1
|
Ho PWL, Li L, Liu HF, Choi ZYK, Chang EES, Pang SYY, Malki Y, Leung CT, Kung MHW, Ramsden DB, Ho SL. In vivo overexpression of synaptogyrin-3 promotes striatal synaptic dopamine uptake in LRRK2 R1441G mutant mouse model of Parkinson's disease. Brain Behav 2023; 13:e2886. [PMID: 36624932 PMCID: PMC9927849 DOI: 10.1002/brb3.2886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Leucine-rich repeat kinase 2 (LRRK2) mutation is a common genetic risk factor of Parkinson's disease (PD). Presynaptic dysfunction is an early pathogenic event associated with dopamine (DA) dysregulation in striatum of the brain. DA uptake activity of DA uptake transporter (DAT) affects synaptic plasticity and motor and non-motor behavior. Synaptogyrin-3 (SYNGR3) is part of the synaptogyrin family, especially abundant in brain. Previous in vitro studies demonstrated interaction between SYNGR3 and DAT. Reduced SYNGR3 expression was observed in human PD brains with unclear reasons. METHODS Here, we further explored whether inducing SYNGR3 expression can influence (i) cellular DA uptake using differentiated human SH-SY5Y neuronal cells, (ii) striatal synaptosomal DA uptake in a mutant LRRK2R1441G knockin mouse model of PD, and (iii) innate rodent behavior using the marble burying test. RESULTS Young LRRK2 mutant mice exhibited significantly lower SYNGR3 levels in striatum compared to age-matched wild-type (WT) controls, resembling level in aged WT mice. SYNGR3 is spatially co-localized with DAT at striatal presynaptic terminals, visualized by immuno-gold transmission electron microscopy and immunohistochemistry. Their protein-protein interaction was confirmed by co-immunoprecipitation. Transient overexpression of SYNGR3 in differentiated SH-SY5Y cells increased cellular DA uptake activity without affecting total DAT levels. Inducing SYNGR3 overexpression by adeno-associated virus-7 (AAV7) injection in vivo into striatum increased ex vivo synaptosomal DA uptake in LRRK2 mutant mice and improved their innate marble burying behavior. CONCLUSION Brain SYNGR3 expression may be an important determinant to striatal DA homeostasis and synaptic function. Our preliminary behavioral test showed improved innate behavior after SYNGR3 overexpression in LRRK2 mutant mice, advocating further studies to determine the influence of SYNGR3 in the pathophysiology of DA neurons in PD.
Collapse
Affiliation(s)
- Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Lingfei Li
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Cuttler K, de Swardt D, Engelbrecht L, Kriel J, Cloete R, Bardien S. Neurexin 2 p.G849D variant, implicated in Parkinson's disease, increases reactive oxygen species, and reduces cell viability and mitochondrial membrane potential in SH-SY5Y cells. J Neural Transm (Vienna) 2022; 129:1435-1446. [PMID: 36242655 DOI: 10.1007/s00702-022-02548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2022] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder, affecting 1-2% of the human population over 65. A previous study by our group identified a p.G849D variant in neurexin 2α (NRXN2) co-segregating with PD, prompting validation of its role using experimental methods. This novel variant had been found in a South African family with autosomal dominant PD. NRXN2α is an essential synaptic maintenance protein with multiple functional roles at the synaptic cleft. The aim of the present study was to investigate the potential role of the translated protein NRXN2α and the observed mutant in PD by performing functional studies in an in vitro model. Wild-type and mutant NRXN2α plasmids were transfected into SH-SY5Y cells to assess the effect of the mutant on cell viability and apoptosis [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay; ApoTox-Glo™ Triplex Assay)], mitochondrial membrane potential (MMP; MitoProbe™ JC-1 Assay), mitochondrial network analysis (MitoTracker®) and reactive oxygen species (ROS; ROS-Glo™ H2O2 Assay). Cells transfected with the mutant NRXN2α plasmid showed decreased cell viability and MMP. They also exhibited increased ROS production. However, these cells showed no changes in mitochondrial fragmentation. Our findings led us to speculate that the p.G849D variant may be involved in a toxic feedback loop leading to neuronal death in PD. Mitochondrial dysfunction and synaptic dysfunction have been linked to PD. Therefore, findings from this exploratory study are in line with previous studies connecting these two processes and warrants further investigation into the role of this variant in other cellular and animal models.
