1
|
Peers JA, Nash WJ, Haerty W. Gene pseudogenization in fertility-associated genes in cheetah (Acinonyx jubatus), a species with long-term low effective population size. Evolution 2025; 79:574-585. [PMID: 39821281 DOI: 10.1093/evolut/qpaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
We are witnessing an ongoing global biodiversity crisis, and an increasing number of mammalian populations are at risk of decline. Species that have survived severe historic bottlenecks, such as the cheetah (Acinonyx jubatus) exhibit symptoms of inbreeding depression including reproductive and developmental defects. Although it has long been suggested that such defects stem from an accumulation of weakly deleterious mutations, the implications of such mutations leading to pseudogenization has not been assessed. Here, we use comparative analysis of eight felid genomes to better understand the impacts of deleterious mutations in the cheetah. We find novel pseudogenization events specific to the cheetah. Through careful curation, we identify 65 genes with previously unreported premature termination codons (PTCs) that likely affect gene function. With the addition of population data (n = 6), we find 22 of these PTCs in at least one resequenced individual, four of which (DEFB116, ARL13A, CFAP119, and NT5DC4) are also found in a more recent reference genome. Mutations within three of these genes are linked with sterility, including azoospermia, which is common in cheetahs. Our results highlight the power of comparative genomic approaches for the discovery of novel causative variants in declining species.
Collapse
Affiliation(s)
- Jessica A Peers
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Will J Nash
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
2
|
Kafeel S, Bizenjo N, Shivji SS, Keran A, Hashim Z, Nawab SN. DNA Repair Enzyme XRCC4 30 bp Indel Intron 3 Locus Significant Association with Predisposition of Cataract in Senility. Appl Biochem Biotechnol 2024; 196:99-112. [PMID: 37099126 DOI: 10.1007/s12010-023-04533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Impaired DNA damage repair cascade can disrupt the lens transparency due to aging-associated oxidative stress. The aim of study was to assess the association of 30 bp indel mutation (rs28360071) in XRCC4 gene with susceptibility of cataract in senility. The study followed case-control design with a total of n = 200 participants and divided equally into senile cataract patients and control groups. Conventional polymerase chain reaction (PCR) was performed for the genotyping of XRCC4 (rs28360071) mutation. In statistical measures, SPSS ® 20.0 software, MedCal©, and SNPStats© tools were used for data analysis. Distribution of homozygous D/D and mutant D allele was higher in senile cataract patients in comparison to controls. XRCC4 (rs28360071) mutation was significantly associated with predisposition senile cataract (χ2 = 13.96, adjusted OR = 2.29, 95% CI: 1.5-3.4, p < 0.001). Codominant model was suggested to be a best fit model. Mutant D/D genotype described significant association with LDL (adjusted OR = 1.67, 95% CI: 0.14-1.45, p = 0.03),and HDL (adjusted OR = 1.66, 95% CI: 0.92-2.31, p = 0.05) cholesterol with higher risk of senile cataract. XRCC4 (rs28360071) mutation may serve as a potential biomarker for the prognosis of cataract in senility. It can used to measure interruption in NHEJ repair pathway to indicate DNA damage in lens epithelial cells which could accelerate cataractogenesis with aging.
Collapse
Affiliation(s)
- Sanober Kafeel
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan.
| | - Neelam Bizenjo
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan
| | - Shams Salman Shivji
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan
| | - Asifa Keran
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan
| | - Zehra Hashim
- Dr. Zafar H. Zaidi Center for Proteomics (ZCP), University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Nuzhat Nawab
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Main University Rd, Karachi, 75270, Pakistan
| |
Collapse
|
3
|
Welker JM, Serobyan V, Zaker Esfahani E, Stainier DYR. Partial sequence identity in a 25-nucleotide long element is sufficient for transcriptional adaptation in the Caenorhabditis elegans act-5/act-3 model. PLoS Genet 2023; 19:e1010806. [PMID: 37384903 DOI: 10.1371/journal.pgen.1010806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Genetic robustness can be achieved via several mechanisms including transcriptional adaptation (TA), a sequence similarity-driven process whereby mutant mRNA degradation products modulate, directly or indirectly, the expression of so-called adapting genes. To identify the sequences required for this process, we utilized a transgenic approach in Caenorhabditis elegans, combining an overexpression construct for a mutant gene (act-5) and a fluorescent reporter for the corresponding adapting gene (act-3). Analyzing a series of modifications for each construct, we identified, in the 5' regulatory region of the act-3 locus, a 25-base pair (bp) element which exhibits 60% identity with a sequence in the act-5 mRNA and which, in the context of a minimal promoter, is sufficient to induce ectopic expression of the fluorescent reporter. The 25 nucleotide (nt) element in the act-5 mRNA lies between the premature termination codon (PTC) and the next exon/exon junction, suggesting the importance of this region of the mutant mRNA for TA. Additionally, we found that single-stranded RNA injections of this 25 nt element from act-5 into the intestine of wild-type larvae led to higher levels of adapting gene (act-3) mRNA. Different models have been proposed to underlie the modulation of gene expression during TA including chromatin remodeling, the inhibition of antisense RNAs, the release of transcriptional pausing, and the suppression of premature transcription termination, and our data clearly show the importance of the regulatory region of the adapting gene in this particular act-5/act-3 TA model. Our findings also suggest that RNA fragments can modulate the expression of loci exhibiting limited sequence similarity, possibly a critical observation when designing RNA based therapies.
Collapse
Affiliation(s)
- Jordan M Welker
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Vahan Serobyan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Elhamalsadat Zaker Esfahani
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| |
Collapse
|
4
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
5
|
Aslam AA, Sinha IP, Southern KW. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database Syst Rev 2023; 3:CD012040. [PMID: 36866921 PMCID: PMC9983356 DOI: 10.1002/14651858.cd012040.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a common, life-shortening, genetic disorder in populations of Northern European descent caused by the mutation of a single gene that codes for the production of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. This protein coordinates the transport of salt (and bicarbonate) across cell surfaces, and the mutation most notably affects the airways. In the lungs of people with CF, the defective protein compromises mucociliary clearance and makes the airway prone to chronic infection and inflammation, damaging the structure of the airways and eventually leading to respiratory failure. In addition, abnormalities in the truncated CFTR protein lead to other systemic complications, including malnutrition, diabetes and subfertility. Five classes of mutation have been described, depending on the impact of the mutation on the processing of the CFTR protein in the cell. In class I mutations, premature termination codons prevent the production of any functional protein, resulting in severe CF. Therapies targeting class I mutations aim to enable the normal cellular mechanism to read through the mutation, potentially restoring the production of the CFTR protein. This could, in turn, normalise salt transport in the cells and decrease the chronic infection and inflammation that characterises lung disease in people with CF. This is an update of a previously published review. OBJECTIVES To evaluate the benefits and harms of ataluren and similar compounds on clinically important outcomes in people with CF with class I mutations (premature termination codons). SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, which is compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles. The last search of the Cochrane Cystic Fibrosis Trials Register was conducted on 7 March 2022. We searched clinical trial registries maintained by the European Medicines Agency, the US National Institutes of Health and the World Health Organization. The last search of the clinical trials registries was conducted on 4 October 2022. SELECTION CRITERIA Randomised controlled trials (RCTs) of parallel design comparing ataluren and similar compounds (specific therapies for class I mutations) with placebo in people with CF who have at least one class I mutation. DATA COLLECTION AND ANALYSIS For the included trials, the review authors independently extracted data, assessed the risk of bias and evaluated the certainty of the evidence using GRADE; trial authors were contacted for additional data. MAIN RESULTS Our searches identified 56 references to 20 trials; of these, 18 trials were excluded. Both the included parallel RCTs compared ataluren to placebo for 48 weeks in 517 participants (males and females; age range six to 53 years) with CF who had at least one nonsense mutation (a type of class I mutation). The certainty of evidence and risk of bias assessments for the trials were moderate overall. Random sequence generation, allocation concealment and blinding of trial personnel were well documented; participant blinding was less clear. Some participant data were excluded from the analysis in one trial that also had a high risk of bias for selective outcome reporting. PTC Therapeutics Incorporated sponsored both trials with grant support from the Cystic Fibrosis Foundation, the US Food and Drug Administration's Office of Orphan Products Development and the National Institutes of Health. The trials reported no difference between treatment groups in terms of quality of life, and no improvement in respiratory function measures. Ataluren was associated with a higher rate of episodes of renal impairment (risk ratio 12.81, 95% confidence interval 2.46 to 66.65; P = 0.002; I2 = 0%; 2 trials, 517 participants). The trials reported no treatment effect for ataluren for the review's secondary outcomes of pulmonary exacerbation, computed tomography score, weight, body mass index and sweat chloride. No deaths were reported in the trials. The earlier trial performed a post hoc subgroup analysis of participants not receiving concomitant chronic inhaled tobramycin (n = 146). This analysis demonstrated favourable results for ataluren (n = 72) for the relative change in forced expiratory volume in one second (FEV1) per cent (%) predicted and pulmonary exacerbation rate. The later trial aimed to prospectively assess the efficacy of ataluren in participants not concomitantly receiving inhaled aminoglycosides, and found no difference between ataluren and placebo in FEV1 % predicted and pulmonary exacerbation rate. AUTHORS' CONCLUSIONS: There is currently insufficient evidence to determine the effect of ataluren as a therapy for people with CF with class I mutations. One trial reported favourable results for ataluren in a post hoc subgroup analysis of participants not receiving chronic inhaled aminoglycosides, but these were not reproduced in the later trial, suggesting that the earlier results may have occurred by chance. Future trials should carefully assess for adverse events, notably renal impairment, and consider the possibility of drug interactions. Cross-over trials should be avoided, given the potential for the treatment to change the natural history of CF.
