1
|
Padiyappa SD, Avalappa H, Somegowda M, Sridhara S, Venkatesh YP, Prabhakar BT, Pramod SN, Almujaydil MS, Shokralla S, Abdelbacki AMM, Elansary HO, El-Sabrout AM, Mahmoud EA. Immunoadjuvant and Humoral Immune Responses of Garlic ( Allium sativum L.) Lectins upon Systemic and Mucosal Administration in BALB/c Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041375. [PMID: 35209158 PMCID: PMC8880535 DOI: 10.3390/molecules27041375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Dietary food components have the ability to affect immune function; following absorption, specifically orally ingested dietary food containing lectins can systemically modulate the immune cells and affect the response to self- and co-administered food antigens. The mannose-binding lectins from garlic (Allium sativum agglutinins; ASAs) were identified as immunodulatory proteins in vitro. The objective of the present study was to assess the immunogenicity and adjuvanticity of garlic agglutinins and to evaluate whether they have adjuvant properties in vivo for a weak antigen ovalbumin (OVA). Garlic lectins (ASA I and ASA II) were administered by intranasal (50 days duration) and intradermal (14 days duration) routes, and the anti-lectin and anti-OVA immune (IgG) responses in the control and test groups of the BALB/c mice were assessed for humoral immunogenicity. Lectins, co-administered with OVA, were examined for lectin-induced anti-OVA IgG response to assess their adjuvant properties. The splenic and thymic indices were evaluated as a measure of immunomodulatory functions. Intradermal administration of ASA I and ASA II had showed a four-fold and two-fold increase in anti-lectin IgG response, respectively, vs. the control on day 14. In the intranasal route, the increases were 3-fold and 2.4-fold for ASA I and ASA II, respectively, on day 50. No decrease in the body weights of animals was noticed; the increases in the spleen and thymus weights, as well as their indices, were significant in the lectin groups. In the adjuvanticity study by intranasal administration, ASA I co-administered with ovalbumin (OVA) induced a remarkable increase in anti-OVA IgG response (~six-fold; p < 0.001) compared to the control, and ASA II induced a four-fold increase vs. the control on day 50. The results indicated that ASA was a potent immunogen which induced mucosal immunogenicity to the antigens that were administered intranasally in BALB/c mice. The observations made of the in vivo study indicate that ASA I has the potential use as an oral and mucosal adjuvant to deliver candidate weak antigens. Further clinical studies in humans are required to confirm its applicability.
Collapse
Affiliation(s)
- Shruthishree D. Padiyappa
- Food Allergy and Immunology Laboratory, Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere 577 007, India; (S.D.P.); (H.A.)
- Molecular Biomedicine Laboratory, Postgraduate Department of Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga 577 203, India;
| | - Hemavathi Avalappa
- Food Allergy and Immunology Laboratory, Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere 577 007, India; (S.D.P.); (H.A.)
- Molecular Biomedicine Laboratory, Postgraduate Department of Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga 577 203, India;
| | - Madhusudana Somegowda
- Department of Plant Biochemistry, University of Agriculture and Horticulture Science, Shivamogga 577 204, India;
| | - Shankarappa Sridhara
- Center for Climate Resilient Agriculture, University of Agriculture and Horticulture Science, Shivamogga 577 204, India;
| | - Yeldur P. Venkatesh
- Department of Biochemistry and Nutrition, CSIR–Central Food Technological Research Institute (CFTRI), Mysuru 570 020, India;
| | - Bettadatunga T. Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga 577 203, India;
| | - Siddanakoppalu N. Pramod
- Food Allergy and Immunology Laboratory, Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere 577 007, India; (S.D.P.); (H.A.)
- Correspondence: (S.N.P.); (H.O.E.)
| | - Mona S. Almujaydil
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Shadi Shokralla
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ashraf M. M. Abdelbacki
- Applied Studies and Community Service College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.N.P.); (H.O.E.)
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| |
Collapse
|
2
|
The Fast Track for Intestinal Tumor Cell Differentiation and In Vitro Intestinal Models by Inorganic Topographic Surfaces. Pharmaceutics 2022; 14:pharmaceutics14010218. [PMID: 35057113 PMCID: PMC8781367 DOI: 10.3390/pharmaceutics14010218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Three-dimensional (3D) complex in vitro cell systems are well suited to providing meaningful and translatable results in drug screening, toxicity measurements, and biological studies. Reliable complex gastrointestinal in vitro models as a testbed for oral drug administration and toxicity are very valuable in achieving predictive results for clinical trials and reducing animal testing. However, producing these models is time-consuming due to the lengthy differentiation of HT29 or other cells into mucus-producing goblet cells or other intestinal cell lineages. In the present work, HT29 cells were grown on an inorganic topographic surface decorated with a periodic pattern of micrometre-sized amorphous SiO2 structures for up to 35 days. HT29 cells on topographic surfaces were compared to undifferentiated HT29 in glucose-containing medium on glass or culture dish and with HT29 cells differentiated for 30 days in the presence of methotrexate (HT29-MTX). The cells were stained with Alcian blue for mucus, antibodies for mucus 2 (goblet cells), villin (enterocytes), lysozyme (Paneth cells), and FITC-labeled lectins to identify different cells, glycomic profiles, and cell features. We observed that HT29 cells on topographic surfaces showed more similarities with the differentiated HT29-MTX than with undifferentiated HT29. They formed islands of cell clusters, as observed for HT29-MTX. Already after 2 days, the first mucus secretion was shown by Alcian blue stain and FITC-wheat germ agglutinin. After 4–6 days, mucus was observed on the cell surface and in the intercellular space. The cell layer was undulated, and in 3D reconstruction, the cells showed a clear polarisation with a strong actin signal to one membrane. The lectins and the antibody-staining confirmed the heterogeneous composition of differentiated HT29 cells on topographic surfaces after 6–8 days, or after 6–8 days following MTX differentiation (30 days).
