1
|
Bennett DT, Meyer AS. Robust measurement of microbial reduction of graphene oxide nanoparticles using image analysis. Appl Environ Microbiol 2025; 91:e0036025. [PMID: 40145756 PMCID: PMC12016504 DOI: 10.1128/aem.00360-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Shewanella oneidensis (S. oneidensis) has the capacity to reduce electron acceptors within a medium and is thus used frequently in microbial fuel generation, pollutant breakdown, and nanoparticle fabrication. Microbial fuel setups, however, often require costly or labor-intensive components, thus making optimization of their performance onerous. For rapid optimization of setup conditions, a model reduction assay can be employed to allow simultaneous, large-scale experiments at lower cost and effort. Since S. oneidensis uses different extracellular electron transfer pathways depending on the electron acceptor, it is essential to use a reduction assay that mirrors the pathways employed in the microbial fuel system. For microbial fuel setups that use nanoparticles to stimulate electron transfer, reduction of graphene oxide provides a more accurate model than other commonly used assays as it is a bulk material that forms flocculates in solutions with a large ionic component. However, graphene oxide flocculates can interfere with traditional absorbance-based measurement techniques. This study introduces a novel image analysis method for quantifying graphene oxide reduction, showing improved performance and statistical accuracy over traditional methods. A comparative analysis shows that the image analysis method produces smaller errors between replicates and reveals more statistically significant differences between samples than traditional plate reader measurements under conditions causing graphene oxide flocculation. Image analysis can also detect reduction activity at earlier time points due to its use of larger solution volumes, enhancing color detection. These improvements in accuracy make image analysis a promising method for optimizing microbial fuel cells that use nanoparticles or bulk substrates.IMPORTANCEShewanella oneidensis (S. oneidensis) is widely used in reduction processes such as microbial fuel generation due to its capacity to reduce electron acceptors. Often, these setups are labor-intensive to operate and require days to produce results, so use of a model assay would reduce the time and expenses needed for optimization. Our research developed a novel digital analysis method for analysis of graphene oxide flocculates that may be utilized as a model assay for reduction platforms featuring nanoparticles. Use of this model reduction assay will enable rapid optimization and drive improvements in the microbial fuel generation sector.
Collapse
Affiliation(s)
| | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
2
|
Rastkhah E, Fatemi F, Maghami P. Optimizing the Metal Bioreduction Process in Recombinant Shewanella azerbaijanica Bacteria: A Novel Approach via mtrC Gene Cloning and Nitrate-Reducing Pathway Destruction. Mol Biotechnol 2024; 66:3150-3163. [PMID: 37917324 DOI: 10.1007/s12033-023-00920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Environmental pollution is growing every day in terms of the increase in population, industrialization, and urbanization. Shewanella azerbaijanica is introduced as a highly potent bacterium in metal bioremediation. The mtrC gene was selected as a cloning target to improve electron flux chains in the EET (extracellular electron transfer) pathway. Using the SDM (site-directed mutagenesis) technique, the unique gene assembly featured the mtrC gene sandwiched between two napD/B genes to disrupt the nitrate reduction pathway, which serves as the primary metal reduction competitor. Shew-mtrC gene construction was transferred to expression plasmid pET28a (+) in the expression host bacteria (E. coli BL21 and S. azerbaijanica), in pUC57, cloning plasmid, which was transferred to the cloning host bacteria E. coli Top10 and S. azerbaijanica. All cloning procedures (i.e., synthesis, insertion, transformation, cloning, and protein expression) were verified and confirmed by precise tests. ATR-FTIR analysis, CD, western blotting, affinity chromatography, SDS-PAGE, and other techniques were used to confirm the expression and structure of the MtrC protein. The genome sequence and primers were designed according to the submitted Shewanella oneidensis MR-1 genome, the most similar bacteria to this native species. The performance of recombinant S. azerbaijanica bacterium in metal bioremediation, as sustainable strategy, has to be verified by more research.
Collapse
Affiliation(s)
- Elham Rastkhah
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faezeh Fatemi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Jia L, Zhou Q, Li Y, Wu W. Application of manganese oxides in wastewater treatment: Biogeochemical Mn cycling driven by bacteria. CHEMOSPHERE 2023:139219. [PMID: 37327824 DOI: 10.1016/j.chemosphere.2023.139219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Manganese oxides (MnOx) are recognized as a strongest oxidant and adsorbent, of which composites have been proved to be effective in the removal of contaminants from wastewater. This review provides a comprehensive analysis of Mn biochemistry in water environment including Mn oxidation and Mn reduction. The recent research on the application of MnOx in the wastewater treatment was summarized, including the involvement of organic micropollutant degradation, the transformation of nitrogen and phosphorus, the fate of sulfur and the methane mitigation. In addition to the adsorption capacity, the Mn cycling mediated by Mn(II) oxidizing bacteria and Mn(IV) reducing bacteria is the driving force for the MnOx utilization. The common category, characteristics and functions of Mn microorganisms in recent studies were also reviewed. Finally, the discussion on the influence factors, microbial response, reaction mechanism and potential risk of MnOx application in pollutants' transformation were proposed, which might be the promising opportunities for the future investigation of MnOx application in wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
4
|
Zhang B, Shi S, Tang R, Qiao C, Yang M, You Z, Shao S, Wu D, Yu H, Zhang J, Cao Y, Li F, Song H. Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms. Biotechnol Adv 2023; 66:108175. [PMID: 37187358 DOI: 10.1016/j.biotechadv.2023.108175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ~100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.