Collapse
Affiliation(s)
- Aisha A Aslam
- The Children's Hospital, Royal London Hospital, London, UK
| | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Torres-Pérez JV, Anagianni S, Mech AM, Havelange W, García-González J, Fraser SE, Vallortigara G, Brennan CH. baz1b loss-of-function in zebrafish produces phenotypic alterations consistent with the domestication syndrome. iScience 2023; 26:105704. [PMID: 36582821 PMCID: PMC9793288 DOI: 10.1016/j.isci.2022.105704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
BAZ1B is a ubiquitously expressed nuclear protein with roles in chromatin remodeling, DNA replication and repair, and transcription. Reduced BAZ1B expression disrupts neuronal and neural crest development. Variation in the activity of BAZ1B has been proposed to underly morphological and behavioral aspects of domestication through disruption of neural crest development. Knockdown of baz1b in Xenopus embryos and Baz1b loss-of-function (LoF) in mice leads to craniofacial defects consistent with this hypothesis. We generated baz1b LoF zebrafish using CRISPR/Cas9 gene editing to test the hypothesis that baz1b regulates behavioral phenotypes associated with domestication in addition to craniofacial features. Zebrafish with baz1b LoF show mild underdevelopment at larval stages and distinctive craniofacial features later in life. Mutant zebrafish show reduced anxiety-associated phenotypes and an altered ontogeny of social behaviors. Thus, in zebrafish, developmental deficits in baz1b recapitulate both morphological and behavioral phenotypes associated with the domestication syndrome in other species.
Collapse
Affiliation(s)
- Jose V. Torres-Pérez
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia física, Fac. de CC. Biològiques, Universitat de València, C/ Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Sofia Anagianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - William Havelange
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | | | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
7
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
8
|
Mishra R, Bansal A, Mishra A. LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism. Mol Neurobiol 2021; 58:6593-6609. [PMID: 34590243 DOI: 10.1007/s12035-021-02564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
According to cellular demands, ribosomes synthesize and maintain the desired pool of proteins inside the cell. However, sometimes due to defects in ribosomal machinery and faulty mRNAs, these nascent polypeptides are constantly under threat to become non-functional. In such conditions, cells acquire the help of ribosome-associated quality control mechanisms (RQC) to eliminate such aberrant nascent proteins. The primary regulator of RQC is RING domain containing LISTERIN E3 ubiquitin ligase, which is associated with ribosomes and alleviates non-stop proteins-associated stress in cells. Mouse RING finger protein E3 ubiquitin ligase LISTERIN is crucial for embryonic development, and a loss in its function causes neurodegeneration. LISTERIN is overexpressed in the mouse brain and spinal cord regions, and its perturbed functions generate neurological and motor deficits, but the mechanism of the same is unclear. Overall, LISTERIN is crucial for brain health and brain development. The present article systematically describes the detailed nature, molecular functions, and cellular physiological characterization of LISTERIN E3 ubiquitin ligase. Improve comprehension of LISTERIN's neurological roles may uncover pathways linked with neurodegeneration, which in turn might elucidate a promising novel therapeutic intervention against human neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Anurag Bansal
- Center for Converging Technologies, Jaipur, University of Rajasthan, Jaipur, 302001, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India.
| |
Collapse
|
9
|
Molecular Determinants and Specificity of mRNA with Alternatively-Spliced UPF1 Isoforms, Influenced by an Insertion in the 'Regulatory Loop'. Int J Mol Sci 2021; 22:ijms222312744. [PMID: 34884553 PMCID: PMC8657986 DOI: 10.3390/ijms222312744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway rapidly detects and degrades mRNA containing premature termination codons (PTCs). UP-frameshift 1 (UPF1), the master regulator of the NMD process, has two alternatively-spliced isoforms; one carries 353-GNEDLVIIWLR-363 insertion in the ‘regulatory loop (involved in mRNA binding)’. Such insertion can induce catalytic and/or ATPase activity, as determined experimentally; however, the kinetics and molecular level information are not fully understood. Herein, applying all-atom molecular dynamics, we probe the binding specificity of UPF1 with different GC- and AU-rich mRNA motifs and the influence of insertion to the viable control over UPF1 catalytic activity. Our results indicate two distinct conformations between 1B and RecA2 domains of UPF1: ‘open (isoform_2; without insertion)’ and ‘closed (isoform_1; with insertion)’. These structural movements correspond to an important stacking pattern in mRNA motifs, i.e., absence of stack formation in mRNA, with UPF1 isoform_2 results in the ‘open conformation’. Particularly, for UPF1 isoform_1, the increased distance between 1B and RecA2 domains has resulted in reducing the mRNA–UPF1 interactions. Lower fluctuating GC-rich mRNA motifs have better binding with UPF1, compared with AU-rich sequences. Except CCUGGGG, all other GC-rich motifs formed a 4-stack pattern with UPF1. High occupancy R363, D364, T627, and G862 residues were common binding GC-rich motifs, as were R363, N535, and T627 for the AU-rich motifs. The GC-rich motifs behave distinctly when bound to either of the isoforms; lower stability was observed with UPF1 isoform_2. The cancer-associated UPF1 variants (P533L/T and A839T) resulted in decreased protein–mRNA binding efficiency. Lack of mRNA stacking poses in the UPF1P533T system significantly decreased UPF1-mRNA binding efficiency and increased distance between 1B-RecA2. These novel findings can serve to further inform NMD-associated mechanistic and kinetic studies.
Collapse
|
10
|
Andjus S, Morillon A, Wery M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Noncoding RNA 2021; 7:ncrna7030044. [PMID: 34449682 PMCID: PMC8395947 DOI: 10.3390/ncrna7030044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France;
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| |
Collapse
|
11
|
Joseph B, Lai EC. The Exon Junction Complex and intron removal prevent re-splicing of mRNA. PLoS Genet 2021; 17:e1009563. [PMID: 34033644 PMCID: PMC8184009 DOI: 10.1371/journal.pgen.1009563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/07/2021] [Accepted: 04/26/2021] [Indexed: 01/23/2023] Open
Abstract
Accurate splice site selection is critical for fruitful gene expression. Recently, the mammalian EJC was shown to repress competing, cryptic, splice sites (SS). However, the evolutionary generality of this remains unclear. Here, we demonstrate the Drosophila EJC suppresses hundreds of functional cryptic SS, even though most bear weak splicing motifs and are seemingly incompetent. Mechanistically, the EJC directly conceals cryptic splicing elements by virtue of its position-specific recruitment, preventing aberrant SS definition. Unexpectedly, we discover the EJC inhibits scores of regenerated 5' and 3' recursive SS on segments that have already undergone splicing, and that loss of EJC regulation triggers faulty resplicing of mRNA. An important corollary is that certain intronless cDNA constructs yield unanticipated, truncated transcripts generated by resplicing. We conclude the EJC has conserved roles to defend transcriptome fidelity by (1) repressing illegitimate splice sites on pre-mRNAs, and (2) preventing inadvertent activation of such sites on spliced segments.
