1
|
Liu YJ, Liu Q, Li JQ, Ye QW, Yin SY, Liu C, Liu SL, Zou X, Ji J. Comprehensive Breslow thickness (BT)-based analysis to identify biological mechanisms associated with melanoma pathogenesis. Int Immunopharmacol 2025; 147:114065. [PMID: 39809103 DOI: 10.1016/j.intimp.2025.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues. Through consensus clustering, we identified two distinct BT phenotypes in melanoma, which exhibited significant differences in clinical, genomic, and immune infiltration characteristics. High BT molecular expression was associated with reduced CD8+ T cell infiltration and poor immunotherapy response, potentially mediated by the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. In vitro experiments confirmed that BT molecules, including TRIM29, SERPINB5, and RAB25, promoted melanoma development through distinct mechanisms. Notably, fibroblast-derived TRIM29 and B-cell-derived RAB25 interacted with SPP1+ monocytes/macrophages via different pathways. Our findings suggest that genomic variations leading to imbalanced expression of BT molecules across cancers contribute to increased BT, which is closely linked to an immunosuppressive microenvironment. The involvement of multiple cell types and complex intercellular interactions underscores the importance of evaluating dynamic cellular crosstalk in the tumor microenvironment to better understand BT increases and develop more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Qing Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jia-Qi Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Sheng-Yan Yin
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
| | - Cong Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Shen-Lin Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jin Ji
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
2
|
Berta D, Gehrke S, Nyíri K, Vértessy BG, Rosta E. Mechanism-Based Redesign of GAP to Activate Oncogenic Ras. J Am Chem Soc 2023; 145:20302-20310. [PMID: 37682266 PMCID: PMC10515638 DOI: 10.1021/jacs.3c04330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/09/2023]
Abstract
Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.
Collapse
Affiliation(s)
- Dénes Berta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Kinga Nyíri
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Beáta G. Vértessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| |
Collapse
|
3
|
Zamora-Fuentes JM, Hernández-Lemus E, Espinal-Enríquez J. Methylation-related genes involved in renal carcinoma progression. Front Genet 2023; 14:1225158. [PMID: 37693315 PMCID: PMC10486271 DOI: 10.3389/fgene.2023.1225158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Renal carcinomas are a group of malignant tumors often originating in the cells lining the small tubes in the kidney responsible for filtering waste from the blood and urine production. Kidney tumors arise from the uncontrolled growth of cells in the kidneys and are responsible for a large share of global cancer-related morbidity and mortality. Understanding the molecular mechanisms driving renal carcinoma progression results crucial for the development of targeted therapies leading to an improvement of patient outcomes. Epigenetic mechanisms such as DNA methylation are known factors underlying the development of several cancer types. There is solid experimental evidence of relevant biological functions modulated by methylation-related genes, associated with the progression of different carcinomas. Those mechanisms can often be associated to different epigenetic marks, such as DNA methylation sites or chromatin conformation patterns. Currently, there is no definitive method to establish clear relations between genetic and epigenetic factors that influence the progression of cancer. Here, we developed a data-driven method to find methylation-related genes, so we could find relevant bonds between gene co-expression and methylation-wide-genome regulation patterns able to drive biological processes during the progression of clear cell renal carcinoma (ccRC). With this approach, we found out genes such as ITK oncogene that appear hypomethylated during all four stages of ccRC progression and are strongly involved in immune response functions. Also, we found out relevant tumor suppressor genes such as RAB25 hypermethylated, thus potentially avoiding repressed functions in the AKT signaling pathway during the evolution of ccRC. Our results have relevant implications to further understand some epigenetic-genetic-affected roles underlying the progression of renal cancer.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Fatemi M, Feng E, Sharma C, Azher Z, Goel T, Ramwala O, Palisoul SM, Barney RE, Perreard L, Kolling FW, Salas LA, Christensen BC, Tsongalis GJ, Vaickus LJ, Levy JJ. Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study. J Pathol Inform 2023; 14:100308. [PMID: 37114077 PMCID: PMC10127126 DOI: 10.1016/j.jpi.2023.100308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over 150 000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually over 50 000 individuals will die from CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. Tumor metastasis is the primary factor related to the risk of recurrence and mortality. Yet, screening for nodal and distant metastasis is costly, and invasive and incomplete resection may hamper adequate assessment. Signatures of the tumor-immune microenvironment (TIME) at the primary site can provide valuable insights into the aggressiveness of the tumor and the effectiveness of various treatment options. Spatially resolved transcriptomics technologies offer an unprecedented characterization of TIME through high multiplexing, yet their scope is constrained by cost. Meanwhile, it has long been suspected that histological, cytological, and macroarchitectural tissue characteristics correlate well with molecular information (e.g., gene expression). Thus, a method for predicting transcriptomics data through inference of RNA patterns from whole slide images (WSI) is a key step in studying metastasis at scale. In this work, we collected tissue from 4 stage-III (pT3) matched colorectal cancer patients for spatial transcriptomics profiling. The Visium spatial transcriptomics (ST) assay was used to measure transcript abundance for 17 943 genes at up to 5000 55-micron (i.e., 1-10 cells) spots per patient sampled in a honeycomb pattern, co-registered with hematoxylin and eosin (H&E) stained WSI. The Visium ST assay can measure expression at these spots through tissue permeabilization of mRNAs, which are captured through spatially (i.e., x-y positional coordinates) barcoded, gene specific oligo probes. WSI subimages were extracted around each co-registered Visium spot and were used to predict the expression at these spots using machine learning models. We prototyped and compared several convolutional, transformer, and graph convolutional neural networks to predict spatial RNA patterns at the Visium spots under the hypothesis that the transformer- and graph-based approaches better capture relevant spatial tissue architecture. We further analyzed the model's ability to recapitulate spatial autocorrelation statistics using SPARK and SpatialDE. Overall, the results indicate that the transformer- and graph-based approaches were unable to outperform the convolutional neural network architecture, though they exhibited optimal performance for relevant disease-associated genes. Initial findings suggest that different neural networks that operate on different scales are relevant for capturing distinct disease pathways (e.g., epithelial to mesenchymal transition). We add further evidence that deep learning models can accurately predict gene expression in whole slide images and comment on understudied factors which may increase its external applicability (e.g., tissue context). Our preliminary work will motivate further investigation of inference for molecular patterns from whole slide images as metastasis predictors and in other applications.
Collapse
Affiliation(s)
- Michael Fatemi
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| | - Eric Feng
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Cyril Sharma
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Zarif Azher
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Tarushii Goel
- Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ojas Ramwala
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Scott M. Palisoul
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
| | - Rachael E. Barney
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
| | | | | | - Lucas A. Salas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Integrative Neuroscience at Dartmouth (IND) graduate program, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | - Brock C. Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Department of Community and Family Medicine, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | - Gregory J. Tsongalis
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
| | - Louis J. Vaickus
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
| | - Joshua J. Levy
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH, USA
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
5
|
Shallow Whole-Genome Sequencing of Cell-Free DNA (cfDNA) Detects Epithelial Ovarian Cancer and Predicts Patient Prognosis. Cancers (Basel) 2023; 15:cancers15020530. [PMID: 36672479 PMCID: PMC9857189 DOI: 10.3390/cancers15020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Despite the progress in diagnostics and therapeutics, epithelial ovarian cancer (EOC) remains a fatal disease. Using shallow whole-genome sequencing of plasma cell-free DNA (cfDNA), we investigated biomarkers that could detect EOC and predict survival. Plasma cfDNA from 40 EOC patients and 20 healthy subjects were analyzed by shallow whole-genome sequencing (WGS) to identify copy number variations (CNVs) and determine the Z-scores of genes. In addition, we also calculated the genome-wide scores (Gi scores) to quantify chromosomal instability. We found that the Gi scores could distinguish EOC patients from healthy subjects and identify various EOC histological subtypes (e.g., high-grade serous carcinoma). In addition, we characterized EOC CNVs and demonstrated a relationship between RAB25 amplification (alone or with CA125), and disease-free survival and overall survival. This study identified RAB25 amplification as a predictor of EOC patient survival. Moreover, we showed that Gi scores could detect EOC. These data demonstrated that cfDNA, detected by shallow WGS, represented a potential tool for diagnosing EOC and predicting its prognosis.