Collapse
|
3
|
Nutrition and gut health: the impact of specific dietary components - it's not just five-a-day. Proc Nutr Soc 2020; 80:9-18. [PMID: 32003320 DOI: 10.1017/s0029665120000026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The health benefits of fruit, vegetables and dietary fibre have been promoted for many years. Much of the supporting evidence is circumstantial or even contradictory and mechanisms underlying health benefits of specific foods are poorly understood. Colorectal cancer shows marked geographical differences in incidence, probably linked with diet, and explanations for this require knowledge of the complex interactions between diet, microbiota and the gut epithelium. Dietary fibres can act as prebiotics, encouraging growth of saccharolytic bacteria, but other mechanisms are also important. Some but not all soluble fibres have a 'contrabiotic' effect inhibiting bacterial adherence to the epithelium. This is particularly a property of pectins (galacturonans) whereas dietary fructans, previously regarded as beneficial prebiotics, can have a proinflammatory effect mediated via toxic effects of high butyrate concentrations. This also suggests that ulcerative colitis could in part result from potentially toxic faecal butyrate concentrations in the presence of a damaged mucus layer. Epithelial adherence of lectins, either dietary lectins as found in legumes, or bacterial lectins such as the galactose-binding lectin expressed by colon cancer-associated Fusobacterium nucleatum, may also be important and could be inhibitable by specific dietary glycans. Conversely, emulsifiers in processed foods may increase bacterial translocation and alter the microbiota thus promoting inflammation or cancer. Focusing on one condition is of limited value although in developing public health messages and growing evidence for impacts of dietary components on all-cause mortality is gaining more attention. We are only just starting to understand the complex interactions between food, the microbiota and health.
Collapse
|
4
|
Belur S, Barkeer S, Swamy BM, Yu LG, Inamdar SR. Investigation of TF-binding lectins from dietary sources and SRL on proliferation and cell cycle progression in human colon HT29 and SW620 cells. Nutr Cancer 2019; 71:634-642. [PMID: 30672325 DOI: 10.1080/01635581.2018.1559940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
TF antigen binding lectins from dietary sources PNA, ACA, ABL, JAC, and SRL from Sclerotium rolfsii have been reported to induce diverse effects on cancer cell proliferation by different mechanisms. This study aimed to compare effects of these lectins on growth and cell cycle progression in colon cancer HT29 and SW620 cells. As reported SRL, ABL, and JAC inhibited while PNA and ACA increased cell proliferation. ABL and JAC treated HT29 cells showed increased cell population in G0/G1 phase. PNA, ACA, ABL, and JAC increased SW620 cell population in S and decreased in G2/M phase. In contrast, SRL and JAC increased hypodiploid population in both the cells. PNA and ACA reduced whereas SRL and ABL diminished cell cyclin D1 expression. SRL, PNA, and ACA also reduced cellular cyclin D3 level while SRL, ABL, and JAC reduced cyclin E levels. ABL decreased CDK5 levels while SRL and ACA completely abolished CDK5 expression. All the lectins completely abolished cyclin D2 expression. These results not only confirms growth regulatory effects of TF-binding lectins but also indicates different effects of these lectins on cell growth is associated with regulation on expression of cell cycle associated proteins in G1-S phase and on cell cycle progression.
Collapse
Affiliation(s)
- Shivakumar Belur
- a Department of Studies in Biochemistry , Karnatak University , Dharwad , India
| | - Srikanth Barkeer
- a Department of Studies in Biochemistry , Karnatak University , Dharwad , India
| | - Bale M Swamy
- a Department of Studies in Biochemistry , Karnatak University , Dharwad , India
| | - Lu-Gang Yu
- b Gastroenterology Unit , Department of Cellular and Molecular Physiology , Institute of Translational Medicine University of Liverpool , Liverpool , UK
| | - Shashikala R Inamdar
- a Department of Studies in Biochemistry , Karnatak University , Dharwad , India
- b Gastroenterology Unit , Department of Cellular and Molecular Physiology , Institute of Translational Medicine University of Liverpool , Liverpool , UK
| |
Collapse
|
5
|
Plant Lectins as Medical Tools against Digestive System Cancers. Int J Mol Sci 2017; 18:ijms18071403. [PMID: 28671623 PMCID: PMC5535896 DOI: 10.3390/ijms18071403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
Digestive system cancers-those of the esophagus, stomach, small intestine, colon-rectum, liver, and pancreas-are highly related to genetics and lifestyle. Most are considered highly mortal due to the frequency of late diagnosis, usually in advanced stages, caused by the absence of symptoms or masked by other pathologies. Different tools are being investigated in the search of a more precise diagnosis and treatment. Plant lectins have been studied because of their ability to recognize and bind to carbohydrates, exerting a variety of biological activities on animal cells, including anticancer activities. The present report integrates existing information on the activity of plant lectins on various types of digestive system cancers, and surveys the current state of research into their properties for diagnosis and selective treatment.
