1
|
D'Amato A, Laganà AS, Vitagliano A, Stanziano A, Caringella AM, Cantatore C, D'Amato G, Buzzaccarini G, Etrusco A. Ovarian Activation Surgical Techniques for Women with Premature Ovarian Insufficiency or Poor Ovarian Response: A Systematic Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2025; 19:133-143. [PMID: 40200770 PMCID: PMC11976883 DOI: 10.22074/ijfs.2024.2021822.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/28/2024] [Accepted: 12/09/2024] [Indexed: 04/10/2025]
Abstract
BACKGROUND In vitro fertilization (IVF) with egg donation often stands as the sole treatment option for women with premature ovarian insufficiency (POI) or poor ovarian response (POR); for this reason, alternative techniques are being developed, among which stand surgical techniques for ovarian activation. The aim of the present study was to evaluate the effectiveness of surgical techniques for ovarian activation in patients affected by POI or POR. MATERIALS AND METHODS In this systematic review study, a comprehensive search of the literature was carried out on the principal databases. Only original studies reporting the treatment of POI or POR using surgical techniques for ovarian activation in human subjects were deemed eligible for inclusion in this qualitative analysis. RESULTS Overall, 187 patients with POI and 65 patients with POR were treated with experimental surgical techniques. Among the POI patients, 10 pregnancies and 8 live births were achieved. In the POR group, 18 pregnancies were reported with 14 live births. CONCLUSION Ovarian fragmentation (OF) appears to be a promising method for treating POI, although large sample randomized controlled trials (RCTs) are necessary to confirm this hypothesis. Regarding POR, surgical techniques do not improve IVF outcomes, and thus should not be proposed, although they may lead to a slight increase in ovarian reserve markers as compared with before treatment. Both clinical and basic science studies are highly demanded to better understand the molecular mechanisms underlying some partially promising results, with the aim of improving currently available techniques.
Collapse
Affiliation(s)
- Antonio D'Amato
- Department of Interdisciplinary Medicine (DIM), Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, "Paolo Giaccone" Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.
| | - Amerigo Vitagliano
- Department of Interdisciplinary Medicine (DIM), Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Antonio Stanziano
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, Italy
| | - Anna Maria Caringella
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, Italy
| | - Clementina Cantatore
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, Italy
| | - Giuseppe D'Amato
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, Italy
| | - Giovanni Buzzaccarini
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Etrusco
- Unit of Obstetrics and Gynecology, "Paolo Giaccone" Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Kuracha MR, Radhakrishna U, Kuracha SV, Vegi N, Gurung JL, McVicker BL. New Horizons in Cancer Progression and Metastasis: Hippo Signaling Pathway. Biomedicines 2024; 12:2552. [PMID: 39595118 PMCID: PMC11591698 DOI: 10.3390/biomedicines12112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo pathway is highly evolved to maintain tissue homeostasis in diverse species by regulating cell proliferation, differentiation, and apoptosis. In tumor biology, the Hippo pathway is a prime example of signaling molecules involved in cancer progression and metastasis. Hippo core elements LATS1, LATS2, MST1, YAP, and TAZ have critical roles in the maintenance of traditional tissue architecture and cell homeostasis. However, in cancer development, dysregulation of Hippo signaling results in tumor progression and the formation secondary cancers. Hippo components not only transmit biochemical signals but also act as mediators of mechanotransduction pathways during malignant neoplasm development and metastatic disease. This review confers knowledge of Hippo pathway core components and their role in cancer progression and metastasis and highlights the clinical role of Hippo pathway in cancer treatment. The Hippo signaling pathway and its unresolved mechanisms hold great promise as potential therapeutic targets in the emerging field of metastatic cancer research.
Collapse
Affiliation(s)
- Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Sreenaga V. Kuracha
- Comparative Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Navyasri Vegi
- Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India;
| | - Jhyama Lhamo Gurung
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
3
|
Li X, Guo Z, Yang Y, Xiong Y, Zhang X, Qiao S, Wei K, Fang J, Ma Y. Neurofibromin 2 modulates Mammalian Ste2-like kinases1/2 and large tumor suppressor gene1 expression in A549 lung cancer cell line. Am J Transl Res 2024; 16:2571-2578. [PMID: 39006253 PMCID: PMC11236635 DOI: 10.62347/tpcm6776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
AIM To explore the impact of up- or down-regulation of Neurofibromin 2 (NF2) on the expression of downstream Hippo pathway genes, large tumor suppressor gene1 (LATS1), and phosphorylation of Mammalian Ste2-like kinases1/2 (MST1/2), in lung cancer cells. METHODS A549 lung cancer cells were used. The NF2 was down-regulated by si-RNA interference and upregulated by lentiviral vector mediated overexpression. The LATS1 and MST1/2 expressions were evaluated by real-time PCR and western blot. RESULTS Down-regulation of NF2 decreased LATS1 and MST1/2 level (P<0.05). Overexpression of NF2 increased LATS1 (P<0.05) and Mammalian Ste2-like kinases1 (MST1) (P<0.05), suggesting LATS1 and MST1 are modulated by NF2 in a lung cancer cell line. CONCLUSIONS NF2 mediates the downstream LATS1 and MST1/2 expressions in a lung cancer cell line.
Collapse
Affiliation(s)
- Xu Li
- Department of Geriatrics, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Zaiqiang Guo
- Department of Gastroenterology, Capital Medical University Electric Power Teaching Hospital Beijing 100073, China
| | - Yang Yang
- Department of Gland Surgery, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Ying Xiong
- Department of Geriatrics, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Xia Zhang
- Department of General Internal Medicine, Northern Medical Branch of The PLA General Hospital Beijing 100094, China
| | - Shubin Qiao
- Department of Respiratory, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Ke Wei
- Department of Geriatrics, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Jin Fang
- Department of Preventive Care Center, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Yonghuai Ma
- Department of Stomatology, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| |
Collapse
|
4
|
Mui CW, Chan WN, Chen B, Cheung AHK, Yu J, Lo KW, Ke H, Kang W, To KF. Targeting YAP1/TAZ in nonsmall-cell lung carcinoma: From molecular mechanisms to precision medicine. Int J Cancer 2023; 152:558-571. [PMID: 35983734 DOI: 10.1002/ijc.34249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
Accumulating evidence has underscored the importance of the Hippo-YAP1 signaling in lung tissue homeostasis, whereas its deregulation induces tumorigenesis. YAP1 and its paralog TAZ are the key downstream effectors tightly controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In solid tumors, Hippo-YAP1 crosstalks with other signaling pathways such as Wnt/β-catenin, receptor tyrosine kinase cascade, Notch and TGF-β to synergistically drive tumorigenesis. As YAP1/TAZ expression is significantly correlated with unfavorable outcomes for the patients, small molecules have been developed for targeting YAP1/TAZ to get a therapeutic effect. In this review, we summarize the recent findings on the deregulation of Hippo-YAP1 pathway in nonsmall cell lung carcinoma, discuss the molecular mechanisms of its dysregulation in leading to tumorigenesis, explore the therapeutic strategies for targeting YAP1/TAZ, and provide the research directions for deep investigation. We believe that detailed delineation of Hippo-YAP1 regulation in tumorigenesis provides novel insight for accurate therapeutic intervention.
Collapse
Affiliation(s)
- Chun Wai Mui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
5
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
6
|
Bai X, Wang S. Signaling pathway intervention in premature ovarian failure. Front Med (Lausanne) 2022; 9:999440. [PMID: 36507521 PMCID: PMC9733706 DOI: 10.3389/fmed.2022.999440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Premature ovarian failure (POF) is a multifactorial disease that refers to the occurrence of secondary amenorrhea, estrogen decrease, and gonadotropin increase in women under the age of 40. The prevalence of POF is increasing year by year, and the existing instances can be categorized as primary or secondary cases. This disease has adverse effects on both the physiology and psychology of women. Hormone replacement therapy is the recommended treatment for POF, and a multidisciplinary strategy is required to enhance the quality of life of patients. According to recent studies, the primary mechanism of POF is the depletion of ovarian reserve function as a result of increased primordial follicular activation or primordial follicular insufficiency. Therefore, understanding the processes of primordial follicle activation and associated pathways and exploring effective interventions are important for the treatment of POF.
Collapse
|
7
|
Gonfloni S, Jodice C, Gustavino B, Valentini E. DNA Damage Stress Response and Follicle Activation: Signaling Routes of Mammalian Ovarian Reserve. Int J Mol Sci 2022; 23:14379. [PMID: 36430860 PMCID: PMC9693393 DOI: 10.3390/ijms232214379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy regimens and radiotherapy are common strategies to fight cancer. In women, these therapies may cause side effects such as premature ovarian insufficiency (POI) and infertility. Clinical strategies to protect the ovarian reserve from the lethal effect of cancer therapies needs better understanding of the mechanisms underlying iatrogenic loss of follicle reserve. Recent reports demonstrate a critical role for p53 and CHK2 in the oocyte response to different DNA stressors, which are commonly used to treat cancer. Here we review the molecular mechanisms underlying the DNA damage stress response (DDR) and discuss crosstalk between DDR and signaling pathways implicated in primordial follicle activation.