Collapse
Affiliation(s)
- Brian Joseph
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
12
|
Louzada-Neto O, Lopes BA, Brisson GD, Andrade FG, Cezar IS, Santos-Rebouças CB, Albano RM, Pombo-de-Oliveira MS, Rossini A. XRCC4 rs28360071 intronic variant is associated with increased risk for infant acute lymphoblastic leukemia with KMT2A rearrangements. Genet Mol Biol 2020; 43:e20200160. [PMID: 33270074 PMCID: PMC7734917 DOI: 10.1590/1678-4685-gmb-2020-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Early age acute leukemia (EAL) shows a high frequency of
KMT2A-rearrangements (KMT2A-r). Previous
investigations highlighted double-strand breaks arising from maternal exposure
to xenobiotics during pregnancy as a risk factor for EAL and
KMT2A-r. In this case-control study, we investigated the
relationship between EAL and genetic variants of the nonhomologous end-joining
(XRCC6 rs5751129, XRCC4 rs6869366 and
rs28360071), since they might affect DNA repair capacity, leading to
KMT2A-r and leukemogenesis. Samples from 577 individuals
(acute lymphoblastic leukemia-ALL, n=164; acute myeloid leukemia-AML, n=113;
controls, n=300) were genotyped. No significant association was found for
rs5751129 and rs6869366, whereas rs28360071 was associated with an increased
risk for ALL with KMT2A-r (IIxID: OR - Odds ratio 2.23, CI
1.17-4.25, p=0.014). Bone marrow samples from ALL patients
showed a higher expression of XRCC4 compared to AML patients
(p=0.025). Human Splicing
Finder 3.1 predicted that the deleted allele of rs28360071 is
potentially associated with the activation of a 5’ cryptic splice site in intron
3 of XRCC4. The sequencing of cDNA did not show any differences
on the splicing process for the rs28360071 genotypes. Our results suggest that
the deleted allele for rs28360071 increases the risk for ALL with
KMT2A-r, but not by modifying the XRCC4
expression levels or its structure.
Collapse
Affiliation(s)
- Orlando Louzada-Neto
- Universidade do Estado do Rio de Janeiro, Departamento de Bioquímica, Laboratório de Toxicologia e Biologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Bruno A Lopes
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Gisele D Brisson
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Francianne G Andrade
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Ingrid S Cezar
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | | | - Rodolpho M Albano
- Universidade do Estado do Rio de Janeiro, Departamento de Bioquímica, Laboratório de Toxicologia e Biologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Maria S Pombo-de-Oliveira
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Ana Rossini
- Universidade do Estado do Rio de Janeiro, Departamento de Bioquímica, Laboratório de Toxicologia e Biologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Premature termination codon readthrough in Drosophila varies in a developmental and tissue-specific manner. Sci Rep 2020; 10:8485. [PMID: 32444687 PMCID: PMC7244557 DOI: 10.1038/s41598-020-65348-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022] Open
Abstract
Despite their essential function in terminating translation, readthrough of stop codons occurs more frequently than previously supposed. However, little is known about the regulation of stop codon readthrough by anatomical site and over the life cycle of animals. Here, we developed a set of reporters to measure readthrough in Drosophila melanogaster. A focused RNAi screen in whole animals identified upf1 as a mediator of readthrough, suggesting that the stop codons in the reporters were recognized as premature termination codons (PTCs). We found readthrough rates of PTCs varied significantly throughout the life cycle of flies, being highest in older adult flies. Furthermore, readthrough rates varied dramatically by tissue and, intriguingly, were highest in fly brains, specifically neurons and not glia. This was not due to differences in reporter abundance or nonsense-mediated mRNA decay (NMD) surveillance between these tissues. Readthrough rates also varied within neurons, with cholinergic neurons having highest readthrough compared with lowest readthrough rates in dopaminergic neurons. Overall, our data reveal temporal and spatial variation of PTC-mediated readthrough in animals, and suggest that readthrough may be a potential rescue mechanism for PTC-harboring transcripts when the NMD surveillance pathway is inhibited.
Collapse
|
14
|
Sulkowska A, Auber A, Sikorski PJ, Silhavy DN, Auth M, Sitkiewicz E, Jean V, Merret RM, Bousquet-Antonelli CC, Kufel J. RNA Helicases from the DEA(D/H)-Box Family Contribute to Plant NMD Efficiency. PLANT & CELL PHYSIOLOGY 2020; 61:144-157. [PMID: 31560399 DOI: 10.1093/pcp/pcz186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.
Collapse
Affiliation(s)
- Aleksandra Sulkowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Pawel J Sikorski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dï Niel Silhavy
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Mariann Auth
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Ewa Sitkiewicz
- Proteomics Laboratory, Biophysics Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Viviane Jean
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Rï My Merret
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Cï Cile Bousquet-Antonelli
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
15
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
16
|
Liang XH, Nichols J, Hsu CW, Vickers T, Crooke S. mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway. Nucleic Acids Res 2019; 47:6900-6916. [PMID: 31165876 PMCID: PMC6649848 DOI: 10.1093/nar/gkz500] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 01/03/2023] Open
Abstract
Antisense technology can reduce gene expression via the RNase H1 or RISC pathways and can increase gene expression through modulation of splicing or translation. Here, we demonstrate that antisense oligonucleotides (ASOs) can reduce mRNA levels by acting through the no-go decay pathway. Phosphorothioate ASOs fully modified with 2'-O-methoxyethyl decreased mRNA levels when targeted to coding regions of mRNAs in a translation-dependent, RNase H1-independent manner. The ASOs that activated this decay pathway hybridized near the 3' end of the coding regions. Although some ASOs induced nonsense-mediated decay, others reduced mRNA levels through the no-go decay pathway, since depletion of PELO/HBS1L, proteins required for no-go decay pathway activity, decreased the activities of these ASOs. ASO length and chemical modification influenced the efficacy of these reagents. This non-gapmer ASO-induced mRNA reduction was observed for different transcripts and in different cell lines. Thus, our study identifies a new mechanism by which mRNAs can be degraded using ASOs, adding a new antisense approach to modulation of gene expression. It also helps explain why some fully modified ASOs cause RNA target to be reduced despite being unable to serve as substrates for RNase H1.
Collapse
Affiliation(s)
- Xue-hai Liang
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chih-Wei Hsu
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
17
|
Basile A, Fambrini M, Tani C, Shukla V, Licausi F, Pugliesi C. The
Ha‐ROXL
gene is required for initiation of axillary and floral meristems in sunflower. Genesis 2019; 57:e23307. [DOI: 10.1002/dvg.23307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Alice Basile
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Camilla Tani
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Vinay Shukla
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Francesco Licausi
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
- Department of BiologyUniversity of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| |
Collapse
|
18
|
He F, Celik A, Wu C, Jacobson A. General decapping activators target different subsets of inefficiently translated mRNAs. eLife 2018; 7:34409. [PMID: 30520724 PMCID: PMC6300357 DOI: 10.7554/elife.34409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
The Dcp1-Dcp2 decapping enzyme and the decapping activators Pat1, Dhh1, and Lsm1 regulate mRNA decapping, but their mechanistic integration is unknown. We analyzed the gene expression consequences of deleting PAT1, LSM1, or DHH1, or the DCP2 C-terminal domain, and found that: i) the Dcp2 C-terminal domain is an effector of both negative and positive regulation; ii) rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly target specific subsets of yeast mRNAs and loss of the functions of each of these factors has substantial indirect consequences for genome-wide mRNA expression; and iii) transcripts targeted by Pat1, Lsm1, and Dhh1 exhibit only partial overlap, are generally translated inefficiently, and, as expected, are targeted to decapping-dependent decay. Our results define the roles of Pat1, Lsm1, and Dhh1 in decapping of general mRNAs and suggest that these factors may monitor mRNA translation and target unique features of individual mRNAs.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| |
Collapse
|
19
|
Hernando CE, Garcia C, Mateos JL. Casting Away the Shadows: Elucidating the Role of Light-mediated Posttranscriptional Control in Plants. Photochem Photobiol 2018; 93:656-665. [PMID: 28500720 DOI: 10.1111/php.12762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
Light signals trigger precise changes in gene expression networks that activate distinctive developmental programs in plants. The transcriptome is shaped at different stages, both by the regulation of gene expression and also by posttranscriptional mechanisms that alter the sequence or abundance of the transcripts generated. Posttranscriptional mechanisms have attracted much interest in recent years with the advent of high-throughput technologies and bioinformatics tools. One such posttranscriptional process, alternative splicing, increases proteome diversity without increasing gene number by changing the function of individual proteins, while another, miRNA-mediated gene silencing, fine-tunes the amount of mRNA produced. The manner in which plants make use of these two crucial posttranscriptional mechanisms to respond to light and adapt to their environment is the focus of active research. In this review, we summarize the current knowledge of light-mediated posttranscriptional control in Arabidopsis thaliana and focus on the biological impact of the various posttranscriptional processes. We also discuss a potential cross talk between the alternative splicing and miRNA pathways, highlighting the complexity of light responsiveness.
