1
|
Srivastava K, Pickard A, Craig SG, Quinn GP, Lambe SM, James JA, McDade SS, McCance DJ. ΔNp63γ/SRC/Slug Signaling Axis Promotes Epithelial-to-Mesenchymal Transition in Squamous Cancers. Clin Cancer Res 2018; 24:3917-3927. [PMID: 29739791 PMCID: PMC6098695 DOI: 10.1158/1078-0432.ccr-17-3775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Purpose: To investigate the regulation of epithelial-to-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC) and its importance in tumor invasion.Experimental Design: We use a three-dimensional invasive organotypic raft culture model of human foreskin keratinocytes expressing the E6/E7 genes of the human papilloma virus-16, coupled with bioinformatic and IHC analysis of patient samples to investigate the role played by EMT in invasion and identify effectors and upstream regulatory pathways.Results: We identify SNAI2 (Slug) as a critical effector of EMT-activated downstream of TP63 overexpression in HNSCC. Splice-form-specific depletion and rescue experiments further identify the ΔNp63γ isoform as both necessary and sufficient to activate the SRC signaling axis and SNAI2-mediated EMT and invasion. Moreover, elevated SRC levels are associated with poor outcome in patients with HNSCC in The Cancer Genome Atlas dataset. Importantly, the effects on EMT and invasions and SNAI2 expression can be reversed by genetic or pharmacologic inhibition of SRC.Conclusions: Overexpression of ΔNp63γ modulates cell invasion by inducing targetable SRC-Slug-evoked EMT in HNSCC, which can be reversed by inhibitors of the SRC signaling. Clin Cancer Res; 24(16); 3917-27. ©2018 AACR.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | - Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
- The Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Stephanie G Craig
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Gerard P Quinn
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Shauna M Lambe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Jacqueline A James
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | - Dennis J McCance
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
2
|
Duteil D, Tourrette Y, Eberlin A, Willmann D, Patel D, Friedrichs N, Müller JM, Schüle R. The histone acetyltransferase inhibitor Nir regulates epidermis development. Development 2018; 145:dev.158543. [PMID: 29490983 DOI: 10.1242/dev.158543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/11/2018] [Indexed: 11/20/2022]
Abstract
In addition to its function as an inhibitor of histone acetyltransferases, Nir (Noc2l) binds to p53 and TAp63 to regulate their activity. Here, we show that epidermis-specific ablation of Nir impairs epidermal stratification and barrier function, resulting in perinatal lethality. Nir-deficient epidermis lacks appendages and remains single layered during embryogenesis. Cell proliferation is inhibited, whereas apoptosis and p53 acetylation are increased, indicating that Nir is controlling cell proliferation by limiting p53 acetylation. Transcriptome analysis revealed that Nir regulates the expression of essential factors in epidermis development, such as keratins, integrins and laminins. Furthermore, Nir binds to and controls the expression of p63 and limits H3K18ac at the p63 promoter. Corroborating the stratification defects, asymmetric cell divisions were virtually absent in Nir-deficient mice, suggesting that Nir is required for correct mitotic spindle orientation. In summary, our data define Nir as a key regulator of skin development.
Collapse
Affiliation(s)
- Delphine Duteil
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Yves Tourrette
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Adrien Eberlin
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Dominica Willmann
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Dharmeshkumar Patel
- Pediatric Blood and Marrow Transplant, University of Minnesota, 2-191 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Nicolaus Friedrichs
- Institute of Pathology, University of Cologne Medical School, 50937 Cologne, Germany
| | - Judith M Müller
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany .,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, 79106 Freiburg, Germany.,Deutsche Konsortium für Translationale Krebsforschung (DKTK), Standort, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Erickson JR, Echeverri K. Learning from regeneration research organisms: The circuitous road to scar free wound healing. Dev Biol 2018; 433:144-154. [PMID: 29179946 PMCID: PMC5914521 DOI: 10.1016/j.ydbio.2017.09.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans.
Collapse
Affiliation(s)
- Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
4
|
McDade SS, Patel D, Moran M, Campbell J, Fenwick K, Kozarewa I, Orr NJ, Lord CJ, Ashworth AA, McCance DJ. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress. Nucleic Acids Res 2014; 42:6270-85. [PMID: 24823795 PMCID: PMC4041465 DOI: 10.1093/nar/gku299] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/18/2014] [Accepted: 03/29/2014] [Indexed: 01/07/2023] Open
Abstract
In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.