Collapse
Affiliation(s)
- Stefania Gonfloni
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Carla Jodice
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Bianca Gustavino
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Elvia Valentini
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
- PhD Program in Cellular and Molecular Biology, 00133 Rome, Italy
| |
Collapse
|
8
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
9
|
Roßwag S, Sleeman JP, Thaler S. RASSF1A-Mediated Suppression of Estrogen Receptor Alpha (ERα)-Driven Breast Cancer Cell Growth Depends on the Hippo-Kinases LATS1 and 2. Cells 2021; 10:cells10112868. [PMID: 34831091 PMCID: PMC8616147 DOI: 10.3390/cells10112868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Around 70% of breast cancers express the estrogen receptor alpha (ERα). This receptor is of central importance for breast cancer development and estrogen-dependent tumor growth. However, the molecular mechanisms that are responsible for the control of ERα expression and function in the context of breast carcinogenesis are complex and not fully understood. In previous work, we have demonstrated that the tumor suppressor RASSF1A suppresses estrogen-dependent growth of breast cancer cells through a complex network that keeps ERα expression and function under control. We observed that RASSF1A mediates the suppression of ERα expression through modulation of the Hippo effector Yes-associated protein 1 (YAP1) activity. Here we report that RASSF1A-mediated alteration of YAP1 depends on the Hippo-kinases LATS1 and LATS2. Based on these results, we conclude that inactivation of RASSF1A causes changes in the function of the Hippo signaling pathway and altered activation of YAP1, and as a consequence, increased expression and function of ERα. Thus, the inactivation of RASSF1A might constitute a fundamental event that supports the initiation of ERα-dependent breast cancer. Furthermore, our results support the notion that the Hippo pathway is important for the suppression of luminal breast cancers, and that the tumor-suppressor function of RASSF1A depends on LATS1 and LATS2.
Collapse
Affiliation(s)
- Sven Roßwag
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (J.P.S.)
| | - Jonathan P. Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (J.P.S.)
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leupoldshafen, Germany
| | - Sonja Thaler
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (J.P.S.)
- Correspondence: ; Tel.: +49-621-383-71599; Fax: +49-621-383-71451
| |
Collapse
|
10
|
Current Understandings of Core Pathways for the Activation of Mammalian Primordial Follicles. Cells 2021; 10:cells10061491. [PMID: 34199299 PMCID: PMC8231864 DOI: 10.3390/cells10061491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovary has two main functions-producing mature oocytes for fertilization and secreting hormones for maintaining the ovarian endocrine functions. Both functions are vital for female reproduction. Primordial follicles are composed of flattened pre-granulosa cells and a primary oocyte, and activation of primordial follicles is the first step in follicular development and is the key factor in determining the reproductive capacity of females. The recent identification of the phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway as the key controller for follicular activation has made the study of primordial follicle activation a hot research topic in the field of reproduction. This review systematically summarizes the roles of the PI3K/PTEN signaling pathway in primordial follicle activation and discusses how the pathway interacts with various other molecular networks to control follicular activation. Studies on the activation of primordial follicles have led to the development of methods for the in vitro activation of primordial follicles as a treatment for infertility in women with premature ovarian insufficiency or poor ovarian response, and these are also discussed along with some practical applications of our current knowledge of follicular activation.
Collapse
|
11
|
Regulation of MST complexes and activity via SARAH domain modifications. Biochem Soc Trans 2021; 49:675-683. [PMID: 33860801 DOI: 10.1042/bst20200559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Three elements of the Hippo tumor suppressor pathway - MST1/2, SAV1, and RASSF1-6 - share in common a C-terminal interaction motif termed the SARAH domain. Proteins containing this domain are capable of self-association as homodimers and also of trans-association with other SARAH domain containing proteins as well as selected additional proteins that lack this domain. Recently, the association of MST1/2 with itself or with other proteins has been shown to be regulated by phosphorylation at sites near or within the SARAH domain. In this review, we focus on recent findings regarding the regulation of such MST1/2 interactions, with an emphasis on the effects of these events on Hippo pathway activity.
Collapse
|
12
|
Vo KCT, Kawamura K. In Vitro Activation Early Follicles: From the Basic Science to the Clinical Perspectives. Int J Mol Sci 2021; 22:ijms22073785. [PMID: 33917468 PMCID: PMC8038686 DOI: 10.3390/ijms22073785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
Development of early follicles, especially the activation of primordial follicles, is strictly modulated by a network of signaling pathways. Recent advance in ovarian physiology has been allowed the development of several therapies to improve reproductive outcomes by manipulating early folliculogenesis. Among these, in vitro activation (IVA) has been recently developed to extend the possibility of achieving genetically related offspring for patients with premature ovarian insufficiency and ovarian dysfunction. This method was established based on basic science studies of the intraovarian signaling pathways: the phosphoinositide 3-kinase (PI3K)/Akt and the Hippo signaling pathways. These two pathways were found to play crucial roles in folliculogenesis from the primordial follicle to the early antral follicle. Following the results of rodent experiments, IVA was implemented in clinical practice. There have been multiple recorded live births and ongoing pregnancies. Further investigations are essential to confirm the efficacy and safety of IVA before used widely in clinics. This review aimed to summarize the published literature on IVA and provide future perspectives for its improvement.
Collapse
|
13
|
Vo KCT, Kawamura K. Ovarian Fragmentation and AKT Stimulation for Expansion of Fertile Lifespan. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:636771. [PMID: 36304045 PMCID: PMC9580792 DOI: 10.3389/frph.2021.636771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Since the first baby was born after in vitro fertilization, the female infertility treatment has been well-developed, yielding successful outcomes. However, successful pregnancies for patients with premature ovarian insufficiency and diminished ovarian reserve are still difficult and diverse therapies have been suggested to improve the chances to have their genetically linked offspring. Recent studies demonstrated that the activation Akt pathway by using a phosphatase and tensin homolog enzyme inhibitor and a phosphatidylinositol-3 kinase stimulator can activate dormant primordial follicles in both mice and human ovaries. Subsequent researches suggested that the disruption of Hippo signaling pathway by ovarian fragmentation increased the expression of downstream growth factors and secondary follicle growth. Based on the combination of ovarian fragmentation and Akt stimulation, the in vitro activation (IVA) approach has resulted in successful follicle growth and live births in premature ovarian insufficiency patients. The approach with disruption of Hippo signaling only was also shown to be effective for treating poor ovarian responders with diminishing ovarian reserve, including advanced age women and cancer patients undergoing sterilizing treatments. This review aims to summarize the effectiveness of ovarian fragmentation and Akt stimulation on follicle growth and the potential of IVA in extending female fertile lifespan.
Collapse
|
14
|
IQGAP1 Is a Scaffold of the Core Proteins of the Hippo Pathway and Negatively Regulates the Pro-Apoptotic Signal Mediated by This Pathway. Cells 2021; 10:cells10020478. [PMID: 33672268 PMCID: PMC7926663 DOI: 10.3390/cells10020478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway regulates a complex signalling network which mediates several biological functions including cell proliferation, organ size and apoptosis. Several scaffold proteins regulate the crosstalk of the members of the pathway with other signalling pathways and play an important role in the diverse output controlled by this pathway. In this study we have identified the scaffold protein IQGAP1 as a novel interactor of the core kinases of the Hippo pathway, MST2 and LATS1. Our results indicate that IQGAP1 scaffolds MST2 and LATS1 supresses their kinase activity and YAP1-dependent transcription. Additionally, we show that IQGAP1 is a negative regulator of the non-canonical pro-apoptotic pathway and may enable the crosstalk between this pathway and the ERK and AKT signalling modules. Our data also show that bile acids regulate the IQGAP1-MST2-LATS1 signalling module in hepatocellular carcinoma cells, which could be necessary for the inhibition of MST2-dependent apoptosis and hepatocyte transformation.
Collapse
|
15
|
Papageorgiou K, Mastora E, Zikopoulos A, Grigoriou ME, Georgiou I, Michaelidis TM. Interplay Between mTOR and Hippo Signaling in the Ovary: Clinical Choice Guidance Between Different Gonadotropin Preparations for Better IVF. Front Endocrinol (Lausanne) 2021; 12:702446. [PMID: 34367070 PMCID: PMC8334720 DOI: 10.3389/fendo.2021.702446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
One of the most widely used types of assisted reproduction technology is the in vitro fertilization (IVF), in which women undergo controlled ovarian stimulation through the administration of the appropriate hormones to produce as many mature follicles, as possible. The most common hormone combination is the co-administration of gonadotropin-releasing hormone (GnRH) analogues with recombinant or urinary-derived follicle-stimulating hormone (FSH). In the last few years, scientists have begun to explore the effect that different gonadotropin preparations have on granulosa cells' maturation and apoptosis, aiming to identify new predictive markers of oocyte quality and successful fertilization. Two major pathways that control the ovarian development, as well as the oocyte-granulosa cell communication and the follicular growth, are the PI3K/Akt/mTOR and the Hippo signaling. The purpose of this article is to briefly review the current knowledge about the effects that the different gonadotropins, used for ovulation induction, may exert in the biology of granulosa cells, focusing on the importance of these two pathways, which are crucial for follicular maturation. We believe that a better understanding of the influence that the various ovarian stimulation protocols have on these critical molecular cascades will be invaluable in choosing the best approach for a given patient, thereby avoiding cancelled cycles, reducing frustration and potential treatment-related complications, and increasing the pregnancy rate. Moreover, individualizing the treatment plan will help clinicians to better coordinate assisted reproductive technology (ART) programs, discuss the specific options with the couples undergoing IVF, and alleviate stress, thus making the IVF experience easier.
