1
|
Jiménez-Leiva A, Cabrera JJ, Torres MJ, Richardson DJ, Bedmar EJ, Gates AJ, Delgado MJ, Mesa S. Haem is involved in the NO-mediated regulation by Bradyrhizobium diazoefficiens NnrR transcription factor. Microbiol Res 2025; 297:128151. [PMID: 40185027 DOI: 10.1016/j.micres.2025.128151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Nitric oxide (NO) and the greenhouse gas (GHG) nitrous oxide (N2O) contribute significantly to climate change. In rhizobia, the denitrifying enzyme c-type nitric oxide reductase (cNor), encoded by norCBQD genes, is crucial for maintaining a delicate balance of NO and N2O levels. In the soybean endosymbiont Bradyrhizobium diazoefficiens, maximal expression of norCBQD genes in response to NO is controlled by NnrR, which belongs to a distinct clade of the CRP/FNR family of bacterial transcription factors. This protein participates in the FixLJ-FixK2-NnrR regulatory cascade that induces denitrification genes expression in response to oxygen limitation and nitrogen oxides. However, the molecular mechanism underpinning NO sensing by B. diazoefficiens NnrR has remained elusive. Here, we revealed that NnrR induces norCBQD gene expression in response to NO uncoupled from the superimposed FixK2 control. Moreover, NO-mediated induction by NnrR is dependent on haem, as the expression of a norC-lacZ fusion was impaired in a hemN2 mutant defective in haem biosynthesis. In vitro studies showed that NnrR bound haem with a 1:1 stoichiometry (monomer:haem), according to titration experiments of recombinant NnrR protein with hemin performed under anaerobic conditions. Furthermore, the full UV-Visible spectra of haem-reconstituted NnrR showed a peak at 411 nm (ferric form), and at 425 nm (ferrous derivative). This latter complex was able to bind NO under anaerobic conditions. Finally, we performed a functional mutagenesis of specific residues in NnrR predicted as putative ligands for haem binding. While H11 was important for norC expression and Nor activity, a H11A-H56A protein variant showed a reduced affinity for haem binding. Taken together, our results identify haem as the cofactor for NnrR-mediated NO sensing in B. diazoefficiens denitrification, with H11 as a key residue for NnrR function, providing the first insight into the mechanism of an NnrR-type protein. These findings advance our understanding of how bacterial systems orchestrate the denitrification process and respond to environmental cues such as NO.
Collapse
Affiliation(s)
- Andrea Jiménez-Leiva
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - María J Torres
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - Eulogio J Bedmar
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - María J Delgado
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| |
Collapse
|
2
|
Su R, Zhao D, Zhang X, Zhang H, Cheng J, Xu L, Wu QL, Zeng J. Dissimilatory nitrate reduction pathways drive high nitrous oxide emissions and nitrogen retention under the flash drought in the largest freshwater lake in China. WATER RESEARCH 2025; 274:123075. [PMID: 39813892 DOI: 10.1016/j.watres.2024.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/05/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (N2O) emissions and nitrogen (N) retention. However, the responses of the DNR pathways in the floodplain lake to the record-breaking FD in 2022 in Yangtze River of China, as well as the underlying microbial mechanisms and feedbacks to climate change remain poorly understood. Here, we collected exposed sediments and Carex cinerascens-associated soils in the littoral wetlands of Poyang Lake during 2022 FD and the dry seasons prior to and after this event. The potential DNR rates and the synergistic metabolism of microbial guilds involved in DNR were investigated using 15N isotope pairing technique, high-throughput and metagenomic sequencing. We found that the in situ N2O fluxes in the littoral wetlands were highest during the flash drought, especially in the exposed sediments. The potential DNRA rates were highest under flash drought conditions, and DNRA dominated the DNR for both exposed sediments (80.4 %) and Carex cinerascens-associated soils (57.5 %). Nutrients (i.e., N and P) and DNRA bacterial communities played a key role in producing the extremely high N2O fluxes from exposed sediments, which could be explained by the synergistic metabolism of DNRA bacteria and denitrifiers through the exchange of the key intermediates in DNR. Therefore, the climate change-induced flash drought promoted greater nitrous oxide emissions and N retention in the littoral wetlands of Poyang Lake, producing a greater flux of greenhouse gas emissions and elevating the risk of lake eutrophication. Hence, flash droughts reinforce a positive feedback between climate change and nitrous oxide emission from these aquatic ecosystems.
