1
|
Li X, Liu Q, Wang L, Bu T, Yang X, Gao S, Yun D, Sun F. PPM1G dephosphorylates α-catenin to maintain the integrity of adherens junctions and regulates apoptosis in Sertoli cells. Mol Cell Endocrinol 2025; 600:112493. [PMID: 39952314 DOI: 10.1016/j.mce.2025.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Protein phosphatase, Mg2+/Mn2+ dependent, 1G (PPM1G) regulates protein function via dephosphorylation. PPM1G participates in the assembly of adherens junctions by dephosphorylating α-catenin. Here, we demonstrated through siRNA transfection and intratesticular injection that PPM1G is critical for maintaining blood-testis barrier function and regulating Sertoli cell apoptosis. We observed that upon knocking down Ppm1g in rat testes, the function of the blood testis barrier was compromised, and the localization of α-catenin and β-catenin became aberrant. Further investigation in rat Sertoli cells revealed that after Ppm1g knockdown, the level of phosphorylated α-catenin increased, and it failed to properly aggregate at the cell membrane; instead, it was mislocalized to the cytoplasm. The actin to which catenin is attached also exhibited a disordered arrangement in the absence of PPM1G. Additionally, through RNA sequencing and bioinformatics analysis, we identified genes associated with Sertoli cell dysfunction induced by Ppm1g knockdown and identified a set of genes involved in regulating intercellular junctions. Subsequent validation revealed that after Ppm1g knockdown, the expression of the junction-related protein JAM2 was reduced, and Sertoli cells underwent apoptosis. Overall, we identified a gene, Ppm1g, which may be involved in maintaining the normal function of the blood-testis barrier and influencing the survival of Sertoli cells by regulating apoptotic pathways.
Collapse
Affiliation(s)
- Xinyao Li
- Department of General Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Qian Liu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tiao Bu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue, Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Zhang B, Song C, Zhou B, Zhang J, Dong W, Zhang Y, Zhao X, Zhang Q. CTNNB1 and CDH1 Regulate Trophoblast Cell Adhesion and Junction Formation in Yak Placental Tissue at Different Gestational Stages. Animals (Basel) 2025; 15:876. [PMID: 40150405 PMCID: PMC11939409 DOI: 10.3390/ani15060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Yaks (Bos grunniens), which are distributed across the Tibetan Plateau and other high-altitude regions, are vital livestock that provide essential resources for local herders and have significant economic and ecological value [...].
Collapse
Affiliation(s)
- Bohao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chen Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bin Zhou
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjun Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
3
|
Hamad I, Sepic S, Moztarzadeh S, García-Ponce A, Waschke J, Radeva MY. Plakoglobin does not participate in endothelial barrier stabilization mediated by cAMP. Sci Rep 2025; 15:9043. [PMID: 40091082 PMCID: PMC11911453 DOI: 10.1038/s41598-025-93756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Critical for maintenance of endothelial barrier is the remodeling of the actin cytoskeleton and the precise control of junctional integrity. Plakoglobin (PG) is a structural and signaling protein involved in vascular permeability regulation together with key signaling molecules such as cAMP, Rho GTPases and actin-binding proteins. Here, we investigated the role of PG in cAMP-mediated endothelial barrier stabilization by establishing myocardial endothelial cells derived from wild type (WT) and PG knock-out (PG-KO) mice. Under basal conditions, TEER measurements showed increased barrier function of PG-KO, an effect associated with enhanced protein levels and junctional VE-cadherin and β-catenin accumulation. PG-KO cells also displayed more PECAM-1 and VE-PTP-phosphatase and less phosphorylated VE-cadherin, typically linked with modulation of junctional integrity. PG ablation neither changed the composition of VE-cadherin/β-catenin complex nor activities of Rac1 and RhoA but decreased the basal intracellular cAMP concentration. Remarkably, cAMP augmentation led to enhanced Rac1 activity and TEER in both cell lines, but the effect was less prominent in PG-KO. The tighter barrier in WT was paralleled with more VE-cadherin, β-catenin and cortactin, an actin-binding protein, towards junctions. Surprisingly, PG phosphorylation at Ser665 was not required for cAMP-mediated endothelial barrier integrity, which is different to cardiomyocyte and keratinocyte cell adhesion.
Collapse
Affiliation(s)
- Ibrahim Hamad
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sina Moztarzadeh
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
4
|
Wang Y, Wang Y, Zhuang X, Zhang Y, Fang B, Fu Y. Unraveling the Osteogenic Activity and Molecular Mechanism of an Antioxidant Collagen Peptide in MC3T3-E1 Cells. Nutrients 2025; 17:824. [PMID: 40077694 PMCID: PMC11902006 DOI: 10.3390/nu17050824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Osteoporosis has become an inevitable health issue with global aging, and the current drug treatments often have adverse side effects, highlighting the need for safer and more effective therapies. Collagen-derived peptides are promising alternatives due to their favorable safety profile and biological activity. This study aimed to investigate the osteogenic and anti-apoptotic properties of collagen peptide UU1 (GASGPMGPR) in addition to its antioxidant activity. Methods: The effects of UU1 were evaluated in MC3T3-E1 cells by assessing osteogenic markers, including alkaline phosphatase (ALP), Cyclin D1, runt-related transcription factor 2 (Runx2), and Akt/β-catenin signaling. Western blot analysis quantified collagen I, osteocalcin, and phosphorylated Akt levels. Anti-apoptotic effects were measured via p-Akt levels and the Bax/Bcl-2 ratio. Computational molecular docking was performed to explore the molecular mechanism of UU1 via its interaction with epidermal growth factor receptor (EGFR) and collagen-binding integrin. Results: UU1 treatment promoted cell differentiation, with elevated ALP, Cyclin D1, Runx2, and Akt/β-catenin signaling. Notably, at 0.025 mg/mL, UU1 upregulated the levels of collagen I, osteocalcin, and phosphorylated Akt by 2.14, 3.37, and 1.95 times, respectively, compared to the control. Additionally, UU1 exhibited anti-apoptotic effects, indicated by increased p-Akt levels and a reduced Bax/Bcl-2 ratio. Molecular docking analysis suggested that UU1 could assist the dimerization of EGFR, facilitating downstream signaling transductions and activating collagen-binding integrin. Conclusions: These findings highlight UU1 as a multifunctional peptide with antioxidant, osteogenic, and anti-apoptotic properties, positioning it as a promising candidate for anti-osteoporosis applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yue Wang
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital of Xiamen University, Xiamen 361005, China;
| | - Xiaoyan Zhuang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.Z.); (Y.Z.)
| | - Yonghui Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.Z.); (Y.Z.)
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Cyr DG, Gregory M, Hermo L, Dufresne J. Molecular Pathways Implicated in the Differentiation and Function of Epididymal Basal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:89-113. [PMID: 40301254 DOI: 10.1007/978-3-031-82990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The postnatal development of the epididymis is a complex and poorly understood process. Our recent studies have shown that undifferentiated primitive small columnar cells are stem cells and can differentiate in vitro into basal and principal cells. This process represents a key aspect of early epididymal development. As such, the genes and signaling pathways implicated in the differentiation of stem cells are critical. In the rat, epididymal development has been subdivided into three phases consisting of an undifferentiated epithelium (birth to day 14), differentiation (days 14 to 44), and expansion (day 45 to adult). During this period, changes in gene expression in the epididymis are the most significant, as almost 1500 genes are differentially expressed between epididymides of 7 and 18 days of age. In the adult rat, basal cells appear to represent a quiescent adult stem cell population that can be cultured under 3D conditions and can differentiate into principal cells. Gene expression in basal cells of adults compared with epididymides from day 7 rats reveals approximately 400 genes that are common to both. Analyses of these genes predict multiple signaling pathways and master regulator genes. Their roles in early epididymal development suggest that the process is complex and involves multiple regulators, cell surface factors, signaling pathways, and hormones that are interconnected and which promote the differentiation of epididymal basal cells into other epididymal cell types.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Québec, QC, Canada.
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
6
|
Grieco T, Paolino G, Moliterni E, Chello C, Sernicola A, Egan CG, Morelli M, Nannipieri F, Battaglia S, Accoto M, Tirotta E, Trasciatti S, Bonaretti S, Pellacani G, Calvieri S. Differential Expression of Proteins Involved in Skin Barrier Maintenance and Vitamin D Metabolism in Atopic Dermatitis: A Cross-Sectional, Exploratory Study. Int J Mol Sci 2024; 26:211. [PMID: 39796069 PMCID: PMC11719518 DOI: 10.3390/ijms26010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by proteins involved in skin barrier maintenance and vitamin D metabolism. Using an intra-patient design, this study compared protein expression in intra-lesional (IL) and peri-lesional (PL) skin biopsies from AD patients and examined associations between protein levels, vitamin D status, and clinical features. Forty-four biopsies from twenty-two AD patients were analyzed using antibody microarrays targeting twelve proteins. IL samples had significantly higher total protein levels than PL samples, with a mean difference of 77.7% (p < 0.001). Several proteins, including cathelicidin, cingulin, occludin, filaggrin, and the vitamin D receptor, were upregulated in IL samples. Patients with vitamin D levels below 30 ng/mL showed higher expression of CYP24A (p = 0.054), alpha-catenin (p = 0.043), and haptoglobin (p = 0.033). Increased EASI scores (≥16) were associated with elevated expression of CYP24A (p = 0.024), CYP27B (p = 0.044), filaggrin (p = 0.027), occludin (p = 0.049), and claudin-1 (p = 0.052). Multivariate regression analysis identified significant correlations between protein expression, skin prick test positivity, and low vitamin D levels. These findings suggest that proteins related to epithelial barrier function and vitamin D metabolism are highly upregulated in IL skin regions, offering potential therapeutic targets for improving both skin barrier function and overall disease severity in AD patients.