Collapse
|
6
|
Abstract
Optimizing the management of colorectal cancer (CRC) risk in IBD requires a fundamental understanding of the evolutionary process underpinning tumorigenesis. In IBD, clonal evolution begins long before the development of overt neoplasia, and is probably accelerated by the repeated cycles of epithelial wounding and repair that are characteristic of the condition. Here, we review the biological drivers of mutant clone selection in IBD with particular reference to the unique histological architecture of the intestinal epithelium coupled with the inflammatory microenvironment in IBD, and the unique mutation patterns seen in IBD-driven neoplasia when compared with sporadic adenomas and CRC. How these data can be leveraged as evolutionary-based biomarkers to predict cancer risk is discussed, as well as how the efficacy of CRC surveillance programmes and the management of dysplasia can be improved. From a research perspective, the longitudinal surveillance of patients with IBD provides an under-exploited opportunity to investigate the biology of the human gastrointestinal tract over space and time.
Collapse
Affiliation(s)
- Chang-Ho R Choi
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Ailsa L Hart
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
7
|
Zárate G, Sáez GD, Pérez Chaia A. Dairy propionibacteria prevent the proliferative effect of plant lectins on SW480 cells and protect the metabolic activity of the intestinal microbiota in vitro. Anaerobe 2017; 44:58-65. [PMID: 28161414 DOI: 10.1016/j.anaerobe.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/09/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Plant lectins are specific carbohydrate-binding proteins that are widespread in legumes such as beans and pulses, seeds, cereals, and many plants used as farm feeds. They are highly resistant to cooking and digestion, reaching the intestinal lumen and/or blood circulation with biological activity. Since many legume lectins trigger harmful local and systemic reactions after their binding to the mucosal surface, these molecules are generally considered anti-nutritive and/or toxic substances. In the gut, specific cell receptors and bacteria may interact with these dietary components, leading to changes in intestinal physiology. It has been proposed that probiotic microorganisms with suitable surface glycosidic moieties could bind to dietary lectins, favoring their elimination from the intestinal lumen or inhibiting their interaction with epithelial cells. In this work, we assessed in vitro the effects of two representative plant lectins, concanavalin A (Con A) and jacalin (AIL) on the proliferation of SW480 colonic adenocarcinoma cells and metabolic activity of colonic microbiota in the absence or presence of Propionibacterium acidipropionici CRL 1198. Both lectins induced proliferation of colonic cells in a dose-dependent manner, whereas ConA inhibited fermentative activities of colonic microbiota. Pre-incubation of propionibacteria with lectins prevented these effects, which could be ascribed to the binding of lectins by bacterial cells since P. acidipropionici CRL 1198 was unable to metabolize these proteins, and its adhesion to colonic cells was reduced after reaction with Con A or AIL. The results suggest that consumption of propionibacteria at the same time as lectins could reduce the incidence of lectin-induced alterations in the gut and may be a tool to protect intestinal physiology.
Collapse
Affiliation(s)
- Gabriela Zárate
- Centro de Referencias para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina.
| | - Gabriel D Sáez
- Centro de Referencias para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Adriana Pérez Chaia
- Centro de Referencias para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| |
Collapse
|
8
|
Immunohistochemical Studies on Galectin Expression in Colectomised Patients with Ulcerative Colitis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5989128. [PMID: 26885508 PMCID: PMC4739479 DOI: 10.1155/2016/5989128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/11/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Introduction. The aetiology and pathogenesis of ulcerative colitis (UC) are essentially unknown. Galectins are carbohydrate-binding lectins involved in a large number of physiological and pathophysiological processes. Little is known about the role of galectins in human UC. In this immunohistochemical exploratory study, both epithelial and inflammatory cell galectin expression were studied in patients with a thoroughly documented clinical history and were correlated with inflammatory activity. Material and Methods. Surgical whole intestinal wall colon specimens from UC patients (n = 22) and controls (n = 10) were studied. Clinical history, pharmacological treatment, and modified Mayo-score were recorded. Tissue inflammation was graded, and sections were stained with antibodies recognizing galectin-1, galectin-2, galectin-3, and galectin-4. Results. Galectin-1 was undetectable in normal and UC colonic epithelium, while galectin-2, galectin-3, and galectin-4 were strongly expressed. A tendency towards diminished epithelial expression with increased inflammatory grade for galectin-2, galectin-3, and galectin-4 was also found. In the inflammatory cells, a strong expression of galectin-2 and a weak expression of galectin-3 were seen. No clear-cut correlation between epithelial galectin expression and severity of the disease was found. Conclusion. Galectin expression in patients with UC seems to be more dependent on disease focality and individual variation than on degree of tissue inflammation.