Collapse
|
6
|
Kohil A, Amir SS, Behrens A, Khan OM. A small Rho GTPase RAB25 with a potential role in chemotherapy resistance in pancreatic cancer. Cancer Biomark 2022; 36:133-145. [PMID: 36565104 DOI: 10.3233/cbm-220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is one of the major human health challenges with minimal therapeutic benefits due to its late detection, and de novo - and acquired chemotherapy resistance. OBJECTIVE In this work we unravel the potential pro-survival role of RAB25 in pancreatic cancer chemotherapy resistance and aim to identify if RAB25 is a prognostic marker of patients' survival in PDA. METHODS We used RNA sequencing, shRNA mediated gene knockdown, BioGRID open repository of CRISPR screens (ORCS), GEPIA, kmplot.com, and cBioPortal.org databases to identify the role of RAB25 in PDA cell proliferation, chemotherapy response, expression in tumour versus normal tissues, and overall patients' survival. RESULTS RNA sequencing show Rab25 to be one of the top upregulated genes in gemcitabine resistance mouse PDA cells. Knockdown of Rab25 in these cells enhanced gemcitabine toxicity. In addition, re-analysis of previously published CRISPR/Cas9 data confirm RAB25 to be responsible for chemotherapy resistance in KRASG12D mutant human pancreatic cancer cell line. Finally, we used publicly available TCGA datasets and identify the upregulation of RAB25 in tumour tissues compared to the adjacent normal tissue, co-occurrence of KRASG12 mutations with RAB25 amplifications, and poor patients' survival in cohorts with higher mRNA expression of RAB25. CONCLUSION RAB25 expression is a prognostic marker for patient's survival and gemcitabine resistance in PDA.
Collapse
Affiliation(s)
- Amira Kohil
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sayeda S Amir
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Axel Behrens
- The Francis Crick Institute, London, UK.,Cancer Stem Cell Team, Institute of Cancer Research, London, UK
| | - Omar M Khan
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
7
|
Salehi A, Wang L, Coates PJ, Norberg Spaak L, Gu X, Sgaramella N, Nylander K. Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck. Comput Biol Med 2022; 149:105991. [PMID: 36007290 DOI: 10.1016/j.compbiomed.2022.105991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/11/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Patients with squamous cell carcinoma of the head and neck (SCCHN) have a high-risk of recurrence. We aimed to develop machine learning methods to identify transcriptomic and proteomic features that provide accurate classification models for predicting risk of early recurrence in SCCHN patients. METHODS Clinical, genomic, transcriptomic and proteomic features distinguishing recurrence risk were examined in SCCHN patients from The Cancer Genome Atlas (TCGA). Recurrence within one year after treatment was classified as high-risk and no recurrence as low-risk. RESULTS No significant differences in individual clinicopathological characteristics, mutation profiles or mRNA expression patterns were seen between the groups using conventional statistical analysis. Using the machine learning algorithm, extreme gradient boosting (XGBoost), ten proteins (RAD50, 4E-BP1, MYH11, MAP2K1, BECN1, NF2, RAB25, ERRFI1, KDR, SERPINE1) and five mRNAs (PLAUR, DKK1, AXIN2, ANG and VEGFA) made the greatest contribution to classification. These features were used to build improved models in XGBoost, achieving the best discrimination performance when combining transcriptomic and proteomic data, providing an accuracy of 0.939 and an Area Under the ROC Curve (AUC) of 0.951. CONCLUSIONS This study highlights machine learning to identify transcriptomic and proteomic factors that play important roles in predicting risk of recurrence in patients with SCCHN and to develop such models by iterative cycles to enhance their accuracy, thereby aiding the introduction of personalized treatment regimens.
Collapse
Affiliation(s)
- Amir Salehi
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 656 53, Czech Republic
| | - Lena Norberg Spaak
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Cui T, Guo J, Sun Z. A computational prognostic model of lncRNA signature for clear cell renal cell carcinoma with genome instability. Expert Rev Mol Diagn 2021; 22:213-222. [PMID: 34871123 DOI: 10.1080/14737159.2021.1979960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in genomic instability and prognosis of cancer patients, but the methods to identify genomic instability-related lncRNAs have yet to be established. In the present study, to assess the prognostic value of lncRNAs associated with genomic instability in clear cell renal cell carcinoma (ccRCC).A computational framework was established based on the mutation hypothesis and combined lncRNA expression and somatic mutation profiles of the ccRCC genome. Furthermore, a prognostic model was developed using the genome instability-derived lncRNA signature GILncSig based on three lncRNA genes (LINC02471, LINC01234, and LINC00460) and verified using multiple independent patient cohorts.This study established an effective computational method to study the role of lncRNAs in genomic instability, with potential applications in identifying new genomic instability-related cancer biomarkers.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiantao Guo
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhixia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
He L, Pan X, Wang X, Cao Y, Chen P, Du C, Huang D. Rab6c is a new target of miR‑218 that can promote the progression of bladder cancer. Mol Med Rep 2021; 24:792. [PMID: 34515321 DOI: 10.3892/mmr.2021.12432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Bladder cancer has high morbidity and mortality rates among the male genitourinary system tumor types. MicroRNA‑218 (miR‑218) is associated with the development of a variety of cancer types, including bladder cancer. Rab6c is a member of the Rab family and is involved in drug resistance in MCF7 cells. The aim of the present study was to clarify the relationship between Rab6c and miR‑218 in bladder cancer cell lines. In this study, the expression levels of miR‑218 and Rab6c were evaluated via reverse transcription‑quantitative PCR and western blotting, respectively. The association between Rab6c and miR‑218 was recognized via TargetScan analysis and dual luciferase reporter gene detection. Cell proliferation was analyzed using Cell Counting Kit‑8 and colony formation assays, and the invasive ability was measured via Transwell assays. Rab6c was highly expressed in bladder cancer, while miR‑218 had abnormally low expression in bladder cancer. In addition, there was a mutual regulation between Rab6c and miR‑218 in bladder cancer. It was found that overexpression of Rab6c significantly enhanced the proliferation, colony formation and invasion of T24 and EJ cells. Furthermore, miR‑218 overexpression blocked the promoting effects of Rab6c on the malignant behavior of bladder cancer cells. Thus, Rab6c promotes the proliferation and invasion of bladder cancer cells, while miR‑218 has the opposite effect, which may provide a novel insight for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Long He
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225003, P.R. China
| | - Xiang Pan
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225003, P.R. China
| | - Xialu Wang
- Key Laboratory of Pattern Recognition in Liaoning, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yuhua Cao
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, National Center for Clinical Research of Geriatric Diseases, Shenyang, Liaoning 157099, P.R. China
| | - Peng Chen
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110013, P.R. China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110013, P.R. China
| | - Daifa Huang
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, National Center for Clinical Research of Geriatric Diseases, Shenyang, Liaoning 157099, P.R. China
| |
Collapse
|
10
|
Jeon H, Kang SK, Lee MJ, Park C, Yoo SM, Kang YH, Lee MS. Rab27b regulates extracellular vesicle production in cells infected with Kaposi's sarcoma-associated herpesvirus to promote cell survival and persistent infection. J Microbiol 2021; 59:522-529. [PMID: 33877577 DOI: 10.1007/s12275-021-1108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab-27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab-27b in the KSHV life cycle.