Collapse
Affiliation(s)
- Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sicheng Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiyi Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shulin Shao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Liou YX, Li SL, Hsieh KY, Li SJ, Hu LJ. Investigating the Extracellular-Electron-Transfer Mechanisms and Kinetics of Shewanella decolorationis NTOU1 Reducing Graphene Oxide via Lactate Metabolism. Bioengineering (Basel) 2023; 10:bioengineering10030311. [PMID: 36978702 PMCID: PMC10045794 DOI: 10.3390/bioengineering10030311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Microbial graphene oxide reduction is a developing method that serves to reduce both production costs and environmental impact in the synthesis of graphene. This study demonstrates microbial graphene oxide reduction using Shewanella decolorationis NTOU1 under neutral and mild conditions (pH = 7, 35 °C, and 1 atm). Graphene oxide (GO) prepared via the modified Hummers’ method is used as the sole solid electron acceptor, and the characteristics of reduced GO (rGO) are investigated. According to electron microscopic images, the surface structure of GO was clearly changed from smooth to wrinkled after reduction, and whole cells were observed to be wrapped by GO/rGO films. Distinctive appendages on the cells, similar to nanowires or flagella, were also observed. With regard to chemical-bonding changes, after a 24-h reaction of 1 mg mL−1, GO was reduced to rGO, the C/O increased from 1.4 to 3.0, and the oxygen-containing functional groups of rGO were significantly reduced. During the GO reduction process, the number of S. decolorationis NTOU1 cells decreased from 1.65 × 108 to 1.03 × 106 CFU mL−1, indicating the bactericide effects of GO/rGO. In experiments adding consistent concentrations of initial bacteria and lactate, it was shown that with the increase of GO additions (0.5–5.0 mg mL−1), the first-order reaction rate constants (k) of lactate metabolism and acetate production increased accordingly; in experiments adding consistent concentrations of initial bacteria and GO but different lactate levels (1 to 10 mM), the k values of lactate metabolism did not change significantly. The test results of adding different electron transfer mediators showed that riboflavin and potassium ferricyanide were able to boost GO reduction, whereas 2,6-dimethoxy-1,4-benzoquinone and 2,6-dimethyl benzoquinone completely eliminated bacterial activity.
Collapse
|
6
|
Martín-Rodríguez AJ. Respiration-induced biofilm formation as a driver for bacterial niche colonization. Trends Microbiol 2023; 31:120-134. [PMID: 36075785 DOI: 10.1016/j.tim.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Depending on their physiology and metabolism, bacteria can carry out diverse redox processes for energy acquisition, which facilitates adaptation to environmental or host-associated niches. Of these processes, respiration, using oxygen or alternative terminal electron acceptors, is energetically the most favorable in heterotrophic bacteria. The biofilm lifestyle, a coordinated multicellular behavior, is ubiquitous in bacteria and is regulated by a variety of intrinsic and extrinsic cues. Respiration of distinct electron acceptors has been shown to induce biofilm formation or dispersal. The notion of biofilm formation regulation by electron acceptor availability and respiration has often been considered species-specific. However, recent evidence suggests that this phenomenon can be strain-specific, even in strains sharing the same functional respiratory pathways, thereby implying subtle regulatory mechanisms. On this basis, I argue that induction of biofilm formation by sensing and respiration of electron acceptors might direct subgroups of redox-specialized strains to occupy certain niches. A palette of respiration and electron-transfer-mediated microbial social interactions within biofilms may broaden ecological opportunities. The strain specificity of this phenomenon represents an important opportunity to identify key molecular mechanisms and their ecophysiological significance, which in turn may lay the ground for applications in areas ranging from biotechnology to the prevention of antimicrobial resistance.
Collapse
|
7
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Effects of UV stress on Shewanella azerbaijanica bioremediation response. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Shewanella azerbaijanica roles as a live electrode, passing electrons from electron donors to electron acceptors, to gain energy from the extracellular electron transfer (EET) pathway. The present study, considered the quantitative expressions of the major EET reductase genes (mtr cluster), together with uranium removal, live-cell counting, and spectrophotometry in UV-C treated bacteria (0, 60, 120 and 180 s). The simultaneous decline in the uranium removal and cell counting, along with major mtr gene expression patterns (mtrABDEF), approved the negative effects of UV-C radiation on uranium bioreduction in S. azerbaijanica. Uranium removal and cell counting decreased to 25.49% and 0.45 × 109 cells/mL in the 180s UV-C treated sample, respectively at 2 mM uranium concentration, while no decline trend found in 0.5 mM for the counted cells and uranium removal tests. No considerable expression of omcA and omcB (mtrC) genes were traced due to spontaneous mutagenesis during the in vitro serial passages, proposing a novel alternative EET pathway in S. azerbaijanica during uranium bioreduction process. The results could pave the way for further researches to modify the bioremediation process through genetic manipulation.
Collapse
|
9
|
Ding DW, Huang WF, Lei LL, Wu P. Co-fitness analysis identifies a diversity of signal proteins involved in the utilization of specific c-type cytochromes. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
c-Type cytochromes are essential for extracellular electron transfer (EET) in electroactive microorganisms. The expression of appropriate c-type cytochromes is an important feature of these microorganisms in response to different extracellular electron acceptors. However, how these diverse c-type cytochromes are tightly regulated is still poorly understood.
Methods
In this study, we identified the high co-fitness genes that potentially work with different c-type cytochromes by using genome-wide co-fitness analysis. We also constructed and studied the co-fitness networks that composed of c-type cytochromes and the top 20 high co-fitness genes of them.
Results
We found that high co-fitness genes of c-type cytochromes were enriched in signal transduction processes in Shewanella oneidensis MR-1 cells. We then checked the top 20 co-fitness proteins for each of the 41 c-type cytochromes and identified the corresponding signal proteins for different c-type cytochromes. In particular, through the analysis of the high co-fitness signal protein for CymA, we further confirmed the cooperation between signal proteins and c-type cytochromes and identified a novel signal protein that is putatively involved in the regulation of CymA. In addition, we showed that these signal proteins form two signal transduction modules.
Conclusion
Taken together, these findings provide novel insights into the coordinated utilization of different c-type cytochromes under diverse conditions.