Collapse
Affiliation(s)
- Kyriaki Papageorgiou
- Department of Biological Applications & Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology – Hellas, Ioannina, Greece
| | - Eirini Mastora
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Theologos M. Michaelidis
- Department of Biological Applications & Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology – Hellas, Ioannina, Greece
- *Correspondence: Theologos M. Michaelidis, ;
| |
Collapse
|
16
|
RASSF1A inhibits PDGFB-driven malignant phenotypes of nasopharyngeal carcinoma cells in a YAP1-dependent manner. Cell Death Dis 2020; 11:855. [PMID: 33057010 PMCID: PMC7560678 DOI: 10.1038/s41419-020-03054-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC.
Collapse
|
17
|
Hsueh AJW, Kawamura K. Hippo signaling disruption and ovarian follicle activation in infertile patients. Fertil Steril 2020; 114:458-464. [PMID: 32782158 DOI: 10.1016/j.fertnstert.2020.07.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
The Hippo signaling pathway, which is important in organ size regulation, is present in organisms from the fly to mammals. Disruption of the Hippo signaling pathway leads to increased nuclear translocation of the effector Yes-associated protein (YAP), resulting in the expression of cystein-rich 61, connective tissue growth factor, and nephroblastoma overexpressed (CCN) growth factors and baculoviral inhibitors of apoptosis repeat containing (BIRC) apoptosis inhibitors to increase organ sizes. Furthermore, genome-wide knockdown of genes in insect cells demonstrated that actin polymerization promoted nuclear translocation of YAP. In the mammalian ovary, we demonstrated the expression of Hippo signaling pathway genes and showed that ovarian fragmentation increased actin polymerization, leading to YAP nuclear translocation and increased expression of cystein-rich 61, CCN growth factors and BIRC apoptosis inhibitors, followed by enhanced follicle growth. Here we summarize evidence suggesting the role of mechanical stress on follicle growth in the ovary and describe recent use of ovary-damaging procedures to treat ovarian infertility. Ovarian fragmentation, together with in vitro incubation with Akt-stimulating drugs, formed the basis of an in vitro activation (IVA) therapy to treat patients with premature ovarian insufficiency, whereas ovarian fragmentation alone (drug-free IVA) was successful in treating patients with premature ovarian insufficiency with recent menses cessation. For middle-aged women with poor ovarian responses and diminished ovarian reserve, drug-free IVA was also effective in promoting follicle growth for infertility treatment. In addition, an in vivo follicle activation approach based on laparoscopic ovarian incision showed promise for patients with resistant ovary syndrome. With initial success using mechanical disruption approaches, future investigation could evaluate possibilities to refine mechanical methods and to locally administer actin polymerization-enhancing drugs for ovarian infertility treatment.
Collapse
Affiliation(s)
- Aaron J W Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California.
| | - Kazuhiro Kawamura
- Advanced Reproductive Medicine Research Center, Department of Obstetrics and Gynecology, International University of Health and Welfare School of Medicine, Chiba, Japan
| |
Collapse
|
18
|
Rothzerg E, Ingley E, Mullin B, Xue W, Wood D, Xu J. The Hippo in the room: Targeting the Hippo signalling pathway for osteosarcoma therapies. J Cell Physiol 2020; 236:1606-1615. [PMID: 32697358 DOI: 10.1002/jcp.29967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumour which usually occurs in children and adolescents. OS is primarily a result of chromosomal aberrations, a combination of acquired genetic changes and, hereditary, resulting in the dysregulation of cellular functions. The Hippo signalling pathway regulates cell and tissue growth by modulating cell proliferation, differentiation, and migration in developing organs. Mammalian STE20-like 1/2 (MST1/2) protein kinases are activated by neurofibromatosis type 2, Ras association domain family member 2, kidney and brain protein, or other factors. Interactions between MST1/2 and salvador family WW domain-containing protein 1 activate large tumour suppressor kinase 1/2 proteins, which in turn phosphorylate the downstream Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). Moreover, dysregulation of this pathway can lead to aberrant cell growth, resulting in tumorigenesis. Interestingly, small molecules targeting the Hippo signalling pathways, through affecting YAP/TAZ cellular localisation and their interaction with members of the TEA/ATTS domain family of transcriptional enhancers are being developed and hold promise for the treatment of OS. This review discusses the existing knowledge about the involvement of the Hippo signalling cascade in OS and highlights several small molecule inhibitors as potential novel therapeutics.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Evan Ingley
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Benjamin Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Wei Xue
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou, Guangdong, China
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Eder N, Roncaroli F, Domart MC, Horswell S, Andreiuolo F, Flynn HR, Lopes AT, Claxton S, Kilday JP, Collinson L, Mao JH, Pietsch T, Thompson B, Snijders AP, Ultanir SK. YAP1/TAZ drives ependymoma-like tumour formation in mice. Nat Commun 2020; 11:2380. [PMID: 32404936 PMCID: PMC7220953 DOI: 10.1038/s41467-020-16167-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
YAP1 gene fusions have been observed in a subset of paediatric ependymomas. Here we show that, ectopic expression of active nuclear YAP1 (nlsYAP5SA) in ventricular zone neural progenitor cells using conditionally-induced NEX/NeuroD6-Cre is sufficient to drive brain tumour formation in mice. Neuronal differentiation is inhibited in the hippocampus. Deletion of YAP1's negative regulators LATS1 and LATS2 kinases in NEX-Cre lineage in double conditional knockout mice also generates similar tumours, which are rescued by deletion of YAP1 and its paralog TAZ. YAP1/TAZ-induced mouse tumours display molecular and ultrastructural characteristics of human ependymoma. RNA sequencing and quantitative proteomics of mouse tumours demonstrate similarities to YAP1-fusion induced supratentorial ependymoma. Finally, we find that transcriptional cofactor HOPX is upregulated in mouse models and in human YAP1-fusion induced ependymoma, supporting their similarity. Our results show that uncontrolled YAP1/TAZ activity in neuronal precursor cells leads to ependymoma-like tumours in mice.
Collapse
Affiliation(s)
- Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Federico Roncaroli
- Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biology, University of Manchester, Manchester, M13 9PT, UK
| | | | - Stuart Horswell
- Bioinformatics and Biostatistics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Felipe Andreiuolo
- Institute of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn, Bonn, Germany
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andre T Lopes
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - John-Paul Kilday
- Centre for Paediatric, Teenage and Young Adult Cancer, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lucy Collinson
- Electron Microscopy Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jun-Hao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn, Bonn, Germany
| | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
20
|
Li W, Dai Y, Shi B, Yue F, Zou J, Xu G, Jiang X, Wang F, Zhou X, Liu L. LRPPRC sustains Yap-P27-mediated cell ploidy and P62-HDAC6-mediated autophagy maturation and suppresses genome instability and hepatocellular carcinomas. Oncogene 2020; 39:3879-3892. [PMID: 32203162 DOI: 10.1038/s41388-020-1257-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022]
Abstract
Mutants in the gene encoding mitochondrion-associated protein LRPPRC were found to be associated with French Canadian Type Leigh syndrome, a human disorder characterized with neurodegeneration and cytochrome c oxidase deficiency. LRPPRC interacts with one of microtubule-associated protein family MAP1S that promotes autophagy initiation and maturation to suppress genomic instability and tumorigenesis. Previously, although various studies have attributed LRPPRC nuclear acid-associated functions, we characterized that LRPPRC acted as an inhibitor of autophagy in human cancer cells. Here we show that liver-specific deletion of LRPPRC causes liver-specific increases of YAP and P27 and decreases of P62, leading to an increase of cell polyploidy and an impairment of autophagy maturation. The blockade of autophagy maturation and promotion of polyploidy caused by LRPPRC depletion synergistically enhances diethylnitrosamine-induced DNA damage, genome instability, and further tumorigenesis so that LRPPRC knockout mice develop more and larger hepatocellular carcinomas and survive a shorter lifespan. Therefore, LRPPRC suppresses genome instability and hepatocellular carcinomas and promotes survivals in mice by sustaining Yap-P27-mediated cell ploidy and P62-HDAC6-controlled autophagy maturation.
Collapse
Affiliation(s)
- Wenjiao Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu District, Guangzhou, 710700, Guangdong, PR China
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Yuan Dai
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Boyun Shi
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu District, Guangzhou, 710700, Guangdong, PR China
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Fei Yue
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Jing Zou
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Guibin Xu
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu District, Guangzhou, 710700, Guangdong, PR China
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Xianhan Jiang
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu District, Guangzhou, 710700, Guangdong, PR China
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA
| | - Xinke Zhou
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu District, Guangzhou, 710700, Guangdong, PR China
| | - Leyuan Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu District, Guangzhou, 710700, Guangdong, PR China.
- Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Blvd., Houston, TX, 77030, USA.