Collapse
Affiliation(s)
- Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Yun Hee Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
11
|
Bernal C, Silvano M, Tapponnier Y, Anand S, Angulo C, Ruiz i Altaba A. Functional Pro-metastatic Heterogeneity Revealed by Spiked-scRNAseq Is Shaped by Cancer Cell Interactions and Restricted by VSIG1. Cell Rep 2020; 33:108372. [PMID: 33176137 DOI: 10.1016/j.celrep.2020.108372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/26/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
How cells with metastatic potential, or pro-metastatic states, arise within heterogeneous primary tumors remains unclear. Here, we have used one index primary colon cancer to develop spiked-scRNAseq to link omics-defined single-cell clusters with cell behavior. Using spiked-scRNAseq we uncover cell populations with differential metastatic potential in which pro-metastatic states are correlated with the expression of signaling and vesicle-trafficking genes. Analyzing such heterogeneity, we define an anti-metastatic, non-cell-autonomous interaction originating from non-/low-metastatic cells, and identify membrane VSIG1 as a critical mediator of this interaction. VSIG1 acts to restrict the development of pro-metastatic states autonomously and non-cell autonomously, in part by inhibiting YAP/TAZ-TEAD signaling. As VSIG1 re-expression is able to reduce metastatic behavior from multiple colon cancer cell types, the regulation of VSIG1 or its effectors opens new interventional opportunities. In general, we propose that crosstalk between cancer cells, including the action of VSIG1, dynamically defines the degree of pro-metastatic intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Carolina Bernal
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Yann Tapponnier
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Santosh Anand
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cecilia Angulo
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
12
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
13
|
Zhang K, Liu H, Song Z, Jiang Y, Kim H, Samavati L, Nguyen HM, Yang ZQ. The UPR Transducer IRE1 Promotes Breast Cancer Malignancy by Degrading Tumor Suppressor microRNAs. iScience 2020; 23:101503. [PMID: 32911332 PMCID: PMC7490531 DOI: 10.1016/j.isci.2020.101503] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of inositol-requiring enzyme 1 (IRE1), the primary transducer of Unfolded Protein Response (UPR), has been observed in tumor initiation and progression, but the underlying mechanism remains to be further elucidated. In this study, we identified that the IRE1 gene is frequently amplified and over-expressed in aggressive luminal B breast cancer cells and that IRE1 upregulation is significantly associated with worse overall survival of patients with breast cancer. IRE1 processes and mediates degradation of a subset of tumor suppressor microRNAs (miRNAs), including miR-3607, miR-374a, and miR-96, via a mechanism called Regulated IRE1-Dependent Decay (RIDD). IRE1-dependent degradation of tumor suppressor miR-3607 leads to elevation of RAS oncogene GTPase RAB3B in breast cancer cells. Inhibition of IRE1 endoribonuclease activity with the pharmacological compound 4μ8C or genetic approaches effectively suppresses luminal breast cancer cell proliferation and aggressive cancer phenotypes. Our work revealed the IRE1-RIDD-miRNAs pathway that promotes malignancy of luminal breast cancer.
Collapse
Affiliation(s)
- Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Hui Liu
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yuanyuan Jiang
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lobelia Samavati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Zeng-Quan Yang
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
14
|
RAB25 confers resistance to chemotherapy by altering mitochondrial apoptosis signaling in ovarian cancer cells. Apoptosis 2020; 25:799-816. [PMID: 32901335 DOI: 10.1007/s10495-020-01635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 01/28/2023]
Abstract
Ovarian cancer remains one of the most frequent causes of cancer-related death in women. Many patients with ovarian cancer suffer from de novo or acquired resistance to chemotherapy. Here, we report that RAB25 suppresses chemotherapy-induced mitochondrial apoptosis signaling in ovarian cancer cell lines and primary ovarian cancer cells. RAB25 blocks chemotherapy-induced apoptosis upstream of mitochondrial outer membrane permeabilization by either increasing antiapoptotic BCL-2 proteins or decreasing proapoptotic BCL-2 proteins. In particular, BAX expression negatively correlates with RAB25 expression in ovarian cancer cells. BH3 profiling assays corroborated that RAB25 decreases mitochondrial cell death priming. Suppressing RAB25 by means of RNAi or RFP14 inhibitory hydrocarbon-stapled peptide sensitizes ovarian cancer cells to chemotherapy as well as RAB25-mediated proliferation, invasion and migration. Our data suggest that RAB25 is a potential therapeutic target for ovarian cancer.
Collapse
|
15
|
Liu P, Tian W. Identification of DNA methylation patterns and biomarkers for clear-cell renal cell carcinoma by multi-omics data analysis. PeerJ 2020; 8:e9654. [PMID: 32832275 PMCID: PMC7409785 DOI: 10.7717/peerj.9654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background Tumorigenesis is highly heterogeneous, and using clinicopathological signatures only is not enough to effectively distinguish clear cell renal cell carcinoma (ccRCC) and improve risk stratification of patients. DNA methylation (DNAm) with the stability and reversibility often occurs in the early stage of tumorigenesis. Disorders of transcription and metabolism are also an important molecular mechanisms of tumorigenesis. Therefore, it is necessary to identify effective biomarkers involved in tumorigenesis through multi-omics analysis, and these biomarkers also provide new potential therapeutic targets. Method The discovery stage involved 160 pairs of ccRCC and matched normal tissues for investigation of DNAm and biomarkers as well as 318 cases of ccRCC including clinical signatures. Correlation analysis of epigenetic, transcriptomic and metabolomic data revealed the connection and discordance among multi-omics and the deregulated functional modules. Diagnostic or prognostic biomarkers were obtained by the correlation analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) and the LASSO-Cox methods. Two classifiers were established based on random forest (RF) and LASSO-Cox algorithms in training datasets. Seven independent datasets were used to evaluate robustness and universality. The molecular biological function of biomarkers were investigated using DAVID and GeneMANIA. Results Based on multi-omics analysis, the epigenetic measurements uniquely identified DNAm dysregulation of cellular mechanisms resulting in transcriptomic alterations, including cell proliferation, immune response and inflammation. Combination of the gene co-expression network and metabolic network identified 134 CpG sites (CpGs) as potential biomarkers. Based on the LASSO and RF algorithms, five CpGs were obtained to build a diagnostic classifierwith better classification performance (AUC > 99%). A eight-CpG-based prognostic classifier was obtained to improve risk stratification (hazard ratio (HR) > 4; log-rank test, p-value < 0.01). Based on independent datasets and seven additional cancers, the diagnostic and prognostic classifiers also had better robustness and stability. The molecular biological function of genes with abnormal methylation were significantly associated with glycolysis/gluconeogenesis and signal transduction. Conclusion The present study provides a comprehensive analysis of ccRCC using multi-omics data. These findings indicated that multi-omics analysis could identify some novel epigenetic factors, which were the most important causes of advanced cancer and poor clinical prognosis. Diagnostic and prognostic biomarkers were identified, which provided a promising avenue to develop effective therapies for ccRCC.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
16
|
Andrews JM, Schmidt JA, Carson KR, Musiek AC, Mehta-Shah N, Payton JE. Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma. EBioMedicine 2019; 46:170-183. [PMID: 31358475 PMCID: PMC6711861 DOI: 10.1016/j.ebiom.2019.07.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background Treatment for Cutaneous T Cell Lymphoma (CTCL) is generally not curative. Therefore, selecting therapy that is effective and tolerable is critical to clinical decision-making. Histone deacetylase inhibitors (HDACi), epigenetic modifier drugs, are commonly used but effective in only ~30% of patients. There are no predictive markers of HDACi response and the CTCL histone acetylation landscape remains unmapped. We sought to identify pre-treatment molecular markers of resistance in CTCL that progressed on HDACi therapy. Methods Purified T cells from 39 pre/post-treatment peripheral blood samples and skin biopsies from 20 patients were subjected to RNA-seq and ChIP-seq for histone acetylation marks (H3K14/9 ac, H3K27ac). We correlated significant differences in histone acetylation with gene expression in HDACi-resistant/sensitive CTCL. We extended these findings in additional CTCL patient cohorts (RNA-seq, microarray) and using ELISA in matched CTCL patient plasma. Findings Resistant CTCL exhibited high levels of histone acetylation, which correlated with increased expression of 338 genes (FDR < 0·05), including some novel to CTCL: BIRC5 (anti-apoptotic); RRM2 (cell cycle); TXNDC5, GSTM1 (redox); and CXCR4, LAIR2 (cell adhesion/migration). Several of these, including LAIR2, were elevated pre-treatment in HDACi-resistant CTCL. In CTCL patient plasma (n = 6), LAIR2 protein was also elevated (p < 0·01) compared to controls. Interpretation This study is the first to connect genome-wide differences in chromatin acetylation and gene expression to HDACi-resistance in primary CTCL. Our results identify novel markers with high pre-treatment expression, such as LAIR2, as potential prognostic and/or predictors of HDACi-resistance in CTCL. Funding NIH:CA156690, CA188286; NCATS: WU-ICTS UL1 TR000448; Siteman Cancer Center: CA091842.