Collapse
Affiliation(s)
| | - Carolina Garcia
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Julieta L Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
20
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
21
|
Lai Y, Eulgem T. Transcript-level expression control of plant NLR genes. MOLECULAR PLANT PATHOLOGY 2018; 19:1267-1281. [PMID: 28834153 PMCID: PMC6638128 DOI: 10.1111/mpp.12607] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector-triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript-level expression control. Multiple mechanistic steps, including transcription as well as co-/post-transcriptional processing and transcript turn-over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.
Collapse
Affiliation(s)
- Yan Lai
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
- College of Life SciencesFujian Agricultural and Forestry UniversityFuzhouFujian 350002China
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
| |
Collapse
|
22
|
Li X, Chen W, Zhang H, Li A, Shu D, Li H, Dai Z, Yan Y, Zhang X, Lin W, Ma J, Xie Q. Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E. J Virol 2018; 92:e01770-17. [PMID: 29263268 PMCID: PMC5874434 DOI: 10.1128/jvi.01770-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution.IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Aijun Li
- College of Science and Engineering, Jinan University, Guangzhou, People's Republic of China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agriculture Sciences, Guangzhou, People's Republic of China
| | - Hongxing Li
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Zhenkai Dai
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Filichkin SA, Hamilton M, Dharmawardhana PD, Singh SK, Sullivan C, Ben-Hur A, Reddy ASN, Jaiswal P. Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching. FRONTIERS IN PLANT SCIENCE 2018; 9:5. [PMID: 29483921 PMCID: PMC5816337 DOI: 10.3389/fpls.2018.00005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/03/2018] [Indexed: 05/19/2023]
Abstract
Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns - a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses.
Collapse
Affiliation(s)
- Sergei A. Filichkin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Michael Hamilton
- Department of Computer Science, Colorado State University, Fort Collins, CO, United States
| | | | - Sunil K. Singh
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Christopher Sullivan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, United States
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- *Correspondence: Pankaj Jaiswal,
| |
Collapse
|
24
|
Ververi A, Splitt M, Dean JCS, Brady AF. Phenotypic spectrum associated with de novo mutations in QRICH1 gene. Clin Genet 2017; 93:286-292. [PMID: 28692176 DOI: 10.1111/cge.13096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022]
Abstract
Rare de novo mutations represent a significant cause of idiopathic developmental delay (DD). The use of next-generation sequencing (NGS) has boosted the identification of de novo mutations in an increasing number of novel genes. Here we present 3 unrelated children with de novo loss-of-function (LoF) mutations in QRICH1, diagnosed through trio-based exome sequencing. QRICH1 encodes the glutamine-rich protein 1, which contains 1 caspase activation recruitment domain and is likely to be involved in apoptosis and inflammation. All 3 children had speech delay, learning difficulties, a prominent nose and a thin upper lip. In addition, 2 of them had mildly raised creatine kinase (CK) and 1 of them had autism. Despite their small number, the patients had a relatively consistent pattern of clinical features suggesting the presence of a QRICH1-associated phenotype. LoF mutations in QRICH1 are suggested as a novel cause of DD.
Collapse
Affiliation(s)
- A Ververi
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Harrow, UK
| | - M Splitt
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, UK
| | - J C S Dean
- Department of Medical Genetics, Aberdeen Royal Infirmary, Aberdeen, UK
| | -
- DDD Study, Wellcome Trust Sanger Institute, Cambridge, UK
| | - A F Brady
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Harrow, UK
| |
Collapse
|
25
|
Zhang R, Calixto CPG, Marquez Y, Venhuizen P, Tzioutziou NA, Guo W, Spensley M, Entizne JC, Lewandowska D, Ten Have S, Frei Dit Frey N, Hirt H, James AB, Nimmo HG, Barta A, Kalyna M, Brown JWS. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res 2017; 45:5061-5073. [PMID: 28402429 PMCID: PMC5435985 DOI: 10.1093/nar/gkx267] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.
Collapse
Affiliation(s)
- Runxuan Zhang
- Informatics and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Cristiane P G Calixto
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, 1030 Vienna, Austria
| | - Peter Venhuizen
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, 1030 Vienna, Austria
| | - Nikoleta A Tzioutziou
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Wenbin Guo
- Informatics and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.,Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Mark Spensley
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada
| | - Juan Carlos Entizne
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Heribert Hirt
- Institute of Plant Sciences Paris Saclay, INRA-CNRS-UEVE, Orsay 91405, France
| | - Allan B James
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hugh G Nimmo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, 1030 Vienna, Austria
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190 Vienna, Austria
| | - John W S Brown
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK.,Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
26
|
Tian M, Yang W, Zhang J, Dang H, Lu X, Fu C, Miao W. Nonsense-mediated mRNA decay in Tetrahymena is EJC independent and requires a protozoa-specific nuclease. Nucleic Acids Res 2017; 45:6848-6863. [PMID: 28402567 PMCID: PMC5499736 DOI: 10.1093/nar/gkx256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 02/03/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is essential for removing premature termination codon-containing transcripts from cells. Studying the NMD pathway in model organisms can help to elucidate the NMD mechanism in humans and improve our understanding of how this biologically important process has evolved. Ciliates are among the earliest branching eukaryotes; their NMD mechanism is poorly understood and may be primordial. We demonstrate that highly conserved Upf proteins (Upf1a, Upf2 and Upf3) are involved in the NMD pathway of the ciliate, Tetrahymena thermophila. We further show that a novel protozoa-specific nuclease, Smg6L, is responsible for destroying many NMD-targeted transcripts. Transcriptome-wide identification and characterization of NMD-targeted transcripts in vegetative Tetrahymena cells showed that many have exon-exon junctions downstream of the termination codon. However, Tetrahymena may lack a functional exon junction complex (EJC), and the Tetrahymena ortholog of an EJC core component, Mago nashi (Mag1), is dispensable for NMD. Therefore, NMD is EJC independent in this early branching eukaryote.
Collapse
Affiliation(s)
- Miao Tian
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna A-1030, Austria
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Dang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xingyi Lu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjie Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
27
|
Jones SH, Wilkinson M. RNA decay, evolution, and the testis. RNA Biol 2017; 14:146-155. [PMID: 27911186 PMCID: PMC5324745 DOI: 10.1080/15476286.2016.1265199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/23/2023] Open
Abstract
NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.
