1
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
2
|
Al-Noshokaty TM, El-Sayyad GS, Abdelhamid R, Mansour A, Abdellatif N, Alaaeldien A, Reda T, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Mohammed OA, Abulsoud AI. Long non-coding RNAs and their role in breast cancer pathogenesis and drug resistance: Navigating the non-coding landscape review. Exp Cell Res 2025; 444:114365. [PMID: 39626864 DOI: 10.1016/j.yexcr.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Despite the progress made in the development of targeted therapies, breast cancer (BC) continues to pose a significant threat to the health of women. Transcriptomics has emerged due to the advancements in high-throughput sequencing technology. This provides crucial information about the role of non-coding RNAs (ncRNAs) in human cells, particularly long ncRNAs (lncRNAs), in disease development and function. When the control of these ncRNAs is disrupted, various illnesses emerge, including cancer. Numerous studies have produced empirical data on the function of lncRNAs in tumorigenesis and disease development. However, the roles and mechanisms of numerous lncRNAs remain unidentified at the molecular level because their regulatory role and the functional implications of abnormalities in cancer biology have yet to be thoroughly defined. The review gives an itemized summary of the most current developments in the role of lncRNA in BC, focusing on three main pathways, PI3K, MAPK, NF-kB, and hypoxia, and their resistance mechanisms.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
3
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
4
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
5
|
Wen H, Liu XB, Zhu ZD, Jin S, Gao YJ, Tong Q, Li SB. TET2 Is Downregulated in Early Esophageal Squamous Cell Carcinoma and Promotes Esophageal Squamous Cell Malignant Behaviors. Dig Dis Sci 2024; 69:2462-2476. [PMID: 38653944 DOI: 10.1007/s10620-024-08311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To explore the expression of the ten eleven translocation (TET) 2 protein in early esophageal squamous cell carcinoma (EESCC), precancerous lesions, and cell lines and to evaluate the effect of TET2 on the functional behavior of EC109 esophageal cancer cells. METHODS Thirty-one samples of EESCC and precancerous lesions collected via endoscopic submucosal dissection at Taihe Hospital, Shiyan, from February 1, 2017, to February 1, 2019, were analyzed. The study involved evaluating TET2 expression levels in lesion tissue and adjacent normal epithelium, correlating these with clinical pathological features. Techniques including 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, cell scratch assays, flow cytometry for propidium iodide (PI) staining, Hoechst 333258/PI double staining, and nude mouse tumorigenesis experiments were employed to assess the effect of TET2 on the proliferation, migration, cell cycle, apoptosis, and tumorigenic ability of esophageal cancer cells. RESULTS TET2 expression was notably reduced in early esophageal cancer tissue and correlated with tumor invasion depth (P < 0.05). Overexpression of TET2 enhanced the proliferation and migration of esophageal cancer cells, increased the cell population in the G0 phase, decreased it in the S phase, and intensified cell necrosis (P < 0.05). There was a partial increase in tumorigenic ability (P = 0.087). CONCLUSION TET2 downregulation in ESCC potentially influences the necrosis, cell cycle, and tumorigenic ability of esophageal cancer cells, suggesting a role in the onset and progression of esophageal cancer.