Collapse
Affiliation(s)
- Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dalene de Swardt
- Central Analytical Facilities, Stellenbosch University, Cape Town, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Stellenbosch University, Cape Town, South Africa
| | - Jurgen Kriel
- Central Analytical Facilities, Stellenbosch University, Cape Town, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa.
| |
Collapse
|
3
|
Chang EES, Ho PWL, Liu HF, Pang SYY, Leung CT, Malki Y, Choi ZYK, Ramsden DB, Ho SL. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Transl Neurodegener 2022; 11:10. [PMID: 35152914 PMCID: PMC8842874 DOI: 10.1186/s40035-022-00285-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are one of the most frequent genetic causes of both familial and sporadic Parkinson's disease (PD). Mounting evidence has demonstrated pathological similarities between LRRK2-associated PD (LRRK2-PD) and sporadic PD, suggesting that LRRK2 is a potential disease modulator and a therapeutic target in PD. LRRK2 mutant knock-in (KI) mouse models display subtle alterations in pathological aspects that mirror early-stage PD, including increased susceptibility of nigrostriatal neurotransmission, development of motor and non-motor symptoms, mitochondrial and autophagy-lysosomal defects and synucleinopathies. This review provides a rationale for the use of LRRK2 KI mice to investigate the LRRK2-mediated pathogenesis of PD and implications from current findings from different LRRK2 KI mouse models, and ultimately discusses the therapeutic potentials against LRRK2-associated pathologies in PD.
Collapse
Affiliation(s)
- Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
4
|
Skiteva O, Yao N, Sitzia G, Chergui K. LRRK2‐G2019S mice display alterations in glutamatergic synaptic transmission in midbrain dopamine neurons. J Neurochem 2022; 161:158-172. [PMID: 35152441 PMCID: PMC9305867 DOI: 10.1111/jnc.15588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
The progressive degeneration of dopamine (DA) neurons in the substantia nigra compacta (SNc) leads to the emergence of motor symptoms in patients with Parkinson's disease (PD). To propose neuroprotective therapies able to slow or halt the progression of the disease, it is necessary to identify cellular alterations that occur before DA neurons degenerate and before the onset of the motor symptoms that characterize PD. Using electrophysiological, histochemical, and biochemical approaches, we have examined if glutamatergic synaptic transmission in DA neurons in the SNc and in the adjacent ventral tegmental area (VTA) was altered in middle‐aged (10–12 months old) mice with the hG2019S point mutation (G2019S) in the leucine‐rich repeat kinase 2 (LRRK2) gene. G2019S mice showed increased locomotion and exploratory behavior compared with wildtype (WT) littermates, and intact DA neuron integrity. The intrinsic membrane properties and action potential characteristics of DA neurons recorded in brain slices were similar in WT and G2019S mice. Initial glutamate release probability onto SNc‐DA neurons, but not VTA‐DA neurons, was reduced in G2019S mice. We also found reduced protein amounts of the presynaptic marker of glutamatergic terminals, VGLUT1, and of the GluA1 and GluN1 subunits of AMPA and NMDA receptors, respectively, in the ventral midbrain of G2019S mice. These results identify alterations in glutamatergic synaptic transmission in DA neurons of the SNc and VTA before the onset of motor impairments in the LRRK2‐G2019S mouse model of PD.
Collapse
Affiliation(s)
- Olga Skiteva
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Ning Yao
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Giacomo Sitzia
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
- Current address: Laboratory for Integrative Neuroscience National Institute on Alcohol Abuse and Alcoholism US Rockville USA
| | - Karima Chergui
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
5
|
Maset A, Albanesi M, di Soccio A, Canova M, dal Maschio M, Lodovichi C. Aberrant Patterns of Sensory-Evoked Activity in the Olfactory Bulb of LRRK2 Knockout Mice. Cells 2021; 10:3212. [PMID: 34831434 PMCID: PMC8622670 DOI: 10.3390/cells10113212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
The LRRK2 gene is the major genetic determinant of familiar Parkinson's disease (PD). Leucine-rich repeat kinase 2 (LRRK2) is a multidomain protein involved in several intracellular signaling pathways. A wealth of evidence indicates that LRRK2 is enriched at the presynaptic compartment where it regulates vesicle trafficking and neurotransmitter release. However, whether the role of LRRK2 affects neuronal networks dynamic at systems level remains unknown. Addressing this question is critical to unravel the impact of LRRK2 on brain function. Here, combining behavioral tests, electrophysiological recordings, and functional imaging, we investigated neuronal network dynamics, in vivo, in the olfactory bulb of mice carrying a null mutation in LRRK2 gene (LRRK2 knockout, LRRK2 KO, mice). We found that LRRK2 KO mice exhibit olfactory behavioral deficits. At the circuit level, the lack of LRRK2 expression results in altered gamma rhythms and odorant-evoked activity with significant impairments, while the spontaneous activity exhibited limited alterations. Overall, our data in the olfactory bulb suggest that the multifaced role of LRRK2 has a strong impact at system level when the network is engaged in active sensory processing.