Collapse
|
9
|
Gibold L, Garenaux E, Dalmasso G, Gallucci C, Cia D, Mottet-Auselo B, Faïs T, Darfeuille-Michaud A, Nguyen HTT, Barnich N, Bonnet R, Delmas J. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn's disease-associated Escherichia coli. Cell Microbiol 2015; 18:617-31. [PMID: 26499863 DOI: 10.1111/cmi.12539] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
The aetiology of Crohn's disease (CD) involves disorders in host genetic factors and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are receiving increased attention because in studies of mucosa-associated microbiota, they are more prevalent in CD patients than in healthy subjects. AIEC are associated both with ileal and colonic disease phenotypes. In this study, we reported a protease called Vat-AIEC from AIEC that favours the mucosa colonization. The deletion of the Vat-AIEC-encoding gene resulted in an adhesion-impaired phenotype in vitro and affected the colonization of bacteria in contact with intestinal epithelial cells in a murine intestinal loop model, and also their gut colonization in vivo. Furthermore, unlike LF82Δvat-AIEC, wild-type AIEC reference strain LF82 was able to penetrate a mucus column extensively and promoted the degradation of mucins and a decrease in mucus viscosity. Vat-AIEC transcription was stimulated by several chemical conditions found in the ileum environment. Finally, the screening of E. coli strains isolated from CD patients revealed a preferential vat-AIEC association with AIEC strains belonging to the B2 phylogroup. Overall, this study revealed a new component of AIEC virulence that might favour their implantation in the gut of CD patients.
Collapse
Affiliation(s)
- Lucie Gibold
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Estelle Garenaux
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Camille Gallucci
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France
| | - David Cia
- Equipe Biophysique Neurosensorielle, Faculté de Pharmacie, Université d'Auvergne, UMR INSERM 1107, Clermont-Ferrand, France
| | - Benoit Mottet-Auselo
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Richard Bonnet
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Julien Delmas
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| |
Collapse
|
10
|
Argüeso P, Mauris J, Uchino Y. Galectin-3 as a regulator of the epithelial junction: Implications to wound repair and cancer. Tissue Barriers 2015; 3:e1026505. [PMID: 26451339 DOI: 10.1080/21688370.2015.1026505] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022] Open
Abstract
Epithelial cells are closely connected to each other and to the extracellular matrix by a set of adhesive contacts that provide tissues with unique barrier properties and play a prominent role in cell morphology, tissue physiology, and cell signaling. This review highlights advances made in understanding the contributions of galectin-3, a carbohydrate-binding protein with affinity toward β-galactosides, as a modulator of epithelial junction assembly and function. The interactions of galectin-3 within adhesive structures are discussed in relation to wound healing and tumor progression.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear; Department of Ophthalmology ; Harvard Medical School; Boston, MA USA
| | - Jerome Mauris
- Schepens Eye Research Institute and Massachusetts Eye and Ear; Department of Ophthalmology ; Harvard Medical School; Boston, MA USA
| | - Yuichi Uchino
- Schepens Eye Research Institute and Massachusetts Eye and Ear; Department of Ophthalmology ; Harvard Medical School; Boston, MA USA
| |
Collapse
|
11
|
Xin M, Dong XW, Guo XL. Role of the interaction between galectin-3 and cell adhesion molecules in cancer metastasis. Biomed Pharmacother 2014; 69:179-85. [PMID: 25661355 DOI: 10.1016/j.biopha.2014.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
Galectin-3, a unique chimera-type member of the β-galactoside-binding soluble lectin family, is present in both normal and cancer cells and plays a crucial role in the regulation of cell adhesion. It is involved both in accelerating detachment of cells from primary tumor sites and promoting cancer cell adhesion and survival to anoikis in the blood stream. Cell adhesion molecules (CAMs) are membrane receptors that mediate cell-cell and cell-matrix interactions, and are essential for transducing intracellular signals responsible for adhesion, migration, invasion, angiogenesis, and organ-specific metastasis. This review will discuss the recent advances in our understanding the biological functions, mechanism and therapeutic implication of the interaction between galectin-3 and CAMs in cancer metastasis.
Collapse
Affiliation(s)
- Ming Xin
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xin-Wen Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
12
|
Peanut agglutinin appearance in the blood circulation after peanut ingestion mimics the action of endogenous galectin-3 to promote metastasis by interaction with cancer-associated MUC1. Carcinogenesis 2014; 35:2815-21. [DOI: 10.1093/carcin/bgu216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Bourgault JP, Trabbic KR, Shi M, Andreana PR. Synthesis of the tumor associative α-aminooxy disaccharide of the TF antigen and its conjugation to a polysaccharide immune stimulant. Org Biomol Chem 2014; 12:1699-702. [PMID: 24473737 DOI: 10.1039/c4ob00128a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The α-aminooxy derivative of the Thomsen-Friedenriech tumor associated carbohydrate antigen has been synthesized in 11 steps utilizing a D-GalN3 acceptor carrying a pre-installed α-N-hydroxysuccinimidyl moiety. The natural α linkage was prepared in high selectivity employing a suitably protected D-GalN3-thioglycoside donor with N-hydroxysuccinimide. With access to α-TF-ONH2, the preparation of the TF-PS A1 vaccine candidate ensued smoothly through oxime bond formation.