Collapse
Affiliation(s)
- Hui Wen
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xiao-Bo Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Zhao-di Zhu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yuan-Jun Gao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Qiang Tong
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Sheng-Bao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Sukumaran S, Zochedh A, Viswanathan TM, Sultan AB, Kathiresan T. Theoretical Investigation of 5-Fluorouracil and Tamoxifen Complex – Structural, Spectrum, DFT, ADMET and Docking Simulation. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2164018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sureba Sukumaran
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Azar Zochedh
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Thimma Mohan Viswanathan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Asath Bahadur Sultan
- Department of Physics, Condensed Matter Physics Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Thandavarayan Kathiresan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| |
Collapse
|
7
|
Liu S, Yan L, Zhang Y, Junaid M, Wang J. Toxicological effects of polystyrene nanoplastics and perfluorooctanoic acid to Gambusia affinis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1100-1112. [PMID: 35835386 DOI: 10.1016/j.fsi.2022.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution has attracted huge attention from public and scientific community in recent years. In the environment, nanoplastics (NPs, <100 nm) can interact with persistent organic pollutants (POPs) such as perfluorooctanoic acid (PFOA) and may exacerbate associated toxic impacts. The present study aims to explore the single and combined ecotoxicological effects of PFOA and polystyrene nanoplastics (PS-NPs, 80 nm) on the PI3K/AKT3 signaling pathway using a freshwater fish model Gambusia affinis. Fish were exposed individually to PS-NPs (200 μg/L) and PFOA (50, 500, 5000 μg/L) and their chemical mixtures for 96 h. Our results showed that the co-exposure significantly altered the mRNA relative expression of PI3K, AKT3, IKKβ and IL-1β, compared to corresponding single exposure and control groups, indicating that the PFOA-NP co-exposure can activate the PI3K/AKT3 signaling pathway. The bioinformatic analyses showed that AKT3 had more probes and exhibited a significantly sensitive correlation with DNA methylation, compared to other genes (PIK3CA, IKBKB, and IL1B). Further, the mRNA expressions of PIK3CA, AKT3, and IKBKB had a significant correlation with copy number variation (CNV) in human liver hepatocellular carcinoma (LIHC). And PIK3CA had the highest mutation rate among other genes of interest for LIHC. Moreover, AKT3 showed a relatively lower expression in TAM and CAF cells, compared to PIK3CA, IKBKB, and IL1B. Besides, hsa-mir-155-5p was closely correlated with AKT3, PIK3CA, IKBKB, and IL1B. In summary, these results provide evidence that NPs could enhance the carcinogenic effects of POPs on aquatic organisms and highlight possible targets of LIHC induced by PFOA-NP co-exposure.
Collapse
Affiliation(s)
- Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanling Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China.
| |
Collapse
|
8
|
Flores-García LC, Ventura-Gallegos JL, Romero-Córdoba SL, Hernández-Juárez AJ, Naranjo-Meneses MA, García-García E, Méndez JP, Cabrera-Quintero AJ, Ramírez-Ruíz A, Pedraza-Sánchez S, Meraz-Cruz N, Vadillo-Ortega F, Zentella-Dehesa A. Sera from women with different metabolic and menopause states differentially regulate cell viability and Akt activation in a breast cancer in-vitro model. PLoS One 2022; 17:e0266073. [PMID: 35413055 PMCID: PMC9004774 DOI: 10.1371/journal.pone.0266073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/13/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is associated with an increased incidence and aggressiveness of breast cancer and is estimated to increment the development of this tumor by 50 to 86%. These associations are driven, in part, by changes in the serum molecules. Epidemiological studies have reported that Metformin reduces the incidence of obesity-associated cancer, probably by regulating the metabolic state. In this study, we evaluated in a breast cancer in-vitro model the activation of the IR-β/Akt/p70S6K pathway by exposure to human sera with different metabolic and hormonal characteristics. Furthermore, we evaluated the effect of brief Metformin treatment on sera of obese postmenopausal women and its impact on Akt and NF-κB activation. We demonstrated that MCF-7 cells represent a robust cellular model to differentiate Akt pathway activation influenced by the stimulation with sera from obese women, resulting in increased cell viability rates compared to cells stimulated with sera from normal-weight women. In particular, stimulation with sera from postmenopausal obese women showed an increase in the phosphorylation of IR-β and Akt proteins. These effects were reversed after exposure of MCF-7 cells to sera from postmenopausal obese women with insulin resistance with Metformin treatment. Whereas sera from women without insulin resistance affected NF-κB regulation. We further demonstrated that sera from post-Metformin obese women induced an increase in p38 phosphorylation, independent of insulin resistance. Our results suggest a possible mechanism in which obesity-mediated serum molecules could enhance the development of luminal A-breast cancer by increasing Akt activation. Further, we provided evidence that the phenomenon was reversed by Metformin treatment in a subgroup of women.