Collapse
|
10
|
Boyeldieu A, Poli J, Ali Chaouche A, Fierobe H, Giudici‐Orticoni M, Méjean V, Jourlin‐Castelli C. Multiple detection of both attractants and repellents by the dCache-chemoreceptor SO_1056 of Shewanella oneidensis. FEBS J 2022; 289:6752-6766. [PMID: 35668695 PMCID: PMC9796306 DOI: 10.1111/febs.16548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
Chemoreceptors are usually transmembrane proteins dedicated to the detection of compound gradients or signals in the surroundings of a bacterium. After detection, they modulate the activation of CheA-CheY, the core of the chemotactic pathway, to allow cells to move upwards or downwards depending on whether the signal is an attractant or a repellent, respectively. Environmental bacteria such as Shewanella oneidensis harbour dozens of chemoreceptors or MCPs (methyl-accepting chemotaxis proteins). A recent study revealed that MCP SO_1056 of S. oneidensis binds chromate. Here, we show that this MCP also detects an additional attractant (l-malate) and two repellents (nickel and cobalt). The experiments were performed in vivo by the agarose-in-plug technique after overproducing MCP SO_1056 and in vitro, when possible, by submitting the purified ligand-binding domain (LBD) of SO_1056 to a thermal shift assay (TSA) coupled to isothermal titration calorimetry (ITC). ITC assays revealed a KD of 3.4 μm for l-malate and of 47.7 μm for nickel. We conclude that MCP SO_1056 binds attractants and repellents of unrelated composition. The LBD of SO_1056 belongs to the double Cache_1 family and is highly homologous to PctA, a chemoreceptor from Pseudomonas aeruginosa that detects several amino acids. Therefore, LBDs of the same family can bind diverse compounds, confirming that experimental approaches are required to define accurate LBD-binding molecules or signals.
Collapse
Affiliation(s)
- Anne Boyeldieu
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance,Present address:
Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS)Université de Toulouse, UPSFrance
| | - Jean‐Pierre Poli
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance,Université de Corse Pasquale PaoliCorteFrance
| | - Amine Ali Chaouche
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Henri‐Pierre Fierobe
- Laboratoire de Chimie Bactérienne (LCB, UMR7283), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Marie‐Thérèse Giudici‐Orticoni
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Vincent Méjean
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| | - Cécile Jourlin‐Castelli
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP, UMR7281), Centre National de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée (IMM), Institut Microbiologie, Bioénergies et Biotechnologie (IM2B)Aix Marseille UniversitéFrance
| |
Collapse
|
11
|
Li Y, Liu K, Mao R, Liu B, Cheng L, Shi X. Unveiling the chemotactic response and mechanism of Shewanella oneidensis MR-1 to nitrobenzene. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128629. [PMID: 35278967 DOI: 10.1016/j.jhazmat.2022.128629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Bioreduction by electroactive bacteria (EAB) is considered as a potential and cost-effective approach for the removal of nitroaromatic compounds (NACs). However, little is known about how the widespread EAB sense and respond to slightly soluble NACs in aquatic environments. Here, the chemotactic behaviors of Shewanella oneidensis MR-1, a model EAB, toward several NACs were examined and their underlying molecular mechanism was elucidated. S. oneidensis MR-1 was found to exhibit a strong chemotactic response to nitrobenzene (NB), but not to other selected NACs under aerobic conditions. To sense NB, this bacterium requires both the histidine kinase (CheA-3)-involved chemotactic signal transduction pathway and an inner-membrane c-type cytochrome CymA. Such a chemotactic response is mediated by an energy taxis mechanism. Additionally, external riboflavin was shown to greatly enhance the Shewanella taxis toward NB, implying a feasible way to increase the bioavailability of NACs. The present study deepens our understanding of the role of microbial chemotaxis in the removal of NACs and provides more options for the bioremediation of NAC-contaminated sites.
Collapse
Affiliation(s)
- Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Kai Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Rongrong Mao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Boya Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Lei Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Xianyang Shi
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Then A, Ewald J, Söllner N, Cooper RE, Küsel K, Ibrahim B, Schuster S. Agent-based modelling of iron cycling bacteria provides a framework for testing alternative environmental conditions and modes of action. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211553. [PMID: 35620008 PMCID: PMC9115035 DOI: 10.1098/rsos.211553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
Iron-reducing and iron-oxidizing bacteria are of interest in a variety of environmental and industrial applications. Such bacteria often co-occur at oxic-anoxic gradients in aquatic and terrestrial habitats. In this paper, we present the first computational agent-based model of microbial iron cycling, between the anaerobic ferric iron (Fe3+)-reducing bacteria Shewanella spp. and the microaerophilic ferrous iron (Fe2+)-oxidizing bacteria Sideroxydans spp. By including the key processes of reduction/oxidation, movement, adhesion, Fe2+-equilibration and nanoparticle formation, we derive a core model which enables hypothesis testing and prediction for different environmental conditions including temporal cycles of oxic and anoxic conditions. We compared (i) combinations of different Fe3+-reducing/Fe2+-oxidizing modes of action of the bacteria and (ii) system behaviour for different pH values. We predicted that the beneficial effect of a high number of iron-nanoparticles on the total Fe3+ reduction rate of the system is not only due to the faster reduction of these iron-nanoparticles, but also to the nanoparticles' additional capacity to bind Fe2+ on their surfaces. Efficient iron-nanoparticle reduction is confined to pH around 6, being twice as high than at pH 7, whereas at pH 5 negligible reduction takes place. Furthermore, in accordance with experimental evidence our model showed that shorter oxic/anoxic periods exhibit a faster increase of total Fe3+ reduction rate than longer periods.