Collapse
Affiliation(s)
- Teresa Grieco
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (T.G.); (E.M.); (C.C.); (A.S.); (G.P.); (S.C.)
| | - Giovanni Paolino
- Unit of Dermatology and Cosmetology, IRCCS University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Elisa Moliterni
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (T.G.); (E.M.); (C.C.); (A.S.); (G.P.); (S.C.)
| | - Camilla Chello
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (T.G.); (E.M.); (C.C.); (A.S.); (G.P.); (S.C.)
| | - Alvise Sernicola
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (T.G.); (E.M.); (C.C.); (A.S.); (G.P.); (S.C.)
| | | | | | - Fabrizio Nannipieri
- Clinical Research, Abiogen Pharma SpA, 56121 Pisa, Italy; (F.N.); (S.B.); (M.A.); (E.T.)
| | - Santina Battaglia
- Clinical Research, Abiogen Pharma SpA, 56121 Pisa, Italy; (F.N.); (S.B.); (M.A.); (E.T.)
| | - Marina Accoto
- Clinical Research, Abiogen Pharma SpA, 56121 Pisa, Italy; (F.N.); (S.B.); (M.A.); (E.T.)
| | - Erika Tirotta
- Clinical Research, Abiogen Pharma SpA, 56121 Pisa, Italy; (F.N.); (S.B.); (M.A.); (E.T.)
| | | | | | - Giovanni Pellacani
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (T.G.); (E.M.); (C.C.); (A.S.); (G.P.); (S.C.)
| | - Stefano Calvieri
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (T.G.); (E.M.); (C.C.); (A.S.); (G.P.); (S.C.)
| |
Collapse
|
7
|
Han Y, Liu C, Yin S, Cui J, Sun Y, Xue B, Jiang C, Gu X, Qin M, Wang W, Xu H, Cao Y. Dynamic Diselenide Hydrogels for Controlled Tumor Organoid Culture and Dendritic Cell Vaccination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69114-69124. [PMID: 39631374 DOI: 10.1021/acsami.4c18728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Dynamic hydrogels are emerging as advanced materials for engineering tissue-like environments that mimic cellular microenvironments. We introduce a diselenide-cross-linked hydrogel system with light-responsive properties, designed for precise control of tumor organoid growth and light-initiated radical inactivation, particularly for dendritic cell (DC) vaccines. Diselenide exchange enables stress relaxation and hydrogel remodeling, while recombination and quenching of seleno radicals (Se•) reduce cross-linking density, leading to controlled degradation. We demonstrate a 2D to 3D growth strategy, where tumor cells inoculate on the hydrogel surface, expand, and gradually form spherical organoids within the 3D hydrogel. These tumor organoids show significantly higher drug resistance compared to 2D-cultured cells. High-density light irradiation enhances diselenide exchange, inducing hydrogel degradation, tumor cell death, and release of functional antigens. This system serves as a dynamic platform for tumor organoid culture and antigen release, offering significantly advanced approaches for in vitro tumor modeling and immunological research. Our findings position diselenide-cross-linked hydrogels as versatile materials for precision cellular engineering, with broad applications in cancer research and beyond.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Cheng Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yang Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
8
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
9
|
Sequeira RC, Godad A. Understanding Glycogen Synthase Kinase-3: A Novel Avenue for Alzheimer's Disease. Mol Neurobiol 2024; 61:4203-4221. [PMID: 38064104 DOI: 10.1007/s12035-023-03839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of age-related dementia. Even though a century has passed since the discovery of AD, the exact cause of the disease still remains unknown. As a result, this poses a major hindrance in developing effective therapies for treating AD. Glycogen synthase kinase-3 (GSK-3) is one of the kinases that has been investigated recently as a potential therapeutic target for the treatment of AD. It is also known as human tau protein kinase and is a proline-directed serine-threonine kinase. Since dysregulation of this kinase affects all the major characteristic features of the disease, such as tau phosphorylation, amyloid formation, memory, and synaptic function, it is thought to be a major player in the pathogenesis of AD. In this review, we present the most recent information on the role of this kinase in the onset and progression of AD, as well as significant findings that identify GSK-3 as one of the most important targets for AD therapy. We further discuss the potential of treating AD by targeting GSK-3 and give an overview of the ongoing studies aimed at developing GSK-3 inhibitors in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Ronnita C Sequeira
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Angel Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India.
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
10
|
Radice VZ, Martinez A, Paytan A, Potts DC, Barshis DJ. Complex dynamics of coral gene expression responses to low pH across species. Mol Ecol 2024; 33:e17186. [PMID: 37905582 DOI: 10.1111/mec.17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Coral capacity to tolerate low pH affects coral community composition and, ultimately, reef ecosystem function. Low pH submarine discharges ('Ojo'; Yucatán, México) represent a natural laboratory to study plasticity and acclimatization to low pH in relation to ocean acidification. A previous >2-year coral transplant experiment to ambient and low pH common garden sites revealed differential survivorship across species and sites, providing a framework to compare mechanistic responses to differential pH exposures. Here, we examined gene expression responses of transplants of three species of reef-building corals (Porites astreoides, Porites porites and Siderastrea siderea) and their algal endosymbiont communities (Symbiodiniaceae) originating from low pH (Ojo) and ambient pH native origins (Lagoon or Reef). Transplant pH environment had the greatest effect on gene expression of Porites astreoides hosts and symbionts and P. porites hosts. Host P. astreoides Ojo natives transplanted to ambient pH showed a similar gene expression profile to Lagoon natives remaining in ambient pH, providing evidence of plasticity in response to ambient pH conditions. Although origin had a larger effect on host S. siderea gene expression due to differences in symbiont genera within Reef and Lagoon/Ojo natives, subtle effects of low pH on all origins demonstrated acclimatization potential. All corals responded to low pH by differentially expressing genes related to pH regulation, ion transport, calcification, cell adhesion and stress/immune response. This study demonstrates that the magnitude of coral gene expression responses to pH varies considerably among populations, species and holobionts, which could differentially affect acclimatization to and impacts of ocean acidification.
Collapse
Affiliation(s)
- Veronica Z Radice
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Ana Martinez
- University of California, Santa Cruz, California, USA
| | - Adina Paytan
- University of California, Santa Cruz, California, USA
| | | | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
11
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Liu DX, Li ZF, Zhao YS, Wang LM, Qi HY, Zhao Z, Tan FQ, Yang WX. Es-β-CATENIN affects the hemolymph-testes barrier in Eriocheir sinensis by disrupting cell junctions and cytoskeleton. Int J Biol Macromol 2023; 242:124867. [PMID: 37201886 DOI: 10.1016/j.ijbiomac.2023.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
β-CATENIN is an evolutionarily conserved multifunctional molecule that maintains cell adhesion as a cell junction protein to safeguard the integrity of the mammalian blood-testes barrier, and also regulates cell proliferation and apoptosis as a key signaling molecule in the WNT/β-CATENIN signaling pathway. In the crustacean Eriocheir sinensis, Es-β-CATENIN has been shown to be involved in spermatogenesis, but the testes of E. sinensis have large and well-defined structural differences from those of mammals, and the impact of Es-β-CATENIN in them is still unknown. In the present study, we found that Es-β-CATENIN, Es-α-CATENIN and Es-ZO-1 interact differently in the testes of the crab compared to mammals. In addition, defective Es-β-CATENIN resulted in increased Es-α-CATENIN protein expression levels, distorted and deformed F-ACTIN, and disturbed localization of Es-α-CATENIN and Es-ZO-1, leading to loss of hemolymph-testes barrier integrity and impaired sperm release. In addition to this, we also performed the first molecular cloning and bioinformatics analysis of Es-AXIN in the WNT/β-CATENIN pathway to exclude the effect of the WNT/β-CATENIN pathway on the cytoskeleton. In conclusion, Es-β-CATENIN participates in maintaining the hemolymph-testes barrier in the spermatogenesis of E. sinensis.