Collapse
Affiliation(s)
- Jean Paul Bourgault
- Department of Chemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft St, Toledo, OH 43606, USA.
| | | | | | | |
Collapse
|
14
|
Merga Y, Campbell BJ, Rhodes JM. Mucosal barrier, bacteria and inflammatory bowel disease: possibilities for therapy. Dig Dis 2014; 32:475-83. [PMID: 24969297 DOI: 10.1159/000358156] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mucosal barrier has three major components, the mucus layer, the epithelial glycocalyx and the surface epithelium itself, whose integrity largely depends on tight junction function. In health, there is relatively little direct interaction between the luminal microbiota and the epithelium - the continuous mucus layer in the colon keeps the surface epithelium out of contact with bacteria and the ileo-caecal valve ensures that the distal small intestine is relatively microbe free. Most interaction takes place at the Peyer's patches in the distal ileum and their smaller colonic equivalents, the lymphoid follicles. Peyer's patches are overlain by a 'dome' epithelium, 5% of whose cells are specialised M (microfold) epithelial cells, which act as the major portal of entry for bacteria. There are no goblet cells in the dome epithelium and M cells have a very sparse glycocalyx allowing easy microbial interaction. It is intriguing that the typical age range for the onset of Crohn's disease (CD) is similar to the age at which the number of Peyer's patches is greatest. Peyer's patches are commonly the sites of the initial lesions in CD and the 'anti-pancreatic' antibody associated with CD has been shown to have as its epitope the glycoprotein 2 that is the receptor for type-1 bacterial fimbrial protein (fimH) on M cells. There are many reasons to believe that the mucosal barrier is critically important in the pathogenesis of inflammatory bowel disease (IBD). These include (i) associations between both CD and ulcerative colitis (UC) with genes that are relevant to the mucosal barrier; (ii) increased intestinal permeability in unaffected relatives of CD patients; (iii) increased immune reactivity against bacterial antigens, and (iv) animal models in which altered mucosal barrier, e.g. denudation of the mucus layer associated with oral dextran sulphate in rodents, induces colitis. Whilst some IBD patients may have genetic factors leading to weakening of the mucosal barrier, it is likely that environmental factors may be even more important. Some may be subtle and indirect, e.g. the effects of stress on the mucosa barrier, whilst others may be more obvious, e.g. the effect of pathogen-related gastroenteritis, known often to act as trigger for IBD relapse. We have also been very interested in the potentially harmful effects of ingested detergents - either by contamination of cutlery by inadequate rinsing or via ingestion of processed foods containing permitted emulsifiers. In vitro and ex vivo studies show that even very small trace amounts of these surfactants can greatly increase bacterial translocation. Implications for therapy are not yet so obvious. We advise our IBD patients to avoid processed foods containing emulsifiers and to rinse their dishes well - whilst accepting that there is no direct evidence yet to support this. Therapies that aim to enhance the mucosal barrier have yet to come to market, but trials of enteric-delivered phosphatidylcholine in UC are promising. The faecal concentration of mucus-degrading bacterial enzymes (particularly proteases, sulphatases and sialidases) correlates with disease activity in UC, and these represent good targets for therapy.
Collapse
Affiliation(s)
- Yvette Merga
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
15
|
Shang C, Van Damme EJM. Comparative analysis of carbohydrate binding properties of Sambucus nigra lectins and ribosome-inactivating proteins. Glycoconj J 2014; 31:345-54. [PMID: 24853865 DOI: 10.1007/s10719-014-9527-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
In the past three decades a lot of research has been done on the extended family of carbohydrate-binding proteins from Sambucus nigra, including several so-called type 2 RIPs as well as hololectins. Although all these proteins have been studied for their carbohydrate-binding properties using hapten inhibition assays, detailed carbohydrate specificity studies have only been performed for a few Sambucus proteins. In particular SNA-I, has been studied extensively. Because of its unique binding characteristics this lectin was developed as an important tool in glycoconjugate research to detect sialic acid containing glycoconjugates. At present much less information is available with respect to the detailed carbohydrate binding specificity of other S. nigra lectins and RIPs, and as a consequence their applications remain limited. In this paper we report a comparative analysis of several lectins from S. nigra using the glycan microarray technology. Ultimately a better understanding of the ligands for each lectin can contribute to new/more applications for these lectins in glycoconjugate research. Furthermore, the data from glycan microarray analyses combined with the previously obtained sequence information can help to explain how evolution within a single lectin family eventually yielded a set of carbohydrate-binding proteins with a very broad specificity range.
Collapse
Affiliation(s)
- Chenjing Shang
- Department of Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | |
Collapse
|
16
|
Patnode ML, Cheng CW, Chou CC, Singer MS, Elin MS, Uchimura K, Crocker PR, Khoo KH, Rosen SD. Galactose 6-O-sulfotransferases are not required for the generation of Siglec-F ligands in leukocytes or lung tissue. J Biol Chem 2013; 288:26533-45. [PMID: 23880769 PMCID: PMC3772201 DOI: 10.1074/jbc.m113.485409] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/21/2013] [Indexed: 12/17/2022] Open
Abstract
Eosinophil accumulation is a characteristic feature of the immune response to parasitic worms and allergens. The cell surface carbohydrate-binding receptor Siglec-F is highly expressed on eosinophils and negatively regulates their accumulation during inflammation. Although endogenous ligands for Siglec-F have yet to be biochemically defined, binding studies using glycan arrays have implicated galactose 6-O-sulfate (Gal6S) as a partial recognition determinant for this receptor. Only two sulfotransferases are known to generate Gal6S, namely keratan sulfate galactose 6-O-sulfotransferase (KSGal6ST) and chondroitin 6-O-sulfotransferase 1 (C6ST-1). Here we use mice deficient in both KSGal6ST and C6ST-1 to determine whether these sulfotransferases are required for the generation of endogenous Siglec-F ligands. First, we characterize ligand expression on leukocyte populations and find that ligands are predominantly expressed on cell types also expressing Siglec-F, namely eosinophils, neutrophils, and alveolar macrophages. We also detect Siglec-F ligand activity in bronchoalveolar lavage fluid fractions containing polymeric secreted mucins, including MUC5B. Consistent with these observations, ligands in the lung increase dramatically during infection with the parasitic nematode, Nippostrongylus brasiliensis, which is known to induce eosinophil accumulation and mucus production. Surprisingly, Gal6S is undetectable in sialylated glycans from eosinophils and BAL fluid analyzed by mass spectrometry. Furthermore, none of the ligands we describe are diminished in mice lacking KSGal6ST and C6ST-1, indicating that neither of the known galactose 6-O-sulfotransferases is required for ligand synthesis. These results establish that ligands for Siglec-F are present on several cell types that are relevant during allergic lung inflammation and argue against the widely held view that Gal6S is critical for glycan recognition by this receptor.