Collapse
Affiliation(s)
- Andrea Maset
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Marco Albanesi
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Antonio di Soccio
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Martina Canova
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
| | - Marco dal Maschio
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
- Department of Biomedical Sciences-UNIPD, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; (A.M.); (M.A.); (A.d.S.)
- Padova Neuroscience Center (PNC), Università degli Studi di Padova Via Orus 2, 35129 Padova, Italy; (M.C.); (M.d.M.)
- Institute of Neuroscience-CNR, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
6
|
Binda KH, Lillethorup TP, Real CC, Bærentzen SL, Nielsen MN, Orlowski D, Brooks DJ, Chacur M, Landau AM. Exercise protects synaptic density in a rat model of Parkinson's disease. Exp Neurol 2021; 342:113741. [PMID: 33965411 DOI: 10.1016/j.expneurol.2021.113741] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by Lewy body and neurite pathology associated with dopamine terminal dysfunction. Clinically, it is associated with motor slowing, rigidity, and tremor. Postural instability and pain are also features. Physical exercise benefits PD patients - possibly by promoting neuroplasticity including synaptic regeneration. OBJECTIVES In a parkinsonian rat model, we test the hypotheses that exercise: (a) increases synaptic density and reduces neuroinflammation and (b) lowers the nociceptive threshold by increasing μ-opioid receptor expression. METHODS Brain autoradiography was performed on rats unilaterally injected with either 6-hydroxydopamine (6-OHDA) or saline and subjected to treadmill exercise over 5 weeks. [3H]UCB-J was used to measure synaptic vesicle glycoprotein 2A (SV2A) density. Dopamine D2/3 receptor and μ-opioid receptor availability were assessed with [3H]Raclopride and [3H]DAMGO, respectively, while neuroinflammation was detected with the 18kDA translocator protein (TSPO) marker [3H]PK11195. The nociceptive threshold was determined prior to and throughout the exercise protocol. RESULTS We confirmed a dopaminegic deficit with increased striatal [3H]Raclopride D2/3 receptor availability and reduced nigral tyrosine hydroxylase immunoreactivity in the ipsilateral hemisphere of all 6-OHDA-injected rats. Sedentary rats lesioned with 6-OHDA showed significant reduction of ipsilateral striatal and substantia nigra [3H]UCB-J binding while [3H]PK11195 showed increased ipsilateral striatal neuroinflammation. Lesioned rats who exercised had higher levels of ipsilateral striatal [3H]UCB-J binding and lower levels of neuroinflammation compared to sedentary lesioned rats. Striatal 6-OHDA injections reduced thalamic μ-opioid receptor availability but subsequent exercise restored binding. Exercise also raised thalamic and hippocampal SV2A synaptic density in 6-OHDA lesioned rats, accompanied by a rise in nociceptive threshold. CONCLUSION These data suggest that treadmill exercise protects nigral and striatal synaptic integrity in a rat lesion model of PD - possibly by promoting compensatory mechanisms. Exercise was also associated with reduced neuroinflammation post lesioning and altered opioid transmission resulting in an increased nociceptive threshold.
Collapse
Affiliation(s)
- K H Binda
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - T P Lillethorup
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - C C Real
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Nuclear Medicine (LIM 43), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - S L Bærentzen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - M N Nielsen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark.
| | - D Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University and Department of Neurosurgery, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| | - D J Brooks
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - M Chacur
- Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - A M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| |
Collapse
|
7
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
8
|
Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, Henry S, Pittman B, Ropchan J, Nabulsi N, Suridjan I, Comley RA, Huang Y, Finnema SJ, Carson RE. Synaptic Changes in Parkinson Disease Assessed with in vivo Imaging. Ann Neurol 2020; 87:329-338. [PMID: 31953875 PMCID: PMC7065227 DOI: 10.1002/ana.25682] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Parkinson disease is characterized by motor and nonmotor symptoms, reduced striatal dopamine signaling, and loss of dopamine neurons in the substantia nigra. It is now known that the pathological process in Parkinson disease may begin decades before the clinical diagnosis and include a variety of neuronal alterations in addition to the dopamine system. METHODS This study examined the density of all synapses with synaptic vesicle glycoprotein 2A (SV2A) in Parkinson disease subjects with mild bilateral disease (n = 12) and matched normal controls (n = 12) using in vivo high-resolution positron emission tomographic imaging as well as postmortem autoradiography in an independent sample with Parkinson disease (n = 15) and normal controls (n = 13) in the substantia nigra and putamen. RESULTS A group-by-brain region interaction effect (F10, 22 = 3.52, p = 0.007) was observed in the primary brain areas with in vivo SV2A binding. Post hoc analyses revealed that the Parkinson disease group exhibited lower SV2A in the substantia nigra (-45%; p < 0.001), red nucleus (-31%; p = 0.03), and locus coeruleus (-17%; p = 0.03). Exploratory analyses also revealed lower SV2A binding in clinically relevant cortical areas. Using autoradiography, we confirmed lower SV2A in the substantia nigra (-17%; p < 0.005) and nonsignificant findings in the putamen (-4%; p = 0.06). INTERPRETATION This work provides the first evidence of synaptic loss in brainstem nuclei involved in the pathogenesis of Parkinson disease in living patients. SV2A imaging holds promise for understanding synaptic changes central to the disease. Ann Neurol 2020;87:329-338.