Collapse
Affiliation(s)
- Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenneth R Carson
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy C Musiek
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Neha Mehta-Shah
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Jeong H, Lim KM, Kim KH, Cho Y, Lee B, Knowles BC, Roland JT, Zwerner JP, Goldenring JR, Nam KT. Loss of Rab25 promotes the development of skin squamous cell carcinoma through the dysregulation of integrin trafficking. J Pathol 2019; 249:227-240. [PMID: 31144312 DOI: 10.1002/path.5311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022]
Abstract
Rab25 can function as both a tumor suppressor and a tumor promoter across different tissues. This study sought to clarify the role of Rab25 as a tumor suppressor in skin squamous cell carcinoma (SCC). Rab25 loss was closely associated with neoplastic transition in both humans and mice. Rab25 loss was well correlated with increased cell proliferation and poor differentiation in human SCC. While Rab25 knockout (KO) in mice did not induce spontaneous tumor formation, it did significantly accelerate tumor generation and promote malignant transformation in a mouse two-stage skin carcinogenesis model. Xenografting of a Rab25-deficient human keratinocyte cell line, HaCaT, also elicited neoplastic transformation. Notably, Rab25 deficiency led to dysregulation of integrins β1, β4, and α6, which matched well with increased epidermal proliferation and impaired desmosome-tight junction formation. Rab25 deficiency induced impairment of integrin recycling, leading to the improper expression of integrins. In line with this, significant attenuation of integrin β1, β4, and α6 expression was identified in human SCCs where Rab25 was deficient. Collectively, these results suggest that loss of Rab25 promotes the development and neoplastic transition of SCC through dysregulation of integrin trafficking. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Buhyun Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byron C Knowles
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Jeffrey P Zwerner
- Department of Dermatology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
19
|
Qiu S, Xu H, Lin Z, Liu F, Tan F. The blockade of lipophagy pathway is necessary for docosahexaenoic acid to regulate lipid droplet turnover in hepatic stellate cells. Biomed Pharmacother 2019; 109:1841-1850. [DOI: 10.1016/j.biopha.2018.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
|
20
|
Skrypek N, Bruneel K, Vandewalle C, De Smedt E, Soen B, Loret N, Taminau J, Goossens S, Vandamme N, Berx G. ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics Chromatin 2018; 11:70. [PMID: 30445998 PMCID: PMC6240308 DOI: 10.1186/s13072-018-0239-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Epithelial mesenchymal transition (EMT) is tightly regulated by a network of transcription factors (EMT-TFs). Among them is the nuclear factor ZEB2, a member of the zinc-finger E-box binding homeobox family. ZEB2 nuclear localization has been identified in several cancer types, and its overexpression is correlated with the malignant progression. ZEB2 transcriptionally represses epithelial genes, such as E-cadherin (CDH1), by directly binding to the promoter of the genes it regulates and activating mesenchymal genes by a mechanism in which there is no full agreement. Recent studies showed that EMT-TFs interact with epigenetic regulatory enzymes that alter the epigenome, thereby providing another level of control. The role of epigenetic regulation on ZEB2 function is not well understood. In this study, we aimed to characterize the epigenetic effect of ZEB2 repressive function on the regulation of a small Rab GTPase RAB25. Results Using cellular models with conditional ZEB2 expression, we show a clear transcriptional repression of RAB25 and CDH1. RAB25 contributes to the partial suppression of ZEB2-mediated cell migration. Furthermore, a highly significant reverse correlation between RAB25 and ZEB2 expression in several human cancer types could be identified. Mechanistically, ZEB2 binds specifically to E-box sequences on the RAB25 promoter. ZEB2 binding is associated with the local increase in DNA methylation requiring DNA methyltransferases as well as histone deacetylation (H3K9Ac) depending on the activity of SIRT1. Surprisingly, SIRT1 and DNMTs did not interact directly with ZEB2, and while SIRT1 inhibition decreased the stability of long-term repression, it did not prevent down-regulation of RAB25 and CDH1 by ZEB2. Conclusions ZEB2 expression is resulting in drastic changes at the chromatin level with both clear DNA hypermethylation and histone modifications. Here, we revealed that SIRT1-mediated H3K9 deacetylation helps to maintain gene repression but is not required for the direct ZEB2 repressive function. Targeting epigenetic enzymes to prevent EMT is an appealing approach to limit cancer dissemination, but inhibiting SIRT1 activity alone might have limited effect and will require drug combination to efficiently prevent EMT. Electronic supplementary material The online version of this article (10.1186/s13072-018-0239-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas Skrypek
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kenneth Bruneel
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Cindy Vandewalle
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva De Smedt
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bieke Soen
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nele Loret
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Joachim Taminau
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Centre for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
| | - Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Data Mining and Modeling for Biomedicine, VIB Inflammation Research Center, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
21
|
Li Z, Fang R, Fang J, He S, Liu T. Functional implications of Rab27 GTPases in Cancer. Cell Commun Signal 2018; 16:44. [PMID: 30081925 PMCID: PMC6080553 DOI: 10.1186/s12964-018-0255-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background The Rab27 family of small GTPases promotes the progression of breast cancer, melanoma, and other human cancers. In this review, we discuss the role of Rab27 GTPases in cancer progression and the potential applications of these targets in cancer treatment. Main body Elevated expression of Rab27 GTPases is associated with poor prognosis and cancer metastasis. Moreover, these GTPases govern a variety of oncogenic functions, including cell proliferation, cell motility, and chemosensitivity. In addition, small GTPases promote tumor growth and metastasis by enhancing exosome secretion, which alters intracellular microRNA levels, signaling molecule expression, and the tumor microenvironment. Conclusion Rab27 GTPases may have applications as prognostic markers and therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Fang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Fang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Tang Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Romaniello D, Mazzeo L, Mancini M, Marrocco I, Noronha A, Kreitman M, Srivastava S, Ghosh S, Lindzen M, Salame TM, Onn A, Bar J, Yarden Y. A Combination of Approved Antibodies Overcomes Resistance of Lung Cancer to Osimertinib by Blocking Bypass Pathways. Clin Cancer Res 2018; 24:5610-5621. [PMID: 29967248 DOI: 10.1158/1078-0432.ccr-18-0450] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Because of emergence of resistance to osimertinib, a third-generation EGFR tyrosine kinase inhibitor (TKI), no targeted treatments are available for patients with lung cancer who lose sensitivity due to new mutations or bypass mechanisms. We examined in animals and in vitro an alternative therapeutic approach making use of antibodies.Experimental Design: An osimertinib-sensitive animal model of lung cancer, which rapidly develops drug resistance, has been employed. To overcome compensatory hyperactivation of ERK, which we previously reported, an anti-EGFR antibody (cetuximab) was combined with other antibodies, as well as with a subtherapeutic dose of osimertinib, and cancer cell apoptosis was assayed.Results: Our animal studies identified a combination of three clinically approved drugs, cetuximab, trastuzumab (an anti-HER2 mAb), and osimertinib (low dose), as an effective and long-lasting treatment that is able to prevent onset of resistance to osimertinib. A continuous schedule of concurrent treatment was sufficient for effective tumor inhibition and for prevention of relapses. Studies employing cultured cells and analyses of tumor extracts indicated that the combination of two mAbs and a subtherapeutic TKI dose sorted EGFR and HER2 for degradation; cooperatively enhanced apoptosis; inhibited activation of ERK; and reduced abundance of several bypass proteins, namely MET, AXL, and HER3.Conclusions: Our in vitro assays and animal studies identified an effective combination of clinically approved drugs that might overcome resistance to irreversible TKIs in clinical settings. The results we present attribute the long-lasting effect of the drug combination to simultaneous blockade of several well-characterized mechanisms of drug resistance. Clin Cancer Res; 24(22); 5610-21. ©2018 AACR See related commentary by Fan and Yu, p. 5499.
Collapse
Affiliation(s)
| | - Luigi Mazzeo
- Department of Biological Regulation, Rehovot, Israel
| | | | | | | | | | | | - Soma Ghosh
- Department of Biological Regulation, Rehovot, Israel
| | | | - Tomer Meir Salame
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Onn
- Institute of Pulmonology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Jair Bar
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Rehovot, Israel.
| |
Collapse
|
23
|
Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget 2018; 7:40252-40265. [PMID: 27259233 PMCID: PMC5130006 DOI: 10.18632/oncotarget.9730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.