Collapse
Affiliation(s)
- Michael L. Patnode
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| | - Chu-Wen Cheng
- the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Mark S. Singer
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| | - Matilda S. Elin
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| | - Kenji Uchimura
- the Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan
| | - Paul R. Crocker
- the Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom, and
| | - Kay-Hooi Khoo
- the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Steven D. Rosen
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| |
Collapse
|
17
|
Fc-epsilon-RI, the high affinity IgE-receptor, is robustly expressed in the upper gastrointestinal tract and modulated by mucosal inflammation. PLoS One 2012; 7:e42066. [PMID: 22848703 PMCID: PMC3407106 DOI: 10.1371/journal.pone.0042066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 07/02/2012] [Indexed: 12/22/2022] Open
Abstract
Background The role of the high affinity IgE receptor, FcεRI, in IgE-mediated immune responses of the gastrointestinal (GI) mucosa is poorly understood. Currently, a detailed characterization of FcεRI expression throughout the human gut is lacking. The aim of this study was to define the expression pattern of FcεRI in the GI tract. Methods/Principal Findings We compared FcεRI expression in children with gastritis/esophagitis (n = 10), celiac disease (n = 10), inflammatory bowel disease (IBD) (n = 9), and normal mucosa (n = 5). The α–subunit of FcεRI (FcεRIα), detected by immunohistochemistry, was found on cells infiltrating the mucosa of the esophagus, the stomach, and the duodenum, but was rarely detected in more distal sections of the GI tract. Accordingly, quantitative RT-PCR analysis on esophagus, stomach, duodenum, colon, and rectum biopsies revealed that FcεRIα and -β expression levels decreased towards the distal intestine. mRNA transcripts of the common Fc-receptor-γ chain were present in the entire GI mucosa. Double-immunofluorescence staining of esophageal specimens confirmed that FcεRIα was expressed on intraepithelial mast cells and Langerhans cells. The mRNA expression levels of the α, β, and γ subunits of FcεRI did not correlate with total serum IgE but were associated with mucosal inflammation. Conclusion/Significance Our data define the upper GI tract as the main site for IgE-mediated immune activation via FcεRI. Tissue mRNA levels of FcεRIα are regulated by inflammatory conditions rather than serum IgE, indicating that FcεRI might also play a role in pathologies other than allergy.
Collapse
|
18
|
Jonckheere N, Skrypek N, Merlin J, Dessein AF, Dumont P, Leteurtre E, Harris A, Desseyn JL, Susini C, Frénois F, Van Seuningen I. The mucin MUC4 and its membrane partner ErbB2 regulate biological properties of human CAPAN-2 pancreatic cancer cells via different signalling pathways. PLoS One 2012; 7:e32232. [PMID: 22393391 PMCID: PMC3290552 DOI: 10.1371/journal.pone.0032232] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/24/2012] [Indexed: 01/19/2023] Open
Abstract
The mucin MUC4 and its membrane partner the ErbB2 oncogenic receptor are potential interacting partners in human pancreatic tumour development. However, the way they function is still largely unknown. In this work, we aimed to identify the cellular mechanisms and the intracellular signalling pathways under the control of both ErbB2 and MUC4 in a human pancreatic adenocarcinomatous cell line. Using co-immunoprecipitation and GST pull-down, we show that MUC4 and ErbB2 interact in the human pancreatic adenocarcinomatous cell line CAPAN-2 via the EGF domains of MUC4. Stable cell clones were generated in which either MUC4 or ErbB2 were knocked down (KD) by a shRNA approach. Biological properties of these cells were then studied in vitro and in vivo. Our results show that ErbB2-KD cells are more apoptotic and less proliferative (decreased cyclin D1 and increased p27kip1 expression) while migration and invasive properties were not altered. MUC4-KD clones were less proliferative with decreased cyclin D1 expression, G1 cell cycle arrest and altered ErbB2/ErbB3 expression. Their migration properties were reduced whereas invasive properties were increased. Importantly, inhibition of ErbB2 and MUC4 expression did not impair the same signalling pathways (inhibition of MUC4 expression affected the JNK pathway whereas that of ErbB2 altered the MAPK pathway). Finally, ErbB2-KD and MUC4-KD cells showed impaired tumour growth in vivo. Our results show that ErbB2 and MUC4, which interact physically, activate different intracellular signalling pathways to regulate biological properties of CAPAN-2 pancreatic cancer cells.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 Mucins, epithelial differentiation and carcinogenesis, Lille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ielasi FS, Decanniere K, Willaert RG. The epithelial adhesin 1 (Epa1p) from the human-pathogenic yeast Candida glabrata: structural and functional study of the carbohydrate-binding domain. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:210-7. [PMID: 22349222 DOI: 10.1107/s0907444911054898] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/20/2011] [Indexed: 01/18/2023]
Abstract