Collapse
Affiliation(s)
- Andre Then
- Department of Bioinformatics, Matthias-Schleiden-Institute, University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Jan Ewald
- Department of Bioinformatics, Matthias-Schleiden-Institute, University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Natalie Söllner
- Department of Bioinformatics, Matthias-Schleiden-Institute, University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Rebecca E. Cooper
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Bashar Ibrahim
- Centre for Applied Mathematics and Bioinformatics, and Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- European Virus Bioinformatics Center, Leutragraben 1 07743 Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Matthias-Schleiden-Institute, University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| |
Collapse
|
13
|
Liu G, Li H, Liu Y, Jin R, Zhou J, Ren Z, Wang Z, Yan C. Extracellular electron transfer influences the transport and retention of ferrihydrite nanoparticles in quartz sand coated with Shewanella oneidensis biofilm. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126023. [PMID: 33992002 DOI: 10.1016/j.jhazmat.2021.126023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microbial biofilm has been found to impact the mobility of nanoparticles in saturated porous media by altering physicochemical properties of collector surface. However, little is known about the influence of biofilm's biological activity on nanoparticle transport and retention. Here, the transport of ferrihydrite nanoparticles (FhNPs) was studied in quartz sands coated with biofilm of Shewanella oneidensis MR-1 that is capable of reducing Fe(III) through extracellular electron transfer (EET). It was found that MR-1 biofilm coating enhanced FhNPs' deposition under different pH/ionic strength conditions and humic acid concentrations. More importantly, when the influent electron donor (glucose) concentration was increased to promote biofilm's EET activity, the breakthrough of FhNPs in biofilm-coated sands was inhibited. A lack of continuous and stable supply of electron donor, on the contrary, led to remobilization and release of the originally retained FhNPs. Column experiments with biofilm of EET-deficient MR-1 mutants (ΔomcA/ΔmtrC and ΔcymA) further indicated that the impairment of EET activity decreased the retention of FhNPs. It is proposed that the effective surface binding and adhesion of FhNPs that is required by direct EET cannot be neglected when evaluating the transport of FhNPs in sands coated with electroactive biofilm.
Collapse
Affiliation(s)
- Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment, Shenyang University, Shenyang 110000, China.
| | - Hanyi Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Vibrio cholerae's mysterious Seventh Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation. PLoS Genet 2021; 17:e1009624. [PMID: 34153031 PMCID: PMC8248653 DOI: 10.1371/journal.pgen.1009624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/01/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a notorious diarrheal disease that is typically transmitted via contaminated drinking water. The current pandemic agent, the El Tor biotype, has undergone several genetic changes that include horizontal acquisition of two genomic islands (VSP-I and VSP-II). VSP presence strongly correlates with pandemicity; however, the contribution of these islands to V. cholerae's life cycle, particularly the 26-kb VSP-II, remains poorly understood. VSP-II-encoded genes are not expressed under standard laboratory conditions, suggesting that their induction requires an unknown signal from the host or environment. One signal that bacteria encounter under both host and environmental conditions is metal limitation. While studying V. cholerae's zinc-starvation response in vitro, we noticed that a mutant constitutively expressing zinc starvation genes (Δzur) congregates at the bottom of a culture tube when grown in a nutrient-poor medium. Using transposon mutagenesis, we found that flagellar motility, chemotaxis, and VSP-II encoded genes were required for congregation. The VSP-II genes encode an AraC-like transcriptional activator (VerA) and a methyl-accepting chemotaxis protein (AerB). Using RNA-seq and lacZ transcriptional reporters, we show that VerA is a novel Zur target and an activator of the nearby AerB chemoreceptor. AerB interfaces with the chemotaxis system to drive oxygen-dependent congregation and energy taxis. Importantly, this work suggests a functional link between VSP-II, zinc-starved environments, and energy taxis, yielding insights into the role of VSP-II in a metal-limited host or aquatic reservoir.
Collapse
|
15
|
Liu L, Liu G, Zhou J, Jin R. Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5559-5568. [PMID: 33728915 DOI: 10.1021/acs.est.0c08355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fate and transport of bacteria in porous media are essential for bioremediation and water quality control. However, the influence of biological activities like extracellular electron transfer (EET) and swimming motility toward granular media on cell transport remains unknown. Here, electroactive bacteria with higher Fe(III) reduction abilities were found to demonstrate greater retention in ferrihydrite-coated sand. Increasing the concentrations of the electron donor (1-10 mM lactate), shuttle (0-50 μM anthraquinone-2,6-disulfonate), and acceptor (ferrihydrite, MnO2, or biochar) under flow conditions significantly reduced Shewanella oneidensis MR-1's mobility through redox-active porous media. The deficiency of EET ability or flagellar motion and inhibition of intracellular proton motive force, all of which are essential for energy taxis, enhanced MR-1's transport. It was proposed that EET could facilitate MR-1 to sense, tactically move toward, and attach on redox-active media surface, eventually improving its retention. Positive linear correlations were established among parameters describing MR-1's energy taxis ability (relative taxis index), cell transport behavior (dispersion coefficient and relative change of effluent percentage), and redox activity of media surface (reduction potential or electron-accepting rate), providing novel insights into the critical impacts of bacterial microscale motility on macroscale cell transport through porous media.
Collapse
Affiliation(s)
- Lecheng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Martín-Rodríguez AJ, Reyes-Darias JA, Martín-Mora D, González JM, Krell T, Römling U. Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. NPJ Biofilms Microbiomes 2021; 7:9. [PMID: 33504806 PMCID: PMC7840931 DOI: 10.1038/s41522-020-00177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
Shewanella spp. possess a broad respiratory versatility, which contributes to the occupation of hypoxic and anoxic environmental or host-associated niches. Here, we observe a strain-specific induction of biofilm formation in response to supplementation with the anaerobic electron acceptors dimethyl sulfoxide (DMSO) and nitrate in a panel of Shewanella algae isolates. The respiration-driven biofilm response is not observed in DMSO and nitrate reductase deletion mutants of the type strain S. algae CECT 5071, and can be restored upon complementation with the corresponding reductase operon(s) but not by an operon containing a catalytically inactive nitrate reductase. The distinct transcriptional changes, proportional to the effect of these compounds on biofilm formation, include cyclic di-GMP (c-di-GMP) turnover genes. In support, ectopic expression of the c-di-GMP phosphodiesterase YhjH of Salmonella Typhimurium but not its catalytically inactive variant decreased biofilm formation. The respiration-dependent biofilm response of S. algae may permit differential colonization of environmental or host niches.