Collapse
Affiliation(s)
- Samantha H. Jones
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Aslam AA, Higgins C, Sinha IP, Southern KW, Cochrane Cystic Fibrosis and Genetic Disorders Group. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database Syst Rev 2017; 1:CD012040. [PMID: 28102546 PMCID: PMC6464785 DOI: 10.1002/14651858.cd012040.pub2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cystic fibrosis is a common life-shortening genetic disorder in the Caucasian population (less common in other ethnic groups) caused by the mutation of a single gene that codes for the production of the cystic fibrosis transmembrane conductance regulator protein. This protein coordinates the transport of salt (and bicarbonate) across cell surfaces and the mutation most notably affects the airways. In the lungs of people with cystic fibrosis, defective protein results in a dehydrated surface liquid and compromised mucociliary clearance. The resulting thick mucus makes the airway prone to chronic infection and inflammation, which consequently damages the structure of the airways, eventually leading to respiratory failure. Additionally, abnormalities in the cystic fibrosis transmembrane conductance regulator protein lead to other systemic complications including malnutrition, diabetes and subfertility.Five classes of mutation have been described, depending on the impact of the mutation on the processing of the cystic fibrosis transmembrane conductance regulator protein in the cell. In class I mutations, the presence of premature termination codons prevents the production of any functional protein resulting in a severe cystic fibrosis phenotype. Advances in the understanding of the molecular genetics of cystic fibrosis has led to the development of novel mutation-specific therapies. Therapies targeting class I mutations (premature termination codons) aim to mask the abnormal gene sequence and enable the normal cellular mechanism to read through the mutation, potentially restoring the production of the cystic fibrosis transmembrane conductance regulator protein. This could in turn make salt transport in the cells function more normally and may decrease the chronic infection and inflammation that characterises lung disease in people with cystic fibrosis. OBJECTIVES To evaluate the benefits and harms of ataluren and similar compounds on clinically important outcomes in people with cystic fibrosis with class I mutations (premature termination codons). SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register which is compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles. Last search of Group's register: 24 October 2016.We searched clinical trial registries maintained by the European Medicines Agency, the US National Institutes of Health and the WHO. Last search of clinical trials registries: 28 November 2016. SELECTION CRITERIA Randomised controlled trials of parallel design comparing ataluren and similar compounds (specific therapies for class I mutations) with placebo in people with cystic fibrosis who have at least one class I mutation. Cross-over trials were reviewed individually to evaluate whether data from the first treatment arm could be included. We excluded trials that combined therapies for premature termination codon class I mutations with other mutation-specific therapies. DATA COLLECTION AND ANALYSIS The authors independently assessed the risk of bias and extracted data from the included trial; they contacted trial authors for additional data. MAIN RESULTS Our searches identified 28 references to eight trials; five trials were excluded (three were cross-over and one was not randomised and one did not have relevant outcomes), one cross-over trial is awaiting classification pending provision of data and one trial is ongoing. The included parallel randomised controlled trial compared ataluren to placebo for a duration of 48 weeks in 238 participants (age range 6 to 53 years) with cystic fibrosis who had at least one nonsense mutation (a type of class I mutation).The quality of evidence and risk of bias assessments for the trial were moderate overall. Random sequence generation, allocation concealment and blinding of trial personnel were well-documented; participant blinding was less clear. Some participant data were excluded from the analysis. The trial was assessed as high risk of bias for selective outcome reporting, especially when reporting on the trial's post hoc subgroup of participants by chronic inhaled antibiotic use.The trial was sponsored by PTC Therapeutics Incorporated with grant support by the Cystic Fibrosis Foundation, the Food and Drug Administration's Office of Orphan Products Development and the National Institutes of Health (NIH).The trial reported no significant difference between treatment groups in quality of life, assessed by the Cystic Fibrosis Questionnaire-Revised respiratory domain score and no improvement in respiratory function measures (mean difference of relative change in forced expiratory volume at one second 2.97% (95% confidence interval -0.58 to 6.52)). Ataluren was associated with a significantly higher rate of episodes of renal impairment, risk ratio 17.70 (99% confidence interval 1.28 to 244.40). The trial reported no significant treatment effect for ataluren for the review's secondary outcomes: pulmonary exacerbation; computerised tomography score; weight; body mass index; and sweat chloride. No deaths were reported in the trial.A post hoc subgroup analysis of participants not receiving chronic inhaled tobramycin (n = 146) demonstrated favourable results for ataluren (n = 72) for relative change in % predicted forced expiratory volume at one second and pulmonary exacerbation rate. Participants receiving chronic inhaled tobramycin appeared to have a reduced rate of pulmonary exacerbation compared to those not receiving chronic inhaled tobramycin. This drug interaction was not anticipated and may affect the interpretation of the trial results. AUTHORS' CONCLUSIONS There is currently insufficient evidence to determine the effect of ataluren as a therapy for people with cystic fibrosis with class I mutations. Future trials should carefully assess for adverse events, notably renal impairment and consider the possibility of drug interactions. Cross-over trials should be avoided given the potential for the treatment to change the natural history of cystic fibrosis.
Collapse
Affiliation(s)
- Aisha A Aslam
- University of LiverpoolDepartment of Women's and Children's HealthAlder Hey Children's NHS Foundation TrustEaton RoadLiverpoolUKL12 2AP
| | - Colin Higgins
- Alder Hey Children's NHS Foundation TrustEaton RoadLiverpoolUKL12 2AP
| | - Ian P Sinha
- University of LiverpoolDepartment of Women's and Children's HealthAlder Hey Children's NHS Foundation TrustEaton RoadLiverpoolUKL12 2AP
| | - Kevin W Southern
- University of LiverpoolDepartment of Women's and Children's HealthAlder Hey Children's NHS Foundation TrustEaton RoadLiverpoolUKL12 2AP
| | | |
Collapse
|
29
|
Laffleur B, Basu U, Lim J. RNA Exosome and Non-coding RNA-Coupled Mechanisms in AID-Mediated Genomic Alterations. J Mol Biol 2017; 429:3230-3241. [PMID: 28069372 DOI: 10.1016/j.jmb.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Abstract
The eukaryotic RNA exosome is a well-conserved protein complex with ribonuclease activity implicated in RNA metabolism. Various families of non-coding RNAs have been identified as substrates of the complex, underscoring its role as a non-coding RNA processing/degradation unit. However, the role of RNA exosome and its RNA processing activity on DNA mutagenesis/alteration events have not been investigated until recently. B lymphocytes use two DNA alteration mechanisms, class switch recombination (CSR) and somatic hypermutation (SHM), to re-engineer their antibody gene expressing loci until a tailored antibody gene for a specific antigen is satisfactorily generated. CSR and SHM require the essential activity of the DNA activation-induced cytidine deaminase (AID). Causing collateral damage to the B-cell genome during CSR and SHM, AID induces unwanted (and sometimes oncogenic) mutations at numerous non-immunoglobulin gene sequences. Recent studies have revealed that AID's DNA mutator activity is regulated by the RNA exosome complex, thus providing an example of a mechanism that relates DNA mutagenesis to RNA processing. Here, we review the emergent functions of RNA exosome during CSR, SHM, and other chromosomal alterations in B cells, and discuss implications relevant to mechanisms that maintain B-cell genomic integrity.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Hernando CE, Romanowski A, Yanovsky MJ. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:84-94. [PMID: 27412912 DOI: 10.1016/j.bbagrm.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/16/2022]
Abstract
The circadian clock drives rhythms in multiple physiological processes allowing plants to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of thousands of genes linked to the control of photosynthesis, cell elongation, biotic and abiotic stress responses, developmental processes such as flowering, and the clock itself. Given its pervasive effects on plant physiology, it is not surprising that circadian clock genes have played an important role in the domestication of crop plants and in the improvement of crop productivity. Therefore, identifying the principles governing the dynamics of the circadian gene regulatory network in plants could strongly contribute to further speed up crop improvement. Here we provide an historical as well as a current description of our knowledge of the molecular mechanisms underlying circadian rhythms in plants. This work focuses on the transcriptional and post-transcriptional regulatory layers that control the very core of the circadian clock, and some of its complex interactions with signaling pathways that help synchronize plant growth and development to daily and seasonal changes in the environment. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- C Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| | - Andrés Romanowski
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
31
|
Gurskaya NG, Pereverzev AP, Staroverov DB, Markina NM, Lukyanov KA. Analysis of Nonsense-Mediated mRNA Decay at the Single-Cell Level Using Two Fluorescent Proteins. Methods Enzymol 2016; 572:291-314. [PMID: 27241760 DOI: 10.1016/bs.mie.2016.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mechanism of specific degradation of transcripts with a premature stop codon. NMD eliminates aberrant mRNAs arising from mutations, alternative splicing, and other events in cells. In addition, many normal transcripts undergo NMD. Recent studies demonstrated that NMD activity is specifically regulated and that NMD can play a role of global regulator of gene expression. Recently, we developed dual-color fluorescent protein-based reporters for quantification of NMD activity using fluorescence microscopy and flow cytometry (Pereverzev, Gurskaya, et al., 2015). Due to ratiometric fluorescence response, these reporters make it possible to assess NMD activity in live cells at the single-cell level and to reveal otherwise hidden heterogeneity of cells in respect of NMD activity. Here we provide a detailed description of applications of the NMD reporters in mammalian cell lines.
Collapse
Affiliation(s)
- N G Gurskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - A P Pereverzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - D B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - N M Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - K A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia.
| |
Collapse
|
32
|
Aslam A, Sinha IP, Southern KW. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2016. [DOI: 10.1002/14651858.cd012040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Claverie-Martin F, Gonzalez-Paredes FJ, Ramos-Trujillo E. Splicing defects caused by exonic mutations in PKD1 as a new mechanism of pathogenesis in autosomal dominant polycystic kidney disease. RNA Biol 2016; 12:369-74. [PMID: 25757501 DOI: 10.1080/15476286.2015.1014291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The correct splicing of precursor-mRNA depends on the actual splice sites plus exonic and intronic regulatory elements recognized by the splicing machinery. Surprisingly, an increasing number of examples reveal that exonic mutations disrupt the binding of splicing factors to these sequences or generate new splice sites or regulatory elements, causing disease. This contradicts the general assumption that missense mutations disrupt protein function and that synonymous mutations are merely polymorphisms. Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder caused mainly by mutations in the PKD1 gene. Recently, we analyzed a substantial number of PKD1 missense or synonymous mutations to further characterize their consequences on pre-mRNA splicing. Our results showed that one missense and 2 synonymous mutations induce significant defects in pre-mRNA splicing. Thus, it appears that aberrant splicing as a result of exonic mutations is a previously unrecognized cause of ADPKD.