Collapse
Affiliation(s)
- Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Shuang Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan-Min Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Collins QP, Grunsted MJ, Arcila D, Xiong Y, Padash Barmchi M. Transcriptomic analysis provides insight into the mechanism of IKKβ-mediated suppression of HPV18E6-induced cellular abnormalities. G3 (BETHESDA, MD.) 2023; 13:jkad020. [PMID: 36722216 PMCID: PMC10085804 DOI: 10.1093/g3journal/jkad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/12/2022] [Accepted: 01/07/2023] [Indexed: 02/02/2023]
Abstract
High-risk human papillomaviruses (HPVs) 16 and 18 are responsible for more than 70% of cervical cancers and majority of other HPV-associated cancers world-wide. Current treatments for these cancers have limited efficacy, which in turn has resulted in disease recurrence and poor survival rates in advanced disease stages. Hence, there is a significant need for development of novel molecularly-targeted therapeutics. This can only be achieved through improved understanding of disease mechanism. Recently, we developed a Drosophila model of HPV18E6 plus human E3 ubiquitin ligase (hUBE3A) and demonstrated that the E6-induced cellular abnormalities are conserved between humans and flies. Subsequently, we demonstrated that reduced level and activity of IKKβ, a regulator of NF-κB, suppresses the cellular abnormalities induced by E6 oncoprotein and that the interaction of IKKβ and E6 is conserved in human cells. In this study, we performed transcriptomic analysis to identify differentially expressed genes that play a role in IKKβ-mediated suppression of E6-induced defects. Transcriptome analysis identified 215 genes whose expression was altered due to reduced levels of IKKβ. Of these 215 genes, 151 genes showed annotations. These analyses were followed by functional genetic interaction screen using RNAi, overexpression, and mutant fly strains for identified genes. The screen identified several genes including genes involved in Hippo and Toll pathways as well as junctional complexes whose downregulation or upregulation resulted in alterations of E6-induced defects. Subsequently, RT-PCR analysis was performed for validation of altered gene expression level for a few representative genes. Our results indicate an involvement for Hippo and Toll pathways in IKKβ-mediated suppression of E6 + hUBE3A-induced cellular abnormalities. Therefore, this study enhances our understanding of the mechanisms underlying HPV-induced cancer and can potentially lead to identification of novel drug targets for cancers associated with HPV.
Collapse
Affiliation(s)
- Quincy P Collins
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | - Dahiana Arcila
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
- Department of Ichthyology, Sam Noble Oklahoma Museum of Natural History, Norman, OK 73019, USA
| | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
14
|
Liu DX, Hao SL, Yang WX. Crosstalk Between β-CATENIN-Mediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol 2023; 42:1-13. [PMID: 36399409 DOI: 10.1089/dna.2022.0424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and stable signaling regulation are fundamental ways of maintaining homeostasis. Among them, the Wnt/β-CATENIN signaling plays a key role in embryonic development and maintenance of body dynamic homeostasis. At the same time, the key signaling molecule β-CATENIN in the Wnt signaling can also function as a cytoskeletal linker protein to regulate tissue barriers, cell migration, and morphogenesis. Dysregulation of the balance between Wnt signaling and adherens junctions can lead to disease. How β-CATENIN maintains the independence of these two functions, or mediates the interaction and balance of these two functions, has been explored and debated for a long time. In this study, we will focus on five aspects of β-CATENIN chaperone molecules, phosphorylation of β-CATENIN and related proteins, epithelial mesenchymal transition, β-CATENIN homolog protein γ-CATENIN and disease, thus deepening the understanding of the Wnt/β-CATENIN signaling and the homeostasis between cell adhesion and further addressing related disease problems.
Collapse
Affiliation(s)
- Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Proteomics of the dentate gyrus reveals semantic dementia specific molecular pathology. Acta Neuropathol Commun 2022; 10:190. [PMID: 36578035 PMCID: PMC9795759 DOI: 10.1186/s40478-022-01499-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Semantic dementia (SD) is a clinical subtype of frontotemporal dementia consistent with the neuropathological diagnosis frontotemporal lobar degeneration (FTLD) TDP type C, with characteristic round TDP-43 protein inclusions in the dentate gyrus. Despite this striking clinicopathological concordance, the pathogenic mechanisms are largely unexplained forestalling the development of targeted therapeutics. To address this, we carried out laser capture microdissection of the dentate gyrus of 15 SD patients and 17 non-demented controls, and assessed relative protein abundance changes by label-free quantitative mass spectrometry. To identify SD specific proteins, we compared our results to eight other FTLD and Alzheimer's disease (AD) proteomic datasets of cortical brain tissue, parallel with functional enrichment analyses and protein-protein interactions (PPI). Of the total 5,354 quantified proteins, 151 showed differential abundance in SD patients (adjusted P-value < 0.01). Seventy-nine proteins were considered potentially SD specific as these were not detected, or demonstrated insignificant or opposite change in FTLD/AD. Functional enrichment indicated an overrepresentation of pathways related to the immune response, metabolic processes, and cell-junction assembly. PPI analysis highlighted a cluster of interacting proteins associated with adherens junction and cadherin binding, the cadherin-catenin complex. Multiple proteins in this complex showed significant upregulation in SD, including β-catenin (CTNNB1), γ-catenin (JUP), and N-cadherin (CDH2), which were not observed in other neurodegenerative proteomic studies, and hence may resemble SD specific involvement. A trend of upregulation of all three proteins was observed by immunoblotting of whole hippocampus tissue, albeit only significant for N-cadherin. In summary, we discovered a specific increase of cell adhesion proteins in SD constituting the cadherin-catenin complex at the synaptic membrane, essential for synaptic signaling. Although further investigation and validation are warranted, we anticipate that these findings will help unravel the disease processes underlying SD.
Collapse
|
16
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
17
|
Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:268-278. [PMID: 36159185 PMCID: PMC9489739 DOI: 10.1016/j.jdsr.2022.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of transcriptional factors and mesenchymal proteins, including Snail1, vimentin and N-cadherin, which also occur in the EMT program. Clinically, these phenotypic changes may be reflected by increases in microulceration of the pocket epithelial lining, granulation tissue formation, and fibrosis. Both in vitro and in vivo data now support the potential involvement of EMT as a pathogenic mechanism in periodontal diseases which may facilitate bacterial invasion into the underlying gingival tissues and propagation of inflammation. This review surveys the available literature and provides evidence linking EMT to periodontitis pathogenesis.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Ali A Abdulkareem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Michael R Milward
- ŌSchool of Dentistry, University of Birmingham, 5 Mill Pool Way, B5 7EG Birmingham, UK
| | - Bashar H Abdullah
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| |
Collapse
|
18
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
19
|
Becerro-Recio D, Serrat J, López-García M, Sotillo J, Simón F, González-Miguel J, Siles-Lucas M. Proteomics coupled with in vitro model to study the early crosstalk occurring between newly excysted juveniles of Fasciola hepatica and host intestinal cells. PLoS Negl Trop Dis 2022; 16:e0010811. [PMID: 36223411 PMCID: PMC9555655 DOI: 10.1371/journal.pntd.0010811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciolosis caused by the trematode Fasciola hepatica is a zoonotic neglected disease affecting animals and humans worldwide. Infection occurs upon ingestion of aquatic plants or water contaminated with metacercariae. These release the newly excysted juveniles (FhNEJ) in the host duodenum, where they establish contact with the epithelium and cross the intestinal barrier to reach the peritoneum within 2-3 h after infection. Juveniles crawl up the peritoneum towards the liver, and migrate through the hepatic tissue before reaching their definitive location inside the major biliary ducts, where they mature into adult worms. Fasciolosis is treated with triclabendazole, although resistant isolates of the parasite are increasingly being reported. This, together with the limited efficacy of the assayed vaccines against this infection, poses fasciolosis as a veterinary and human health problem of growing concern. In this context, the study of early host-parasite interactions is of paramount importance for the definition of new targets for the treatment and prevention of fasciolosis. Here, we develop a new in vitro model that replicates the first interaction between FhNEJ and mouse primary small intestinal epithelial cells (MPSIEC). FhNEJ and MPSIEC were co-incubated for 3 h and protein extracts (tegument and soma of FhNEJ and membrane and cytosol of MPSIEC) were subjected to quantitative SWATH-MS proteomics and compared to respective controls (MPSIEC and FhNEJ left alone for 3h in culture medium) to evaluate protein expression changes in both the parasite and the host. Results show that the interaction between FhNEJ and MPSIEC triggers a rapid protein expression change of FhNEJ in response to the host epithelial barrier, including cathepsins L3 and L4 and several immunoregulatory proteins. Regarding MPSIEC, stimulation with FhNEJ results in alterations in the protein profile related to immunomodulation and cell-cell interactions, together with a drastic reduction in the expression of proteins linked with ribosome function. The molecules identified in this model of early host-parasite interactions could help define new tools against fasciolosis.