Collapse
Affiliation(s)
| | - José A. Reyes-Darias
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - David Martín-Mora
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M. González
- grid.10041.340000000121060879Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Tino Krell
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Ute Römling
- grid.465198.7Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
17
|
Starwalt-Lee R, El-Naggar MY, Bond DR, Gralnick JA. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis. Mol Microbiol 2020; 115:1069-1079. [PMID: 33200455 DOI: 10.1111/mmi.14647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/11/2020] [Indexed: 11/27/2022]
Abstract
Shewanella oneidensis is a dissimilatory metal reducing bacterium and model for extracellular electron transfer (EET), a respiratory mechanism in which electrons are transferred out of the cell. In the last 10 years, migration to insoluble electron acceptors for EET has been shown to be nonrandom and tactic, seemingly in the absence of molecular or energy gradients that typically allow for taxis. As the ability to sense, locate, and respire electrodes has applications in bioelectrochemical technology, a better understanding of taxis in S. oneidensis is needed. While the EET conduits of S. oneidensis have been studied extensively, its taxis pathways and their interplay with EET are not yet understood, making investigation into taxis phenomena nontrivial. Since S. oneidensis is a member of an EET-encoding clade, the genetic circuitry of taxis to insoluble acceptors may be conserved. We performed a bioinformatic analysis of Shewanella genomes to identify S. oneidensis chemotaxis orthologs conserved in the genus. In addition to the previously reported core chemotaxis gene cluster, we identify several other conserved proteins in the taxis signaling pathway. We present the current evidence for the two proposed models of EET taxis, "electrokinesis" and flavin-mediated taxis, and highlight key areas in need of further investigation.
Collapse
Affiliation(s)
- Ruth Starwalt-Lee
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel R Bond
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| |
Collapse
|
18
|
Ng CK, Xu J, Cai Z, Yang L, Thompson IP, Huang WE, Cao B. Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes. Microb Biotechnol 2020; 13:1904-1916. [PMID: 32729223 PMCID: PMC7533324 DOI: 10.1111/1751-7915.13636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.
Collapse
Affiliation(s)
- Chun Kiat Ng
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
19
|
Liu DF, Li WW. Potential-dependent extracellular electron transfer pathways of exoelectrogens. Curr Opin Chem Biol 2020; 59:140-146. [PMID: 32769012 DOI: 10.1016/j.cbpa.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 10/23/2022]
Abstract
Exoelectrogens are distinct from other bacteria owing to their unique extracellular electron transfer (EET) abilities that allow for anaerobic respiration with various external redox-active surfaces, including electrode and metal oxides. Although the EET process is known to trigger diverse extracellular redox reactions, the reverse impact has been long overlooked. Recent evidences show that exoelectrogens can sense the potential changes of external surfaces and alter their EET strategies accordingly, which imparts them remarkable abilities in adapting to diverse and redox-variable environment. This mini-review provides a condensed overview and critical analysis about the recent discoveries on redox-dependent EET pathways of exoelectrogens, with focus on Geobacter sulfurreducens and Shewanella oneidensis. We summarize the detailed responses of various EET components, analyze the drives and mechanisms of such responses, highlight the diversity of EET dynamics among different bacterial species and under integrated effects of redox potential and surface chemistry, and discusses the future research needs.
Collapse
Affiliation(s)
- Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; USTC-City U Joint Advanced Research Center, Suzhou 215123, China.
| |
Collapse
|
20
|
Fukuda TTH, Cassilly CD, Gerdt JP, Henke MT, Helfrich EJN, Mevers E. Research Tales from the Clardy Laboratory: Function-Driven Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2020; 83:744-755. [PMID: 32105475 DOI: 10.1021/acs.jnatprod.9b01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past 70 years, the search for small molecules from nature has transformed biomedical research: natural products are the basis for half of all pharmaceuticals; the quest for total synthesis of natural products fueled development of methodologies for organic synthesis; and their biosynthesis presented unprecedented biochemical transformations, expanding our chemo-enzymatic toolkit. Initially, the discovery of small molecules was driven by bioactivity-guided fractionation. However, this approach yielded the frequent rediscovery of already known metabolites. As a result, focus shifted to identifying novel scaffolds through either structure-first methods or genome mining, relegating function as a secondary concern. Over the past two decades, the laboratory of Jon Clardy has taken an alternative route and focused on an ecology-driven, function-first approach in pursuit of uncovering bacterial small molecules with biological activity. In this review, we highlight several examples that showcase this ecology-first approach. Though the highlighted systems are diverse, unifying themes are (1) to understand how microbes interact with their host or environment, (2) to gain insights into the environmental roles of microbial metabolites, and (3) to explore pharmaceutical potential from these ecologically relevant metabolites.
Collapse
Affiliation(s)
- Taise T H Fukuda
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew T Henke
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric J N Helfrich
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Newsome L, Lopez Adams R, Downie HF, Moore KL, Lloyd JR. NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction. FEMS Microbiol Ecol 2019; 94:5033680. [PMID: 29878195 PMCID: PMC6041951 DOI: 10.1093/femsec/fiy104] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023] Open
Abstract
Microbial iron(III) reduction can have a profound effect on the fate of contaminants in natural and engineered environments. Different mechanisms of extracellular electron transport are used by Geobacter and Shewanella spp. to reduce insoluble Fe(III) minerals. Here we prepared a thin film of iron(III)-(oxyhydr)oxide doped with arsenic, and allowed the mineral coating to be colonised by Geobacter sulfurreducens or Shewanella ANA3 labelled with 13C from organic electron donors. This preserved the spatial relationship between metabolically active Fe(III)-reducing bacteria and the iron(III)-(oxyhydr)oxide that they were respiring. NanoSIMS imaging showed cells of G. sulfurreducens were co-located with the iron(III)-(oxyhydr)oxide surface and were significantly more 13C-enriched compared to cells located away from the mineral, consistent with Geobacter species requiring direct contact with an extracellular electron acceptor to support growth. There was no such intimate relationship between 13C-enriched S. ANA3 and the iron(III)-(oxyhydr)oxide surface, consistent with Shewanella species being able to reduce Fe(III) indirectly using a secreted endogenous mediator. Some differences were observed in the amount of As relative to Fe in the local environment of G. sulfurreducens compared to the bulk mineral, highlighting the usefulness of this type of analysis for probing interactions between microbial cells and Fe-trace metal distributions in biogeochemical experiments.