Collapse
Affiliation(s)
- Felix Claverie-Martin
- a Unidad de Investigacion; Hospital Nuestra Señora de Candelaria ; Santa Cruz de Tenerife , Spain
| | | | | |
Collapse
|
34
|
Dai Y, Li W, An L. NMD mechanism and the functions of Upf proteins in plant. PLANT CELL REPORTS 2016; 35:5-15. [PMID: 26400685 DOI: 10.1007/s00299-015-1867-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated decay (NMD) mechanism, also called mRNA surveillance, is a universal mRNA degradation pathway in eukaryotes. Hundreds of genes can be regulated by NMD whether in single-celled or higher organisms. There have been many studies on NMD and NMD factors (Upf proteins) with regard to their crucial roles in mRNA decay, especially in mammals and yeast. However, research focusing on NMD in plant is still lacking compared to the research that has been dedicated to NMD in mammals and yeast. Even so, recent study has shown that NMD factors in Arabidopsis can provide resistance against biotic and abiotic stresses. This discovery and its associated developments have given plant NMD mechanism a new outlook and since then, more and more research has focused on this area. In this review, we focused mainly on the distinctive NMD micromechanism and functions of Upf proteins in plant with references to the role of mRNA surveillance in mammals and yeast. We also highlighted recent insights into the roles of premature termination codon location, trans-elements and functions of other NMD factors to emphasize the particularity of plant NMD. Furthermore, we also discussed conventional approaches and neoteric methods used in plant NMD researches.
Collapse
Affiliation(s)
- Yiming Dai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Wenli Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
35
|
Shaul O. Unique Aspects of Plant Nonsense-Mediated mRNA Decay. TRENDS IN PLANT SCIENCE 2015; 20:767-779. [PMID: 26442679 DOI: 10.1016/j.tplants.2015.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Nonsense-mediated mRNA Decay (NMD) is a eukaryotic quality-control mechanism that governs the stability of both aberrant and normal transcripts. Although plant and mammalian NMD share great similarity, they differ in certain mechanistic and regulatory aspects. Whereas SMG6 (from Caenorhabditis elegans 'suppressor with morphogenetic effect on genitalia')-catalyzed endonucleolytic cleavage is a prominent step in mammalian NMD, plant NMD targets are degraded by an SMG7-induced exonucleolytic pathway. Both mammalian and plant NMD are downregulated by stress, thereby enhancing the expression of defense response genes. However, the target genes and processes affected differ. Several plant and mammalian NMD factors are regulated by negative feedback-loops. However, while the loop regulating UPF3 (up-frameshift 3) expression in not vital for mammalian NMD, the sensitivity of UPF3 to NMD is crucial for the overall regulation of plant NMD.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
36
|
Zhang R, Calixto CPG, Tzioutziou NA, James AB, Simpson CG, Guo W, Marquez Y, Kalyna M, Patro R, Eyras E, Barta A, Nimmo HG, Brown JWS. AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 208:96-101. [PMID: 26111100 PMCID: PMC4744958 DOI: 10.1111/nph.13545] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/05/2015] [Indexed: 05/02/2023]
Abstract
RNA-sequencing (RNA-seq) allows global gene expression analysis at the individual transcript level. Accurate quantification of transcript variants generated by alternative splicing (AS) remains a challenge. We have developed a comprehensive, nonredundant Arabidopsis reference transcript dataset (AtRTD) containing over 74 000 transcripts for use with algorithms to quantify AS transcript isoforms in RNA-seq. The AtRTD was formed by merging transcripts from TAIR10 and novel transcripts identified in an AS discovery project. We have estimated transcript abundance in RNA-seq data using the transcriptome-based alignment-free programmes Sailfish and Salmon and have validated quantification of splicing ratios from RNA-seq by high resolution reverse transcription polymerase chain reaction (HR RT-PCR). Good correlations between splicing ratios from RNA-seq and HR RT-PCR were obtained demonstrating the accuracy of abundances calculated for individual transcripts in RNA-seq. The AtRTD is a resource that will have immediate utility in analysing Arabidopsis RNA-seq data to quantify differential transcript abundance and expression.
Collapse
Affiliation(s)
- Runxuan Zhang
- Informatics and Computational SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Cristiane P. G. Calixto
- Plant Sciences DivisionCollege of Life SciencesUniversity of DundeeInvergowrieDundeeDD2 5DAUK
| | - Nikoleta A. Tzioutziou
- Plant Sciences DivisionCollege of Life SciencesUniversity of DundeeInvergowrieDundeeDD2 5DAUK
| | - Allan B. James
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Craig G. Simpson
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Wenbin Guo
- Informatics and Computational SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Plant Sciences DivisionCollege of Life SciencesUniversity of DundeeInvergowrieDundeeDD2 5DAUK
| | - Yamile Marquez
- Max F. Perutz LaboratoriesMedical University of ViennaDr Bohrgasse 9/31030ViennaAustria
| | - Maria Kalyna
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| | - Rob Patro
- Computer Science Department1422 Computer ScienceStony Brook UniversityStony BrookNY11794‐4400USA
| | - Eduardo Eyras
- Computational GenomicsUniversitat Pompeu Fabra08002BarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)08010BarcelonaSpain
| | - Andrea Barta
- Max F. Perutz LaboratoriesMedical University of ViennaDr Bohrgasse 9/31030ViennaAustria
| | - Hugh G. Nimmo
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - John W. S. Brown
- Plant Sciences DivisionCollege of Life SciencesUniversity of DundeeInvergowrieDundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
37
|
DeSanto C, D'Aco K, Araujo GC, Shannon N, Vernon H, Rahrig A, Monaghan KG, Niu Z, Vitazka P, Dodd J, Tang S, Manwaring L, Martir-Negron A, Schnur RE, Juusola J, Schroeder A, Pan V, Helbig KL, Friedman B, Shinawi M. WAC loss-of-function mutations cause a recognisable syndrome characterised by dysmorphic features, developmental delay and hypotonia and recapitulate 10p11.23 microdeletion syndrome. J Med Genet 2015; 52:754-61. [PMID: 26264232 DOI: 10.1136/jmedgenet-2015-103069] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/14/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rare de novo mutations have been implicated as a significant cause of idiopathic intellectual disability. Large deletions encompassing 10p11.23 have been implicated in developmental delay, behavioural abnormalities and dysmorphic features, but the genotype-phenotype correlation was not delineated. Mutations in WAC have been recently reported in large screening cohorts of patients with intellectual disability or autism, but no full phenotypic characterisation was described. METHODS Clinical and molecular characterisation of six patients with loss-of-function WAC mutations identified by whole exome sequencing was performed. Clinical data were obtained by retrospective chart review, parental interviews, direct patient interaction and formal neuropsychological evaluation. RESULTS Five heterozygous de novo WAC mutations were identified in six patients. Three of the mutations were nonsense, and two were frameshift; all are predicted to cause loss of function either through nonsense-mediated mRNA decay or protein truncation. Clinical findings included developmental delay (6/6), hypotonia (6/6), behavioural problems (5/6), eye abnormalities (5/6), constipation (5/6), feeding difficulties (4/6), seizures (2/6) and sleep problems (2/6). All patients exhibited common dysmorphic features, including broad/prominent forehead, synophrys and/or bushy eyebrows, depressed nasal bridge and bulbous nasal tip. Posteriorly rotated ears, hirsutism, deep-set eyes, thin upper lip, inverted nipples, hearing loss and branchial cleft anomalies were also noted. CONCLUSIONS Our case series show that loss-of-function mutations in WAC cause a recognisable genetic syndrome characterised by a neurocognitive phenotype and facial dysmorphism. Our data highly suggest that WAC haploinsufficiency is responsible for most of the phenotypic features associated with deletions encompassing 10p11.23.