Collapse
Affiliation(s)
- Laura C. Flores-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - José L. Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Sandra L. Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Alfredo J. Hernández-Juárez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - María A. Naranjo-Meneses
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Eduardo García-García
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alberto J. Cabrera-Quintero
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Antonio Ramírez-Ruíz
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| |
Collapse
|
9
|
Kang BW, Chau I. Molecular target: pan-AKT in gastric cancer. ESMO Open 2021; 5:e000728. [PMID: 32948630 PMCID: PMC7511610 DOI: 10.1136/esmoopen-2020-000728] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in multiple cellular processes, including cell survival, proliferation, differentiation, metabolism and cytoskeletal reorganisation. The downstream effectors of this PI3K pathway are also essential for maintaining physiologic homeostasis, commonly dysregulated in most solid tumours. AKT is the key regulator in PI3K/AKT/mTOR signalling, interacting with multiple intracellular molecules. AKT activation subsequently leads to a number of potential downstream effects, and its aberrant activation results in the pathogenesis of cancer. Accordingly, as an attractive therapeutic target for cancer treatment, several AKT inhibitors are currently under development and in multiple stages of clinical trials for various types of malignancy, including gastric cancer (GC). Therefore, the authors review the significance of AKT and recent studies on AKT inhibitors in GC, focusing on the scientific background with the potential to improve treatment outcomes.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK.
| |
Collapse
|
10
|
Innamorati G, Wilkie TM, Malpeli G, Paiella S, Grasso S, Rusev B, Leone BE, Valenti MT, Carbonare LD, Cheri S, Giacomazzi A, Zanotto M, Guardini V, Deiana M, Zipeto D, Serena M, Parenti M, Guzzi F, Lawlor RT, Malerba G, Mori A, Malleo G, Giacomello L, Salvia R, Bassi C. Gα15 in early onset of pancreatic ductal adenocarcinoma. Sci Rep 2021; 11:14922. [PMID: 34290274 PMCID: PMC8295279 DOI: 10.1038/s41598-021-94150-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5' GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 affected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression. Elevated GNA15 mRNA correlates with poor prognosis. In addition, ectopic Gα15 signaling provides an unprecedented mechanism in the early steps of pancreas carcinogenesis distinct from classical G protein oncogenic mutations described previously in GNAS and GNAQ/GNA11.
Collapse
Affiliation(s)
- Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy.
| | - Thomas M Wilkie
- Pharmacology Department, UT Southwestern Medical Center, Dallas, TX, USA
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Salvatore Paiella
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Silvia Grasso
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Borislav Rusev
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | | | | | | | - Samuele Cheri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Giacomazzi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Marco Zanotto
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Vanessa Guardini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Michela Deiana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Parenti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Guzzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rita Teresa Lawlor
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Mori
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Malleo
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Luca Giacomello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Roberto Salvia
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| | - Claudio Bassi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, c/o GB Rossi General Hospital, P.le L.A. Scuro, 37134, Verona, Italy
| |
Collapse
|
11
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|
12
|
Tiron CE, Patrașcanu E, Postu PA, Vacarean Trandafir IC, Tiron A, Grigoras I. Sevoflurane Modulates AKT Isoforms in Triple Negative Breast Cancer Cells. An Experimental Study. Curr Issues Mol Biol 2021; 43:264-275. [PMID: 34199634 PMCID: PMC8929147 DOI: 10.3390/cimb43010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Triple negative breast cancer (TNBC) is a highly aggressive tumor, associated with high rates of early distant recurrence and short survival times, and treatment may require surgery, and thus anesthesia. The effects of anesthetic drugs on cancer progression are under scrutiny, but published data are controversial, and the involved mechanisms unclear. Anesthetic agents have been shown to modulate several molecular cascades, including PI3K/AKT/mTOR. AKT isoforms are frequently amplified in various malignant tumors and associated with malignant cell survival, proliferation and invasion. Their activation is often observed in human cancers and is associated with decreased survival rate. Certain anesthetics are known to affect hypoxia cell signaling mechanisms by upregulating hypoxia-inducible factors (HIFs). (2) Methods: MCF-10A and MDA-MB 231 cells were cultivated and CellTiter-Blue® Cell Viability assay, 2D and 3D matrigel assay, immunofluorescence assays and gene expressions assay were performed after exposure to different sevoflurane concentrations. (3) Results: Sevoflurane exposure of TNBC cells results in morphological and behavioral changes. Sevoflurane differently influences the AKT isoforms expression in a time-dependent manner, with an important early AKT3 upregulation. The most significant effects occur at 72 h after 2 mM sevoflurane treatment and consist in increased viability, proliferation and aggressiveness and increased vimentin and HIF expression. (4) Conclusions: Sevoflurane exposure during surgery may contribute to cancer recurrence via AKT3 induced epithelial–mesenchymal transition (EMT) and by all three AKT isoforms enhanced cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Crina E. Tiron
- TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iasi, Romania; (C.E.T.); (P.A.P.); (I.C.V.T.)
| | - Emilia Patrașcanu
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.P.); (I.G.)