Collapse
Affiliation(s)
- David Matuskey
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
- Department of PsychiatryYale UniversityNew HavenCT
- Department of NeurologyYale UniversityNew HavenCT
| | - Sule Tinaz
- Department of NeurologyYale UniversityNew HavenCT
| | - Kyle C. Wilcox
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Mika Naganawa
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Takuya Toyonaga
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Mark Dias
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Shannan Henry
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | | | - Jim Ropchan
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Nabeel Nabulsi
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Ivonne Suridjan
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Robert A. Comley
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Yiyun Huang
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Sjoerd J. Finnema
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Richard E. Carson
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| |
Collapse
|
9
|
Tozzi A, Durante V, Bastioli G, Mazzocchetti P, Novello S, Mechelli A, Morari M, Costa C, Mancini A, Di Filippo M, Calabresi P. Dopamine D2 receptor activation potently inhibits striatal glutamatergic transmission in a G2019S LRRK2 genetic model of Parkinson's disease. Neurobiol Dis 2018; 118:1-8. [DOI: 10.1016/j.nbd.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
|
10
|
Abstract
Synapse is the basic structural and functional component for neural communication in the brain. The presynaptic terminal is the structural and functionally essential area that initiates communication and maintains the continuous functional neural information flow. It contains synaptic vesicles (SV) filled with neurotransmitters, an active zone for release, and numerous proteins for SV fusion and retrieval. The structural and functional synaptic plasticity is a representative characteristic; however, it is highly vulnerable to various pathological conditions. In fact, synaptic alteration is thought to be central to neural disease processes. In particular, the alteration of the structural and functional phenotype of the presynaptic terminal is a highly significant evidence for neural diseases. In this review, we specifically describe structural and functional alteration of nerve terminals in several neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD).
Collapse
Affiliation(s)
- Jae Ryul Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
11
|
The impact of murine LRRK2 G2019S transgene overexpression on acute responses to inflammatory challenge. Brain Behav Immun 2018; 67:246-256. [PMID: 28893563 DOI: 10.1016/j.bbi.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/07/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023] Open
Abstract
The most common Parkinson's disease (PD) mutation is the gain-of-function LRRK2 G2019S variant, which has also been linked to inflammatory disease states. Yet, little is known of the role of G2019S in PD related complex behavioral or immune/hormonal processes in response to inflammatory/toxicant challenges. Hence, we characterized the behavioral, neuroendocrine-immune and central monoaminergic responses in G2019S overexpressing mutants following systemic interferon-gamma (IFN-γ) or lipopolysaccharide (LPS) administration. Although LPS markedly (and IFN-γ modestly in some cases) increased cytokine and corticosterone levels, while inducing pronounced sickness and home-cage activity deficits, the G2019S mutation had no effect on these parameters. No differences were observed with regards to brain microglia with the acute LPS injection, regardless of genotype. Nor did the G2019S mutation influence neurotransmitter levels within the medial prefrontal cortex or paraventricular nucleus of the hypothalamus. However, the LRRK2 G2019S transgenic mice did have altered monoamine levels within the striatum and hippocampus. Indeed, G2019S mice had altered basal levels and turnover of dopamine within the striatum, along with changes in hippocampal serotonin and norepinephrine activity in response to LPS and IFN-γ. The present findings suggest the importance of murine G2019S in hippocampal and striatal neurotransmission, but that the transgene didn't appear to be involved in functional behavioral and stress-like hormonal and cytokine changes provoked by inflammatory insults.