Collapse
Affiliation(s)
- David Becerro-Recio
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Judit Serrat
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Marta López-García
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
- * E-mail: (JG-M); (MS-L)
| | - Mar Siles-Lucas
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- * E-mail: (JG-M); (MS-L)
| |
Collapse
|
20
|
Gerber TS, Goeppert B, Hausen A, Witzel HR, Bartsch F, Schindeldecker M, Gröger LK, Ridder DA, Cahyadi O, Esposito I, Gaida MM, Schirmacher P, Galle PR, Lang H, Roth W, Straub BK. N-Cadherin Distinguishes Intrahepatic Cholangiocarcinoma from Liver Metastases of Ductal Adenocarcinoma of the Pancreas. Cancers (Basel) 2022; 14:cancers14133091. [PMID: 35804866 PMCID: PMC9264797 DOI: 10.3390/cancers14133091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Carcinomas of the pancreatobiliary system confer an especially unfavorable prognosis. The differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and its subtypes versus liver metastasis of ductal adenocarcinoma of the pancreas (PDAC) is clinically important to allow the best possible therapy. We could previously show that E-cadherin and N-cadherin, transmembrane glycoproteins of adherens junctions, are characteristic features of hepatocytes and cholangiocytes. We therefore analyzed E-cadherin and N-cadherin in the embryonally related epithelia of the bile duct and pancreas, as well as in 312 iCCAs, 513 carcinomas of the extrahepatic bile ducts, 228 gallbladder carcinomas, 131 PDACs, and precursor lesions, with immunohistochemistry combined with image analysis, fluorescence microscopy, and immunoblots. In the physiological liver, N-cadherin colocalizes with E-cadherin in small intrahepatic bile ducts, whereas larger bile ducts and pancreatic ducts are positive for E-cadherin but contain decreasing amounts of N-cadherin. N-cadherin was highly expressed in most iCCAs, whereas in PDACs, N-cadherin was negative or only faintly expressed. E- and N-cadherin expression in tumors of the pancreaticobiliary tract recapitulate their expression in their normal tissue counterparts. N-cadherin is a helpful marker for the differential diagnosis between iCCA and PDAC, with a specificity of 96% and a sensitivity of 67% for small duct iCCAs and 50% for large duct iCCAs.
Collapse
Affiliation(s)
- Tiemo S. Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany; (B.G.); (P.S.)
| | - Anne Hausen
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Hagen R. Witzel
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Fabian Bartsch
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
- Tissue Biobank, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Lisa-Katharina Gröger
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Dirk A. Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Oscar Cahyadi
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Irene Esposito
- Institute of Pathology, University Clinic Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Peter Schirmacher
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany; (B.G.); (P.S.)
| | - Peter R. Galle
- Department of Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (L.-K.G.); (H.L.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
| | - Beate K. Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (T.S.G.); (A.H.); (H.R.W.); (M.S.); (D.A.R.); (M.M.G.); (W.R.)
- Correspondence:
| |
Collapse
|
21
|
Bajpai S, Chelakkot R, Prabhakar R, Inamdar MM. Role of Delta-Notch signalling molecules on cell-cell adhesion in determining heterogeneous chemical and cell morphological patterning. SOFT MATTER 2022; 18:3505-3520. [PMID: 35438097 DOI: 10.1039/d2sm00064d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell mechanics and motility are responsible for collective motion of cells that result in overall deformation of epithelial tissues. On the other hand, contact-dependent cell-cell signalling is responsible for generating a large variety of intricate, self-organized, spatial patterns of the signalling molecules. Moreover, it is becoming increasingly clear that the combined mechanochemical patterns of cell shape/size and signalling molecules in the tissues, for example, in cancerous and sensory epithelium, are governed by mechanochemical coupling between chemical signalling and cell mechanics. However, a clear quantitative picture of how these two aspects of tissue dynamics, i.e., signalling and mechanics, lead to pattern and form is still emerging. Although, a number of recent experiments demonstrate that cell mechanics, cell motility, and cell-cell signalling are tightly coupled in many morphogenetic processes, relatively few modeling efforts have focused on an integrated approach. We extend the vertex model of an epithelial monolayer to account for contact-dependent signalling between adjacent cells and between non-adjacent neighbors through long protrusional contacts with a feedback mechanism wherein the adhesive strength between adjacent cells is controlled by the expression of the signalling molecules in those cells. Local changes in cell-cell adhesion lead to changes in cell shape and size, which in turn drives changes in the levels of signalling molecules. Our simulations show that even this elementary two-way coupling of chemical signalling and cell mechanics is capable of giving rise to a rich variety of mechanochemical patterns in epithelial tissues. In particular, under certain parametric conditions, bimodal distributions in cell size and shape are obtained, which resemble experimental observations in cancerous and sensory tissues.
Collapse
Affiliation(s)
- Supriya Bajpai
- IITB-Monash Research Academy, Mumbai 400076, India.
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
22
|
McLean TD, Duchi S, Di Bella C. Molecular Pathogenesis of Sporadic Desmoid Tumours and Its Implications for Novel Therapies: A Systematised Narrative Review. Target Oncol 2022; 17:223-252. [PMID: 35446005 PMCID: PMC9217905 DOI: 10.1007/s11523-022-00876-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
Sporadic desmoid-type fibromatosis is a rare, fibroblastic soft-tissue neoplasm with local aggressiveness but no metastatic potential. Aberrant Wnt/β-catenin signalling has been extensively linked to desmoid pathogenesis, although little is known about other molecular drivers and no established treatment approach exists. We aimed to summarise the current literature regarding the molecular pathogenesis of sporadic desmoid-type fibromatosis and to discuss the effects of both current and emerging novel therapies targeting these mechanisms. A literature search was conducted of MEDLINE® ALL and EMBASE databases for published studies (2000–August 2021) using keywords related to ‘fibromatosis aggressive’, ‘immunohistochemistry’, ‘polymerase chain reaction’ and ‘mutation’. Articles were included if they examined the role of proteins in sporadic or extra-abdominal human desmoid-type fibromatosis pathogenesis. Searching identified 1684 articles. Following duplicate removal and eligibility screening, 36 were identified. After a full-text screen, 22 were included in the final review. At least 47% of desmoid-type fibromatosis cases displayed aberrant β-catenin immunoreactivity amongst ten studies. Cyclin D1 overexpression occurred in at least 40% of cases across five studies. Six studies reported oestrogen receptor-β expression with a range of 7.4–90%. Three studies implicated matrix metalloproteinases, with one study demonstrating vascular endothelial growth factor overexpression. One study explored the positive relationship between cyclooxygenase-2 and platelet-derived growth factor receptor-β. Aberrant Wnt/β-catenin signalling is a well-established pathogenic driver that may be targeted via downstream modulation. Growth factor signalling is best appreciated through the clinical trial effects of multi-targeted tyrosine kinase inhibitors, whilst oestrogen receptor expression data may only offer a superficial insight into oestrogen signalling. Finally, the tumour microenvironment presents multiple potential novel therapeutic targets. Sporadic desmoid tumours are rare soft-tissue neoplasms that arise from connective tissues in the chest wall, head, neck and limbs. Whilst lacking metastatic potential, uncertainty surrounding their locally aggressive growth and unpredictable recurrence complicates treatment approaches. At the molecular level, alterations in the Wnt/β-catenin signalling pathway, a fundamental coordinator of cell growth and development, have been strongly linked to desmoid tumour development. Beyond this, however, little is known about other molecular drivers. In the case of progressive or life-threatening disease, complex treatment decisions are made regarding the use of surgery, radiotherapy or systemic treatment modalities. Of the targeted systemic therapies, a lack of comparative clinical studies further complicates medical treatment decision making as no definitive treatment approach exists. Therefore, this review aimed to summarise the literature regarding the molecular drivers of desmoid tumour pathogenesis and to discuss the current and emerging novel therapies targeting such mechanisms. Utilising findings from human desmoid tissue samples, we present the rationale for targeting downstream mediators of the central Wnt/β-catenin pathway and outline potential treatment targets in the tumour microenvironment. We also highlight the knowledge gained from clinical drug trials targeting desmoid growth factor signalling and present the potentially superficial insight provided by oestrogen receptor expression profiles on the role of oestrogen signalling in desmoid pathogenesis. In doing so, this work may assist in the eventual development of an evidence-based treatment approach for sporadic desmoid tumours.
Collapse
Affiliation(s)
- Thomas D McLean
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Serena Duchi
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| | - Claudia Di Bella
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, VIC, Australia
| |
Collapse
|
23
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
24
|
Ribarič S. Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23063245. [PMID: 35328666 PMCID: PMC8952567 DOI: 10.3390/ijms23063245] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
This narrative review summarises the evidence for considering physical exercise (PE) as a non-pharmacological intervention for delaying cognitive decline in patients with Alzheimer’s disease (AD) not only by improving cardiovascular fitness but also by attenuating neuroinflammation. Ageing is the most important risk factor for AD. A hallmark of the ageing process is a systemic low-grade chronic inflammation that also contributes to neuroinflammation. Neuroinflammation is associated with AD, Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders. Pharmacological treatment of AD is currently limited to mitigating the symptoms and attenuating progression of the disease. AD animal model studies and human studies on patients with a clinical diagnosis of different stages of AD have concluded that PE attenuates cognitive decline not only by improving cardiovascular fitness but possibly also by attenuating neuroinflammation. Therefore, low-grade chronic inflammation and neuroinflammation should be considered potential modifiable risk factors for AD that can be attenuated by PE. This opens the possibility for personalised attenuation of neuroinflammation that could also have important health benefits for patients with other inflammation associated brain disorders (i.e., Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders). In summary, life-long, regular, structured PE should be considered as a supplemental intervention for attenuating the progression of AD in human. Further studies in human are necessary to develop optimal, personalised protocols, adapted to the progression of AD and the individual’s mental and physical limitations, to take full advantage of the beneficial effects of PE that include improved cardiovascular fitness, attenuated systemic inflammation and neuroinflammation, stimulated brain Aβ peptides brain catabolism and brain clearance.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Blaschuk OW. Potential Therapeutic Applications of N-Cadherin Antagonists and Agonists. Front Cell Dev Biol 2022; 10:866200. [PMID: 35309924 PMCID: PMC8927039 DOI: 10.3389/fcell.2022.866200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the cell adhesion molecule (CAM), known as neural (N)-cadherin (CDH2). The molecular basis of N-cadherin-mediated intercellular adhesion is discussed, as well as the intracellular signaling pathways regulated by this CAM. N-cadherin antagonists and agonists are then described, and several potential therapeutic applications of these intercellular adhesion modulators are considered. The usefulness of N-cadherin antagonists in treating fibrotic diseases and cancer, as well as manipulating vascular function are emphasized. Biomaterials incorporating N-cadherin modulators for tissue regeneration are also presented. N-cadherin antagonists and agonists have potential for broad utility in the treatment of numerous maladies.