Collapse
Affiliation(s)
- Rui Su
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| | - Xiaomin Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
| | - Hongjie Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Junxiang Cheng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| | - Ligang Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China.
| |
Collapse
|
3
|
Zhang D, Wu Q, Zhao Y, Yan Z, Xiao A, Yu H, Cao Y. Dual RNA-Seq Analysis Pinpoints a Balanced Regulation between Symbiosis and Immunity in Medicago truncatula- Sinorhizobium meliloti Symbiotic Nodules. Int J Mol Sci 2023; 24:16178. [PMID: 38003367 PMCID: PMC10671737 DOI: 10.3390/ijms242216178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| |
Collapse
|
4
|
Fukudome M, Shimokawa Y, Hashimoto S, Maesako Y, Uchi-Fukudome N, Niihara K, Osuki KI, Uchiumi T. Nitric Oxide Detoxification by Mesorhizobium loti Affects Root Nodule Symbiosis with Lotus japonicus. Microbes Environ 2021; 36. [PMID: 34470944 PMCID: PMC8446750 DOI: 10.1264/jsme2.me21038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Root nodule symbiosis between legumes and rhizobia involves nitric oxide (NO) regulation by both the host plant and symbiotic rhizobia. However, the mechanisms by which the rhizobial control of NO affects root nodule symbiosis in Lotus japonicus are unknown. Therefore, we herein investigated the effects of enhanced NO removal by Mesorhizobium loti on symbiosis with L. japonicus. The hmp gene, which in Sinorhizobium meliloti encodes a flavohemoglobin involved in NO detoxification, was introduced into M. loti to generate a transconjugant with enhanced NO removal. The symbiotic phenotype of the transconjugant with L. japonicus was examined. The transconjugant showed delayed infection and higher nitrogenase activity in mature nodules than the wild type, whereas nodule senescence was normal. This result is in contrast to previous findings showing that enhanced NO removal in L. japonicus by class 1 phytoglobin affected nodule senescence. To evaluate differences in NO detoxification between M. loti and L. japonicus, NO localization in nodules was investigated. The enhanced expression of class 1phytoglobin in L. japonicus reduced the amount of NO not only in infected cells, but also in vascular bundles, whereas that of hmp in M. loti reduced the amount of NO in infected cells only. This difference suggests that NO detoxification by M. loti exerts different effects in symbiosis than that by L. japonicus.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University.,Division of Symbiotic Systems, National Institute for Basic Biology
| | - Yuta Shimokawa
- Graduate School of Science and Engineering, Kagoshima University
| | - Shun Hashimoto
- Graduate School of Science and Engineering, Kagoshima University
| | - Yusuke Maesako
- Graduate School of Science and Engineering, Kagoshima University
| | - Nahoko Uchi-Fukudome
- Graduate School of Science and Engineering, Kagoshima University.,Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Kota Niihara
- Graduate School of Science and Engineering, Kagoshima University
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
5
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
6
|
Wang LK, Chen X, Wei W, Xu Q, Sun J, Mannina G, Song L, Ni BJ. Biological Reduction of Nitric Oxide for Efficient Recovery of Nitrous Oxide as an Energy Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1992-2005. [PMID: 33430585 DOI: 10.1021/acs.est.0c04037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical absorption-biological reduction based on Fe(II)EDTA is a promising technology to remove nitric oxide (NO) from flue gases. However, limited effort has been made to enable direct energy recovery from NO through production of nitrous oxide (N2O) as a potential renewable energy rather than greenhouse gas. In this work, the enhanced energy recovery in the form of N2O via biological NO reduction was investigated by conducting short-term and long-term experiments at different Fe(II)EDTA-NO and organic carbon levels. The results showed both NO reductase and N2O reductase were inhibited at Fe(II)EDTA-NO concentration up to 20 mM, with the latter being inhibited more significantly, thus facilitating N2O accumulation. Furthermore, N2O accumulation was enhanced under carbon-limiting conditions because of electron competition during short-term experiments. Up to 47.5% of NO-N could be converted to gaseous N2O-N, representing efficient N2O recovery. Fe(II)EDTA-NO reduced microbial diversity and altered the community structure toward Fe(II)EDTA-NO-reducing bacteria-dominated culture during long-term experiments. The most abundant bacterial genus Pseudomonas, which was able to resist the toxicity of Fe(II)EDTA-NO, was significantly enriched, with its relative abundance increased from 1.0 to 70.3%, suggesting Pseudomonas could be the typical microbe for the energy recovery technology in NO-based denitrification.