- Department of Anesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Paula A. Postu
- TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iasi, Romania; (C.E.T.); (P.A.P.); (I.C.V.T.)
| | - Irina C. Vacarean Trandafir
- TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iasi, Romania; (C.E.T.); (P.A.P.); (I.C.V.T.)
| | - Adrian Tiron
- TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iasi, Romania; (C.E.T.); (P.A.P.); (I.C.V.T.)
- Correspondence:
| | - Ioana Grigoras
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.P.); (I.G.)
- Department of Anesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
13
|
Huang H, Kong L, Luan S, Qi C, Wu F. Ligustrazine Suppresses Platelet-Derived Growth Factor-BB-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Inflammation by Regulating the PI3K/AKT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:437-459. [PMID: 33622214 DOI: 10.1142/s0192415x21500208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the course of this disease. Ligustrazine is an alkaloid monomer extracted from the rhizome of the herb Ligusticum chuanxiong. It is often used to treat cardiovascular diseases, but its effect on PAH has rarely been reported. This study aims to explore the protective effect and mechanism of ligustrazine on PAH. In the in vivo experiment, monocrotaline (MCT) was used to induce PAH in rats, and then ligustrazine (40, 80, 160 mg/kg/day) or sildenafil (25 mg/kg/day) was administered. Four weeks later, hemodynamic changes, right ventricular hypertrophy index, lung morphological characteristics, inflammatory factors, phosphoinositide 3-kinase (PI3K), and AKT expression were evaluated. In addition, primary rat PASMCs were extracted by the tissue adhesion method, a proliferation model was established with platelet-derived growth factor-BB (PDGF-BB), and the cells were treated with ligustrazine to investigate its effects on cell proliferation, inflammation, and cell cycle distribution. The results indicate that ligustrazine can markedly alleviate right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling, and inflammation caused by MCT, and that it decreased PI3K and AKT phosphorylation expression. Moreover, ligustrazine can inhibit the proliferation and inflammation of PASMCs and arrest the progression of G0/G1 to S phase through the PI3K/AKT signaling pathway. Therefore, we conclude that ligustrazine may inhibit the proliferation and inflammation of PASMCs by regulating the activation of the PI3K/AKT signaling pathway, thereby attenuating MCT-induced PAH in rats. Collectively, these findings suggest that ligustrazine may be a promising therapeutic for PAH.
Collapse
Affiliation(s)
- Huiping Huang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Lingjin Kong
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Shaohua Luan
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Fanrong Wu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
14
|
Wang D, Liu C, Liu H, Meng Y, Lin F, Gu Y, Wang H, Shang M, Tong C, Sachinidis A, Ying Q, Li L, Peng L. ERG1 plays an essential role in rat cardiomyocyte fate decision by mediating AKT signaling. Stem Cells 2021; 39:443-457. [PMID: 33426760 DOI: 10.1002/stem.3328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
ERG1, a potassium ion channel, is essential for cardiac action potential repolarization phase. However, the role of ERG1 for normal development of the heart is poorly understood. Using the rat embryonic stem cells (rESCs) model, we show that ERG1 is crucial in cardiomyocyte lineage commitment via interactions with Integrin β1. In the mesoderm phase of rESCs, the interaction of ERG1 with Integrin β1 can activate the AKT pathway by recruiting and phosphorylating PI3K p85 and focal adhesion kinase (FAK) to further phosphorylate AKT. Activation of AKT pathway promotes cardiomyocyte differentiation through two different mechanisms, (a) through phosphorylation of GSK3β to upregulate the expression levels of β-catenin and Gata4; (b) through promotion of nuclear translocation of nuclear factor-κB by phosphorylating IKKβ to inhibit cell apoptosis, which occurs due to increased Bcl2 expression. Our study provides solid evidence for a novel role of ERG1 on differentiation of rESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Yilei Meng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Fang Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yanqiong Gu
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hanrui Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Tong
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Agapios Sachinidis