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
21
|
Abstract
The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain-containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore, Singapore 119077.,Center for Computational Biology, DUKE-NUS Medical School, Singapore 169857
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Singapore 119077.,Laboratory of Cancer Signaling and Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597.,Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, Singapore 117411.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Fàbregues F, Ferreri J, Méndez M, Calafell JM, Otero J, Farré R. In Vitro Follicular Activation and Stem Cell Therapy as a Novel Treatment Strategies in Diminished Ovarian Reserve and Primary Ovarian Insufficiency. Front Endocrinol (Lausanne) 2020; 11:617704. [PMID: 33716954 PMCID: PMC7943854 DOI: 10.3389/fendo.2020.617704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
Usually poor ovarian response (POR) to gonadotropins reflects a diminished ovarian reserve (DOR) that gives place to few recruitable follicles despite aggressive stimulation. The reduction in the quantity and quality of the oocytes with advanced age is physiological. However, some women experience DOR much earlier and become prematurely infertile, producing an accelerated follicular depletion towards primary ovarian insufficiency (POI). Up to now, egg donation has been commonly used to treat their infertility. In the last thirty years, specialists in assisted reproduction have focused their attention on the final stages of folliculogenesis, those that depend on the action of gonadotrophins. Nevertheless, recently novel aspects have been known to act in the initial phases, with activating and inhibiting elements. In vitro activation (IVA) combining the in vitro stimulation of the ovarian Akt signaling pathway in ovarian cortex fragments with a method named Hippo-signaling disruption. Later, a simplification of the technique designated Drug-Free IVA have shown encouraging results in patients with POI. Another innovative therapeutic option in these patients is the infusion of bone marrow-derived stem cells (BMDSC) in order to supply an adequate ovarian niche to maintain and/or promote follicular rescue in patients with impaired or aged ovarian reserves. In this review, for the first time, both therapeutic options are addressed together in a common clinical setting. The aim of this review is to analyze the physiological aspects on which these innovative techniques are based; the preliminary results obtained up to now; and the possible therapeutic role that they may have in the future with DOR and POI patients.
Collapse
Affiliation(s)
- Francesc Fàbregues
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- *Correspondence: Francesc Fàbregues,
| | - Janisse Ferreri
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Marta Méndez
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Josep María Calafell
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jordi Otero
- Biophysics and Bioengineering Unit, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biophysics and Bioengineering Unit, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
23
|
Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis 2019; 10:928. [PMID: 31804463 PMCID: PMC6895193 DOI: 10.1038/s41419-019-2169-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
The Ras association domain family protein1 isoform A (RASSF1A) is a well-known tumor-suppressor protein frequently inactivated in various human cancers. Consistent with its function as a molecular scaffold protein, referred to in many studies, RASSF1A prevents initiation of tumorigenesis, growth, and dissemination through different biological functions, including cell cycle arrest, migration/metastasis inhibition, microtubular stabilization, and apoptosis promotion. As a regulator of key cancer pathways, namely Ras/Rho GTPases and Hippo signaling without ignoring strong interaction with microtubules, RASSF1A is indeed one of the guardians of cell homeostasis. To date, as we approach the two decade anniversary of RASSF1A's discovery, this review will summarize our current knowledge on the RASSF1A key interactions as a tumor suppressor and discuss their impact on cell fate during carcinogenesis. This could facilitate a deeper understanding of tumor development and provide us with new strategies in cancer treatment by targeting the RASSF1A pathway.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- U830 INSERM "Genetics and biology of cancers, A.R.T group", Curie Institute, Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
| |
Collapse
|
24
|
Ferreri J, Fàbregues F, Calafell JM, Solernou R, Borrás A, Saco A, Manau D, Carmona F. Drug-free in-vitro activation of follicles and fresh tissue autotransplantation as a therapeutic option in patients with primary ovarian insufficiency. Reprod Biomed Online 2019; 40:254-260. [PMID: 31956062 DOI: 10.1016/j.rbmo.2019.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
Abstract
RESEARCH QUESTION Could in-vitro action of follicles and fresh tissue autotransplantation without tissue culture (drug-free IVA) be useful in patients with primary ovarian insufficiency (POI)? DESIGN Prospective observational cohort study in a tertiary university hospital. Drug-Free IVA was carried out in 14 women with POI with a median age of 33 years (29-36 years), median length of amenorrhoea of 1.5 years (1-11 years), median FSH levels 69.2 mIU/ml (36.9-82.8 mIU/ml) and anti-Müllerian hormone of 0.02 ng/ml (0.01-0.1 ng/ml). The surgical procedure included laparoscopic removal of ovarian cortex, fragmentation of tissue and autografting. Human menopausal gonadotrophin (HMG) was started immediately after surgery. RESULTS Follicle development was detected in seven out of the 14 patients, and five women achieved successful oocyte retrieval. In six women, HCG was administered in 10 cycles. Six embryo transfers were carried out in five women resulting in four pregnancies; a clinical pregnancy rate of four in seven oocyte retrievals and four in six embryo transfers. CONCLUSIONS Drug-free IVA could be a useful therapeutic option for patients with POI, leading to successful IVF outcomes.
Collapse
Affiliation(s)
- Janisse Ferreri
- Institut Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain.
| | - Francesc Fàbregues
- Institut Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain
| | | | | | - Aina Borrás
- FIVClinic, Hospital Clinic of Barcelona, Spain
| | - Adela Saco
- Pathological Anatomy Service, Hospital Clinic de Barcelona
| | - Dolors Manau
- Institut Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain
| | - Francisco Carmona
- Institut Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain
| |
Collapse
|
25
|
Masciangelo R, Hossay C, Chiti MC, Manavella DD, Amorim CA, Donnez J, Dolmans MM. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. J Assist Reprod Genet 2019; 37:101-108. [PMID: 31732846 DOI: 10.1007/s10815-019-01628-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Our aim was to elucidate the mechanisms involved in follicle activation of the ovarian reserve after human ovarian tissue transplantation, with specific focus on the role of the effectors of the PI3K (mTOR and FOXO1) and Hippo (YAP) signaling pathways and whether they are somehow altered. METHODS Frozen-thawed ovarian tissue was collected from six women (age 25-35 years) undergoing surgery for non-ovarian pathologies and divided into 4 fragments in each case: one for non-grafted controls and three for grafting to immunodeficient mice for 3, 7 and 21 days. The tissue was processed for hematoxylin and eosin staining, immunohistochemistry and immunofluorescence at different timepoints before and after grafting. Activation of the PI3K and Hippo signaling pathways was investigated by analysis of mTOR phosphorylation, FOXO1 cytoplasmic localization and YAP nuclear localization. RESULTS No change in mTOR levels was observed in primordial follicles post-transplantation, but a significant upturn was recorded in growing follicles compared with primordial follicles, irrespective of grafting time. A higher percentage of primordial follicles was also found with FOXO1 in the cytoplasm after 3 days of transplantation than in non-grafted controls. Finally, a greater proportion of primordial follicles was detected with YAP in the nucleus at all timepoints after grafting. CONCLUSIONS This study supports the hypothesis that follicle activation may occur as an early event after transplantation, with follicle growth and death both contributing to the burnout phenomenon. This is the first time that the effectors of the PI3K and Hippo pathways have been investigated in grafted human ovarian tissue and their role in burnout documented.
Collapse
Affiliation(s)
- Rossella Masciangelo
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Camille Hossay
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Maria Costanza Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Diego Daniel Manavella
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Avenue Grandchamp 143, 1150, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200, Brussels, Belgium.
- Département de Gynécologie, Cliniques Universitaires St. Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| |
Collapse
|
26
|
Hao Q, Zhu Z, Xu D, Liu W, Lyu L, Li P. Proteomic characterization of bovine granulosa cells in dominant and subordinate follicles. Hereditas 2019; 156:21. [PMID: 31293364 PMCID: PMC6593542 DOI: 10.1186/s41065-019-0097-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
Background Characterization of molecular factors regulating ovarian follicular development is critical to understanding its functional mechanism of controlling the estrous cycle, determining oocyte competency, and regulating ovulation. In previous studies, we performed next-gene sequencing to investigate the differentially expressed transcripts of bovine follicular granulosa cells (GCs) at the dominant follicle (DF) and subordinate follicle (SF) stages during the first follicular wave. This study aims to investigate the proteomic characterization of GCs of DF and SF in the bovine estrous cycle. Results In total, 3409 proteins were identified from 30,321 peptides obtained from liquid chromatograph-mass spectrometer analysis. Two hundred fifty-nine of these proteins were found to be expressed differently in DF and SF. Out of 259, a total of 26 proteins were upregulated (fold change≥2) and 233 proteins were downregulated (fold change≤0.5) in DF. Gene Ontology (GO) analysis of proteome data revealed the biological process, cellular component and molecular function of expressed proteins in DF and SF, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed important signaling pathways associated with follicular development such as the PI3K-Akt, estrogen, and insulin signaling pathways. Immunoblotting results of OGN, ROR2, and HSPB1 confirmed the accuracy of the data. Bioinformatics analysis showed that 13 proteins may be linked to follicular development. Conclusions Findings from this study will provide useful information for exploring follicular development and function. Electronic supplementary material The online version of this article (10.1186/s41065-019-0097-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingling Hao
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Zhiwei Zhu
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Dongmei Xu
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wenzhong Liu
- 2College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Lihua Lyu
- 2College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Pengfei Li
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| |
Collapse
|
27
|
Mussell A, Frangou C, Zhang J. Regulation of the Hippo signaling pathway by deubiquitinating enzymes in cancer. Genes Dis 2019; 6:335-341. [PMID: 31832513 PMCID: PMC6888741 DOI: 10.1016/j.gendis.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Regulation of the Hippo signaling pathway is essential for normal organ growth and tissue homeostasis. The proteins that act to regulate this pathway are important for ensuring proper function and cellular location. Deubiquitinases (DUBs) are a family of proteases that act upon many proteins. While ubiquitinases add ubiquitin and target proteins for degradation, DUBs act by removing ubiquitin (Ub) moieties. Changes in ubiquitin chain topology results in the stabilization of proteins, membrane trafficking, and the alteration of cellular localization. While the roles of these proteins have been well established in a cancer setting, their convergence in cancer is still under investigation. In this review, we discuss the roles that DUBs play in the regulation of the Hippo signaling pathway for homeostasis and disease.