Collapse
|
24
|
Gomez-Roman N, Sahasrabudhe NM, McGregor F, Chalmers AJ, Cassidy J, Plumb J. Hypoxia-inducible factor 1 alpha is required for the tumourigenic and aggressive phenotype associated with Rab25 expression in ovarian cancer. Oncotarget 2017; 7:22650-64. [PMID: 26967059 PMCID: PMC5008389 DOI: 10.18632/oncotarget.7998] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/16/2016] [Indexed: 01/06/2023] Open
Abstract
The small GTPase Rab25 has been functionally linked to tumour progression and aggressiveness in ovarian cancer and promotes invasion in three-dimensional environments. This type of migration has been shown to require the expression of the hypoxia-inducible factor 1 alpha (HIF-1α). In this report we demonstrate that Rab25 regulates HIF-1α protein expression in an oxygen independent manner in a panel of cancer cell lines. Regulation of HIF-1α protein expression by Rab25 did not require transcriptional upregulation, but was dependent on de novo protein synthesis through the Erbb2/ERK1/2 and p70S6K/mTOR pathways. Rab25 expression induced HIF-1 transcriptional activity, increased cisplatin resistance, and conferred intraperitoneal growth to the A2780 cell line in immunocompromised mice. Targeting HIF1 activity by silencing HIF-1β re-sensitised cells to cisplatin in vitro and reduced tumour formation of A2780-Rab25 expressing cells in vivo in a mouse ovarian peritoneal carcinomatosis model. Similar effects on cisplatin resistance in vitro and intraperitoneal tumourigenesis in vivo were obtained after HIF1b knockdown in the ovarian cancer cell line SKOV3, which expresses endogenous Rab25 and HIF-1α at atmospheric oxygen concentrations. Our results suggest that Rab25 tumourigenic potential and chemoresistance relies on HIF1 activity in aggressive and metastatic ovarian cancer. Targeting HIF-1 activity may potentially be effective either alone or in combination with standard chemotherapy for aggressive metastatic ovarian cancer.
Collapse
Affiliation(s)
- Natividad Gomez-Roman
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Fiona McGregor
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anthony J Chalmers
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim Cassidy
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.,Current address: VP Oncology at Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jane Plumb
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. Br J Cancer 2017; 117:1689-1701. [PMID: 29024942 PMCID: PMC5729446 DOI: 10.1038/bjc.2017.352] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognised to have a major role in trafficking and polarisation of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. Methods: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of Myosin Vb (MYO5B) and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. Results: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common downregulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease-, and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. Conclusions: Our data identify MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy.
Collapse
|
26
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
28
|
Hu C, Chen B, Zhou Y, Shan Y. High expression of Rab25 contributes to malignant phenotypes and biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Cell Int 2017; 17:45. [PMID: 28400705 PMCID: PMC5387234 DOI: 10.1186/s12935-017-0411-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Ras-related protein 25 (Rab25) functions either as an oncogene or a tumor suppressor with a cancer type-dependent manner. We aimed to investigate clinical significance of Rab25 in prostate cancer (PCa). Methods Quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were respectively performed to detect Rab25 mRNA and protein expression in PCa and adjacent non-cancerous prostate tissues. Receiver-operating characteristic curve analysis was used to evaluate predictive diagnostic value of Rab25. Associations of Rab25 expression with various clinicopathological characteristics and biochemical recurrence-free survival of PCa patients were statistically evaluated. In vitro, PCa cell proliferation was assessed by CCK-8 assay, and the cell migration and invasion activities were evaluated by Transwell assay, following the transfection of Rab25 small interfering RNA. Results Ras-related protein 25 mRNA and protein expression in PCa tissues were both significantly higher than adjacent non-cancerous prostate tissues (both P < 0.001). The area under the curve of Rab25 immunoreactive score (IRS) was 0.896 (P < 0.001) with 74.0% sensitivity and 95.0% specificity. High Rab25 IRS was significantly associated with high Gleason score (P = 0.02) and distant metastasis (P = 0.01). PCa patients with high Rab25 IRS had shorter overall and biochemical recurrence-free survivals than those with low Rab25 IRS (both P < 0.001). Cox regression analysis identified Rab25 as an independent biomarker for both overall and biochemical recurrence-free survivals of PCa patients. By exploring its activities in vitro, Rab25 downregulation was found to inhibit PCa cell proliferation, migration and invasion. Conclusions High expression of Rab25 may contribute to malignant progression and biochemical recurrence of PCa patients after radical prostatectomy. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunhui Hu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Beibei Chen
- Department of Intensive Care Unit, Huai'an First People's Hospital, Huai'an, 223300 Jiangsu China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Yuxi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| |
Collapse
|
29
|
Khakpour G, Noruzinia M, Izadi P, Karami F, Ahmadvand M, Heshmat R, Amoli MM, Tavakkoly-Bazzaz J. Methylomics of breast cancer: Seeking epimarkers in peripheral blood of young subjects. Tumour Biol 2017; 39:1010428317695040. [PMID: 28349825 DOI: 10.1177/1010428317695040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Critical roles of epigenomic alterations in the pathogenesis of breast cancer have recently seized great attentions toward finding epimarkers in either non-invasive or semi-non-invasive samples as well as peripheral blood. In this way, methylated DNA immunoprecipitation microarray (MeDIP-chip) was performed on DNA samples isolated from white blood cells of 30 breast cancer patients compared to 30 healthy controls. A total of 1799 differentially methylated regions were identified including SLC6A3, Rab40C, ZNF584, and FOXD3 whose significant methylation differences were confirmed in breast cancer patients through quantitative real-time polymerase chain reaction. Hypermethylation of APC, HDAC1, and GSK1 genes has been previously reported in more than one study on tissue samples of breast cancer. Methylation of those aforementioned genes in white blood cells of our young patients not only relies on their importance in breast cancer pathogenesis but also may highlight their potential as early epimarkers that makes further assessments necessary in large cohort studies.
Collapse
Affiliation(s)
- Golnaz Khakpour
- 1 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Noruzinia
- 2 Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pantea Izadi
- 1 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Karami
- 3 Department of Medical Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ahmadvand
- 4 Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- 5 Chronic Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- 6 Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- 1 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Lanzetti L, Di Fiore PP. Behind the Scenes: Endo/Exocytosis in the Acquisition of Metastatic Traits. Cancer Res 2017; 77:1813-1817. [PMID: 28373181 DOI: 10.1158/0008-5472.can-16-3403] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/01/2017] [Indexed: 11/16/2022]
Abstract
Alterations of endo/exocytic proteins have long been associated with malignant transformation, and genes encoding membrane trafficking proteins have been identified as bona fide drivers of tumorigenesis. Focusing on the mechanisms underlying the impact of endo/exocytic proteins in cancer, a scenario emerges in which altered trafficking routes/networks appear to be preferentially involved in the acquisition of prometastatic traits. This involvement in metastasis frequently occurs through the integration of programs leading to migratory/invasive phenotypes, survival and resistance to environmental stresses, epithelial-to-mesenchymal transition, and the emergence of cancer stem cells. These findings might have important implications in the clinical setting for the development of metastasis-specific drugs and for patient stratification to optimize the use of available therapies. Cancer Res; 77(8); 1813-7. ©2017 AACR.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Membrane Trafficking Laboratory at Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy. .,Department of Oncology, University of Turin Medical School, Turin, Italy
| | - Pier Paolo Di Fiore
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy. .,DIPO, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| |
Collapse
|
31
|
Zhang Z, Zhao S, Yao Z, Wang L, Shao J, Chen A, Zhang F, Zheng S. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 2016; 11:322-334. [PMID: 28038427 PMCID: PMC5199192 DOI: 10.1016/j.redox.2016.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event in liver fibrosis, characterized by dramatic disappearance of lipid droplets (LDs). Although LD disappearance has long been considered one of the hallmarks of HSC activation, the underlying molecular mechanisms are largely unknown. In this study, we sought to investigate the role of autophagy in the process of LD disappearance, and to further examine the underlying mechanisms in this molecular context. We found that LD disappearance during HSC activation was associated with a coordinate increase in autophagy. Inhibition or depletion of autophagy by Atg5 siRNA impaired LD disappearance of quiescent HSCs, and also restored lipocyte phenotype of activated HSCs. In contrast, induction of autophagy by Atg5 plasmid accelerated LD loss of quiescent HSCs. Importantly, our study also identified a crucial role for reactive oxygen species (ROS) in the facilitation of autophagy activation. Antioxidants, such as glutathione and N-acetyl cysteine, significantly abrogated ROS production, and in turn, prevented autophagosome generation and autophagic flux during HSC activation. Besides, we found that HSC activation triggered Rab25 overexpression, and promoted the combination of Rab25 and PI3KCIII, which direct autophagy to recognize, wrap and degrade LDs. Down-regulation of Rab25 activity, using Rab25 siRNA, blocked the target recognition of autophagy on LDs, and inhibited LD disappearance of quiescent HSCs. Moreover, the scavenging of excessive ROS could disrupt the interaction between autophagy and Rab25, and increase intracellular lipid content. Overall, these results provide novel implications to reveal the molecular mechanism of LD disappearance during HSC activation, and also identify ROS-Rab25-dependent autophagy as a potential target for the treatment of liver fibrosis. Autophagosome generation and autophagic flux are increased during HSC activation. The inhibition of autophagy blocks LD disappearance of quiescent HSCs. The induction of autophagy accelerates LD disappearance of quiescent HSCs. Rab25 activation is required for autophagy to degrade LDs during HSC activation. Mitochondrial H2O2 production triggers autophagy activation during HSC activation.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shifeng Zhao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhen Yao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ling Wang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiangjuan Shao
- Department of Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis., MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shizhong Zheng
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
32
|
Rho GTPases operating at the Golgi complex: Implications for membrane traffic and cancer biology. Tissue Cell 2016; 49:163-169. [PMID: 27720426 DOI: 10.1016/j.tice.2016.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 11/20/2022]
Abstract
The Golgi complex is the central unit of the secretory pathway, modifying, processing and sorting proteins and lipids to their correct cellular localisation. Changes to proteins at the Golgi complex can have deleterious effects on the function of this organelle, impeding trafficking routes through it, potentially resulting in disease. It is emerging that several Rho GTPase proteins, namely Cdc42, RhoBTB3, RhoA and RhoD are at least in part localised to the Golgi complex, and a number of studies have shown that dysregulation of their levels or activity can be associated with cellular changes which ultimately drive cancer progression. In this mini-review we highlight some of the recent work that explores links between form and function of the Golgi complex, Rho GTPases and cancer.