Collapse
Affiliation(s)
- Cori DeSanto
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kristin D'Aco
- Division of Genetics, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Gabriel C Araujo
- Department of Psychology, St Louis Children's Hospital, St Louis, Missouri, USA
| | - Nora Shannon
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | -
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Hilary Vernon
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - April Rahrig
- Department of Pediatrics, Advocate Children's Hospital, Park Ridge, Illinois, USA
| | | | - Zhiyv Niu
- Department of Molecular and Human Genetics, Whole Genome Laboratory and Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas, USA
| | | | - Jonathan Dodd
- Department of Psychology, St Louis Children's Hospital, St Louis, Missouri, USA
| | - Sha Tang
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Linda Manwaring
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Arelis Martir-Negron
- Department of Pediatrics, Advocate Children's Hospital, Park Ridge, Illinois, USA Division of Clinical Genetics & Metabolic Disorders, Palm Beach Gardens Outpatient Center, Nicklaus Children's Hospital, Miami, Florida, USA
| | | | | | - Audrey Schroeder
- Division of Genetics, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Vivian Pan
- Department of Pediatrics, Advocate Children's Hospital, Park Ridge, Illinois, USA
| | - Katherine L Helbig
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
38
|
Chen W, Liu Y, Li H, Chang S, Shu D, Zhang H, Chen F, Xie Q. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A. Sci Rep 2015; 5:9900. [PMID: 25873518 PMCID: PMC4397534 DOI: 10.1038/srep09900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, tvar5 and tvar6, with similar intronic deletions were identified in Chinese commercial broilers. These natural mutations delete the deduced branch point signal within the first intron, disrupting mRNA splicing of the tva receptor gene and leading to the retention of intron 1 and introduction of premature TGA stop codons in both the longer and shorter tva isoforms. As a result, decreased susceptibility to subgroup A ASLV in vitro and in vivo was observed in the subsequent analysis. In addition, we identified two groups of heterozygous allele pairs which exhibited quantitative differences in host susceptibility to ASLV-A. This study demonstrated that defective splicing of the tva receptor gene can confer genetic resistance to ASLV subgroup A in the host.
Collapse
Affiliation(s)
- Weiguo Chen
- College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China
| | - Yang Liu
- College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China
| | - Hongxing Li
- College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, P. R. China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, U.S.A
| | - Feng Chen
- 1] College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China [2] South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P. R. China
| | - Qingmei Xie
- 1] College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China [2] Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P. R. China [3] South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P. R. China
| |
Collapse
|
39
|
Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level. Sci Rep 2015; 5:7729. [PMID: 25578556 PMCID: PMC4289894 DOI: 10.1038/srep07729] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/09/2014] [Indexed: 01/14/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a ubiquitous mechanism of degradation of transcripts with a premature termination codon. NMD eliminates aberrant mRNA species derived from sources of genetic variation such as gene mutations, alternative splicing and DNA rearrangements in immune cells. In addition, recent data suggest that NMD is an important mechanism of global gene expression regulation. Here, we describe new reporters to quantify NMD activity at the single cell level using fluorescent proteins of two colors: green TagGFP2 and far-red Katushka. TagGFP2 was encoded by mRNA targeted to either the splicing-dependent or the long 3'UTR-dependent NMD pathway. Katushka was used as an expression level control. Comparison of the fluorescence intensities of cells expressing these reporters and cells expressing TagGFP2 and Katushka from corresponding control NMD-independent vectors allowed for the assessment of NMD activity at the single cell level using fluorescence microscopy and flow cytometry. The proposed reporter system was successfully tested in several mammalian cell lines and in transgenic Xenopus embryos.
Collapse
|
40
|
Nolte C, Staiger D. RNA around the clock - regulation at the RNA level in biological timing. FRONTIERS IN PLANT SCIENCE 2015; 6:311. [PMID: 25999975 PMCID: PMC4419606 DOI: 10.3389/fpls.2015.00311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/19/2015] [Indexed: 05/21/2023]
Abstract
The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms.
Collapse
Affiliation(s)
| | - Dorothee Staiger
- *Correspondence: Dorothee Staiger, Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Universitaetsstrasse 25, Bielefeld D-33615, Germany
| |
Collapse
|
41
|
Pirrello J, Leclercq J, Dessailly F, Rio M, Piyatrakul P, Kuswanhadi K, Tang C, Montoro P. Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC PLANT BIOLOGY 2014; 14:341. [PMID: 25443311 PMCID: PMC4274682 DOI: 10.1186/s12870-014-0341-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 11/19/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Latex harvesting in Hevea brasiliensis amounts to strong abiotic stress that can cause a halt in production in the most susceptible clones. Although the role of jasmonic acid has been suggested in laticifer differentiation, its role in latex production and in the response to harvesting stress has received very little attention. Only a few key genes acting in the COI-JAZ-MYC module have been isolated and studied at transcriptional level. RESULTS Use of a reference transcriptome obtained on rubber clone PB 260 covering a large number of tissues under different environmental conditions enabled us to identify 24 contigs implicated in the jasmonate signalling pathway in the rubber tree. An analysis of their expression profile by qPCR, combined with hierarchical clustering, suggested that the jasmonate signalling pathway is highly activated in laticifer cells and, more particularly, in the response to harvesting stress. By comparison with their genomic sequences, the existence of regulation by alternative splicing was discovered for JAZ transcripts in response to harvesting stress. Lastly, positive transcriptional regulation of the HbJAZ_1405 gene by MYC was demonstrated. CONCLUSION This study led to the identification of all actors of jasmonate signalling pathway and revealed a specific gene expression pattern in latex cells. In-depth analysis of this regulation showed alternative splicing that has been previously shown in Arabidopsis. Interestingly, genotypic variation was observed in Hevea clones with contrasting latex metabolism. This result suggests an involvement of jasmonate signalling pathway in latex production. The data suggest that specific variability of the JA pathway may have some major consequences for resistance to stress. The data support the hypothesis that a better understanding of transcriptional regulations of jasmonate pathway during harvesting stress, along with the use of genotypic diversity in response to such stress, can be used to improve resistance to stress and rubber production in Hevea.
Collapse
Affiliation(s)
| | | | | | | | - Piyanuch Piyatrakul
- />CIRAD, UMR AGAP, F-34398 Montpellier, France
- />Rubber Research Institute, Chatuchak, Bangkok 10900 Thailand
| | - Kuswanhadi Kuswanhadi
- />Sembawa Research Centre, Indonesian Rubber Research Institute, P.O 1127, Palembang, 30001 Indonesia
| | - Chaorong Tang
- />Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China
| | | |
Collapse
|
42
|
Casadio A, Longman D, Hug N, Delavaine L, Vallejos Baier R, Alonso CR, Cáceres JF. Identification and characterization of novel factors that act in the nonsense-mediated mRNA decay pathway in nematodes, flies and mammals. EMBO Rep 2014; 16:71-8. [PMID: 25452588 PMCID: PMC4304730 DOI: 10.15252/embr.201439183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs harboring premature termination codons (PTCs). We have conducted a genome-wide RNAi screen in Caenorhabditis elegans that resulted in the identification of five novel NMD genes that are conserved throughout evolution. Two of their human homologs, GNL2 (ngp-1) and SEC13 (npp-20), are also required for NMD in human cells. We also show that the C. elegans gene noah-2, which is present in Drosophila melanogaster but absent in humans, is an NMD factor in fruit flies. Altogether, these data identify novel NMD factors that are conserved throughout evolution, highlighting the complexity of the NMD pathway and suggesting that yet uncovered novel factors may act to regulate this process.