Collapse
Affiliation(s)
- Ashley Mussell
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14261, USA
| | - Costa Frangou
- Harvard TH Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, MA 02115, USA
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14261, USA
| |
Collapse
|
28
|
Keller M, Dubois F, Teulier S, Martin APJ, Levallet J, Maille E, Brosseau S, Elie N, Hergovich A, Bergot E, Camonis J, Zalcman G, Levallet G. NDR2 kinase contributes to cell invasion and cytokinesis defects induced by the inactivation of RASSF1A tumor-suppressor gene in lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:158. [PMID: 30979377 PMCID: PMC6461807 DOI: 10.1186/s13046-019-1145-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Background RASSF1A, a tumor suppressor gene, is frequently inactivated in lung cancer leading to a YAP-dependent epithelial-mesenchymal transition (EMT). Such effects are partly due to the inactivation of the anti-migratory RhoB GTPase via the inhibitory phosphorylation of GEF-H1, the GDP/GTP exchange factor for RhoB. However, the kinase responsible for RhoB/GEF-H1 inactivation in RASSF1A-depleted cells remained unknown. Methods NDR1/2 inactivation by siRNA or shRNA effects on epithelial-mesenchymal transition, invasion, xenograft formation and growth in SCID−/− Beige mice, apoptosis, proliferation, cytokinesis, YAP/TAZ activation were investigated upon RASSF1A loss in human bronchial epithelial cells (HBEC). Results We demonstrate here that depletion of the YAP-kinases NDR1/2 reverts migration and metastatic properties upon RASSF1A loss in HBEC. We show that NDR2 interacts directly with GEF-H1 (which contains the NDR phosphorylation consensus motif HXRXXS/T), leading to GEF-H1 phosphorylation. We further report that the RASSF1A/NDR2/GEF-H1/RhoB/YAP axis is involved in proper cytokinesis in human bronchial cells, since chromosome proper segregation are NDR-dependent upon RASSF1A or GEF-H1 loss in HBEC. Conclusion To summarize, our data support a model in which, upon RASSF1A silencing, NDR2 gets activated, phosphorylates and inactivates GEF-H1, leading to RhoB inactivation. This cascade induced by RASSF1A loss in bronchial cells is responsible for metastasis properties, YAP activation and cytokinesis defects. Electronic supplementary material The online version of this article (10.1186/s13046-019-1145-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maureen Keller
- Normandie University, UNICAEN, UMR 1086 INSERM, F-14032, Caen, France.,Normandie University, UNICAEN, UPRES-EA-2608, F-14032, Caen, France
| | - Fatéméh Dubois
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Avenue H.Becquerel- 14074, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Sylvain Teulier
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Avenue H.Becquerel- 14074, F-14000, Caen, France
| | - Alexandre P J Martin
- U830 INSERM, "Génétique et Biologie des cancers" Centre de Recherche, Institut Curie, Paris, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, UPRES-EA-2608, F-14032, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, UMR 1086 INSERM, F-14032, Caen, France.,Normandie University, UNICAEN, UPRES-EA-2608, F-14032, Caen, France
| | - Solenn Brosseau
- Normandie University, UNICAEN, UMR 1086 INSERM, F-14032, Caen, France.,Normandie University, UNICAEN, UPRES-EA-2608, F-14032, Caen, France.,Service d'oncologie thoracique, CIC 1425, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris-Diderot, Paris, France
| | - Nicolas Elie
- Normandie Univ, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | | | - Emmanuel Bergot
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Avenue H.Becquerel- 14074, F-14000, Caen, France.,Service de Pneumologie-Oncologie thoracique, CHU de Caen, F-14033, Caen, France
| | - Jacques Camonis
- U830 INSERM, "Génétique et Biologie des cancers" Centre de Recherche, Institut Curie, Paris, France
| | - Gérard Zalcman
- U830 INSERM, "Génétique et Biologie des cancers" Centre de Recherche, Institut Curie, Paris, France.,Service d'oncologie thoracique, CIC 1425, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Avenue H.Becquerel- 14074, F-14000, Caen, France. .,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France.
| |
Collapse
|
29
|
Abstract
The Hippo pathway controls organ size and maintains tissue homeostasis through a central MST-LATS kinase cascade. When Hippo signaling is on, activated MST1/2 partner with SAV1 to phosphorylate and activate the LATS1/2-MOB1 complexes, which in turn phosphorylate and inactivate YAP/TAZ transcription co-activators. This process halts the expression of Hippo-responsive genes, thereby inhibiting cell proliferation and promoting apoptosis. Our studies have shown that two core adaptor proteins MOB1 and SAV1 use distinctive mechanisms to enhance Hippo signaling. MOB1 promotes MST-dependent LATS activation through dynamic scaffolding and allosteric regulation. SAV1 promotes MST activation by antagonizing the PP2A phosphatase activity. Here we describe the detailed methods for the purification and crystallization of the MST2-SAV1 and pMOB1-LATS1 complexes, for assaying the SAV1-dependent inhibition of PP2A, and for analyzing LATS1 kinase activation using in vitro reconstitution.
Collapse
Affiliation(s)
- Lisheng Ni
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuelian Luo
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Mussell AL, Denson KE, Shen H, Chen Y, Yang N, Frangou C, Zhang J. Loss of KIBRA function activates EGFR signaling by inducing AREG. Oncotarget 2018; 9:29975-29984. [PMID: 30042827 PMCID: PMC6057453 DOI: 10.18632/oncotarget.25724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
The Hippo signaling pathway is a central regulator of organ size, tissue homeostasis, and tumorigenesis. KIBRA is a member of the WW domain-containing protein family and has recently been reported to be an upstream protein in the Hippo signaling pathway. However, the clinical significance of KIBRA deregulation and the underlying mechanisms by which KIBRA regulates breast cancer (BC) initiation and progression remain poorly understood. Here, we report that KIBRA knockdown in mammary epithelial cells induced epithelial-to-mesenchymal transition (EMT) and increased cell migration and tumorigenic potential. Mechanistically, we observed that inhibiting KIBRA induced growth factor-independent cell proliferation in 2D and 3D culture due to the secretion of amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand. Also, we show that AREG activation in KIBRA-knockdown cells depended on the transcriptional coactivator YAP1. Significantly, decreased expression of KIBRA is correlated with recurrence and reduced BC patient survival. In summary, this study elucidates the molecular events that underpin the role of KIBRA in BC. As a result, our work provides biological insight into the role of KIBRA as a critical regulator of YAP1-mediated oncogenic growth, and may have clinical potential for facilitating patient stratification and identifying novel therapeutic approaches for BC patients.
Collapse
Affiliation(s)
- Ashley L Mussell
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kayla E Denson
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: Frontier Science Foundation, Amherst, NY, USA
| | - He Shen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yanmin Chen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Nuo Yang
- Department of Anesthesiology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Costa Frangou
- Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, MA, USA
| | - Jianmin Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
31
|
Real SAS, Parveen F, Rehman AU, Khan MA, Deo SVS, Shukla NK, Husain SA. Aberrant Promoter Methylation of YAP Gene and its Subsequent Downregulation in Indian Breast Cancer Patients. BMC Cancer 2018; 18:711. [PMID: 29970036 PMCID: PMC6031145 DOI: 10.1186/s12885-018-4627-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND YAP, a potent oncogene and major downstream effector of the mammalian Hippo tumor suppressor pathway can act as either oncogene or tumor suppressor gene based on the type of tissue involved. Despite various studies, the role and mechanism through which YAP mediates its tumor suppressor or oncogenic effects are not yet fully understood. Therefore in the present study we aimed to investigate YAP at DNA, mRNA and protein level and also attempted to correlate our molecular findings with various clinicopathological variables of the patients. METHODS The study comprised of a total 137 genetically unrelated women with sporadic breast cancer cases and normal adjacent tissues not infiltrated with tumor. Mutation of YAP gene was analyzed by automated DNA sequencing. YAP promoter methylation was studied using MS-PCR. Expression at mRNA and protein level was studied using qPCR and IHC respectively. RESULTS In our study YAP mRNA expression was found to be 8.65 ± 6.17 fold downregulated in 67.15% cases. The expression of YAP when analyzed at the protein level by IHC was found to be absent in 78.83% cases. Results from MS-PCR analysis showed that YAP promoter methylation plays an important role in declining the expression of YAP protein. The absence of YAP protein coincided with 86.60% methylated cases thereby showing a very strong correlation (p = 0.001). We also investigated YAP mutation at the major check point sites in the Hippo pathway and observed no mutation. A significant association was observed on correlating mRNA expression with clinical stages (p = 0.038) and protein expression with ER status (p = 0.018) among Indian breast cancer patients. CONCLUSION The expression of YAP was found to be downregulated in response to aberrant promoter methylation. The downregulation of YAP are consistent with previous studies suggesting it to have a tumor suppressive role in breast cancer. We did not observe any mutation at the major check point sites in the Hippo pathway.