Collapse
Affiliation(s)
- Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xueming Chen
- College of Environment and Resources, Fuzhou University, Fujian 350116, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Giorgio Mannina
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Engineering Department, Palermo University, Viale delle Scienze, ed. 8, 90128 Palermo, Italy
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
7
|
Salas A, Tortosa G, Hidalgo-García A, Delgado A, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. The Hemoglobin Bjgb From Bradyrhizobium diazoefficiens Controls NO Homeostasis in Soybean Nodules to Protect Symbiotic Nitrogen Fixation. Front Microbiol 2020; 10:2915. [PMID: 31998252 PMCID: PMC6965051 DOI: 10.3389/fmicb.2019.02915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
Legume-rhizobia symbiotic associations have beneficial effects on food security and nutrition, health and climate change. Hypoxia induced by flooding produces nitric oxide (NO) in nodules from soybean plants cultivated in nitrate-containing soils. As NO is a strong inhibitor of nitrogenase expression and activity, this negatively impacts symbiotic nitrogen fixation in soybean and limits crop production. In Bradyrhizobium diazoefficiens, denitrification is the main process involved in NO formation by soybean flooded nodules. In addition to denitrification, nitrate assimilation is another source of NO in free-living B. diazoefficiens cells and a single domain hemoglobin (Bjgb) has been shown to have a role in NO detoxification during nitrate-dependent growth. However, the involvement of Bjgb in protecting nitrogenase against NO in soybean nodules remains unclear. In this work, we have investigated the effect of inoculation of soybean plants with a bjgb mutant on biological nitrogen fixation. By analyzing the proportion of N in shoots derived from N2-fixation using the 15N isotope dilution technique, we found that plants inoculated with the bjgb mutant strain had higher tolerance to flooding than those inoculated with the parental strain. Similarly, reduction of nitrogenase activity and nifH expression by flooding was less pronounced in bjgb than in WT nodules. These beneficial effects are probably due to the reduction of NO accumulation in bjgb flooded nodules compared to the wild-type nodules. This decrease is caused by an induction of expression and activity of the denitrifying NO reductase enzyme in bjgb bacteroids. As bjgb deficiency promotes NO-tolerance, the negative effect of NO on nitrogenase is partially prevented and thus demonstrates that inoculation of soybean plants with the B. diazoefficiens bjgb mutant confers protection of symbiotic nitrogen fixation during flooding.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alba Hidalgo-García
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio Delgado
- Laboratory of Stable Isotopes Biogeochemistry, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Bruand C, Meilhoc E. Nitric oxide in plants: pro- or anti-senescence. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4419-4427. [PMID: 30868162 DOI: 10.1093/jxb/erz117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Senescence is a regulated process of tissue degeneration that can affect any plant organ and consists of the degradation and remobilization of molecules to other growing tissues. Senescent organs display changes at the microscopic level as well as modifications to internal cellular structure and differential gene expression. A large number of factors influencing senescence have been described including age, nutrient supply, and environmental interactions. Internal factors such as phytohormones also affect the timing of leaf senescence. A link between the senescence process and the production of nitric oxide (NO) in senescing tissues has been known for many years. Remarkably, this link can be either a positive or a negative correlation depending upon the organ. NO can be both a signaling or a toxic molecule and is known to have multiple roles in plants; this review considers the duality of NO roles in the senescence process of two different plant organs, namely the leaves and root nodules.