The yeast Candida glabrata represents the second major cause of clinical candidiasis cases in the world. The ability of this opportunistic pathogen to adhere to human epithelial and endothelial cells relies on the Epa adhesins, a large set of cell-wall proteins whose N-terminal domains are endowed with a calcium-dependent lectin activity. This feature allows the yeast cells to adhere to host cells by establishing multiple interactions with the glycans expressed on their cell membrane. The ligand-binding domain of the Epa1p adhesin, which is one of the best characterized in the Epa family, was expressed in Escherichia coli, purified and crystallized in complex with lactose. Sequence identity with the domain of another yeast adhesin, the Flo5p flocculin from Saccharomyces cerevisiae, was exploited for molecular replacement and the structure of the domain was solved at a resolution of 1.65 Å. The protein is a member of the PA14 superfamily. It has a β-sandwich core and a DcisD calcium-binding motif, which is also present in the binding site of Flo5p. However, Epa1p differs from this homologue by the lack of a Flo5-like subdomain and by a significantly decreased accessibility of the solvent to the binding site, in which a calcium ion still plays an active role in the interactions with carbohydrates. This structural insight, together with fluorescence-assay data, confirms and explains the higher specificity of Epa1p adhesin for glycan molecules compared with the S. cerevisiae flocculins.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Research Group Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | |
Collapse
|
20
|
Bellapadrona G, Tesler AB, Grünstein D, Hossain LH, Kikkeri R, Seeberger PH, Vaskevich A, Rubinstein I. Optimization of Localized Surface Plasmon Resonance Transducers for Studying Carbohydrate–Protein Interactions. Anal Chem 2011; 84:232-40. [DOI: 10.1021/ac202363t] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giuliano Bellapadrona
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander B. Tesler
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Grünstein
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biology, 14195 Berlin, Germany
| | - Laila H. Hossain
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
| | - Raghavendra Kikkeri
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biology, 14195 Berlin, Germany
| | - Alexander Vaskevich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Israel Rubinstein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
21
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
22
|
Myenteric denervation downregulates galectin-1 and -3 expression in gastric carcinogenesis. Dig Dis Sci 2011; 56:1637-44. [PMID: 21188523 DOI: 10.1007/s10620-010-1516-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/22/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND This study evaluated the galectin-1 and -3 expression during N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis in denervated rat stomachs using benzalkonium chloride. METHOD Four experimental situations were evaluated: nondenervated and denervated stomachs without lesions and nondenervated and denervated stomachs with lesions. Sections of the pyloric region were stained with toluidine blue and incubated with mouse monoclonal anti-Gal-1 and rabbit polyclonal anti-Gal-3 for histopathological and immunohistochemical analysis, respectively. RESULT MNNG caused the development of benign and malignant epithelial lesions, which were more pronounced in nondenervated stomachs with lesions and accompanied by inflammatory cell-enriched stroma. By immunostaining, the epithelial cells, blood vessels, muscle layer, and myenteric plexus were Gal-1 and -3 positive. Gal-3 was also detected in the gastric crypts, mucus secretion, and fibroblasts of pyloric fragments. Development of lesions in denervated stomachs was associated with a significant decrease in Gal-1 and -3 expression in epithelial cells, mast cells, and neutrophil cytoplasm, compared with that of nondenervated stomach lesions (P < 0.01; P < 0.001; P < 0.001, respectively). CONCLUSION These results demonstrate that myenteric denervation downregulates endogenous Gal-1 and -3 expression, which might inhibit tumor development in this experimental model.
Collapse
|
23
|
Bajaj M, Hinge A, Limaye LS, Gupta RK, Surolia A, Kale VP. Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism. Glycobiology 2010; 21:521-9. [DOI: 10.1093/glycob/cwq194] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
24
|
Polymorphism and distribution of putative cell-surface adhesin-encoding ORFs among human fecal isolates of Bifidobacterium longum subsp. longum. Antonie van Leeuwenhoek 2010; 99:457-71. [PMID: 20862609 DOI: 10.1007/s10482-010-9506-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/03/2010] [Indexed: 12/21/2022]
Abstract
The polymorphism of ORFs encoding putative cell-surface adhesins was investigated in Bifidobacterium longum subsp. longum. Firstly, we performed a PCR assay targeting 15 ORFs encoding putative adhesion proteins, which included 8 ORFs with a sortase targeting LPXTG motif, in 42 strains of different pulsotypes isolated from fecal samples from 12 human individuals. We found a variability in the presence of an ORF, BL0675, which encodes a putative fimbrial subunit protein. We sequenced ORFs corresponding to BL0675 in the 42 strains and adjacent ORFs corresponding to BL0674 and BL0676. The results indicated that ORFs corresponding to BL0675 were highly polymorphic with five variant types (i.e. A-, B-, C-, D-, and E-types). Meanwhile, BL0674 and BL0676, which encode an additional putative fimbrial subunit protein and a fimbrial-associated sortase-like protein, were highly conserved. Subsequent quantitative polymerase chain reaction (qPCR) assays targeting the variant types in 89 human fecal samples revealed that A-type was the most commonly distributed (74.2%), followed by B-type (59.6%), D-type (31.5%), E-type (32.6%) and C-type (5.6% prevalence). Since BL0675 is considered to be a fimbrial protein with glycoprotein-binding ability, the proteins encoded by the five variant types of BL0675 may have specific binding properties to various carbohydrate structures expressed on the human intestinal wall, thereby allowing B. longum to colonize the intestine in a host-specific manner.