Collapse
|
12
|
LRRK2 mouse models: dissecting the behavior, striatal neurochemistry and neurophysiology of PD pathogenesis. Biochem Soc Trans 2017; 45:113-122. [PMID: 28202664 DOI: 10.1042/bst20160238] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 02/04/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of familial Parkinson's disease (PD), resembling the sporadic disorder. Intensive effort has been directed toward LRRK2 mouse modeling and investigation, aimed at reproducing the human disease to inform mechanistic studies of pathogenesis and design of neuroprotective therapies. The physiological function of LRRK2 is still under exploration, but a clear role in striatal neurophysiology and animal behavior has emerged. Alterations in LRRK2 impair dopamine (DA) transmission, regulation and signaling, in addition to corticostriatal synaptic plasticity. Consistently, several subtle abnormalities in motor and nonmotor abilities have been demonstrated in LRRK2 genetic mouse models, generally paralleling preclinical symptoms of early DA dysfunction. However, the variability in model design and phenotypes observed requires a critical approach in interpreting the results, adapting the model used to the specific research question. Etiologically appropriate knockin mice might represent the ultimate animal model in which to study early disease mechanisms and therapies as well as to investigate drug effectiveness and off-target consequences.
Collapse
|
13
|
Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A 2017; 114:E2253-E2262. [PMID: 28246328 PMCID: PMC5358362 DOI: 10.1073/pnas.1616892114] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Here we describe a role for the synaptic vesicle glycoprotein 2C (SV2C) in dopamine neurotransmission and Parkinson disease (PD). SV2C is expressed on the vesicles of dopamine-producing neurons, and genetic deletion of SV2C causes a reduction in synaptic release of dopamine. The reduced dopamine release is associated with a decrease in motor activity. SV2C is suspected of mediating the neuroprotective effects of nicotine, and we show an ablated neurochemical response to nicotine in SV2C-knockout mice. Last, we demonstrate that SV2C expression is specifically disrupted in mice that express mutated α-synuclein and in humans with PD. Together, these data establish SV2C as an important mediator of dopamine homeostasis and a potential contributor to PD pathogenesis. Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.
Collapse
|
14
|
Lohr KM, Masoud ST, Salahpour A, Miller GW. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci 2017; 45:20-33. [PMID: 27520881 PMCID: PMC5209277 DOI: 10.1111/ejn.13357] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
Abstract
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine.
Collapse
Affiliation(s)
- Kelly M Lohr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Shababa T Masoud
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
- Department of Pharmacology, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
The 4p16.3 Parkinson Disease Risk Locus Is Associated with GAK Expression and Genes Involved with the Synaptic Vesicle Membrane. PLoS One 2016; 11:e0160925. [PMID: 27508417 PMCID: PMC4980018 DOI: 10.1371/journal.pone.0160925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified the GAK/DGKQ/IDUA region on 4p16.3 among the top three risk loci for Parkinson’s disease (PD), but the specific gene and risk mechanism are unclear. Here, we report transcripts containing the 3’ clathrin-binding domain of GAK identified by RNA deep-sequencing in post-mortem human brain tissue as having increased expression in PD. Furthermore, carriers of 4p16.3 PD GWAS risk SNPs show decreased expression of one of these transcripts, GAK25 (Gencode Transcript 009), which correlates with the expression of genes functioning in the synaptic vesicle membrane. Together, these findings provide strong evidence for GAK clathrin-binding- and J-domain transcripts’ influence on PD pathogenicity, and for a role for GAK in regulating synaptic function in PD.
Collapse
|
16
|
Fassio A, Fadda M, Benfenati F. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals. Front Synaptic Neurosci 2016; 8:10. [PMID: 27242505 PMCID: PMC4863888 DOI: 10.3389/fnsyn.2016.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/18/2016] [Indexed: 11/28/2022] Open
Abstract
The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, University of GenoaGenoa, Italy; Center of Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genoa Genoa, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of GenoaGenoa, Italy; Center of Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|
17
|
G2019S LRRK2 and aging confer susceptibility to proteasome inhibitor-induced neurotoxicity in nigrostriatal dopaminergic system. J Neural Transm (Vienna) 2015; 122:1645-57. [DOI: 10.1007/s00702-015-1438-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022]
|
18
|
Ohta E, Nihira T, Uchino A, Imaizumi Y, Okada Y, Akamatsu W, Takahashi K, Hayakawa H, Nagai M, Ohyama M, Ryo M, Ogino M, Murayama S, Takashima A, Nishiyama K, Mizuno Y, Mochizuki H, Obata F, Okano H. I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Hum Mol Genet 2015; 24:4879-900. [PMID: 26056228 DOI: 10.1093/hmg/ddv212] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the causative molecule of the autosomal dominant hereditary form of Parkinson's disease (PD), PARK8, which was originally defined in a study of a Japanese family (the Sagamihara family) harboring the I2020T mutation in the kinase domain. Although a number of reported studies have focused on cell death mediated by mutant LRRK2, details of the pathogenetic effect of LRRK2 still remain to be elucidated. In the present study, to elucidate the mechanism of neurodegeneration in PD caused by LRRK2, we generated induced pluripotent stem cells (iPSC) derived from fibroblasts of PD patients with I2020T LRRK2 in the Sagamihara family. We found that I2020T mutant LRRK2 iPSC-derived neurons released less dopamine than control-iPSC-derived neurons. Furthermore, we demonstrated that patient iPSC-derived neurons had a lower phospho-AKT level than control-iPSC-derived neurons, and that the former showed an increased incidence of apoptosis relative to the controls. Interestingly, patient iPSC-derived neurons exhibited activation of glycogen synthase kinase-3β (GSK-3β) and high Tau phosphorylation. In addition, the postmortem brain of the patient from whom the iPSC had been established exhibited deposition of neurofibrillary tangles as well as increased Tau phosphorylation in neurons. These results suggest that I2020T LRRK2-iPSC could be a promising new tool for reproducing the pathology of PD in the brain caused by the I2020T mutation, and applicable as a model in studies of targeted therapeutics.