Collapse
Affiliation(s)
- Laura Newsome
- Williamson Research Centre, School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Rebeca Lopez Adams
- Williamson Research Centre, School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Helen F Downie
- Williamson Research Centre, School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Katie L Moore
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.,Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Williamson Research Centre, School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
22
|
Liu L, Liu G, Zhou J, Wang J, Jin R. Cotransport of biochar and Shewanella oneidensis MR-1 in saturated porous media: Impacts of electrostatic interaction, extracellular electron transfer and microbial taxis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:95-104. [PMID: 30572219 DOI: 10.1016/j.scitotenv.2018.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/17/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Biochar widely applied to soil can influence microbial community composition and participate in extracellular electron transfer (EET). However, little is known about the cotransport behaviors of bacteria and biochar in aquifer and soil-water environments, which can affect the fate and application performance of biochar. In this study, we found that in comparison to their individual transport behaviors, the mobilities of cotransporting Shewanella oneidensis MR-1 and biochar colloid (BC) were significantly inhibited. The decreasing colloidal mobilities at higher ionic strengths signified the importance of electrostatic interaction between cell and BC in cotransport. Moreover, the less suppressed cotransport of BC and mutants defective of EET and the elevated inhibition effects on cotransport by adding exogenous electron donor suggested the importance of EET. Difference in cotransport behavior was also observed with BC having different redox states. Compared with oxidized BC, reduced BC with higher hydrophobicity led to easier aggregation with cell and higher retention in column. More importantly, MR-1 exhibited EET-dependent taxis towards biochar, which also contributed to the enhanced heteroaggregation and decreased mobilities of cell and biochar. Our results highlight that metabolic activities of microbes towards abiotic colloids cannot be neglected when assessing their transport behaviors, especially in subsurface environments abounded with redox-active inorganic particles and microbes performing extracellular respiration.
Collapse
Affiliation(s)
- Lecheng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
23
|
Abstract
Previous hypotheses of tactic behavior of exoelectrogenic bacteria are based on techniques that do not accurately control the electrochemical potential, such as chemical-in-plug assays or microscopy tracking experiments in two-electrode cells. Here, we have revisited previous experiments and, for the first time, performed microscopy cell-tracking experiments in three-electrode electrochemical cells, with defined electrode potentials. Based on these experiments, taxis toward electrodes is observed to switch at about −0.2 V versus standard hydrogen electrode (SHE), coinciding with the reduction potential of flavins. Exoelectrogenic bacteria are defined by their ability to respire on extracellular and insoluble electron acceptors and have applications in bioremediation and microbial electrochemical systems (MESs), while playing important roles in biogeochemical cycling. Shewanella oneidensis MR-1, which has become a model organism for the study of extracellular respiration, is known to display taxis toward insoluble electron acceptors, including electrodes. Multiple mechanisms have been proposed for MR-1’s tactic behavior, and, here, we report on the role of electrochemical potential by video microscopy cell tracking experiments in three-electrode electrochemical cells. MR-1 trajectories were determined using a particle tracking algorithm and validated with Shannon’s entropy method. Tactic response by MR-1 in the electrochemical cell was observed to depend on the applied potential, as indicated by the average velocity and density of motile (>4 µm/s) MR-1 close to the electrode (<50 µm). Tactic behavior was observed at oxidative potentials, with a strong switch between the potentials −0.15 to −0.25 V versus the standard hydrogen electrode (SHE), which coincides with the reduction potential of flavins. The average velocity and density of motile MR-1 close to the electrode increased when riboflavin was added (2 µM), but were completely absent in a ΔmtrC/ΔomcA mutant of MR-1. Besides flavin’s function as an electron mediator to support anaerobic respiration on insoluble electron acceptors, we propose that riboflavin is excreted by MR-1 to sense redox gradients in its environment, aiding taxis toward insoluble electron acceptors, including electrodes in MESs.
Collapse
|
24
|
Wilmoth JL, Moran MA, Thompson A. Transient O 2 pulses direct Fe crystallinity and Fe(III)-reducer gene expression within a soil microbiome. MICROBIOME 2018; 6:189. [PMID: 30352628 PMCID: PMC6199725 DOI: 10.1186/s40168-018-0574-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Many environments contain redox transition zones, where transient oxygenation events can modulate anaerobic reactions that influence the cycling of iron (Fe) and carbon (C) on a global scale. In predominantly anoxic soils, this biogeochemical cycling depends on Fe mineral composition and the activity of mixed Fe(III)-reducer populations that may be altered by periodic pulses of molecular oxygen (O2). METHODS We repeatedly exposed anoxic (4% H2:96% N2) suspensions of soil from the Luquillo Critical Zone Observatory to 1.05 × 102, 1.05 × 103, and 1.05 × 104 mmol O2 kg-1 soil h-1 during pulsed oxygenation treatments. Metatranscriptomic analysis and 57Fe Mössbauer spectroscopy were used to investigate changes in Fe(III)-reducer gene expression and Fe(III) crystallinity, respectively. RESULTS Slow oxygenation resulted in soil Fe-(oxyhydr)oxides of higher crystallinity (38.1 ± 1.1% of total Fe) compared to fast oxygenation (30.6 ± 1.5%, P < 0.001). Transcripts binning to the genomes of Fe(III)-reducers Anaeromyxobacter, Geobacter, and Pelosinus indicated significant differences in extracellular electron transport (e.g., multiheme cytochrome c, multicopper oxidase, and type-IV pilin gene expression), adhesion/contact (e.g., S-layer, adhesin, and flagellin gene expression), and selective microbial competition (e.g., bacteriocin gene expression) between the slow and fast oxygenation treatments during microbial Fe(III) reduction. These data also suggest that diverse Fe(III)-reducer functions, including cytochrome-dependent extracellular electron transport, are associated with type-III fibronectin domains. Additionally, the metatranscriptomic data indicate that Methanobacterium was significantly more active in the reduction of CO2 to CH4 and in the expression of class(III) signal peptide/type-IV pilin genes following repeated fast oxygenation compared to slow oxygenation. CONCLUSIONS This study demonstrates that specific Fe(III)-reduction mechanisms in mixed Fe(III)-reducer populations are uniquely sensitive to the rate of O2 influx, likely mediated by shifts in soil Fe(III)-(oxyhydr)oxide crystallinity. Overall, we provide evidence that transient oxygenation events play an important role in directing anaerobic pathways within soil microbiomes, which is expected to alter Fe and C cycling in redox-dynamic environments.