Collapse
Affiliation(s)
- Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Daksha Patel
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Michael Moran
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - James Campbell
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Kerry Fenwick
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Iwanka Kozarewa
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Nicholas J Orr
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Alan A Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Dennis J McCance
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
5
|
Lu D, Han C, Wu T. 15-hydroxyprostaglandin dehydrogenase-derived 15-keto-prostaglandin E2 inhibits cholangiocarcinoma cell growth through interaction with peroxisome proliferator-activated receptor-γ, SMAD2/3, and TAP63 proteins. J Biol Chem 2013; 288:19484-502. [PMID: 23687300 DOI: 10.1074/jbc.m113.453886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a potent lipid mediator that plays a key role in inflammation and carcinogenesis. NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of PGE2, which leads to PGE2 biotransformation. In this study, we showed that the 15-PGDH-derived 15-keto-PGE2 is an endogenous peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand that causes PPAR-γ dissociation from Smad2/3, allowing Smad2/3 association with the TGF-β receptor I and Smad anchor for receptor activation and subsequent Smad2/3 phosphorylation and transcription activation in human cholangiocarcinoma cells. The 15-PGDH/15-keto-PGE2-induced Smad2/3 phosphorylation resulted in the formation of the pSmad2/3-TAP63-p53 ternary complex and their binding to the TAP63 promoter, inducing TAP63 autotranscription. The role of TAP63 in 15-PGDH/15-keto-PGE2-induced inhibition of tumor growth was further supported by the observation that knockdown of TAP63 prevented 15-PGDH-induced inhibition of tumor cell proliferation, colony formation, and migration. These findings disclose a novel 15-PGDH-mediated 15-keto-PGE2 signaling cascade that interacts with PPAR-γ, Smad2/3, and TAP63.
Collapse
Affiliation(s)
- Dongdong Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
6
|
McDade SS, Henry AE, Pivato GP, Kozarewa I, Mitsopoulos C, Fenwick K, Assiotis I, Hakas J, Zvelebil M, Orr N, Lord CJ, Patel D, Ashworth A, McCance DJ. Genome-wide analysis of p63 binding sites identifies AP-2 factors as co-regulators of epidermal differentiation. Nucleic Acids Res 2012; 40:7190-206. [PMID: 22573176 PMCID: PMC3424553 DOI: 10.1093/nar/gks389] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 01/15/2023] Open
Abstract
The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.
Collapse
Affiliation(s)
- Simon S. McDade
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Alexandra E. Henry
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Geraldine P. Pivato
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Iwanka Kozarewa
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Constantinos Mitsopoulos
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Kerry Fenwick
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Ioannis Assiotis
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Jarle Hakas
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Marketa Zvelebil
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Nicholas Orr
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Christopher J. Lord
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Daksha Patel
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Alan Ashworth
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Dennis J. McCance
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| |
Collapse
|
7
|
A transposon-based analysis of gene mutations related to skin cancer development. J Invest Dermatol 2012; 133:239-48. [PMID: 22832494 DOI: 10.1038/jid.2012.245] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is by far the most frequent type of cancer in humans. NMSC includes several types of malignancies with different clinical outcomes, the most frequent being basal and squamous cell carcinomas. We have used the Sleeping Beauty transposon/transposase system to identify somatic mutations associated with NMSC. Transgenic mice bearing multiple copies of a mutagenic Sleeping Beauty transposon T2Onc2 and expressing the SB11 transposase under the transcriptional control of regulatory elements from the keratin K5 promoter were treated with TPA, either in wild-type or Ha-ras mutated backgrounds. After several weeks of treatment, mice with transposition developed more malignant tumors with decreased latency compared with control mice. Transposon/transposase animals also developed basal cell carcinomas. Genetic analysis of the transposon integration sites in the tumors identified several genes recurrently mutated in different tumor samples, which may represent novel candidate cancer genes. We observed alterations in the expression levels of some of these genes in human tumors. Our results show that inactivating mutations in Notch1 and Nsd1, among others, may have an important role in skin carcinogenesis.