Collapse
Affiliation(s)
- Etsuro Ohta
- R & D Center for Cell Design, Institute for Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, Kanagawa, Japan, Division of Clinical Immunology, Graduate School of Medical Sciences, Department of Physiology
| | - Tomoko Nihira
- Department of Neuro-Regenerative Medicine, Department of Physiology
| | - Akiko Uchino
- Department of Neurology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan, Department of the Brain Bank for Aging Research
| | | | - Yohei Okada
- Department of Physiology, Department of Neurology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Wado Akamatsu
- Department of Physiology, Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kayoko Takahashi
- Department of Medical Laboratory, Kitasato University Hospital, Kanagawa, Japan
| | | | - Makiko Nagai
- Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masafuchi Ryo
- Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Mieko Ogino
- Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shigeo Murayama
- Department of the Brain Bank for Aging Research, Department of Neurology, Department of Bioresource Center (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Akihiko Takashima
- Department of Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan and
| | - Kazutoshi Nishiyama
- Department of Neurology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan, Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | | | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiya Obata
- R & D Center for Cell Design, Institute for Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, Kanagawa, Japan, Division of Clinical Immunology, Graduate School of Medical Sciences
| | | |
Collapse
|
19
|
LRRK2 Promotes Tau Accumulation, Aggregation and Release. Mol Neurobiol 2015; 53:3124-3135. [PMID: 26014385 DOI: 10.1007/s12035-015-9209-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 01/09/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are known as the most frequent cause of familial Parkinson's disease (PD), but are also present in sporadic cases. The G2019S-LRRK2 mutation is located in the kinase domain of the protein, and has consistently been reported to promote a gain of kinase function. Several proteins have been reported as LRRK2 substrates and/or interactors, suggesting possible pathways involved in neurodegeneration in PD. Hyperphosphorylated Tau protein accumulates in neurofibrillary tangles, a typical pathological hallmark in Alzheimer's disease and frontotemporal dementia. In addition, it is also frequently found in the brains of PD patients. Although LRRK2 is a kinase, it appears that a putative interaction with Tau is phosphorylation-independent. However, the underlying mechanisms and the cellular consequences of this interaction are still unclear. In this study, we demonstrate an interaction between LRRK2 and Tau and that LRRK2 promotes the accumulation of non-monomeric and high-molecular weight (HMW) Tau species independent of its kinase activity. Interestingly, we found that LRRK2 increases Tau secretion, possibly as a consequence of an impairment of Tau proteasomal degradation. Our data highlight a mechanism through which LRRK2 regulates intracellular Tau levels, contributing to the progression of the pathology caused by the LRRK2-mediated proteasome impairment. In total, our findings suggest that the interplay between LRRK2 and proteasome activity might constitute a valid target for therapeutic intervention in PD.
Collapse
|
20
|
Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiol Dis 2015; 78:172-95. [PMID: 25836420 DOI: 10.1016/j.nbd.2015.02.031] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 01/19/2023] Open
Abstract
Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson's disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock-in (KI) mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6months, by 12months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug-evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S KI mice, which are consistent with mitochondrial fission arrest. We anticipate that this G2019S mouse line will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression.