Collapse
Affiliation(s)
- Jared Lee Wilmoth
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Aaron Thompson
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA.
| |
Collapse
|
25
|
Lam BR, Rowe AR, Nealson KH. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments. Environ Microbiol 2018; 20:2270-2287. [PMID: 29786168 DOI: 10.1111/1462-2920.14275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Extracellular electron transport (EET) is a microbial process that allows microorganisms to transport electrons to and from insoluble substrates outside of the cell. Although progress has been made in understanding how microbes transfer electrons to insoluble substrates, the process of receiving electrons has largely remained unexplored. We investigated redox potentials favourable for donating electrons to dissolved and insoluble components in Catalina Harbor marine sediment by combining electrochemical techniques with geochemistry and molecular methods. Working electrodes buried in sediment microcosms were poised at seven redox potentials between -300 and -750 mV versus Ag/AgCl using a three-electrode system. In electrode biofilms recovered after 2-month incubations, overall community diversity increased with more negative redox potentials. Abundances of known EET-capable groups (e.g., Alteromonadales and Desulfuromonadales) varied with redox potential. Motility and chemotaxis genes were found in greater abundance in electrode communities, suggesting a possible selective advantage of these pathways for colonization and utilization of the electrode. Our enrichments demonstrated the validity of this approach in capturing groups known, as well as novel groups (e.g., Campylobacterales) that perform EET. The diverse nature of the enriched cathode communities suggest that insoluble substrate oxidation may be a critical, although poorly described microbial metabolic process in marine sediment.
Collapse
Affiliation(s)
- Bonita R Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Annette R Rowe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kenneth H Nealson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Analysis of functional genomes from metagenomes: Revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition. Bioelectrochemistry 2018; 119:59-67. [DOI: 10.1016/j.bioelechem.2017.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/19/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022]
|
27
|
Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1. Bioelectrochemistry 2018; 119:172-179. [DOI: 10.1016/j.bioelechem.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/19/2022]
|
28
|
Harris HW, Sánchez-Andrea I, McLean JS, Salas EC, Tran W, El-Naggar MY, Nealson KH. Redox Sensing within the Genus Shewanella. Front Microbiol 2018; 8:2568. [PMID: 29422884 PMCID: PMC5789149 DOI: 10.3389/fmicb.2017.02568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022] Open
Abstract
A novel bacterial behavior called congregation was recently described in Shewanella oneidensis MR-1 as the accumulation of cells around insoluble electron acceptors (IEA). It is the result of a series of "run-and-reversal" events enabled by modulation of swimming speed and direction. The model proposed that the swimming cells constantly sense their surroundings with specialized outer membrane cytochromes capable of extracellular electron transport (EET). Up to this point, neither the congregation nor attachment behavior have been studied in any other strains. In this study, the wild type of S. oneidensis MR-1 and several deletion mutants as well as eight other Shewanella strains (Shewanella putrefaciens CN32, S. sp. ANA-3, S. sp. W3-18-1, Shewanella amazonensis SB2B, Shewanella loihica PV-4, Shewanella denitrificans OS217, Shewanella baltica OS155, and Shewanella frigidimarina NCIMB400) were screened for the ability to congregate. To monitor congregation and attachment, specialized cell-tracking techniques, as well as a novel cell accumulation after photo-bleaching (CAAP) confocal microscopy technique were utilized in this study. We found a strong correlation between the ability of strain MR-1 to accumulate on mineral surface and the presence of key EET genes such as mtrBC/omcA (SO_1778, SO_1776, and SO_1779) and gene coding for methyl-accepting protein (MCPs) with Ca+ channel chemotaxis receptor (Cache) domain (SO_2240). These EET and taxis genes were previously identified as essential for characteristic run and reversal swimming around IEA surfaces. CN32, ANA-3, and PV-4 congregated around both Fe(OH)3 and MnO2. Two other Shewanella spp. showed preferences for one oxide over the other: preferences that correlated with the metal content of the environments from which the strains were isolated: e.g., W3-18-1, which was isolated from an iron-rich habitat congregated and attached preferentially to Fe(OH)3, while SB2B, which was isolated from a MnO2-rich environment, preferred MnO2.