Collapse
|
26
|
The Complex Biology of the Obesity-Induced, Metastasis-Promoting Tumor Microenvironment in Breast Cancer. Int J Mol Sci 2022; 23:ijms23052480. [PMID: 35269622 PMCID: PMC8910079 DOI: 10.3390/ijms23052480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in women contributing to cancer-related death in the advanced world. Apart from the menopausal status, the trigger for developing breast cancer may vary widely from race to lifestyle factors. Epidemiological studies refer to obesity-associated metabolic changes as a critical risk factor behind the progression of breast cancer. The plethora of signals arising due to obesity-induced changes in adipocytes present in breast tumor microenvironment, significantly affect the behavior of adjacent breast cells. Adipocytes from white adipose tissue are currently recognized as an active endocrine organ secreting different bioactive compounds. However, due to excess energy intake and increased fat accumulation, there are morphological followed by secretory changes in adipocytes, which make the breast microenvironment proinflammatory. This proinflammatory milieu not only increases the risk of breast cancer development through hormone conversion, but it also plays a role in breast cancer progression through the activation of effector proteins responsible for the biological phenomenon of metastasis. The aim of this review is to present a comprehensive picture of the complex biology of obesity-induced changes in white adipocytes and demonstrate the relationship between obesity and breast cancer progression to metastasis.
Collapse
|
27
|
Behdarvand-Margha Z, Ahangarpour A, Shahraki M, Komeili G, Khorsandi L. The effects of gallic acid and metformin on male reproductive dysfunction in diabetic mice induced by methylglyoxal: An experimental study. Int J Reprod Biomed 2021; 19:715-724. [PMID: 34568732 PMCID: PMC8458920 DOI: 10.18502/ijrm.v19i8.9619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/11/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a disease that has reached a dangerous point. Today, nearly 500 million men and women around the world live with diabetes. Gallic acid (Gal) affects diabetes. OBJECTIVE To evaluate the effects of Gal and metformin (met) on the levels of glucose, insulin, testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), sperm count, antioxidant status, and histological changes in the testes of diabetic mice induced by methylglyoxal (MGO). MATERIALS AND METHODS In this experimental study, 50 male adult NMRI mice, weighting 25-30 gr, aged 3-4 months were randomly divided into five equal groups (n = 10/each). (i) Control (vehicle, normal saline), (ii) MGO (600 mg/kg/d) orally for 28 days, (iii) Gal (50 mg/kg/d), (iv) MGO+Gal, and (v) MGO+met (200 mg/kg/d). Gal and met were administered orally for 21 consecutive days after the induction of diabetes. Blood samples were taken at 24 hr after the latest doses of treatment. Histological assessment of the testis was done, and the epididymis sperm count was obtained. Antioxidant indices, glucose, insulin, LH, FSH, and testosterone levels were measured. RESULTS In the MGO group compared to the control group, insulin, glucose (p = 0.001), LH (p = 0.04) and malondialdehyde (p = 0.001) were increased. However, the level of testosterone (p = 0.001), seminiferous tubule diameters, epithelial height, sperm count, superoxide dismutase activity (p = 0.02), and testis volume (p = 0.01) were decreased. The results indicated that Gal and met ameliorated the MGO effects. CONCLUSION These findings suggested that the animals receiving MGO became diabetic. According to the results, Gal and met can effectively prevent MGO-induced diabetes. The effect of Gal was equivalent and sometimes better than metformin.
Collapse
Affiliation(s)
- Zeinab Behdarvand-Margha
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Akram Ahangarpour
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Shahraki
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Komeili
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Mohammadzadeh M, Anbari F, Aghaei S, Yazd EF, Sales ZA, Rajabi M, Khalili MA. Does combination of estradiol and sesame oil improve the oocyte quality, embryo development and expressions of Zp3, E-cad, and Ctnnb1 genes in mice? An experimental study. Int J Reprod Biomed 2021; 19:707-714. [PMID: 34568731 PMCID: PMC8458915 DOI: 10.18502/ijrm.v19i8.9618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Aging may reduce oocyte maturation, embryo quality, and fertility potential. OBJECTIVE To compare the effect of estradiol (E2) and sesame oil on oocyte and embryo quality between young and old mice. MATERIALS AND METHODS Sixty old and young female mice were divided in to two groups (30 mice/group, grouped by age). Each group was divided into three subgroups of mice treated with sesame oil, E2 + sesame oil, and normal saline as control group. After ovulation induction, some oocytes were considered for in vitro fertilization and the rest were assessed for morphological status. After obtaining the two-cell embryos, the embryos were collected to determine the expression of zona pellucida (ZP) glycoprotein 3, E-cadherin, and β-catenin genes and some of them followed until the blastocysts stage to evaluate the viability. RESULTS The findings showed that the mean ZP and perivitelline space thickness increased in the old mice that received the E2 + sesame oil treatment. The number of 2-cell embryos, blastocysts, and live cells were significantly higher in the old group treated with sesame oil respectively (p = 0.018, 0.002, and < 0.0001, respectively). The normal ZP shape and refractile body numbers increased in the old mice that were treated with sesame oil, respectively. The E-cadherin gene was downregulated in the treatment groups compared to the controls. CONCLUSION Sesame oil showed a better response in the old mice, because aging is associated with an increased rate of reactive oxygen species, causing deficiencies in both oocyte and embryo qualities.
Collapse
Affiliation(s)
- Masoomeh Mohammadzadeh
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Faculty of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Anbari
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Faculty of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shiva Aghaei
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zhima Akhavan Sales
- Department of Immunology, Faculty of Medicine, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahya Rajabi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Faculty of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
29
|
Huang D, Ding Q, Chen S, Lü S, Zhang Y, Long M. E-selectin negatively regulates polymorphonuclear neutrophil transmigration through altered endothelial junction integrity. FASEB J 2021; 35:e21521. [PMID: 33811691 DOI: 10.1096/fj.202000662rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 11/11/2022]
Abstract
Transendothelial migration (TEM) of neutrophils under blood flow is critical in the inflammatory cascade. However, the role of endothelial plasticity in this process is not fully understood. Therefore, we used an in vitro model to test the dynamics of human polymorphonuclear neutrophil (PMN) TEM across lipopolysaccharide-treated human umbilical vein endothelial cell (HUVEC) monolayers. Interestingly, shRNA-E-selectin knockdown in HUVECs destabilized endothelial junctional integrity by reducing actin branching and increasing stress fiber at cell-cell junctions. This process is accomplished by downregulating the activation of cortactin and Arp2/3, which in turn alters the adhesive function of VE-cadherin, enhancing PMN transmigration. Meanwhile, redundant P-selectins possess overlapping functions in E-selectin-mediated neutrophil adhesion, and transmigration. These results demonstrate, to our knowledge, for the first time, that E-selectins negatively regulate neutrophil transmigration through alterations in endothelial plasticity. Furthermore, it improves our understanding of the mechanisms underlying actin remodeling, and junctional integrity, in endothelial cells mediating leukocyte TEM.
Collapse
Affiliation(s)
- Dandan Huang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qihan Ding
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shenbao Chen
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.,Lead Contact, Beijing, China
| |
Collapse
|
30
|
Papaccio F, Kovacs D, Bellei B, Caputo S, Migliano E, Cota C, Picardo M. Profiling Cancer-Associated Fibroblasts in Melanoma. Int J Mol Sci 2021; 22:7255. [PMID: 34298873 PMCID: PMC8306538 DOI: 10.3390/ijms22147255] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Solid tumors are complex systems characterized by dynamic interactions between neoplastic cells, non-tumoral cells, and extracellular components. Among all the stromal cells that populate tumor microenvironment, fibroblasts are the most abundant elements and are critically involved in disease progression. Cancer-associated fibroblasts (CAFs) have pleiotropic functions in tumor growth and extracellular matrix remodeling implicated in local invasion and distant metastasis. CAFs additionally participate in the inflammatory response of the tumor site by releasing a variety of chemokines and cytokines. It is becoming clear that understanding the dynamic, mutual melanoma-fibroblast relationship would enable treatment options to be amplified. To better characterize melanoma-associated fibroblasts, here we analyzed low-passage primary CAFs derived from advanced-stage primary skin melanomas, focusing on the immuno-phenotype. Furthermore, we assessed the expression of several CAF markers and the production of growth factors. To deepen the study of CAF-melanoma cell crosstalk, we employed CAF-derived supernatants and trans-well co-culture systems to evaluate the influences of CAFs on (i) the motogenic ability of melanoma cells, (ii) the chemotherapy-induced cytotoxicity, and (iii) the release of mediators active in modulating tumor growth and spread.