Collapse
|
33
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
34
|
Cromm PM, Spiegel J, Küchler P, Dietrich L, Kriegesmann J, Wendt M, Goody RS, Waldmann H, Grossmann TN. Protease-Resistant and Cell-Permeable Double-Stapled Peptides Targeting the Rab8a GTPase. ACS Chem Biol 2016; 11:2375-82. [PMID: 27336832 DOI: 10.1021/acschembio.6b00386] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Small GTPases comprise a family of highly relevant targets in chemical biology and medicinal chemistry research and have been considered "undruggable" due to the persisting lack of effective synthetic modulators and suitable binding pockets. As molecular switches, small GTPases control a multitude of pivotal cellular functions, and their dysregulation is associated with many human diseases such as various forms of cancer. Rab-GTPases represent the largest subfamily of small GTPases and are master regulators of vesicular transport interacting with various proteins via flat and extensive protein-protein interactions (PPIs). The only reported synthetic inhibitor of a PPI involving an activated Rab GTPase is the hydrocarbon stapled peptide StRIP3. However, this macrocyclic peptide shows low proteolytic stability and cell permeability. Here, we report the design of a bioavailable StRIP3 analogue that harbors two hydrophobic cross-links and exhibits increased binding affinity, combined with robust cellular uptake and extremely high proteolytic stability. Localization experiments reveal that this double-stapled peptide and its target protein Rab8a accumulate in the same cellular compartments. The reported approach offers a strategy for the implementation of biostability into conformationally constrained peptides while supporting cellular uptake and target affinity, thereby conveying drug-like properties.
Collapse
Affiliation(s)
- Philipp M. Cromm
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Jochen Spiegel
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Philipp Küchler
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Laura Dietrich
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Julia Kriegesmann
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Mathias Wendt
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Roger S. Goody
- Structural
Biochemistry, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse
11, D-44227 Dortmund, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Tom N. Grossmann
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Peng GL, Tao YL, Wu QN, Zhang Y, He JX. Positive expression of protein chromosome 9 open reading frame 86 (C9orf86) correlated with poor prognosis in non-small cell lung cancer patients. J Thorac Dis 2016; 8:1449-59. [PMID: 27499931 DOI: 10.21037/jtd.2016.04.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chromosome 9 open reading frame 86 (C9orf86) is a novel subfamily of GTPases. Previous studies have implicated C9orf86 as a potential oncogene. METHODS C9orf86 expression was detected in non-small cell lung cancer (NSCLC) cell lines and human bronchial epithelial (16HBE) cell lines by RT-PCR and western blotting. Immunohistochemistry (IHC) was used to detect 180 consecutive NSCLC specimens and 16 normal lung tissues. The correlation between C9orf86 expression and clinicopathological parameters was evaluated. Kaplan-Meier survival analysis and Cox hazards ratio models were used to estimate the effect of C9orf86 expression on survival. RESULTS C9orf86 was expressed in the cytoplasm in 74 of 180 (41.11%) NSCLC specimens. In clinical pathology analysis, C9orf86 expression significantly correlated with lymph node metastasis and clinical stage significantly (P<0.05). Multivariable analysis confirmed that C9orf86 expression increased the risk of death after adjusting for other clinicopathological factors (P<0.01). Overall survival (OS) and disease-free survival (DFS) were significantly prolonged in the C9orf86 negative group compared to the C9orf86 positive group (P<0.001). Adjuvant chemotherapy prolonged OS and DFS in resected NSCLC patients with C9orf86 negative expression (P<0.001) but not C9orf86 positive. CONCLUSIONS Positive expression of C9orf86 is an independent prognostic factor for NSCLC patients, and C9orf86 may serve as a prognostic biomarker for patients with NSCLC.
Collapse
Affiliation(s)
- Gui-Lin Peng
- The First Clinical College, Southern Medical University, Guangzhou 510515, China;; Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ya-Lan Tao
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qi-Nian Wu
- Department of Pathology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yu Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jian-Xing He
- The First Clinical College, Southern Medical University, Guangzhou 510515, China;; Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
36
|
Lindsay AJ, McCaffrey MW. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility. Oncotarget 2016; 8:104717-104732. [PMID: 29285208 PMCID: PMC5739595 DOI: 10.18632/oncotarget.10513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Clausen MJAM, Melchers LJ, Mastik MF, Slagter-Menkema L, Groen HJM, Laan BFAMVD, van Criekinge W, de Meyer T, Denil S, van der Vegt B, Wisman GBA, Roodenburg JLN, Schuuring E. RAB25 expression is epigenetically downregulated in oral and oropharyngeal squamous cell carcinoma with lymph node metastasis. Epigenetics 2016; 11:653-663. [PMID: 27379752 PMCID: PMC5048719 DOI: 10.1080/15592294.2016.1205176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Oral and oropharyngeal squamous cell carcinoma (OOSCC) have a low survival rate, mainly due to metastasis to the regional lymph nodes. For optimal treatment of these metastases, a neck dissection is required; however, inaccurate detection methods results in under- and over-treatment. New DNA prognostic methylation biomarkers might improve lymph node metastases detection. To identify epigenetically regulated genes associated with lymph node metastases, genome-wide methylation analysis was performed on 6 OOSCC with (pN+) and 6 OOSCC without (pN0) lymph node metastases and combined with a gene expression signature predictive for pN+ status in OOSCC. Selected genes were validated using an independent OOSCC cohort by immunohistochemistry and pyrosequencing, and on data retrieved from The Cancer Genome Atlas. A two-step statistical selection of differentially methylated sequences revealed 14 genes with increased methylation status and mRNA downregulation in pN+ OOSCC. RAB25, a known tumor suppressor gene, was the highest-ranking gene in the discovery set. In the validation sets, both RAB25 mRNA (P = 0.015) and protein levels (P = 0.012) were lower in pN+ OOSCC. RAB25 mRNA levels were negatively correlated with RAB25 methylation levels (P < 0.001) but RAB25 protein expression was not. Our data revealed that promoter methylation is a mechanism resulting in downregulation of RAB25 expression in pN+ OOSCC and decreased expression is associated with lymph node metastasis. Detection of RAB25 methylation might contribute to lymph node metastasis diagnosis and serve as a potential new therapeutic target in OOSCC.