Collapse
Affiliation(s)
| | - Farah Parveen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asad Ur Rehman
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | | | | | - Nootan Kumar Shukla
- Department of Surgical Oncology, All India Institute of Medical Science, New Delhi, 110608, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
32
|
O'Neill AC, Kyrousi C, Einsiedler M, Burtscher I, Drukker M, Markie DM, Kirk EP, Götz M, Robertson SP, Cappello S. Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex. Front Cell Neurosci 2018; 12:57. [PMID: 29593499 PMCID: PMC5857600 DOI: 10.3389/fncel.2018.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 12/29/2022] Open
Abstract
Disorders of neuronal mispositioning during brain development are phenotypically heterogeneous and their genetic causes remain largely unknown. Here, we report biallelic variants in a Hippo signaling factor—MOB2—in a patient with one such disorder, periventricular nodular heterotopia (PH). Genetic and cellular analysis of both variants confirmed them to be loss-of-function with enhanced sensitivity to transcript degradation via nonsense mediated decay (NMD) or increased protein turnover via the proteasome. Knockdown of Mob2 within the developing mouse cortex demonstrated its role in neuronal positioning. Cilia positioning and number within migrating neurons was also impaired with comparable defects detected following a reduction in levels of an upstream modulator of Mob2 function, Dchs1, a previously identified locus associated with PH. Moreover, reduced Mob2 expression increased phosphorylation of Filamin A, an actin cross-linking protein frequently mutated in cases of this disorder. These results reveal a key role for Mob2 in correct neuronal positioning within the developing cortex and outline a new candidate locus for PH development.
Collapse
Affiliation(s)
- Adam C O'Neill
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.,Helmholtz Center, Institute of Stem Cell Research, Munich, Germany
| | | | | | - Ingo Burtscher
- Helmholtz Center, Institute of Stem Cell Research, Munich, Germany.,Helmholtz Center Munich, Institute of Diabetes and Regeneration Research, Garching, Germany
| | - Micha Drukker
- Helmholtz Center, Institute of Stem Cell Research, Munich, Germany.,Helmholtz Center, iPSC Core Facility, Munich, Germany
| | - David M Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Edwin P Kirk
- Sydney Children's Hospital, University of New South Wales and New South Wales Health Pathology, Randwick, NSW, Australia
| | - Magdalena Götz
- Helmholtz Center, Institute of Stem Cell Research, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany.,Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany
| | - Stephen P Robertson
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
33
|
Elshimali YI, Wu Y, Khaddour H, Wu Y, Gradinaru D, Sukhija H, Chung SS, Vadgama JV. Optimization Of Cancer Treatment Through Overcoming Drug Resistance. JOURNAL OF CANCER RESEARCH AND ONCOBIOLOGY 2018; 1:107. [PMID: 29932172 PMCID: PMC6007995 DOI: 10.31021/jcro.20181107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer Drug resistance is a medical concern that requires extensive research and a thorough understanding in order to overcome. Remarkable achievements related to this field have been accomplished and further work is needed in order to optimize the cure for cancer and serve as the basis for precise medicine with few or no side effects.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Hussein Khaddour
- Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Daniela Gradinaru
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Hema Sukhija
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
| | - Seyung S. Chung
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Premature ovarian failure (POF) is diagnosed by amenorrhea before 40 years of age. Owing to exhaustion of follicles in POF ovaries, egg donation is the only option. Although menstrual cycles cease in POF patients, some of them still contain residual dormant follicles in ovaries. Recently, we developed a new infertility treatment and named it as in-vitro activation (IVA), which enables POF patients to conceive using their own eggs by activation of residual dormant follicles. Here, we summarize data showing the potential of IVA as a new infertility treatment for POF patients. RECENT FINDINGS Transgenic mouse studies revealed that the stimulation of phosphatidylinositol-3-kinase-AKT-forkhead box O3 pathway activated dormant primordial follicles. In murine and human ovaries, the phosphatase and tensin homolog inhibitors and phosphatidylinositol-3-kinase activators were demonstrated to activate dormant primordial follicles in in-vitro cultures. Subsequent studies showed that ovarian fragmentation suppressed Hippo signaling pathway, leading to ovarian follicle growth. Combining these two methods in an IVA approach followed by ovarian tissue autotransplantation, successful follicle growth, and pregnancies were reported in POF patients. Currently, two healthy babies were delivered, together with two additional pregnancies. SUMMARY IVA treatment is a potential infertility therapy for POF patients who have residual follicles.
Collapse
|
35
|
Nelson N, Clark GJ. Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling. Oncotarget 2017; 7:33821-31. [PMID: 27034171 PMCID: PMC5085121 DOI: 10.18632/oncotarget.8447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.
Collapse
Affiliation(s)
- Nicholas Nelson
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Geoffrey J Clark
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
36
|
Kawashima I, Kawamura K. Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Syst Biol Reprod Med 2017; 64:3-11. [PMID: 29224376 DOI: 10.1080/19396368.2017.1411990] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ovary is an interesting organ that shows major structural changes within a short period of time during each reproductive cycle. Follicle development is controlled by local paracrine and systemic endocrine factors. Many hormonal and molecular analyses have been conducted to find the mechanisms underlying structural changes in ovaries, However, exact mechanisms still remain to be determined. Recent development of mechanobiology facilitates the understanding on the contribution of physical forces and changes in the mechanical properties of cells and tissues to physiology and pathophysiology. The Hippo signaling pathway is one of the key players in mechanotransduction, providing an understanding of the molecular mechanisms by which cells sense and respond to mechanical signals to regulate cell proliferation and apoptosis for maintaining optimal organ sizes. Our group recently demonstrated the involvement of the Hippo signaling pathway in the regulation of ovarian follicle development. Fragmentation of ovarian cortex into small cubes changed cytoskeletal actin dynamics and induced disruption of the Hippo signaling pathway, leading to the production of CCN growth factors and anti-apoptotic BIRC. These factors, in turn, stimulated secondary follicle growth in vitro and in vivo. In this review, we summarized hormonal regulation of follicular structural changes and further focused on the role of Hippo signaling in the regulation of follicle development. We also suggest a new strategy of infertility treatments in patients with polycystic ovary syndrome and primary ovarian insufficiency based on mechanobiology.
Collapse
Affiliation(s)
- Ikko Kawashima
- a Department of Obstetrics and Gynecology , St. Marianna University School of Medicine , Kawasaki City , Kanagawa , Japan
| | - Kazuhiro Kawamura
- a Department of Obstetrics and Gynecology , St. Marianna University School of Medicine , Kawasaki City , Kanagawa , Japan
| |
Collapse
|
37
|
Arimori T, Kitago Y, Umitsu M, Fujii Y, Asaki R, Tamura-Kawakami K, Takagi J. Fv-clasp: An Artificially Designed Small Antibody Fragment with Improved Production Compatibility, Stability, and Crystallizability. Structure 2017; 25:1611-1622.e4. [PMID: 28919443 DOI: 10.1016/j.str.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/22/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Antibody fragments are frequently used as a "crystallization chaperone" to aid structural analysis of complex macromolecules that are otherwise crystallization resistant, but conventional fragment formats have not been designed for this particular application. By fusing an anti-parallel coiled-coil structure derived from the SARAH domain of human Mst1 kinase to the variable region of an antibody, we succeeded in creating a novel chimeric antibody fragment of ∼37 kDa, termed "Fv-clasp," which exhibits excellent crystallization compatibility while maintaining the binding ability of the original IgG molecule. The "clasp" and the engineered disulfide bond at the bottom of the Fv suppressed the internal mobility of the fragment and shielded hydrophobic residues, likely contributing to the high heat stability and the crystallizability of the Fv-clasp. Finally, Fv-clasp antibodies showed superior "chaperoning" activity over conventional Fab fragments, and facilitated the structure determination of an ectodomain fragment of integrin α6β1.