Collapse
|
25
|
Christiansen MN, Kolarich D, Nevalainen H, Packer NH, Jensen PH. Challenges of determining O-glycopeptide heterogeneity: a fungal glucanase model system. Anal Chem 2010; 82:3500-9. [PMID: 20387826 DOI: 10.1021/ac901717n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
O-Linked glycosylation often occurs in mucin-type domains that are heavily and heterogeneously glycosylated and are challenging to analyze. The analysis of these domains is often overlooked because of these difficulties, but changes in mucinlike domain glycosylation are implicated in many diseases. Here we have explored several strategies to determine the heterogeneity of mucinlike O-glycosylated domains. Four glucanases secreted in large quantities from Trichoderma reesei, all containing heavily O-glycosylated mucinlike linker regions, were used as a model system. The strategies involved monosaccharide compositional analysis and identification of the released glycans by HPAEC-PAD and carbon-LC ESI-MS/MS. Glycosylated peptides were generated by different protease digestions (trypsin, papain, Asp-N, PreTAQ) and enriched by HILIC microcolumns, to determine the glycopeptide heterogeneity and glycosylation sites. The complex O-glycan heterogeneity on the intact glycoproteins and the enriched mucin-type domains was determined by MALDI-MS and ESI-MS, but the dense O-glycosylation in the mucin-type domains conferred high resistance to protease cleavage. ETD-MS/MS of the glycopeptide-enriched protease digests was unsuccessful for the de novo assignment of O-glycosylation at individual sites within the mucin-type domains but allowed several previously unknown O-linked sites outside the defined linker region to be found on two of the four glucanases. The protease digests produced many glycopeptides as determined by CID-MS/MS, but ETD fragmentation of these resulted in only a few interpretable spectra, suggesting that the use of ETD for determining the heterogeneous O-glycosylation at specific sites in regions of multiple occupancy is still in its infancy.
Collapse
Affiliation(s)
- Maja N Christiansen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Bimolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW, 2109, Australia
| | | | | | | | | |
Collapse
|
26
|
Chen LS, Hutter CM, Potter JD, Liu Y, Prentice RL, Peters U, Hsu L. Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. Am J Hum Genet 2010; 86:860-71. [PMID: 20560206 DOI: 10.1016/j.ajhg.2010.04.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified susceptibility loci from marginal association analysis of SNPs. Valuable insight into genetic variation underlying complex diseases will likely be gained by considering functionally related sets of genes simultaneously. One approach is to further develop gene set enrichment analysis methods, which are initiated in gene expression studies, to account for the distinctive features of GWAS data. These features include the large number of SNPs per gene, the modest and sparse SNP associations, and the additional information provided by linkage disequilibrium (LD) patterns within genes. We propose a "gene set ridge regression in association studies (GRASS)" algorithm. GRASS summarizes the genetic structure for each gene as eigenSNPs and uses a novel form of regularized regression technique, termed group ridge regression, to select representative eigenSNPs for each gene and assess their joint association with disease risk. Compared with existing methods, the proposed algorithm greatly reduces the high dimensionality of GWAS data while still accounting for multiple hits and/or LD in the same gene. We show by simulation that this algorithm performs well in situations in which there are a large number of predictors compared to sample size. We applied the GRASS algorithm to a genome-wide association study of colon cancer and identified nicotinate and nicotinamide metabolism and transforming growth factor beta signaling as the top two significantly enriched pathways. Elucidating the role of variation in these pathways may enhance our understanding of colon cancer etiology.
Collapse
|
27
|
Abstract
It is increasingly being acknowledged that complex carbohydrates mediate a huge variety of cellular interactions, permitting and regulating recognition and signalling events. This is achieved by the enormous range and complexity of branched structures in glycoconjugates and the ability of carbohydrate-binding proteins (lectins) to decipher this 'glycocode'. Approx. 120 participants attended the 23rd International Lectin Meeting (Interlec-23) held at the Universities of Edinburgh (2 days) and Stirling (4 days) between 11 and 16 July 2008. These 'Interlecs' are truly international multi-disciplinary symposia, providing opportunities for scientists from different backgrounds, but with a common interest in some aspect of protein-carbohydrate interactions, to present their work in an informal and stimulating atmosphere. A major aim is always to induce cross-fertilization of ideas and concepts, and Interlec-23 was intended to have some bias towards lectins (galectins, collectins, selectins, siglecs etc.) and their ligands in human health and disease. Delegates from over 30 countries attended this meeting which was divided into seven oral sessions opened by a keynote speaker. This issue of Biochemical Society Transactions contains papers based on the keynote lectures and is therefore representative of the main themes of Interlec-23.
Collapse
|