Collapse
Affiliation(s)
- M J A M Clausen
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,b Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - L J Melchers
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,b Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - M F Mastik
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - L Slagter-Menkema
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,c Otorhinolaryngology/Head & Neck Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - H J M Groen
- d Pulmonary Diseases, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - B F A M van der Laan
- c Otorhinolaryngology/Head & Neck Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - W van Criekinge
- e Department of Mathematical Modeling , Statistics and Bioinformatics, Ghent University , Ghent , Belgium
| | - T de Meyer
- e Department of Mathematical Modeling , Statistics and Bioinformatics, Ghent University , Ghent , Belgium
| | - S Denil
- f Gynecologic Oncology, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - B van der Vegt
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - G B A Wisman
- f Gynecologic Oncology, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - J L N Roodenburg
- b Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - E Schuuring
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| |
Collapse
|
38
|
Bannister JP, Bulley S, Leo MD, Kidd MW, Jaggar JH. Rab25 influences functional Cav1.2 channel surface expression in arterial smooth muscle cells. Am J Physiol Cell Physiol 2016; 310:C885-93. [PMID: 27076616 DOI: 10.1152/ajpcell.00345.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/24/2016] [Indexed: 11/22/2022]
Abstract
Plasma membrane-localized CaV1.2 channels are the primary calcium (Ca(2+)) influx pathway in arterial smooth muscle cells (myocytes). CaV1.2 channels regulate several cellular functions, including contractility and gene expression, but the trafficking pathways that control the surface expression of these proteins are unclear. Similarly, expression and physiological functions of small Rab GTPases, proteins that control vesicular trafficking in arterial myocytes, are poorly understood. Here, we investigated Rab proteins that control functional surface abundance of CaV1.2 channels in cerebral artery myocytes. Western blotting indicated that Rab25, a GTPase previously associated with apical recycling endosomes, is expressed in cerebral artery myocytes. Immunofluorescence Förster resonance energy transfer (immunoFRET) microscopy demonstrated that Rab25 locates in close spatial proximity to CaV1.2 channels in myocytes. Rab25 knockdown using siRNA reduced CaV1.2 surface and intracellular abundance in arteries, as determined using arterial biotinylation. In contrast, CaV1.2 was not located nearby Rab11A or Rab4 and CaV1.2 protein was unaltered by Rab11A or Rab4A knockdown. Rab25 knockdown resulted in CaV1.2 degradation by a mechanism involving both lysosomal and proteasomal pathways and reduced whole cell CaV1.2 current density but did not alter voltage dependence of current activation or inactivation in isolated myocytes. Rab25 knockdown also inhibited depolarization (20-60 mM K(+)) and pressure-induced vasoconstriction (myogenic tone) in cerebral arteries. These data indicate that Rab25 is expressed in arterial myocytes where it promotes surface expression of CaV1.2 channels to control pressure- and depolarization-induced vasoconstriction.
Collapse
Affiliation(s)
- John P Bannister
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Simon Bulley
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michael W Kidd
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
39
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
40
|
Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett 2015; 589:3343-53. [PMID: 26450776 DOI: 10.1016/j.febslet.2015.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
| |
Collapse
|
41
|
Seven D, Dogan S, Kiliç E, Karaman E, Koseoglu H, Buyru N. Downregulation of Rab25 activates Akt1 in head and neck squamous cell carcinoma. Oncol Lett 2015; 10:1927-1931. [PMID: 26622777 DOI: 10.3892/ol.2015.3433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
Several studies have suggested that Ras-associated binding 25 protein (Rab25) is involved in the pathogenesis of human cancer. Although it has been demonstrated that the development of head and neck squamous cell carcinoma (HNSCC) is the result of an accumulation of multiple sequential genetic and epigenetic alterations in key genes with important functions in cell growth and the cell cycle, recent studies have indicated that HNSCC is a complex and heterogenous disease. To the best of our knowledge, there is no data regarding the regulation of the Rab25 gene at the mRNA or protein level in HNSCC. Furthermore, available data on Rab25 expression in other types of cancer are conflicting. The aim of the present study was to investigate whether Rab25 is involved in the development and/or progression of HNSCC, and to analyze the mechanisms underlying its effects in this type of cancer. The expression of Rab25 mRNA in HNSCC tissues and adjacent non-tumor tissue samples was measured using reverse transcription-quantitative polymerase chain reaction, while the level of the Rab25, Akt1 and phosphorylated-Akt1 proteins was measured using western blotting. Expression of Rab25 mRNA and protein was downregulated in 69.1% and 56.1% of tumor tissue samples, respectively. This downregulation was associated with an increase in p-Akt1 expression, in the absence of a change in total Akt1 protein levels, in tumor tissues compared with normal tissues. The current findings suggest that Rab25 acts as a tumor suppressor in HNSCC.
Collapse
Affiliation(s)
- Didem Seven
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Soydan Dogan
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Erkan Kiliç
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Emin Karaman
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Hikmet Koseoglu
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Nur Buyru
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| |
Collapse
|
42
|
Heiler S, Mu W, Zöller M, Thuma F. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun Signal 2015; 13:29. [PMID: 26054340 PMCID: PMC4459675 DOI: 10.1186/s12964-015-0105-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Claudin-7 (cld7), a tight junction (TJ) component, is also found basolaterally and in the cytoplasm. Basolaterally located cld7 is enriched in glycolipid-enriched membrane domains (GEM), where it associates with EpCAM (EpC). The conditions driving cld7 out of TJ into GEM, which is associated with a striking change in function, were not defined. Thus, we asked whether cld7 serines or palmitoylation affect cld7 location and protein, particularly EpCAM, associations. RESULTS HEK cells were transfected with EpCAM and wild type cld7 or cld7, where serine phopsphorylation or the palmitoylation sites (AA184, AA186) (cld7(mPalm)) were mutated. Exchange of individual serine phosphorylation sites did not significantly affect the GEM localization and the EpCAM association. Instead, cld7(mPalm) was poorly recruited into GEM. This has consequences on migration and invasiveness as palmitoylated cld7 facilitates integrin and EpCAM recruitment, associates with cytoskeletal linker proteins and cooperates with MMP14, CD147 and TACE, which support motility, matrix degradation and EpCAM cleavage. On the other hand, only cld7(mPalm) associates with TJ proteins. CONCLUSION Cld7 palmitoylation prohibits TJ integration and fosters GEM recruitment. Via associated molecules, palmitoylated cld7 supports motility and invasion.
Collapse
Affiliation(s)
- Sarah Heiler
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Wei Mu
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| |
Collapse
|
43
|
Qi J, Zhao P, Li F, Guo Y, Cui H, Liu A, Mao H, Zhao Y, Zhang X. Down-regulation of Rab17 promotes tumourigenic properties of hepatocellular carcinoma cells via Erk pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4963-4971. [PMID: 26191189 PMCID: PMC4503061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
The small GTPase, Ras-related protein 17 (Rab17), a member of the Rab family, plays a critical role in the regulation of membrane traffic in polarized eukaryotic cells. However, the role of Rab17 in hepatocellular carcinoma (HCC) is not clear. Clinical speciments reveal that Rab17 was present in 15 of 20 (75.0%) paraneoplastic tissues and 7 of 20 (35.0%) HCC samples (P=0.0248). To elucidate the tumourigenic role of Rab17 in HCC, we generated two Rab17 low-expressing HCC cell lines (Hep3B and Huh-7). The results showed that Rab17 down-regulation significantly promoted the tumourigenic properties of HCC cells in vitro and in vivo, as demonstrated by enhanced cell proliferation, colony formation, invasion and migration, decreased G1 arrest, and increased tumour xenograft growth and angiogenesis. However, the enhanced tumourigenic properties of HCC cells by Rab17 down-regulation was significantly inhibited by PD980592, the inhibitor of the Erk pathway, indicating that the Erk pathway plays a critical role in Rab17 down-regulation-induced enhanced tumourigenic properties of HCC cells. Our data provide a new insight into the essential role of Rab17 in HCC carcinogenesis and suggest that Rab17 expression might be tumor suppressor gene and might provide a new interventional therapeutic target for this common malignancy.