Collapse
Affiliation(s)
- Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| |
Collapse
|
31
|
Ramirez Moreno M, Stempor PA, Bulgakova NA. Interactions and Feedbacks in E-Cadherin Transcriptional Regulation. Front Cell Dev Biol 2021; 9:701175. [PMID: 34262912 PMCID: PMC8273600 DOI: 10.3389/fcell.2021.701175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023] Open
Abstract
Epithelial tissues rely on the adhesion between participating cells to retain their integrity. The transmembrane protein E-cadherin is the major protein that mediates homophilic adhesion between neighbouring cells and is, therefore, one of the critical components for epithelial integrity. E-cadherin downregulation has been described extensively as a prerequisite for epithelial-to-mesenchymal transition and is a hallmark in many types of cancer. Due to this clinical importance, research has been mostly focused on understanding the mechanisms leading to transcriptional repression of this adhesion molecule. However, in recent years it has become apparent that re-expression of E-cadherin is a major step in the progression of many cancers during metastasis. Here, we review the currently known molecular mechanisms of E-cadherin transcriptional activation and inhibition and highlight complex interactions between individual mechanisms. We then propose an additional mechanism, whereby the competition between adhesion complexes and heterochromatin protein-1 for binding to STAT92E fine-tunes the levels of E-cadherin expression in Drosophila but also regulates other genes promoting epithelial robustness. We base our hypothesis on both existing literature and our experimental evidence and suggest that such feedback between the cell surface and the nucleus presents a powerful paradigm for epithelial resilience.
Collapse
Affiliation(s)
- Miguel Ramirez Moreno
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, England
| | | | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, England
| |
Collapse
|
32
|
Grmai L, Harsh S, Lu S, Korman A, Deb IB, Bach EA. Transcriptomic analysis of feminizing somatic stem cells in the Drosophila testis reveals putative downstream effectors of the transcription factor Chinmo. G3 (BETHESDA, MD.) 2021; 11:jkab067. [PMID: 33751104 PMCID: PMC8759813 DOI: 10.1093/g3journal/jkab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022]
Abstract
One of the best examples of sexual dimorphism is the development and function of the gonads, ovaries and testes, which produce sex-specific gametes, oocytes, and spermatids, respectively. The development of these specialized germ cells requires sex-matched somatic support cells. The sexual identity of somatic gonadal cells is specified during development and must be actively maintained during adulthood. We previously showed that the transcription factor Chinmo is required to ensure the male sexual identity of somatic support cells in the Drosophila melanogaster testis. Loss of chinmo from male somatic gonadal cells results in feminization: they transform from squamous to epithelial-like cells that resemble somatic cells in the female gonad but fail to properly ensheath the male germline, causing infertility. To identify potential target genes of Chinmo, we purified somatic cells deficient for chinmo from the adult Drosophila testis and performed next-generation sequencing to compare their transcriptome to that of control somatic cells. Bioinformatics revealed 304 and 1549 differentially upregulated and downregulated genes, respectively, upon loss of chinmo in early somatic cells. Using a combination of methods, we validated several differentially expressed genes. These data sets will be useful resources to the community.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sneh Harsh
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sean Lu
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Aryeh Korman
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Ishan B Deb
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Erika A Bach
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
33
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
34
|
Fonseca CMB, Mendonça TGS, Pereira CFDC, de Barros GM, da Silva ABS, Cavalcante MMADS, Cruz MDSPE, Conde Júnior AM. Structure of the parotid gland in natural infection by Leishmania infantum in Canis familiaris. Arch Oral Biol 2021; 124:105077. [PMID: 33601301 DOI: 10.1016/j.archoralbio.2021.105077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of this study was to perform a histopathological, morphometric and proteomic study of the parotid gland of dogs naturally infected with Leishmania infantum treated and not treated with Allopurinol. DESIGN Parotid glands from 14 dogs were used, divided into two groups: untreated and treated with oral allopurinol (20 mg / kg, once daily for 90 days). After adequate dissection, the organs were submitted to histopathological, histomorphometric and immunohistochemical techniques, using the monoclonal anti-β-catenin antibody. RESULTS Histopathological evaluation of treated and untreated groups showed acinar hypertrophy, structural disorganization of the nucleus and cytoplasm. There was an increase in the area and perimeter of the parotid acini in the experimental groups. The immunostaining of the β-catenin protein in the membrane was severely reduced in the treated and untreated groups. CONCLUSIONS These findings suggest that Leishmania infantum infection and treatment with Allopurinol alter the tissue structure of the parotid gland in dogs, promoting an increase in the acinar volume and a decrease in the expression of β-catenin in cell membranes.
Collapse
Affiliation(s)
- Clarisse Maria Barbosa Fonseca
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil.
| | - Tarsia Giabardo Silva Mendonça
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Cristian Francisco de Carvalho Pereira
- Department of Morphology, Health Sciences Center, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Gabriel Martins de Barros
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Andrezza Braga Soares da Silva
- Doctoral Program in Technologies Applied to Animals of Regional Interest, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Maria Michele Araújo de Sousa Cavalcante
- Doctoral Program in Technologies Applied to Animals of Regional Interest, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Maria do Socorro Pires E Cruz
- Department of Veterinary Morphophysiology, Center for Agricultural Sciences, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Airton Mendes Conde Júnior
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| |
Collapse
|
35
|
Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00214-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Smart JA, Oleksak JE, Hartsough EJ. Cell Adhesion Molecules in Plasticity and Metastasis. Mol Cancer Res 2021; 19:25-37. [PMID: 33004622 PMCID: PMC7785660 DOI: 10.1158/1541-7786.mcr-20-0595] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.
Collapse
Affiliation(s)
- Jessica A Smart
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julia E Oleksak
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Weberling A, Zernicka-Goetz M. Trophectoderm mechanics direct epiblast shape upon embryo implantation. Cell Rep 2021; 34:108655. [PMID: 33472064 PMCID: PMC7816124 DOI: 10.1016/j.celrep.2020.108655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Implantation is a hallmark of mammalian embryogenesis during which embryos establish their contacts with the maternal endometrium, remodel, and undertake growth and differentiation. The mechanisms and sequence of events through which embryos change their shape during this transition are largely unexplored. Here, we show that the first extraembryonic lineage, the polar trophectoderm, is the key regulator for remodeling the embryonic epiblast. Loss of its function after immuno-surgery or inhibitor treatments prevents the epiblast shape transitions. In the mouse, the polar trophectoderm exerts physical force upon the epiblast, causing it to transform from an oval into a cup shape. In human embryos, the polar trophectoderm behaves in the opposite manner, exerting a stretching force. By mimicking this stretching behavior in mouse embryogenesis, we could direct the epiblast to adopt the disc-like shape characteristic of human embryos at this stage. Thus, the polar trophectoderm acts as a conserved regulator of epiblast shape. Mouse epiblast remodeling from blastocyst to egg cylinder is achieved in five stages Epiblast remodeling upon implantation is not inherent to the embryonic lineage The polar trophectoderm mediates epiblast shape acquisition Epiblast shape regulation by the polar trophectoderm appears conserved in evolution
Collapse
Affiliation(s)
- Antonia Weberling
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK; Plasticity and Self-Organization Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
38
|
Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders. Cells 2020; 9:cells9122711. [PMID: 33352832 PMCID: PMC7766791 DOI: 10.3390/cells9122711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
During brain development, neurons need to form the correct connections with one another in order to give rise to a functional neuronal circuitry. Mistakes during this process, leading to the formation of improper neuronal connectivity, can result in a number of brain abnormalities and impairments collectively referred to as neurodevelopmental disorders. Cell adhesion molecules (CAMs), present on the cell surface, take part in the neurodevelopmental process regulating migration and recognition of specific cells to form functional neuronal assemblies. Among CAMs, the members of the protocadherin (PCDH) group stand out because they are involved in cell adhesion, neurite initiation and outgrowth, axon pathfinding and fasciculation, and synapse formation and stabilization. Given the critical role of these macromolecules in the major neurodevelopmental processes, it is not surprising that clinical and basic research in the past two decades has identified several PCDH genes as responsible for a large fraction of neurodevelopmental disorders. In the present article, we review these findings with a focus on the non-clustered PCDH sub-group, discussing the proteins implicated in the main neurodevelopmental disorders.