Collapse
Affiliation(s)
- Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, INSA, Castanet-Tolosan, France
| | - Eliane Meilhoc
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, INSA, Castanet-Tolosan, France
| |
Collapse
|
9
|
Jiménez-Leiva A, Cabrera JJ, Bueno E, Torres MJ, Salazar S, Bedmar EJ, Delgado MJ, Mesa S. Expanding the Regulon of the Bradyrhizobium diazoefficiens NnrR Transcription Factor: New Insights Into the Denitrification Pathway. Front Microbiol 2019; 10:1926. [PMID: 31481951 PMCID: PMC6710368 DOI: 10.3389/fmicb.2019.01926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Denitrification in the soybean endosymbiont Bradyrhizobium diazoefficiens is controlled by a complex regulatory network composed of two hierarchical cascades, FixLJ-FixK2-NnrR and RegSR-NifA. In the former cascade, the CRP/FNR-type transcription factors FixK2 and NnrR exert disparate control on expression of core denitrifying systems encoded by napEDABC, nirK, norCBQD, and nosRZDFYLX genes in response to microoxia and nitrogen oxides, respectively. To identify additional genes controlled by NnrR and involved in the denitrification process in B. diazoefficiens, we compared the transcriptional profile of an nnrR mutant with that of the wild type, both grown under anoxic denitrifying conditions. This approach revealed more than 170 genes were simultaneously induced in the wild type and under the positive control of NnrR. Among them, we found the cycA gene which codes for the c550 soluble cytochrome (CycA), previously identified as an intermediate electron donor between the bc1 complex and the denitrifying nitrite reductase NirK. Here, we demonstrated that CycA is also required for nitrous oxide reductase activity. However, mutation in cycA neither affected nosZ gene expression nor NosZ protein steady-state levels. Furthermore, cycA, nnrR and its proximal divergently oriented nnrS gene, are direct targets for FixK2 as determined by in vitro transcription activation assays. The dependence of cycA expression on FixK2 and NnrR in anoxic denitrifying conditions was validated at transcriptional level, determined by quantitative reverse transcription PCR, and at the level of protein by performing heme c-staining of soluble cytochromes. Thus, this study expands the regulon of NnrR and demonstrates the role of CycA in the activity of the nitrous oxide reductase, the key enzyme for nitrous oxide mitigation.
Collapse
Affiliation(s)
- Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sergio Salazar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
10
|
Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide 2017; 68:137-149. [DOI: 10.1016/j.niox.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023]
|
11
|
López MF, Cabrera JJ, Salas A, Delgado MJ, López-García SL. Dissecting the role of NtrC and RpoN in the expression of assimilatory nitrate and nitrite reductases in Bradyrhizobium diazoefficiens. Antonie Van Leeuwenhoek 2017; 110:531-542. [PMID: 28040856 DOI: 10.1007/s10482-016-0821-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ54, was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.
Collapse
Affiliation(s)
- María F López
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL, La Plata, Argentina
| | - Juan J Cabrera
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain
| | - Ana Salas
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain
| | - María J Delgado
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain.
| | - Silvina L López-García
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL, La Plata, Argentina.
| |
Collapse
|
12
|
Gambaryan S, Subramanian H, Kehrer L, Mindukshev I, Sudnitsyna J, Reiss C, Rukoyatkina N, Friebe A, Sharina I, Martin E, Walter U. Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis. Cell Commun Signal 2016; 14:16. [PMID: 27515066 PMCID: PMC4982240 DOI: 10.1186/s12964-016-0139-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023] Open
Abstract
Background Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets. Methods To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASPS239) by flow cytometry and Western blot. ANOVA followed by Bonferroni’s test and Student’s t-test were used as appropriate. Results We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite. Conclusions All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstraße 12, D-97080, Wuerzburg, Germany. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia. .,Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany.
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Kehrer
- Institute of Physiology, University of Wuerzburg, Wuerzburg, Germany
| | - Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia
| | - Cora Reiss
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St, Petersburg, 194223, Russia
| | - Andreas Friebe
- Institute of Physiology, University of Wuerzburg, Wuerzburg, Germany
| | - Iraida Sharina
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, USA
| | - Emil Martin
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, USA
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany.,German Centre for Cardiovascular Research (DZHK) RheinMain, Mainz, Germany
| |
Collapse
|
13
|
Corpas FJ. Reactive Nitrogen Species (RNS) in Plants Under Physiological and Adverse Environmental Conditions: Current View. PROGRESS IN BOTANY 2016:97-119. [PMID: 0 DOI: 10.1007/124_2016_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
14
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
15
|
An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochem J 2015; 473:297-309. [PMID: 26564204 PMCID: PMC4724949 DOI: 10.1042/bj20150880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway.
Collapse
|
16
|
Tortosa G, Hidalgo A, Salas A, Bedmar EJ, Mesa S, Delgado MJ. Nitrate and flooding induce N2O emissions from soybean nodules. Symbiosis 2015. [DOI: 10.1007/s13199-015-0341-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Corpas FJ, Barroso JB. Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions. PLANTS 2015; 4:240-52. [PMID: 27135326 PMCID: PMC4844326 DOI: 10.3390/plants4020240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
The free radical molecule, nitric oxide (NO), is present in the principal organs of plants, where it plays an important role in a wide range of physiological functions. Root growth and development are highly regulated by both internal and external factors such as nutrient availability, hormones, pattern formation, cell polarity and cell cycle control. The presence of NO in roots has opened up new areas of research on the role of NO, including root architecture, nutrient acquisition, microorganism interactions and the response mechanisms to adverse environmental conditions, among others. Additionally, the exogenous application of NO throughout the roots has the potential to counteract specific damages caused by certain stresses. This review aims to provide an up-to-date perspective on NO functions in the roots of higher plants.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain.