Collapse
|
8
|
McDade SS, Patel D, McCance DJ. p63 maintains keratinocyte proliferative capacity through regulation of Skp2-p130 levels. J Cell Sci 2011; 124:1635-43. [PMID: 21511729 DOI: 10.1242/jcs.084723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p63 is a master regulator of proliferation and differentiation in stratifying epithelia, and its expression is frequently altered in carcinogenesis. However, its role in maintaining proliferative capacity remains unclear. Here, we demonstrate that hypoproliferation and loss of differentiation in organotypic raft cultures of primary neonatal human foreskin keratinocytes (HFKs) depleted of the α and β isoforms of p63 result from p53-p21-mediated accumulation of retinoblastoma (Rb) family member p130. Hypoproliferation in p63-depleted HFKs can be rescued by depletion of p53, p21(CIP1) or p130. Furthermore, we identified the gene encoding S-phase kinase-associated protein 2 (Skp2), the recognition component of the SCF(Skp2) E3 ubiquitin ligase, as a novel target of p63, potentially influencing p130 levels. Expression of Skp2 is maintained by p63 binding to a site in intron 2 and mRNA levels are downregulated in p63-depleted cells. Hypoproliferation in p63-depleted cells can be restored by re-expression of Skp2. Taken together, these results indicate that p63 plays a multifaceted role in maintaining proliferation in the mature regenerating epidermis, in addition to being required for differentiation.
Collapse
Affiliation(s)
- Simon S McDade
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | |
Collapse
|
9
|
LeBoeuf M, Terrell A, Trivedi S, Sinha S, Epstein JA, Olson EN, Morrisey EE, Millar SE. Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev Cell 2010; 19:807-18. [PMID: 21093383 PMCID: PMC3003338 DOI: 10.1016/j.devcel.2010.10.015] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022]
Abstract
Epidermal and hair follicle development from surface ectodermal progenitor cells requires coordinated changes in gene expression. Histone deacetylases alter gene expression programs through modification of chromatin and transcription factors. We find that deletion of ectodermal Hdac1 and Hdac2 results in dramatic failure of hair follicle specification and epidermal proliferation and stratification, phenocopying loss of the key ectodermal transcription factor p63. Although expression of p63 and its positively regulated basal cell targets is maintained in Hdac1/2-deficient ectoderm, targets of p63-mediated repression, including p21, 14-3-3σ, and p16/INK4a, are ectopically expressed, and HDACs bind and are active at their promoter regions in normal undifferentiated keratinocytes. Mutant embryos display increased levels of acetylated p53, which opposes p63 functions, and p53 is required for HDAC inhibitor-mediated p21 expression in keratinocytes. Our data identify critical requirements for HDAC1/2 in epidermal development and indicate that HDAC1/2 directly mediate repressive functions of p63 and suppress p53 activity.
Collapse
Affiliation(s)
- Matthew LeBoeuf
- Department of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
- Department of Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Anne Terrell
- Department of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Sohum Trivedi
- Department of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Center for Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Eric N. Olson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward E. Morrisey
- Cardiology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Sarah E. Millar
- Department of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| |
Collapse
|
10
|
Lindsay J, McDade SS, Pickard A, McCloskey KD, McCance DJ. Role of DeltaNp63gamma in epithelial to mesenchymal transition. J Biol Chem 2010; 286:3915-24. [PMID: 21127042 DOI: 10.1074/jbc.m110.162511] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although members of the p63 family of transcription factors are known for their role in the development and differentiation of epithelial surfaces, their function in cancer is less clear. Here, we show that depletion of the ΔNp63α and β isoforms, leaving only ΔNp63γ, results in epithelial to mesenchymal transition (EMT) in the normal breast cell line MCF10A. EMT can be rescued by the expression of the ΔNp63α isoform. We also show that ΔNp63γ expressed in a background where all the other ΔNp63 are knocked down causes EMT with an increase in TGFβ-1, -2, and -3 and downstream effectors Smads2/3/4. In addition, a p63 binding site in intron 1 of TGFβ was identified. Inhibition of the TGFβ response with a specific inhibitor results in reversion of EMT in ΔNp63α- and β-depleted cells. In summary, we show that p63 is involved in inhibiting EMT and reduction of certain p63 isoforms may be important in the development of epithelial cancers.
Collapse
Affiliation(s)
- Jaime Lindsay
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | | | | | | | | |
Collapse
|