Collapse
|
39
|
McEvoy E, Han YL, Guo M, Shenoy VB. Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. Nat Commun 2020; 11:6148. [PMID: 33262337 PMCID: PMC7708487 DOI: 10.1038/s41467-020-19904-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023] Open
Abstract
Sustained proliferation is a significant driver of cancer progression. Cell-cycle advancement is coupled with cell size, but it remains unclear how multiple cells interact to control their volume in 3D clusters. In this study, we propose a mechano-osmotic model to investigate the evolution of volume dynamics within multicellular systems. Volume control depends on an interplay between multiple cellular constituents, including gap junctions, mechanosensitive ion channels, energy-consuming ion pumps, and the actomyosin cortex, that coordinate to manipulate cellular osmolarity. In connected cells, we show that mechanical loading leads to the emergence of osmotic pressure gradients between cells with consequent increases in cellular ion concentrations driving swelling. We identify how gap junctions can amplify spatial variations in cell volume within multicellular spheroids and, further, describe how the process depends on proliferation-induced solid stress. Our model may provide new insight into the role of gap junctions in breast cancer progression.
Collapse
Affiliation(s)
- Eoin McEvoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Long Han
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Faux MC, King LE, Kane SR, Love C, Sieber OM, Burgess AW. APC regulation of ESRP1 and p120-catenin isoforms in colorectal cancer cells. Mol Biol Cell 2020; 32:120-130. [PMID: 33237836 PMCID: PMC8120691 DOI: 10.1091/mbc.e20-05-0321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor protein is associated with the regulation of Wnt signaling; however, APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell–cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell–cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell–cell adhesion, whereas the expression of negative regulators of E-cadherin was decreased. Analysis of cell–cell adhesion-related proteins in SW480+APC cells revealed an increase in p120-catenin isoform 3A; similarly, depletion of APC altered the p120-catenin protein isoform profile. Expression of ESRP1 (epithelial splice regulatory protein 1) is increased in SW480+APC cells, and its depletion results in reversion to the p120-catenin isoform 1A phenotype and reduced cell–cell adhesion. The ESRP1 transcript is reduced in primary colorectal cancer, and its expression correlates with the level of APC. Pyrvinium pamoate, which inhibits Wnt signaling, promotes ESRP1 expression. We conclude that re-expression of APC restores the cell–cell adhesion gene and posttranscriptional regulatory programs leading to p120-catenin isoform switching and associated changes in cell–cell adhesion.
Collapse
Affiliation(s)
- Maree C Faux
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Lauren E King
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Serena R Kane
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christopher Love
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Antony W Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
41
|
Amable G, Martínez-León E, Picco ME, Nemirovsky SI, Rozengurt E, Rey O. Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. J Cell Physiol 2020; 235:8334-8344. [PMID: 32239671 PMCID: PMC7529638 DOI: 10.1002/jcp.29677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
E-cadherin, a central component of the adherens junction (AJ), is a single-pass transmembrane protein that mediates cell-cell adhesion. The loss of E-cadherin surface expression, and therefore cell-cell adhesion, leads to increased cell migration and invasion. Treatment of colorectal cancer (CRC)-derived cells (SW-480 and HT-29) with 2.0 mM metformin promoted a redistribution of cytosolic E-cadherin to de novo formed puncta along the length of the contacting membranes of these cells. Metformin also promoted translocation from the cytosol to the plasma membrane of p120-catenin, another core component of the AJs. Furthermore, E-cadherin and p120-catenin colocalized with β-catenin at cell-cell contacts. Western blot analysis of lysates of CRC-derived cells revealed a substantial metformin-induced increase in the level of p120-catenin as well as E-cadherin phosphorylation on Ser838/840 , a modification associated with β-catenin/E-cadherin interaction. These modifications in E-cadherin, p120-catenin and β-catenin localization suggest that metformin induces rebuilding of AJs in CRC-derived cells. Those modifications were accompanied by the inhibition of focal adhesion kinase (FAK), as revealed by a significant decrease in the phosphorylation of FAK at Tyr397 and paxillin at Tyr118 . These changes were associated with a reduction in the numbers, but an increase in the size, of focal adhesions and by the inhibition of cell migration. Overall, these observations indicate that metformin targets multiple pathways associated with CRC development and progression.
Collapse
Affiliation(s)
- Gastón Amable
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Eduardo Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - María Elisa Picco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1428EGA, Argentina
| | - Enrique Rozengurt
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, CA, 90095-1768, USA
| | - Osvaldo Rey
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| |
Collapse
|
42
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
43
|
Bischoff P, Kornhuber M, Dunst S, Zell J, Fauler B, Mielke T, Taubenberger AV, Guck J, Oelgeschläger M, Schönfelder G. Estrogens Determine Adherens Junction Organization and E-Cadherin Clustering in Breast Cancer Cells via Amphiregulin. iScience 2020; 23:101683. [PMID: 33163938 PMCID: PMC7607435 DOI: 10.1016/j.isci.2020.101683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Estrogens play an important role in the development and progression of human cancers, particularly in breast cancer. Breast cancer progression depends on the malignant destabilization of adherens junctions (AJs) and disruption of tissue integrity. We found that estrogen receptor alpha (ERα) inhibition led to a striking spatial reorganization of AJs and microclustering of E-Cadherin (E-Cad) in the cell membrane of breast cancer cells. This resulted in increased stability of AJs and cell stiffness and a reduction of cell motility. These effects were actomyosin-dependent and reversible by estrogens. Detailed investigations showed that the ERα target gene and epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) essentially regulates AJ reorganization and E-Cad microclustering. Our results not only describe a biological mechanism for the organization of AJs and the modulation of mechanical properties of cells but also provide a new perspective on how estrogens and anti-estrogens might influence the formation of breast tumors. ERα inhibition causes adherens junction (AJ) reorganization through AREG and EGFR AJ reorganization coincides with microclustering of E-Cadherin at cell membranes AJ reorganization and microclustering of E-Cadherin are actomyosin dependent AJ reorganization correlates with increased cell stiffness and reduced motility
Collapse
Affiliation(s)
- Philip Bischoff
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marja Kornhuber
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Freie Universität Berlin, 14195 Berlin, Germany
| | - Sebastian Dunst
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jakob Zell
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Beatrix Fauler
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, 14195 Berlin, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
44
|
Shibata-Seki T, Nagaoka M, Goto M, Kobatake E, Akaike T. Direct visualization of the extracellular binding structure of E-cadherins in liquid. Sci Rep 2020; 10:17044. [PMID: 33046720 PMCID: PMC7552386 DOI: 10.1038/s41598-020-72517-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
E-cadherin is a key Ca-dependent cell adhesion molecule, which is expressed on many cell surfaces and involved in cell morphogenesis, embryonic development, EMT, etc. The fusion protein E-cad-Fc consists of the extracellular domain of E-cadherin and the IgG Fc domain. On plates coated with this chimeric protein, ES/iPS cells are cultivated particularly well and induced to differentiate. The cells adhere to the plate via E-cad-Fc in the presence of Ca2+ and detach by a chelating agent. For the purpose of clarifying the structures of E-cad-Fc in the presence and absence of Ca2+, we analyzed the molecular structure of E-cad-Fc by AFM in liquid. Our AFM observations revealed a rod-like structure of the entire extracellular domain of E-cad-Fc in the presence of Ca2+ as well as trans-binding of E-cad-Fc with adjacent molecules, which may be the first, direct confirmation of trans-dimerization of E-cadherin. The observed structures were in good agreement with an X-ray crystallographic model. Furthermore, we succeeded in visualizing the changes in the rod-like structure of the EC domains with and without calcium. The biomatrix surface plays an important role in cell culture, so the analysis of its structure and function may help promote cell engineering based on cell recognition.
Collapse
Affiliation(s)
- Teiko Shibata-Seki
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| | - Masato Nagaoka
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| | - Mitsuaki Goto
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan.
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, G1-13, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| |
Collapse
|
45
|
A cross-platform approach to characterize and screen potential neurovascular unit toxicants. Reprod Toxicol 2020; 96:300-315. [PMID: 32590145 PMCID: PMC9773816 DOI: 10.1016/j.reprotox.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
Development of the neurovascular unit (NVU) is a complex, multistage process that requires orchestrated cell signaling mechanisms across several cell types and ultimately results in formation of the blood-brain barrier. Typical high-throughput screening (HTS) assays investigate single biochemical or single cell responses following chemical insult. As the NVU comprises multiple cell types interacting at various stages of development, a methodology combining high-throughput results across pertinent cell-based assays is needed to investigate potential chemical-induced disruption to the development of this complex cell system. To this end, we implemented a novel method for screening putative NVU disruptors across diverse assay platforms to predict chemical perturbation of the developing NVU. HTS assay results measuring chemical-induced perturbations to cellular key events across angiogenic and neurogenic outcomes in vitro were combined to create a cell-based prioritization of NVU hazard. Chemicals were grouped according to similar modes of action to train a logistic regression literature model on a training set of 38 chemicals. This model utilizes the chemical-specific pairwise mutual information score for PubMed MeSH annotations to represent a quantitative measure of previously published results. Taken together, this study presents a methodology to investigate NVU developmental hazard using cell-based HTS assays and literature evidence to prioritize screening of putative NVU disruptors towards a knowledge-driven characterization of neurovascular developmental toxicity. The results from these screening efforts demonstrate that chemicals representing a range of putative vascular disrupting compound (pVDC) scores can also produce effects on neurogenic outcomes and characterizes possible modes of action for disrupting the developing NVU.