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, E-23071 Jaén, Spain.
| |
Collapse
|
18
|
Corpas FJ, Barroso JB. Nitric oxide from a "green" perspective. Nitric Oxide 2015; 45:15-9. [PMID: 25638488 DOI: 10.1016/j.niox.2015.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The molecule nitric oxide (NO) which is involved in practically all biochemical and physiological plant processes has become a subject for plant research. However, there remain many unanswered questions concerning how, where and when this molecule is enzymatically generated in higher plants. This mini-review aims to provide an overview of NO in plants for those readers unfamiliar with this field of research. The review will therefore discuss the importance of NO in higher plants at the physiological and biochemical levels, its involvement in designated nitro-oxidative stresses in response to adverse abiotic and biotic environmental conditions, NO emission/uptake from plants, beneficial plant-microbial interactions, and its potential application in the biotechnological fields of agriculture and food nutrition.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", Jaén E-23071, Spain
| |
Collapse
|
19
|
Torres MJ, Argandoña M, Vargas C, Bedmar EJ, Fischer HM, Mesa S, Delgado MJ. The global response regulator RegR controls expression of denitrification genes in Bradyrhizobium japonicum. PLoS One 2014; 9:e99011. [PMID: 24949739 PMCID: PMC4064962 DOI: 10.1371/journal.pone.0099011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/24/2014] [Indexed: 12/03/2022] Open
Abstract
Bradyrhizobium japonicum RegSR regulatory proteins belong to the family of two-component regulatory systems, and orthologs are present in many Proteobacteria where they globally control gene expression mostly in a redox-responsive manner. In this work, we have performed a transcriptional profiling of wild-type and regR mutant cells grown under anoxic denitrifying conditions. The comparative analyses of wild-type and regR strains revealed that almost 620 genes induced in the wild type under denitrifying conditions were regulated (directly or indirectly) by RegR, pointing out the important role of this protein as a global regulator of denitrification. Genes controlled by RegR included nor and nos structural genes encoding nitric oxide and nitrous oxide reductase, respectively, genes encoding electron transport proteins such as cycA (blr7544) or cy2 (bll2388), and genes involved in nitric oxide detoxification (blr2806-09) and copper homeostasis (copCAB), as well as two regulatory genes (bll3466, bll4130). Purified RegR interacted with the promoters of norC (blr3214), nosR (blr0314), a fixK-like gene (bll3466), and bll4130, which encodes a LysR-type regulator. By using fluorescently labeled oligonucleotide extension (FLOE), we were able to identify two transcriptional start sites located at about 35 (P1) and 22 (P2) bp upstream of the putative translational start codon of norC. P1 matched with the previously mapped 5′end of norC mRNA which we demonstrate in this work to be under FixK2 control. P2 is a start site modulated by RegR and specific for anoxic conditions. Moreover, qRT-PCR experiments, expression studies with a norC-lacZ fusion, and heme c-staining analyses revealed that anoxia and nitrate are required for RegR-dependent induction of nor genes, and that this control is independent of the sensor protein RegS.
Collapse
Affiliation(s)
- Maria J. Torres
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Montserrat Argandoña
- Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Vargas
- Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | - Eulogio J. Bedmar
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | - Socorro Mesa
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María J. Delgado
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
20
|
Characterization of the twin-arginine transport secretome in Sinorhizobium meliloti and evidence for host-dependent phenotypes. Appl Environ Microbiol 2012; 78:7141-4. [PMID: 22843517 DOI: 10.1128/aem.01458-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine transport (Tat) system is essential for cell viability in Sinorhizobium meliloti and may play a role during the development of root nodules. Utilizing an in vivo recombination strategy, we have constructed 28 strains that contain deletions in predicted Tat substrates. Testing of these mutations for symbiotic proficiency on the plant hosts alfalfa and sweet clover shows that some of these mutations affect associations with these hosts differentially.
Collapse
|