Collapse
|
21
|
Porras P, Duesbury M, Fabregat A, Ueffing M, Orchard S, Gloeckner CJ, Hermjakob H. A visual review of the interactome of LRRK2: Using deep-curated molecular interaction data to represent biology. Proteomics 2015; 15:1390-404. [PMID: 25648416 PMCID: PMC4415485 DOI: 10.1002/pmic.201400390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/15/2015] [Accepted: 01/29/2015] [Indexed: 02/04/2023]
Abstract
Molecular interaction databases are essential resources that enable access to a wealth of information on associations between proteins and other biomolecules. Network graphs generated from these data provide an understanding of the relationships between different proteins in the cell, and network analysis has become a widespread tool supporting –omics analysis. Meaningfully representing this information remains far from trivial and different databases strive to provide users with detailed records capturing the experimental details behind each piece of interaction evidence. A targeted curation approach is necessary to transfer published data generated by primarily low-throughput techniques into interaction databases. In this review we present an example highlighting the value of both targeted curation and the subsequent effective visualization of detailed features of manually curated interaction information. We have curated interactions involving LRRK2, a protein of largely unknown function linked to familial forms of Parkinson's disease, and hosted the data in the IntAct database. This LRRK2-specific dataset was then used to produce different visualization examples highlighting different aspects of the data: the level of confidence in the interaction based on orthogonal evidence, those interactions found under close-to-native conditions, and the enzyme–substrate relationships in different in vitro enzymatic assays. Finally, pathway annotation taken from the Reactome database was overlaid on top of interaction networks to bring biological functional context to interaction maps.
Collapse
Affiliation(s)
- Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Novel insights into the neurobiology underlying LRRK2-linked Parkinson's disease. Neuropharmacology 2014; 85:45-56. [DOI: 10.1016/j.neuropharm.2014.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/16/2014] [Accepted: 05/10/2014] [Indexed: 01/08/2023]
|
23
|
Chou JS, Chen CY, Chen YL, Weng YH, Yeh TH, Lu CS, Chang YM, Wang HL. (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse. Neurobiol Dis 2014; 68:190-9. [DOI: 10.1016/j.nbd.2014.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 11/28/2022] Open
|
24
|
Cirnaru MD, Marte A, Belluzzi E, Russo I, Gabrielli M, Longo F, Arcuri L, Murru L, Bubacco L, Matteoli M, Fedele E, Sala C, Passafaro M, Morari M, Greggio E, Onofri F, Piccoli G. LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Front Mol Neurosci 2014; 7:49. [PMID: 24904275 PMCID: PMC4034499 DOI: 10.3389/fnmol.2014.00049] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex.
Collapse
Affiliation(s)
- Maria D Cirnaru
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University Milan, Italy ; Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova Genova, Italy
| | - Elisa Belluzzi
- Department of Biology, University of Padova Padova, Italy
| | - Isabella Russo
- Department of Biology, University of Padova Padova, Italy
| | - Martina Gabrielli
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy ; Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Francesco Longo
- Department of Medical Science and National Institute of Neuroscience, University of Ferrara Ferrara, Italy
| | - Ludovico Arcuri
- Department of Medical Science and National Institute of Neuroscience, University of Ferrara Ferrara, Italy
| | - Luca Murru
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova Padova, Italy
| | - Michela Matteoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy ; Humanitas Clinical and Research Center, Pharmacology and Brain Pathology Rozzano, Italy
| | - Ernesto Fedele
- Department of Pharmacy, University of Genoa Genoa, Italy
| | - Carlo Sala
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy ; Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Maria Passafaro
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| | - Michele Morari
- Department of Medical Science and National Institute of Neuroscience, University of Ferrara Ferrara, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova Padova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova Genova, Italy
| | - Giovanni Piccoli
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University Milan, Italy ; Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| |
Collapse
|
25
|
Chapman MA. Interactions between cell adhesion and the synaptic vesicle cycle in Parkinson's disease. Med Hypotheses 2014; 83:203-7. [PMID: 24837686 DOI: 10.1016/j.mehy.2014.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/21/2014] [Indexed: 12/27/2022]
Abstract
Synaptic dysfunction has been identified as an early neuropathologic event in Parkinson's disease. Synapses depend critically on the adhesion of neurons to one another, glial cells, and the extracellular matrix. Cell-cell and cell-matrix adhesions regulate the structure and function of synapses, in part, through interactions with structural elements such as actin and microtubule proteins. These proteins are critical not only for neuronal structure and polarity, but also for the synaptic vesicle cycle, including maintenance of and transfer between vesicle pools, exocytosis, and vesicle recycling. Pathway analyses of genome wide association studies (GWAS) in Parkinson's disease have identified frequent single nucleotide polymorphisms (SNPs) in cell adhesion pathways, suggesting that dysfunction in cell adhesion may play a role in disease pathology. Based on these observations, it may be hypothesized that Parkinson's disease is due to synaptic dysfunction caused by genetic variations in cell adhesion pathways that affect actin and/or microtubule-mediated events in the synaptic vesicle cycle. Furthermore, it is hypothesized that cells with pacemaker-like activity-a characteristic of neurons that degenerate in Parkinson's disease-may depend more on actin for recruiting synaptic vesicles for release than do less active neurons, thereby enhancing their sensitivity to SNPs in cell adhesion pathways and explaining the selectivity of neurodegeneration. Cells may ultimately die due to detachment from the extracellular matrix. This hypothesis suggests that further exploration of cell adhesion pathways and their linkage to neurotransmitter release through cell structural proteins such as actin and microtubules may provide important insights into Parkinson's disease.