Collapse
Affiliation(s)
- Takao Arimori
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Kitago
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masataka Umitsu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Fujii
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Asaki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Lu X, Guo S, Cheng Y, Kim JH, Feng Y, Feng Y. Stimulation of ovarian follicle growth after AMPK inhibition. Reproduction 2017; 153:683-694. [DOI: 10.1530/rep-16-0577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022]
Abstract
Previous studies showed that the protein kinase B (Akt)–mammalian target of rapamycin (mTOR) and Hippo signaling Yes-associated protein (YAP) pathways play important roles in promoting follicle growth. Additionally, other studies demonstrated that 5′ adenosine monophosphate-activated protein kinase (AMPK) is an upstream regulatory element of mTOR and YAP. Here, we used AMPK inhibitor (Compound C) toin vitrocultured ovaries from 10-day-old mice followed byin vivografting into adult hosts or toin situtreated ovaries of 3-week-old mice by intrabursal injection followed by gonadotropin stimulation. We found that the phosphorylation of ovarian mTOR and downstream proteins (ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4B (eIF4B)) was upregulated following Compound C administration, whereas tuberous sclerosis complex 2 (TSC2) phosphorylation was downregulated. Additionally, treatment with Compound C increased hypoxia-inducible factor 1-alpha (Hif1a), vascular endothelial growth factor A (Vegfa), VEGF receptor 2 (Vegfr2) and connective tissue growth factor (Ctgf) mRNA levels. Furthermore, treatment of 10-day-old mice with Compound C promoted the growth of preantral and antral follicles accompanied by enhanced angiogenesis.In situintrabursal injection with Compound C, followed by controlled ovarian hyperstimulation, increased the number of ovulated oocytes in 3-week-old mice, and these oocytes could be successfully fertilized, leading to the delivery of healthy pups. Our results demonstrated that treatment with AMPK inhibitor resulted in the activation of the mTOR signaling pathway, increases inCtgfexpression in mouse ovaries, stimulation of follicle development and promotion of ovarian angiogenesis for ovary growth.
Collapse
|
39
|
Abstract
The Hippo pathway is an essential tumor suppressor signaling network that coordinates cell proliferation, death, and differentiation in higher eukaryotes. Intriguingly, the core components of the Hippo pathway are conserved from yeast to man, with the yeast analogs of mammalian MST1/2 (fly Hippo), MOB1 (fly Mats), LATS1/2 (fly Warts), and NDR1/2 (fly Tricornered) functioning as essential components of the mitotic exit network (MEN). Here, we update our previous summary of mitotic functions of Hippo core components in Drosophila melanogaster and mammals, with particular emphasis on similarities between the yeast MEN pathway and mitotic Hippo signaling. Mitotic functions of YAP and TAZ, the two main effectors of Hippo signaling, are also discussed.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks Laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
40
|
SARAH Domain-Mediated MST2-RASSF Dimeric Interactions. PLoS Comput Biol 2016; 12:e1005051. [PMID: 27716844 PMCID: PMC5055338 DOI: 10.1371/journal.pcbi.1005051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/04/2016] [Indexed: 11/23/2022] Open
Abstract
RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear. Here, we study the interactions between RASSF1A, RASSF5, and MST2 SARAH domains by using both atomistic molecular simulation techniques and experiments. We construct and study models of MST2 homodimers and MST2-RASSF SARAH heterodimers, and we identify the factors that control their high molecular stability. In addition, we also analyze both computationally and experimentally the interactions of MST2 SARAH domains with a series of synthetic peptides particularly designed to bind to it, and hope that our approach can be used to address some of the challenging problems in designing new anti-cancer drugs. We model the conformational changes and protein-protein interactions of enzymes involved in signaling along the Hippo pathway—a key molecular mechanism that controls the process of programmed cell death in eukaryotic cells, including cells affected by cancer. Combining modern computational modeling techniques with experimental information from X-ray crystallography and systems biology studies, can unveil detailed molecular interactions and lead to novel drugs. Here, we study the atomistic mechanisms and interactions between MST2 and RASSF-type kinases, through their respective SARAH domains—highly conserved, long, terminal α-helices, which play essential roles in the activation of MST kinases and, therefore, in modulating apoptosis. In spite of their key roles in mediating cell signaling pathways, there is little structural information available for the RASSF SARAH domains and their dimerization with the MST2 SARAH domains. In particular, the RASSF1A crystal structure is not available yet. Here, we model, refine and validate atomistic structural models of dimers of the RASSF1A and MST2 SARAH domains, studying the interaction and the dynamic behavior of these molecular complexes using homology modeling, docking and full atomistic molecular dynamics simulations. Experimentally, we validate our approach by designing a novel peptide that can disrupt effectively MST2 homo and hetero SARAH dimers.
Collapse
|
41
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
Dubois F, Keller M, Calvayrac O, Soncin F, Hoa L, Hergovich A, Parrini MC, Mazières J, Vaisse-Lesteven M, Camonis J, Levallet G, Zalcman G. RASSF1A Suppresses the Invasion and Metastatic Potential of Human Non-Small Cell Lung Cancer Cells by Inhibiting YAP Activation through the GEF-H1/RhoB Pathway. Cancer Res 2016; 76:1627-40. [PMID: 26759237 DOI: 10.1158/0008-5472.can-15-1008] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
Inactivation of the tumor suppressor gene RASSF1A by promoter hypermethylation represents a key event underlying the initiation and progression of lung cancer. RASSF1A inactivation is also associated with poor prognosis and may promote metastatic spread. In this study, we investigated how RASSF1A inactivation conferred invasive phenotypes to human bronchial cells. RNAi-mediated silencing of RASSF1A induced epithelial-to-mesenchymal transition (EMT), fomenting a motile and invasive cellular phenotype in vitro and increased metastatic prowess in vivo. Mechanistic investigations revealed that RASSF1A blocked tumor growth by stimulating cofilin/PP2A-mediated dephosphorylation of the guanine nucleotide exchange factor GEF-H1, thereby stimulating its ability to activate the antimetastatic small GTPase RhoB. Furthermore, RASSF1A reduced nuclear accumulation of the Hippo pathway transcriptional cofactor Yes-associated protein (YAP), which was reinforced by RhoB activation. Collectively, our results indicated that RASSF1 acts to restrict EMT and invasion by indirectly controlling YAP nuclear shuttling and activation through a RhoB-regulated cytoskeletal remodeling process, with potential implications to delay the progression of RASSF1-hypermethylated lung tumors.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Universite, UMR1086 INSERM, Caen, France. Normandie Universite, UPRES-EA-2608, Caen, France
| | - Maureen Keller
- Normandie Universite, UMR1086 INSERM, Caen, France. Normandie Universite, UPRES-EA-2608, Caen, France
| | | | | | - Lily Hoa
- UCL Cancer Institute, London, United Kingdom
| | | | | | | | | | | | | | - Gérard Zalcman
- Normandie Universite, UMR1086 INSERM, Caen, France. Pneumologie et Oncologie thoracique, Hôpital Bichat, France.
| |
Collapse
|
43
|
Frey S, Reschka EJ, Pöggeler S. Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex. PLoS One 2015; 10:e0139163. [PMID: 26418262 PMCID: PMC4587736 DOI: 10.1371/journal.pone.0139163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain.
Collapse
Affiliation(s)
- Stefan Frey
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, Göttingen, Germany
| | - Eva J. Reschka
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
44
|
Kim EA, Kim YH, Kang HW, Yoon HY, Kim WT, Kim YJ, Yun SJ, Moon SK, Choi YH, Kim IY, Lee SC, Kim WJ. Lower Levels of Human MOB3B Are Associated with Prostate Cancer Susceptibility and Aggressive Clinicopathological Characteristics. J Korean Med Sci 2015; 30:937-42. [PMID: 26130958 PMCID: PMC4479949 DOI: 10.3346/jkms.2015.30.7.937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/01/2015] [Indexed: 12/02/2022] Open
Abstract
Mps one binder (MOB) proteins are integral components of signaling pathways that control important cellular processes, such as mitotic exit, centrosome duplication, apoptosis, and cell proliferation. However, the biochemical and cellular functions of the human MOB (hMOB) protein family remain largely unknown. The present study investigated the association between hMOB3B expression and clinicopathological characteristics of prostate cancer (PCa).Study subjects included 137 PCa patients and 137 age-matched benign prostatic hyperplasia (BPH) patients. hMOB3B expression was estimated using real-time PCR and compared with clinicopathological parameters of PCa. hMOB3B mRNA expression was significantly lower in PCa tissues than in BPH control tissues (P<0.001). According to receiver operating characteristics curve analysis, the sensitivity of hMOB3B expression for PCa diagnosis was 84.7%, with a specificity of 86% (AUC=0.910; 95% CI=0.869-0.941; P<0.001). hMOB3B expression was significantly lower in patients with elevated prostate specific antigen (PSA) levels (≥10 ng/mL), a Gleason score≥8, and metastatic disease (any T, N+/M+) than in those with low PSA levels, a low Gleason score, and non-metastatic disease (each P<0.05). In conclusion, low levels of hMOB3B are closely associated with aggressive clinicopathologic features in patients with PCa. Our results suggest that hMOB3B may act as a tumor suppressor in human PCa.