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC), Cologne, Germany
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
Palumbo S, Paterson C, Yang F, Hood VL, Law AJ. PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol Psychiatry 2021; 26:411-428. [PMID: 33328589 PMCID: PMC7854513 DOI: 10.1038/s41380-020-00964-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase v-AKT homologs (AKTs), are implicated in typical and atypical neurodevelopment. Akt isoforms Akt1, Akt2, and Akt3 have been extensively studied outside the brain where their actions have been found to be complementary, non-overlapping and often divergent. While the neurological functions of Akt1 and Akt3 isoforms have been investigated, the role for Akt2 remains underinvestigated. Neurobehavioral, electrophysiological, morphological and biochemical assessment of Akt2 heterozygous and knockout genetic deletion in mouse, reveals a novel role for Akt2 in axonal development, dendritic patterning and cell-intrinsic and neural circuit physiology of the hippocampus and prefrontal cortex. Akt2 loss-of-function increased anxiety-like phenotypes, impaired fear conditioned learning, social behaviors and discrimination memory. Reduced sensitivity to amphetamine was observed, supporting a role for Akt2 in regulating dopaminergic tone. Biochemical analyses revealed dysregulated brain mTOR and GSK3β signaling, consistent with observed learning and memory impairments. Rescue of cognitive impairments was achieved through pharmacological enhancement of PI3K/AKT signaling and PIK3CD inhibition. Together these data highlight a novel role for Akt2 in neurodevelopment, learning and memory and show that Akt2 is a critical and non-redundant regulator of mTOR activity in brain.
Collapse
Affiliation(s)
- Sara Palumbo
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy (current)
| | - Clare Paterson
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Feng Yang
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Division of Neurodegenerative Diseases and Translational Sciences Tiantan Hospital & Advanced Innovation Center for Human Brain Protection. Capital Medical University, Beijing, China (current)
| | - Veronica L. Hood
- Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Amanda J. Law
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045.,To whom correspondence should be addressed:
| |
Collapse
|
16
|
Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. An AKT2-specific nanobody that targets the hydrophobic motif induces cell cycle arrest, autophagy and loss of focal adhesions in MDA-MB-231 cells. Biomed Pharmacother 2020; 133:111055. [PMID: 33378961 DOI: 10.1016/j.biopha.2020.111055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The AKT kinase family is a high-profile target for cancer therapy. Despite their high degree of homology the three AKT isoforms (AKT1, AKT2 and AKT3) are non-redundant and can even have opposing functions. Small-molecule AKT inhibitors affect all three isoforms which severely limits their usefulness as research tool or therapeutic. Using AKT2-specific nanobodies we examined the function of endogenous AKT2 in breast cancer cells. Two AKT2 nanobodies (Nb8 and Nb9) modulate AKT2 and reduce MDA-MB-231 cell viability/proliferation. Nb8 binds the AKT2 hydrophobic motif and reduces IGF-1-induced phosphorylation of this site. This nanobody also affects the phosphorylation and/or expression levels of a wide range of proteins downstream of AKT, resulting in a G0/G1 cell cycle arrest, the induction of autophagy, a reduction in focal adhesion count and loss of stress fibers. While cell cycle progression is likely to be regulated by more than one isoform, our results indicate that both the effects on autophagy and the cytoskeleton are specific to AKT2. By using an isoform-specific nanobody we were able to map a part of the AKT2 pathway. Our results confirm AKT2 and the hydrophobic motif as targets for cancer therapy. Nb8 can be used as a research tool to study AKT2 signalling events and aid in the design of an AKT2-specific inhibitor.
Collapse
Affiliation(s)
- Tijs Merckaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| |
Collapse
|
17
|
Arous C, Mizgier ML, Rickenbach K, Pinget M, Bouzakri K, Wehrle-Haller B. Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells. J Biol Chem 2020; 295:16510-16528. [PMID: 32934005 PMCID: PMC7864053 DOI: 10.1074/jbc.ra120.012957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/09/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2-AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)-dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.
