - Randy Thresher
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - Eric J Wagner
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - Kelly D Sullivan
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - William F Marzluff
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599-7090
| | - Michael G O'Rand
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090.
| |
Collapse
|
23
|
Gunjan A, Paik J, Verreault A. The emergence of regulated histone proteolysis. Curr Opin Genet Dev 2006; 16:112-8. [PMID: 16510276 DOI: 10.1016/j.gde.2006.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 02/13/2006] [Indexed: 01/18/2023]
Abstract
Proliferating cells need to synthesize large amounts of histones to rapidly package nascent DNA into nucleosomes. This is a challenging task for cells because changes in rates of DNA synthesis lead to an accumulation of excess histones, which interfere with many aspects of DNA metabolism. In addition, cells need to ensure that histone variants are incorporated at the correct chromosomal location. Recent discoveries have highlighted the importance of regulated histone proteolysis in preventing both the accumulation of excess histones and the mis-incorporation of histone variants at inappropriate loci.
Collapse
Affiliation(s)
- Akash Gunjan
- Florida State University College of Medicine, Department of Biomedical Sciences, 1115 West Call Street, Tallahassee, FL 32309-4300, USA
| | | | | |
Collapse
|
24
|
Marzluff WF. Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol 2005; 17:274-80. [PMID: 15901497 DOI: 10.1016/j.ceb.2005.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metazoan replication-dependent histone mRNAs are the only eukaryotic mRNAs that lack polyA tails. The genes for the five histone proteins have remained physically linked during evolution. Expression of histone mRNAs and histone proteins requires a unique set of factors, and may be coordinated by association of the histone genes with Cajal bodies. Recently several novel factors, including components of the U7 snRNP, as well as proteins involved in regulation of histone gene expression, have been described.
Collapse
Affiliation(s)
- William F Marzluff
- Program in Molecular Biology and Biotechnology, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|