Collapse
Affiliation(s)
- Angela Casadio
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Laurent Delavaine
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | | | | | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| |
Collapse
|
43
|
Fatscher T, Boehm V, Weiche B, Gehring NH. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2014; 20:1579-92. [PMID: 25147240 PMCID: PMC4174440 DOI: 10.1261/rna.044933.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) eliminates different classes of mRNA substrates including transcripts with long 3' UTRs. Current models of NMD suggest that the long physical distance between the poly(A) tail and the termination codon reduces the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and the eukaryotic release factor 3a (eRF3a) during translation termination. In the absence of PABPC1 binding, eRF3a recruits the NMD factor UPF1 to the terminating ribosome, triggering mRNA degradation. Here, we have used the MS2 tethering system to investigate the suppression of NMD by PABPC1. We show that tethering of PABPC1 between the termination codon and a long 3' UTR specifically inhibits NMD-mediated mRNA degradation. Contrary to the current model, tethered PABPC1 mutants unable to interact with eRF3a still efficiently suppress NMD. We find that the interaction of PABPC1 with eukaryotic initiation factor 4G (eIF4G), which mediates the circularization of mRNAs, is essential for NMD inhibition by tethered PABPC1. Furthermore, recruiting either eRF3a or eIF4G in proximity to an upstream termination codon antagonizes NMD. While tethering of an eRF3a mutant unable to interact with PABPC1 fails to suppress NMD, tethered eIF4G inhibits NMD in a PABPC1-independent manner, indicating a sequential arrangement of NMD antagonizing factors. In conclusion, our results establish a previously unrecognized link between translation termination, mRNA circularization, and NMD suppression, thereby suggesting a revised model for the activation of NMD at termination codons upstream of long 3' UTR.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Benjamin Weiche
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
44
|
A highly conserved region essential for NMD in the Upf2 N-terminal domain. J Mol Biol 2014; 426:3689-3702. [PMID: 25277656 DOI: 10.1016/j.jmb.2014.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
Upf1, Upf2, and Upf3 are the principal regulators of nonsense-mediated mRNA decay (NMD), a cytoplasmic surveillance pathway that accelerates the degradation of mRNAs undergoing premature translation termination. These three proteins interact with each other, the ribosome, the translation termination machinery, and multiple mRNA decay factors, but the precise mechanism allowing the selective detection and degradation of nonsense-containing transcripts remains elusive. Here, we have determined the crystal structure of the N-terminal mIF4G domain from Saccharomyces cerevisiae Upf2 and identified a highly conserved region in this domain that is essential for NMD and independent of Upf2's binding sites for Upf1 and Upf3. Mutations within this conserved region not only inactivate NMD but also disrupt Upf2 binding to specific proteins, including Dbp6, a DEAD-box helicase. Although current models indicate that Upf2 functions principally as an activator of Upf1 and a bridge between Upf1 and Upf3, our data suggest that it may also serve as a platform for the association of additional factors that play roles in premature translation termination and NMD.
Collapse
|
45
|
Kollath-Leiß K, Bönniger C, Sardar P, Kempken F. BEM46 shows eisosomal localization and association with tryptophan-derived auxin pathway in Neurospora crassa. EUKARYOTIC CELL 2014; 13:1051-63. [PMID: 24928924 PMCID: PMC4135797 DOI: 10.1128/ec.00061-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
BEM46 proteins are evolutionarily conserved, but their functions remain elusive. We reported previously that the BEM46 protein in Neurospora crassa is targeted to the endoplasmic reticulum (ER) and is essential for ascospore germination. In the present study, we established a bem46 knockout strain of N. crassa. This Δbem46 mutant exhibited a level of ascospore germination lower than that of the wild type but much higher than those of the previously characterized bem46-overexpressing and RNA interference (RNAi) lines. Reinvestigation of the RNAi transformants revealed two types of alternatively spliced bem46 mRNA; expression of either type led to a loss of ascospore germination. Our results indicated that the phenotype was not due to bem46 mRNA downregulation or loss but was caused by the alternatively spliced mRNAs and the peptides they encoded. Using the N. crassa ortholog of the eisosomal protein PILA from Aspergillus nidulans, we further demonstrated the colocalization of BEM46 with eisosomes. Employing the yeast two-hybrid system, we identified a single interaction partner: anthranilate synthase component II (encoded by trp-1). This interaction was confirmed in vivo by a split-YFP (yellow fluorescent protein) approach. The Δtrp-1 mutant showed reduced ascospore germination and increased indole production, and we used bioinformatic tools to identify a putative auxin biosynthetic pathway. The genes involved exhibited various levels of transcriptional regulation in the different bem46 transformant and mutant strains. We also investigated the indole production of the strains in different developmental stages. Our findings suggested that the regulation of indole biosynthesis genes was influenced by bem46 overexpression. Furthermore, we uncovered evidence of colocalization of BEM46 with the neutral amino acid transporter MTR.
Collapse
Affiliation(s)
- K Kollath-Leiß
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - C Bönniger
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - P Sardar
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - F Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
46
|
Gonzalez-Paredes FJ, Ramos-Trujillo E, Claverie-Martin F. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease. Gene 2014; 546:243-9. [DOI: 10.1016/j.gene.2014.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/21/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
47
|
Nicholson P, Josi C, Kurosawa H, Yamashita A, Mühlemann O. A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD. Nucleic Acids Res 2014; 42:9217-35. [PMID: 25053839 PMCID: PMC4132754 DOI: 10.1093/nar/gku645] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD substrates can be degraded by different routes that all require phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of the three known NMD factors thought to be recruited to nonsense mRNAs via an interaction with P-UPF1, leading to eventual mRNA degradation. By artificial tethering of SMG6 and mutants thereof to a reporter mRNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 to reduce reporter mRNA levels. Using in vivo and in vitro approaches, we further document that SMG6 and the unique stalk region of the UPF1 helicase domain, along with a contribution from the SQ domain, form a novel interaction and we also show that this region of the UPF1 helicase domain is critical for SMG6 function and NMD. Our results show that this interaction is required for NMD and for the capability of tethered SMG6 to degrade its bound RNA, suggesting that it contributes to the intricate regulation of UPF1 and SMG6 enzymatic activities.
Collapse
Affiliation(s)
- Pamela Nicholson
- Department of Chemistry and Biochemistry, University of Berne, Berne, CH-3012, Switzerland
| | - Christoph Josi
- Department of Chemistry and Biochemistry, University of Berne, Berne, CH-3012, Switzerland
| | - Hitomi Kurosawa
- Department of Microbiology, Yokohama City University, School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Akio Yamashita
- Department of Microbiology, Yokohama City University, School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Berne, Berne, CH-3012, Switzerland
| |
Collapse
|
48
|
Inada T, Makino S. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation. Front Genet 2014; 5:135. [PMID: 24904636 PMCID: PMC4033010 DOI: 10.3389/fgene.2014.00135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022] Open
Abstract
The CCR4-NOT complex is a highly conserved specific gene silencer that also serves more general post-transcriptional functions. Specific regulatory proteins including the miRNA-induced silencing complex and its associated proteins, bind to 3’-UTR elements of mRNA and recruit the CCR4-NOT complex thereby promoting poly(A) shortening and repressing translation and/or mRNA degradation. Recent studies have shown that the CCR4-NOT complex that is tethered to mRNA by such regulator(s) represses translation and facilitates mRNA decay independent of a poly(A) tail and its shortening. In addition to deadenylase activity, the CCR4-NOT complex also has an E3 ubiquitin ligase activity and is involved in a novel protein quality control system, i.e., co-translational proteasomal-degradation of aberrant proteins. In this review, we describe recent progress in elucidation of novel roles of the multi-functional complex CCR4-NOT in post-transcriptional regulation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| | - Shiho Makino
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| |
Collapse
|
49
|
Abstract
Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control.
Collapse
Affiliation(s)
- Maximilian Wei-Lin Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642;
| | | |
Collapse
|
50
|
Göhring J, Jacak J, Barta A. Imaging of endogenous messenger RNA splice variants in living cells reveals nuclear retention of transcripts inaccessible to nonsense-mediated decay in Arabidopsis. THE PLANT CELL 2014; 26:754-64. [PMID: 24532591 PMCID: PMC3967038 DOI: 10.1105/tpc.113.118075] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/14/2014] [Accepted: 01/26/2014] [Indexed: 05/18/2023]
Abstract
Alternative splicing (AS) is an important regulatory process that leads to the creation of multiple RNA transcripts from a single gene. Alternative transcripts often carry premature termination codons (PTCs), which trigger nonsense-mediated decay (NMD), a cytoplasmic RNA degradation pathway. However, intron retention, the most prevalent AS event in plants, often leads to PTC-carrying splice variants that are insensitive to NMD; this led us to question the fate of these special RNA variants. Here, we present an innovative approach to monitor and characterize endogenous mRNA splice variants within living plant cells. This method combines standard confocal laser scanning microscopy for molecular beacon detection with a robust statistical pipeline for sample comparison. We demonstrate this technique on the localization of NMD-insensitive splice variants of two Arabidopsis thaliana genes, RS2Z33 and the SEF factor. The experiments reveal that these intron-containing splice variants remain within the nucleus, which allows them to escape the NMD machinery. Moreover, fluorescence recovery after photobleaching experiments in the nucleoplasm show a decreased mobility of intron-retained mRNAs compared with fully spliced RNAs. In addition, differences in mobility were observed for an mRNA dependent on its origin from an intron-free or an intron-containing gene.
Collapse
|