Collapse
Affiliation(s)
- Jingsong Qi
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Peng Zhao
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Fenbao Li
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Yingchang Guo
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Hongkai Cui
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Aiguang Liu
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Huajie Mao
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Yongli Zhao
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| | - Xizhong Zhang
- Department of Intervention, The First Hospital Affiliated to The Xinxiang Medical University Xinxiang, Henan, China
| |
Collapse
|
44
|
Wang K, Mao Z, Liu L, Zhang R, Liang Q, Xiong Y, Yuan W, Wei L. Rab17 inhibits the tumourigenic properties of hepatocellular carcinomas via the Erk pathway. Tumour Biol 2015; 36:5815-24. [PMID: 25707355 DOI: 10.1007/s13277-015-3251-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/10/2015] [Indexed: 12/12/2022] Open
Abstract
The small GTPase Rab17 is a member of the Rab family and plays a critical role in the regulation of membrane trafficking polarized eukaryotic cells. However, the role of Rab17 in hepatocellular carcinoma (HCC) is not clear. In the present study, we investigated the role of Rab17 in HCC tumourgenesis. The expressions of Rab17 in non-tumour hepatic tissues and HCCs were detected via immunohistochemistry. Rab17 was found in 31 of 48 (64.6 %) and in 23 of 62 (37.1 %) of non-tumour hepatic tissue samples and HCCs (P = 0.0068), respectively, and there were significant correlations between Rab17 reductions and unfavourable variables including tumour size (P = 0.0171), differentiation level (P = 0.0126), and lymph nodal (P = 0.0044) and distant metastases (P = 0.0047). To elucidate the role of Rab17 in HCC, we generated two Rab17-overexpressing HCC cell lines. Rab17 overexpression significantly inhibited the tumourigenic properties of HCC cells in vitro and in vivo as demonstrated by reduced cell proliferation and migration, elevated G1 arrest, and decreased tumour xenograft growth. However, the attenuated tumourigenic properties of the HCC cells that were induced by Rab17 overexpression were significantly rescued by the activator of the Erk pathway EGF, which indicates that the Erk pathway plays a critical role in the Rab17 up-regulation-induced reduced tumourigenic properties of HCC cells. Rab17 might act as a tumour suppressor gene in HCCs, and the anti-tumour effects of Rab17 might be partially mediated by the Erk pathway.
Collapse
Affiliation(s)
- Kejia Wang
- Department of Pathology, No. 401 Hospital of PLA, Qingdao, Shandong, 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Li Y, Jia Q, Zhang Q, Wan Y. Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma. Biochem Biophys Res Commun 2015; 458:745-50. [PMID: 25686498 DOI: 10.1016/j.bbrc.2015.01.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
Renal cell carcinoma (RCC) is a common urological cancer with a poor prognosis. A recent cohort study revealed that the median survival of RCC patients was only 1.5 years and that <10% of the patients in the study survived up to 5 years. In tumor development, Rab GTPase are known to play potential roles such as regulation of cell proliferation, migration, invasion, communication, and drug resistance in multiple tumors. However, the correlation between Rabs expression and the occurrence, development, and metastasis of RCC remains unclear. In this study, we analyzed the transcriptional levels of 52 Rab GTPases in RCC patients. Our results showed that high levels of Rab25 expression were significantly correlated with RCC invasion classification (P < 0.01), lymph-node metastasis (P < 0.001), and pathological stage (P < 0.01). Conversely, in 786-O and A-498 cells, knocking down Rab25 protein expression inhibited cell proliferation, migration, and invasion. Our results also demonstrated that Rab25 is a target gene of let-7d, and further suggested that Rab25 upregulation in RCC is due to diminished expression of let-7d. These findings indicate that Rab25 might be a novel candidate molecule involved in RCC development, thus identifying a potential biological therapeutic target for RCC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Qingzhu Jia
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China
| | - Qian Zhang
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory of Cytomics, Chongqing, China.
| |
Collapse
|
46
|
Fan Y, Wang L, Han X, Liu X, Ma H. Rab25 is responsible for phosphoinositide 3-kinase/AKT‑mediated cisplatin resistance in human epithelial ovarian cancer cells. Mol Med Rep 2014; 11:2173-8. [PMID: 25405658 DOI: 10.3892/mmr.2014.2963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
Abstract
Rab25, a member of the Rab family of small guanosine triphosphatase, was reported to have an essential role in the development of human epithelial ovarian cancer. The present study demonstrated that Rab25 mediated the sensitivity of ovarian cancer to cisplatin, a first‑line chemotherapeutic agent for the treatment of ovarian cancer in the clinic. Overexpression of Rab25 and increased phosphoinositide 3‑kinase (PI3K)/AKT signaling were detected in cisplatin‑resistant SKOV‑3 cells compared with those in cisplatin‑sensitive ES‑2 cells. The results of the present study indicated that cisplatin resistance was primarily due to reduced G1 cell cycle arrest following cisplatin treatment in SKOV‑3 cells. By contrast, the corresponding phenomenon was not observed following treatment with a Rab25‑specific small interfering RNA or treatment with the PI3K/AKT inhibitor LY294002. Of note, inhibition of the PI3K/AKT pathway reduced Rab25 gene expression and sensitized SKOV‑3 cells to cisplatin. Furthermore, knockdown of Rab25 showed an effect comparable with blocking the PI3K/AKT pathway. In conclusion, the results of the present study demonstrated that PI3K/AKT and Rab25 significantly contributed to cisplatin resistance in human epithelial ovarian cancer; in addition, silencing Rab25 or inhibiting the PI3K/AKT pathway markedly increased the sensitivity of these cells to cisplatin.
Collapse
Affiliation(s)
- Yang Fan
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| | - Long Wang
- Department of Stomatology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xuechuan Han
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| | - Xueqin Liu
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, Ningxia People's Hospital, Yinchuan, Ningxia 750000, P.R. China
| |
Collapse
|
47
|
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014; 6:a022616. [PMID: 25341920 PMCID: PMC4413231 DOI: 10.1101/cshperspect.a022616;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Of the approximately 70 human Rab GTPases, nearly three-quarters are involved in endocytic trafficking. Significant plasticity in endosomal membrane transport pathways is closely coupled to receptor signaling and Rab GTPase-regulated scaffolds. Here we review current literature pertaining to endocytic Rab GTPase localizations, functions, and coordination with regulatory proteins and effectors. The roles of Rab GTPases in (1) compartmentalization of the endocytic pathway into early, recycling, late, and lysosomal routes; (2) coordination of individual transport steps from vesicle budding to fusion; (3) effector interactomes; and (4) integration of GTPase and signaling cascades are discussed.
Collapse
Affiliation(s)
- Angela Wandinger-Ness
- Department of Pathology MSC08 4640, University of New Mexico HSC, Albuquerque, New Mexico 87131
| | - Marino Zerial
- Max Planck Institute of Molecular and Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
48
|
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014; 6:a022616. [PMID: 25341920 DOI: 10.1101/cshperspect.a022616] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Of the approximately 70 human Rab GTPases, nearly three-quarters are involved in endocytic trafficking. Significant plasticity in endosomal membrane transport pathways is closely coupled to receptor signaling and Rab GTPase-regulated scaffolds. Here we review current literature pertaining to endocytic Rab GTPase localizations, functions, and coordination with regulatory proteins and effectors. The roles of Rab GTPases in (1) compartmentalization of the endocytic pathway into early, recycling, late, and lysosomal routes; (2) coordination of individual transport steps from vesicle budding to fusion; (3) effector interactomes; and (4) integration of GTPase and signaling cascades are discussed.
Collapse
Affiliation(s)
- Angela Wandinger-Ness
- Department of Pathology MSC08 4640, University of New Mexico HSC, Albuquerque, New Mexico 87131
| | - Marino Zerial
- Max Planck Institute of Molecular and Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
49
|
Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat Commun 2014; 5:4804. [PMID: 25183545 DOI: 10.1038/ncomms5804] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/25/2014] [Indexed: 01/26/2023] Open
Abstract
Rab small GTPases are master regulators of membrane trafficking and guide vesicle targeting. Recent publications show that Rab-controlled trafficking pathways are altered during tumorigenesis. However, whether any of the Rabs plays a metastasis suppressor role is least explored. Here we address the metastasis suppressive function of human Rab37 (hRAB37) using secretomics, cell, animal and clinical analyses. We show that tissue inhibitor of metalloproteinase 1 (TIMP1), a secreted glycoprotein that inhibits extracellular matrix turnover, is a novel cargo of hRAB37. hRAB37 regulates the exocytosis of TIMP1 in a nucleotide-dependent manner to inactivate matrix metalloproteinase 9 (MMP9) migration axis in vitro and in vivo. Dysfunction of hRAB37 or TIMP1 abrogates metastasis suppression. Lung cancer patients with metastasis and poor survival show low hRAB37 protein expression coinciding with low TIMP1 in tumours. Our findings identify hRAB37 as a novel metastasis suppressor Rab that functions through the TIMP1-MMP9 pathway and has significant prognostic power.
Collapse
|
50
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|