Collapse
Affiliation(s)
- Eun-Ah Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ye-Hwan Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hyung-Yoon Yoon
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Yong-June Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Seok-Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sung-Kwon Moon
- Department of Food and Biotechnology, Chung-Ang University, Seoul, Korea
| | - Yung Hyun Choi
- Department of Biomaterial Control, Dong-Eui University, Busan, Korea
| | - Isaac Yi Kim
- Section of Urological Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
45
|
Cheng Y, Feng Y, Jansson L, Sato Y, Deguchi M, Kawamura K, Hsueh AJ. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J 2015; 29:2423-30. [PMID: 25690654 DOI: 10.1096/fj.14-267856] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/27/2015] [Indexed: 11/11/2022]
Abstract
Hippo signaling pathway consists of conserved serine/threonine kinases to maintain optimal organ sizes. Studies have demonstrated that fragmentation of murine ovaries increases actin polymerization and disrupts Hippo signaling, leading to nuclear translocation of Hippo signaling effector Yes-associated protein (YAP) in ovarian follicles and follicle growth. For patients with polycystic ovarian syndrome showing follicle arrest, ovarian wedge resection and laser drilling promote follicle growth. Because these damaging procedures likely involve actin polymerization, we tested whether actin polymerization-promoting drugs could promote YAP translocation and stimulate follicle growth. Treatment of murine ovaries with μM Jasplakinolide (JASP), an actin polymerization-promoting cyclic peptide, or sphingosine-1-phosphate (S1P), a follicular fluid constituent known to promote actin polymerization, increased the conversion of globular actin to the filamentous form, followed by increased nuclear YAP and expression of downstream connective tissue growth factor (CCN2). After short-term treatments with JASP or S1P, in vitro cultured and in vivo grafted ovaries showed follicle growth. Furthermore, induction of constitutively active YAP in ovarian grafts of transgenic mice enhanced follicle development, whereas treatment of human ovarian cortices with JASP or S1P increased CCN2 expression. Thus, JASP and S1P stimulate follicle growth and are potential therapeutic agents for treating polycystic ovarian syndrome and other ovarian disorders.
Collapse
Affiliation(s)
- Yuan Cheng
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yi Feng
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Lina Jansson
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yorino Sato
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masashi Deguchi
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuhiro Kawamura
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Aaron J Hsueh
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
46
|
Abstract
Although hormonal regulation of ovarian follicle development has been extensively investigated, most studies concentrate on the development of early antral follicles to the preovulatory stage, leading to the successful use of exogenous FSH for infertility treatment. Accumulating data indicate that preantral follicles are under stringent regulation by FSH and local intraovarian factors, thus providing the possibility to develop new therapeutic approaches. Granulosa cell-derived C-type natriuretic factor not only suppresses the final maturation of oocytes to undergo germinal vesicle breakdown before ovulation but also promotes preantral and antral follicle growth. In addition, several oocyte- and granulosa cell-derived factors stimulate preantral follicle growth by acting through wingless, receptor tyrosine kinase, receptor serine kinase, and other signaling pathways. In contrast, the ovarian Hippo signaling pathway constrains follicle growth and disruption of Hippo signaling promotes the secretion of downstream CCN growth factors capable of promoting follicle growth. Although the exact hormonal factors involved in primordial follicle activation has yet to be elucidated, the protein kinase B (AKT) and mammalian target of rapamycin signaling pathways are important for the activation of dormant primordial follicles. Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, promote the growth of preantral follicles in patients with primary ovarian insufficiency, leading to a new infertility intervention for such patients. Elucidation of intraovarian mechanisms underlying early folliculogenesis may allow the development of novel therapeutic strategies for patients diagnosed with primary ovarian insufficiency, polycystic ovary syndrome, and poor ovarian response to FSH stimulation, as well as for infertile women of advanced reproductive age.
Collapse
Affiliation(s)
- Aaron J W Hsueh
- Program of Reproductive and Stem Cell Biology (A.J.W.H., Y.C.), Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317; Department of Obstetrics and Gynecology (K.K.), St. Mariana University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan; Department of Reproductive Medicine & Gynecology (B.C.J.M.F.), University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Shi Z, Jiao S, Zhou Z. Structural dissection of Hippo signaling. Acta Biochim Biophys Sin (Shanghai) 2015; 47:29-38. [PMID: 25476203 DOI: 10.1093/abbs/gmu107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway controls cell number and organ size by restricting cell proliferation and promoting apoptosis, and thus is a key regulator in development and homeostasis. Dysfunction of the Hippo pathway correlates with many pathological conditions, especially cancer. Hippo signaling also plays important roles in tissue regeneration and stem cell biology. Therefore, the Hippo pathway is recognized as a crucial target for cancer therapy and regeneration medicine. To date, structures of several key components in Hippo signaling have been determined. In this review, we summarize current available structural studies of the Hippo pathway, which may help to improve our understanding of its regulatory mechanisms, as well as to facilitate further functional studies and potential therapeutic interventions.
Collapse
|
48
|
Chen SH, Li DL, Yang F, Wu Z, Zhao YY, Jiang Y. Gemcitabine-induced pancreatic cancer cell death is associated with MST1/cyclophilin D mitochondrial complexation. Biochimie 2014; 103:71-9. [PMID: 24732633 DOI: 10.1016/j.biochi.2014.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/03/2014] [Indexed: 12/18/2022]
Abstract
The pancreatic adenocarcinoma remains the most aggressive human malignancy with an extremely low 5-year overall survival. Postoperative gemcitabine could significantly delay recurrence after complete resection of pancreatic cancer. However, the underlying mechanisms are not fully understood. The chemo-resistance factors against gemcitabine still need further characterizations. Here we studied the mechanism of gemcitabine-induced pancreatic cancer cell death by focusing on mammalian sterile 20-like kinase 1 (MST1) and cyclophilin D (Cyp-D). We found that MST1 and Cyp-D expressions were significantly lower in gemcitabine-resistant pancreatic cancer tissues and cell lines. In vitro, gemcitabine activated MST1 through reactive oxygen species (ROS) production, which was prevented by antioxidant n-acetyl-cysteine (NAC). We found that gemcitabine-activated MST1 translocated to mitochondria and formed a complex with the local protein Cyp-D. Gemcitabine-induced cell death was alleviated by MST1 or Cyp-D shRNA silencing, but was aggravated by MST1 or Cyp-D over-expression. Further, cyclosporin A (CsA), the Cyp-D inhibitor, prevented gemcitabine-induced MST1/Cyp-D mitochondrial complexation and cancer cell death. We suggest that gemcitabine-induced death of pancreatic cancer cells requires MST1/Cyp-D mitochondrial complexation.
Collapse
Affiliation(s)
- Shao-Hua Chen
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Dong-Liang Li
- Department of Hepatobiliary Medicine, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China.
| | - Fang Yang
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Zhe Wu
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Yong-Yang Zhao
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China
| |
Collapse
|
49
|
Gomez M, Gomez V, Hergovich A. The Hippo pathway in disease and therapy: cancer and beyond. Clin Transl Med 2014; 3:22. [PMID: 25097725 PMCID: PMC4107774 DOI: 10.1186/2001-1326-3-22] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022] Open
Abstract
The Hippo tumour suppressor pathway co-ordinates cell proliferation, cell death and cell differentiation to regulate tissue growth control. In mammals, a conserved core Hippo signalling module receives signal inputs on different levels to ensure the proper regulation of YAP/TAZ activities as transcriptional co-activators. While the core module members MST1/2, Salvador, LATS1/2 and MOB1 have been attributed tumour suppressive functions, YAP/TAZ have been mainly described to have oncogenic roles, although some reports provided evidence supporting growth suppressive roles of YAP/TAZ in certain cancer settings. Intriguingly, mammalian Hippo signalling is also implicated in non-cancer diseases and plays a role in tissue regeneration following injury. Cumulatively, these findings indicate that the pharmacological inhibition or activation of the Hippo pathway could be desirable depending on the disease context. In this review, we first summarise the functions of the mammalian Hippo pathway in tumour formation, and then discuss non-cancer diseases involving Hippo signalling core components with a specific focus on our current understanding of the non-cancer roles of MST1/2 and YAP/TAZ. In addition, the pros and cons of possible pharmacological interventions with Hippo signalling will be reviewed, with particular emphasis on anti-cancer drug development and regenerative medicine.
Collapse
Affiliation(s)
- Marta Gomez
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT London, UK
| | - Valenti Gomez
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT London, UK
| | - Alexander Hergovich
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT London, UK
| |
Collapse
|
50
|
Rachfall N, Johnson AE, Mehta S, Chen JS, Gould KL. Cdk1 promotes cytokinesis in fission yeast through activation of the septation initiation network. Mol Biol Cell 2014; 25:2250-9. [PMID: 24920823 PMCID: PMC4116299 DOI: 10.1091/mbc.e14-04-0936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe, late mitotic events are coordinated with cytokinesis by the septation initiation network (SIN), an essential spindle pole body (SPB)-associated kinase cascade, which controls the formation, maintenance, and constriction of the cytokinetic ring. It is not fully understood how SIN initiation is temporally regulated, but it depends on the activation of the GTPase Spg1, which is inhibited during interphase by the essential bipartite GTPase-activating protein Byr4-Cdc16. Cells are particularly sensitive to the modulation of Byr4, which undergoes cell cycle-dependent phosphorylation presumed to regulate its function. Polo-like kinase, which promotes SIN activation, is partially responsible for Byr4 phosphorylation. Here we show that Byr4 is also controlled by cyclin-dependent kinase (Cdk1)-mediated phosphorylation. A Cdk1 nonphosphorylatable Byr4 phosphomutant displays severe cell division defects, including the formation of elongated, multinucleate cells, failure to maintain the cytokinetic ring, and compromised SPB association of the SIN kinase Cdc7. Our analyses show that Cdk1-mediated phosphoregulation of Byr4 facilitates complete removal of Byr4 from metaphase SPBs in concert with Plo1, revealing an unexpected role for Cdk1 in promoting cytokinesis through activation of the SIN pathway.
Collapse
Affiliation(s)
- Nicole Rachfall
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sapna Mehta
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|