Collapse
|
26
|
West AB, Cowell RM, Daher JPL, Moehle MS, Hinkle KM, Melrose HL, Standaert DG, Volpicelli-Daley LA. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol 2014; 522:2465-80. [PMID: 24633735 DOI: 10.1002/cne.23583] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 03/10/2014] [Indexed: 11/10/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are found in a significant proportion of late-onset Parkinson's disease (PD) patients. Elucidating the neuroanatomical localization of LRRK2 will further define LRRK2 function and the molecular basis of PD. Here, we utilize recently characterized monoclonal antibodies to evaluate LRRK2 expression in rodent brain regions relevant to PD. In both mice and rats, LRRK2 is highly expressed in the cortex and striatum, particularly in pyramidal neurons of layer V and in medium spiny neurons within striosomes. Overall, rats have a more restricted distribution of LRRK2 compared with mice. Mice, but not rats, show high levels of LRRK2 expression in the substantia nigra pars compacta. Expression of the pathogenic LRRK2-G2019S protein from mouse bacterial artificial chromosome (BAC) constructs closely mimics endogenous LRRK2 distribution in the mouse brain. However, LRRK2-G2019S expression derived from human BAC constructs causes LRRK2 to be expressed in additional neuron subtypes in the rat such as striatal cholinergic interneurons and the substantia nigra pars compacta. The distribution of LRRK2 from human BAC constructs more closely resembles descriptions of LRRK2 in humans and nonhuman primates. Computational analyses of DNA regulatory elements in LRRK2 show a primate-specific promoter sequence that does not exist in lower mammalian species. These noncoding regions may be involved in directing neuronal expression patterns. Together, these studies will aid in understanding the normal function of LRRK2 in the brain and will assist in model selection for future studies.
Collapse
Affiliation(s)
- Andrew B West
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | | | | | | | | | | | | | | |
Collapse
|
27
|
LRRK2 and neuroinflammation: partners in crime in Parkinson's disease? J Neuroinflammation 2014; 11:52. [PMID: 24655756 PMCID: PMC3994422 DOI: 10.1186/1742-2094-11-52] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson’s disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.
Collapse
|
28
|
Exenatide as a potential treatment for patients with Parkinson's disease: First steps into the clinic. Alzheimers Dement 2014; 10:S38-46. [DOI: 10.1016/j.jalz.2013.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 11/21/2022]
|
29
|
Steiner H. LRRKing up the right trees? On figuring out the effects of mutant LRRK2 and other Parkinson's disease-related genes. ACTA ACUST UNITED AC 2013; 3:73-76. [PMID: 24073388 DOI: 10.1016/j.baga.2013.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
30
|
Abstract
The defining motor characteristics of Parkinson's disease (PD) are mediated by the neurotransmitter dopamine (DA). Dopamine molecules spend most of their lifespan stored in intracellular vesicles awaiting release and very little time in the extracellular space or the cytosol. Without proper packaging of transmitter and trafficking of vesicles to the active zone, dopamine neurotransmission cannot occur. In the cytosol, dopamine is readily oxidized; excessive cytosolic dopamine oxidation may be pathogenic to nigral neurons in PD. Thus, factors that disrupt vesicular function may impair signaling and increase the vulnerability of dopamine neurons. This review outlines the many mechanisms by which disruption of vesicular function may contribute to the pathogenesis of PD. From direct inhibition of dopamine transport into vesicles by pharmacological or toxicological agents to alterations in vesicle trafficking by PD-related gene products, variations in the proper compartmentalization of dopamine can wreak havoc on a functional dopamine pathway. Findings from patient populations, imaging studies, transgenic models, and mechanistic studies will be presented to document the relationship between impaired vesicular function and vulnerability of the nigrostriatal dopamine system. Given the deleterious effects of impaired vesicular function, strategies aimed at enhancing vesicular function may be beneficial in the treatment of PD.
Collapse
Affiliation(s)
- Shawn P. Alter
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gina M. Lenzi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alison I. Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gary W. Miller
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Environmental Health, Rollins School of Public Health, Claudia Nance Rollins Bldg, Room 8007, 1518 Clifton Road, NE, Atlanta, GA 30322, USA
| |
Collapse
|