Collapse
|
46
|
Wang B, Li X, Liu L, Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res 2020; 53:33. [PMID: 32758292 PMCID: PMC7405349 DOI: 10.1186/s40659-020-00301-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is a common and fatal malignancy of the female reproductive system. Human papillomavirus (HPV) is the primary causal agent for cervical cancer, but HPV infection alone is insufficient to cause the disease. Actually, most HPV infections are sub-clinical and cleared spontaneously by the host immune system; very few persist and eventually develop into cervical cancer. Therefore, other host or environmental alterations could also contribute to the malignant phenotype. One of the candidate co-factors is the β-catenin protein, a pivotal component of the Wnt/β-catenin signaling pathway. β-Catenin mainly implicates two major cellular activities: cell–cell adhesion and signal transduction. Recent studies have indicated that an imbalance in the structural and signaling properties of β-catenin leads to various cancers, such as cervical cancer. In this review, we will systematically summarize the role of β-catenin in cervical cancer and provide new insights into therapeutic strategies.
Collapse
Affiliation(s)
- Bingqi Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lei Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
47
|
Kakogiannos N, Ferrari L, Giampietro C, Scalise AA, Maderna C, Ravà M, Taddei A, Lampugnani MG, Pisati F, Malinverno M, Martini E, Costa I, Lupia M, Cavallaro U, Beznoussenko GV, Mironov AA, Fernandes B, Rudini N, Dejana E, Giannotta M. JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function. Circ Res 2020; 127:1056-1073. [PMID: 32673519 PMCID: PMC7508279 DOI: 10.1161/circresaha.120.316742] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. OBJECTIVE We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. METHODS AND RESULTS Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of β-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A-C/EBP-α-mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. CONCLUSIONS We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.
Collapse
Affiliation(s)
- Nikolaos Kakogiannos
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Laura Ferrari
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Costanza Giampietro
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Experimental Continuum Mechanics, Dübendorf, Switzerland (C.G.)
| | - Anna Agata Scalise
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Claudio Maderna
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Micol Ravà
- Experimental Oncology (M.R.), European Institute of Oncology IRCSS, Milan
| | | | - Maria Grazia Lampugnani
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.).,Mario Negri Institute for Pharmacological Research, Milan (M.G.L.)
| | | | - Matteo Malinverno
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Emanuele Martini
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Ilaria Costa
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Michela Lupia
- Unit of Gynaecological Oncology Research (M.L., U.C.), European Institute of Oncology IRCSS, Milan
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research (M.L., U.C.), European Institute of Oncology IRCSS, Milan
| | - Galina V Beznoussenko
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Alexander A Mironov
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Bethania Fernandes
- Pathology Unit, Humanitas Clinical and Research Centre, Rozzano, Milan (B.F., N.R.)
| | - Noemi Rudini
- Pathology Unit, Humanitas Clinical and Research Centre, Rozzano, Milan (B.F., N.R.)
| | - Elisabetta Dejana
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.).,Oncology and Haemato-Oncology, School of Medicine, University of Milan (E.D.).,Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Monica Giannotta
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| |
Collapse
|
48
|
Braggio D, Zewdu A, Londhe P, Yu P, Lopez G, Batte K, Koller D, Costas Casal de Faria F, Casadei L, Strohecker AM, Lev D, Pollock RE. β-catenin S45F mutation results in apoptotic resistance. Oncogene 2020; 39:5589-5600. [PMID: 32651460 PMCID: PMC7441052 DOI: 10.1038/s41388-020-1382-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
Abstract
Wnt/β-catenin signaling is one of the key cascades regulating embryogenesis and tissue homeostasis; it has also been intimately associated with carcinogenesis. This pathway is deregulated in several tumors, including colorectal cancer, breast cancer, and desmoid tumors. It has been shown that CTNNB1 exon 3 mutations are associated with an aggressive phenotype in several of these tumor types and may be associated with therapeutic tolerance. Desmoid tumors typically have a stable genome with β-catenin mutations as a main feature, making these tumors an ideal model to study the changes associated with different types of β-catenin mutations. Here, we show that the apoptosis mechanism is deregulated in β-catenin S45F mutants, resulting in decreased induction of apoptosis in these cells. Our findings also demonstrate that RUNX3 plays a pivotal role in the inhibition of apoptosis found in the β-catenin S45F mutants. Restoration of RUNX3 overcomes this inhibition in the S45F mutants, highlighting it as a potential therapeutic target for malignancies harboring this specific CTNNB1 mutation. While the regulatory effect of RUNX3 in β-catenin is already known, our results suggest the possibility of a feedback loop involving these two genes, with the CTNNB1 S45F mutation downregulating expression of RUNX3, thus providing additional possible novel therapeutic targets for tumors having deregulated Wnt/β-catenin signaling induced by this mutation.
Collapse
Affiliation(s)
- Danielle Braggio
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| | - Abeba Zewdu
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Peter Yu
- Medical Student Research Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Gonzalo Lopez
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Kara Batte
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - David Koller
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Fernanda Costas Casal de Faria
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Lucia Casadei
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne M Strohecker
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.,Program in Molecular Biology and Cancer Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dina Lev
- Surgery B, Sheba Medical Center, Tel Aviv, Israel.,Tel Aviv University, Tel Aviv, Israel
| | - Raphael E Pollock
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
49
|
Javali A, Lakshmanan V, Palakodeti D, Sambasivan R. Modulation of β-catenin levels regulates cranial neural crest patterning and dispersal into first pharyngeal arch. Dev Dyn 2020; 249:1347-1364. [PMID: 32427396 DOI: 10.1002/dvdy.208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vertebrate cranial neural crest cells (CNCCs) are multipotent, proximal to the source CNCC form the cranial ganglia. Distally, in the pharyngeal arches, they give rise to the craniofacial skeleton and connective tissues. Fate choices are made as CNCC pattern into distinct destination compartments. In spite of this importance, the mechanism patterning CNCC is poorly defined. RESULTS Here, we report that a novel β-catenin-dependent regulation of N-Cadherin levels may drive CNCC patterning. In mouse embryos, at the first pharyngeal arch axial level, membrane β-catenin levels correlate with the extent of N-cadherin-mediated adhesion and thus suggest the presence of collective and dispersed states of CNCC. Using in vitro human neural crest model and chemical modulators of β-catenin levels, we show a requirement for down-modulating β-catenin for regulating N-cadherin levels and cell-cell adhesion. Similarly, in β-catenin gain-of-function mutant mouse embryos, CNCC fail to lower N-cadherin levels. This indicates a failure to reduce cell-cell adhesion, which may underlie the failure of mutant CNCC to populate first pharyngeal arch. CONCLUSION We suggest that β-catenin-mediated regulation of CNCC adhesion, a previously underappreciated mechanism, underlies the patterning of CNCC into fate-specific compartments.
Collapse
Affiliation(s)
- Alok Javali
- National Centre for Biological Sciences, Bangalore, India.,Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | | | - Ramkumar Sambasivan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
50
|
hnRNPA2/B1 Ameliorates LPS-Induced Endothelial Injury through NF- κB Pathway and VE-Cadherin/ β-Catenin Signaling Modulation In Vitro. Mediators Inflamm 2020; 2020:6458791. [PMID: 32565727 PMCID: PMC7277030 DOI: 10.1155/2020/6458791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is a protein involved in the regulation of RNA processing, cell metabolism, migration, proliferation, and apoptosis. However, the effect of hnRNPA2/B1 on injured endothelial cells (ECs) remains unclear. We investigated the effect of hnRNPA2/B1 on lipopolysaccharide- (LPS-) induced vascular endothelial injury in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms. LPS was used to induce EC injury, and the roles of hnRNPA2/B1 in EC barrier dysfunction and inflammatory responses were measured by testing endothelial permeability and the expression of inflammatory factors after the suppression and overexpression of hnRNPA2/B1. To explore the underlying mechanism by which hnRNPA2/B1 regulates endothelial injury, we studied the VE-cadherin/β-catenin pathway and NF-κB activation in HUVECs. The results showed that hnRNPA2/B1 was elevated in LPS-stimulated HUVECs. Moreover, knockdown of hnRNPA2/B1 aggravated endothelial injury by increasing EC permeability and promoting the secretion of the inflammatory cytokines TNF-α, IL-1β, and IL-6. Overexpression of hnRNPA2/B1 can reduce the permeability and inflammatory response of HUVEC stimulated by LPS in vitro, while increasing the expression of VE-Cadherin and β-catenin. Furthermore, the suppression of hnRNPA2/B1 increased the LPS-induced NF-κB activation and reduced the VE-cadherin/β-catenin pathway. Taken together, these results suggest that hnRNPA2/B1 can regulate LPS-induced EC damage through regulating the NF-κB and VE-cadherin/β-catenin pathways.
Collapse
|