Collapse
Affiliation(s)
- Howard W. Harris
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| | | | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA, United States
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA, United States
| | | | - William Tran
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| | - Mohamed Y. El-Naggar
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Kim BJ, Chu I, Jusuf S, Kuo T, TerAvest MA, Angenent LT, Wu M. Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device. Front Microbiol 2016; 7:1438. [PMID: 27703448 PMCID: PMC5028412 DOI: 10.3389/fmicb.2016.01438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Shewanella oneidensis is a model bacterial strain for studies of bioelectrochemical systems (BESs). It has two extracellular electron transfer pathways: (1) shuttling electrons via an excreted mediator riboflavin; and (2) direct contact between the c-type cytochromes at the cell membrane and the electrode. Despite the extensive use of S. oneidensis in BESs such as microbial fuel cells and biosensors, many basic microbiology questions about S. oneidensis in the context of BES remain unanswered. Here, we present studies of motility and chemotaxis of S. oneidensis under well controlled concentration gradients of two electron acceptors, oxygen and oxidized form of riboflavin (flavin+), using a newly developed microfluidic platform. Experimental results demonstrate that either oxygen or flavin+ is a chemoattractant to S. oneidensis. The chemotactic tendency of S. oneidensis in a flavin+ concentration gradient is significantly enhanced in an anaerobic in contrast to an aerobic condition. Furthermore, either a low oxygen tension or a high flavin+ concentration considerably enhances the speed of S. oneidensis. This work presents a robust microfluidic platform for generating oxygen and/or flavin+ gradients in an aqueous environment, and demonstrates that two important electron acceptors, oxygen and oxidized riboflavin, cooperatively regulate S. oneidensis migration patterns. The microfluidic tools presented as well as the knowledge gained in this work can be used to guide the future design of BESs for efficient electron production.
Collapse
Affiliation(s)
- Beum Jun Kim
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Injun Chu
- School of Chemical and Biomolecular Engineering, Cornell University Ithaca, NY, USA
| | - Sebastian Jusuf
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Tiffany Kuo
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Michaela A TerAvest
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell UniversityIthaca, NY, USA; Atkinson Center for a Sustainable Future, Cornell UniversityIthaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell UniversityIthaca, NY, USA; Atkinson Center for a Sustainable Future, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
30
|
White GF, Edwards MJ, Gomez-Perez L, Richardson DJ, Butt JN, Clarke TA. Mechanisms of Bacterial Extracellular Electron Exchange. Adv Microb Physiol 2016; 68:87-138. [PMID: 27134022 DOI: 10.1016/bs.ampbs.2016.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism. Firstly, electrons have to be transported at the cell surface, which in Gram-negative bacteria presents an additional problem of electron transfer across the ~6nm of the outer membrane. Secondly, the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram-negative bacteria, electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidithiobacillus ferrooxidans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral-respiring organisms, there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extensions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin.
Collapse
Affiliation(s)
- G F White
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - M J Edwards
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - L Gomez-Perez
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - D J Richardson
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - J N Butt
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - T A Clarke
- School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
31
|
Gross BJ, El-Naggar MY. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:064301. [PMID: 26133851 DOI: 10.1063/1.4922853] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.
Collapse
Affiliation(s)
- Benjamin J Gross
- Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484, USA
| |
Collapse
|
32
|
Li SL, Nealson KH. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes. Front Microbiol 2015; 6:111. [PMID: 25741331 PMCID: PMC4330880 DOI: 10.3389/fmicb.2015.00111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/29/2015] [Indexed: 11/13/2022] Open
Abstract
Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.
Collapse
Affiliation(s)
- Shiue-Lin Li
- Department of Earth Science, University of Southern California Los Angeles, CA, USA
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
33
|
A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME JOURNAL 2015; 9:1802-11. [PMID: 25635641 DOI: 10.1038/ismej.2014.264] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022]
Abstract
Microorganisms show an astonishing versatility in energy metabolism. They can use a variety of different catabolic electron acceptors, but they use them according to a thermodynamic hierarchy, which is determined by the redox potential of the available electron acceptors. This hierarchy is reflected by a regulatory machinery that leads to the production of respiratory chains in dependence of the availability of the corresponding electron acceptors. In this study, we showed that the γ-proteobacterium Shewanella oneidensis produces several functional electron transfer chains simultaneously. Furthermore, these chains are interconnected, most likely with the aid of c-type cytochromes. The cytochrome pool of a single S. oneidensis cell consists of ca. 700 000 hemes, which are reduced in the absence on an electron acceptor, but can be reoxidized in the presence of a variety of electron acceptors, irrespective of prior growth conditions. The small tetraheme cytochrome (STC) and the soluble heme and flavin containing fumarate reductase FccA have overlapping activity and appear to be important for this electron transfer network. Double deletion mutants showed either delayed growth or no growth with ferric iron, nitrate, dimethyl sulfoxide or fumarate as electron acceptor. We propose that an electron transfer machinery that is produced irrespective of a thermodynamic hierarchy not only enables the organism to quickly release catabolic electrons to a variety of environmental electron acceptors, but also offers a fitness benefit in redox-stratified environments.
Collapse
|
34
|
Tikhonova TV, Popov VO. Structural and functional studies of multiheme cytochromes c involved in extracellular electron transport in bacterial dissimilatory metal reduction. BIOCHEMISTRY (MOSCOW) 2015; 79:1584-601. [DOI: 10.1134/s0006297914130094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: a need to act. J Intern Med 2014; 276:98-110. [PMID: 24796496 DOI: 10.1111/joim.12242] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- U Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Molecular mechanisms of heme based sensors from sediment organisms capable of extracellular electron transfer. J Inorg Biochem 2014; 133:104-9. [DOI: 10.1016/j.jinorgbio.2013.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/15/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022]
|
37
|
Electron transport at the microbe-mineral interface: a synthesis of current research challenges. Biochem Soc Trans 2013; 40:1163-6. [PMID: 23176448 DOI: 10.1042/bst20120242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many bacterial and archaeal species can couple growth to the respiratory reduction or oxidation of insoluble mineral oxides of transition metals. These solid substrates are abundant electron sinks and sources for life on Earth, but, since they are insoluble in water, they cannot enter the bacterial cells. So, to exploit these electron sinks and sources, specific respiratory electron-transfer mechanisms must overcome the physical limitations associated with electron transfer between a microbe and extracellular metal oxides. Recent microbiological, geochemical, biochemical, spectroscopic and structural work is beginning to shed light on the molecular mechanism and impacts of electron transfer at the microbe-mineral interface from a nanometre to kilometre scale. The research field is attracting attention in applied quarters from those with interests in nanowires, microbial fuel cells, bioremediation and microbial cell factories.
Collapse
|