Collapse
Affiliation(s)
- Caroline Arous
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland.
| | - Maria Luisa Mizgier
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Katharina Rickenbach
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Michel Pinget
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Karim Bouzakri
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Csolle MP, Ooms LM, Papa A, Mitchell CA. PTEN and Other PtdIns(3,4,5)P 3 Lipid Phosphatases in Breast Cancer. Int J Mol Sci 2020; 21:ijms21239189. [PMID: 33276499 PMCID: PMC7730566 DOI: 10.3390/ijms21239189] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway is hyperactivated in ~70% of breast cancers. Class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane in response to growth factor stimulation, leading to AKT activation to drive cell proliferation, survival and migration. PTEN negatively regulates PI3K/AKT signalling by dephosphorylating PtdIns(3,4,5)P3 to form PtdIns(4,5)P2. PtdIns(3,4,5)P3 can also be hydrolysed by the inositol polyphosphate 5-phosphatases (5-phosphatases) to produce PtdIns(3,4)P2. Interestingly, while PTEN is a bona fide tumour suppressor and is frequently mutated/lost in breast cancer, 5-phosphatases such as PIPP, SHIP2 and SYNJ2, have demonstrated more diverse roles in regulating mammary tumourigenesis. Reduced PIPP expression is associated with triple negative breast cancers and reduced relapse-free and overall survival. Although PIPP depletion enhances AKT phosphorylation and supports tumour growth, this also inhibits cell migration and metastasis in vivo, in a breast cancer oncogene-driven murine model. Paradoxically, SHIP2 and SYNJ2 are increased in primary breast tumours, which correlates with invasive disease and reduced survival. SHIP2 or SYNJ2 overexpression promotes breast tumourigenesis via AKT-dependent and independent mechanisms. This review will discuss how PTEN, PIPP, SHIP2 and SYNJ2 distinctly regulate multiple functional targets, and the mechanisms by which dysregulation of these distinct phosphoinositide phosphatases differentially affect breast cancer progression.
Collapse
|
19
|
Phosphatidylinositol-3-OH kinase signalling is spatially organized at endosomal compartments by microtubule-associated protein 4. Nat Cell Biol 2020; 22:1357-1370. [PMID: 33139939 DOI: 10.1038/s41556-020-00596-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
The canonical model of agonist-stimulated phosphatidylinositol-3-OH kinase (PI3K)-Akt signalling proposes that PI3K is activated at the plasma membrane, where receptors are activated and phosphatidylinositol-4,5-bisphosphate is concentrated. Here we show that phosphatidylinositol-3,4,5-trisphosphate generation and activated Akt are instead largely confined to intracellular membranes upon receptor tyrosine kinase activation. Microtubule-associated protein 4 (MAP4) interacts with and controls localization of membrane vesicle-associated PI3Kα to microtubules. The microtubule-binding domain of MAP4 binds directly to the C2 domain of the p110α catalytic subunit. MAP4 controls the interaction of PI3Kα with activated receptors at endosomal compartments along microtubules. Loss of MAP4 results in the loss of PI3Kα targeting and loss of PI3K-Akt signalling downstream of multiple agonists. The MAP4-PI3Kα assembly defines a mechanism for spatial control of agonist-stimulated PI3K-Akt signalling at internal membrane compartments linked to the microtubule network.
Collapse
|
20
|
Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. Development and characterization of protein kinase B/AKT isoform-specific nanobodies. PLoS One 2020; 15:e0240554. [PMID: 33045011 PMCID: PMC7549812 DOI: 10.1371/journal.pone.0240554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
The serine/threonine protein kinase AKT is frequently over-activated in cancer and is associated with poor prognosis. As a central node in the PI3K/AKT/mTOR pathway, which regulates various processes considered to be hallmarks of cancer, this kinase has become a prime target for cancer therapy. However, AKT has proven to be a highly complex target as it comes in three isoforms (AKT1, AKT2 and AKT3) which are highly homologous, yet non-redundant. The isoform-specific functions of the AKT kinases can be dependent on context (i.e. different types of cancer) and even opposed to one another. To date, there is no isoform-specific inhibitor available and no alternative to genetic approaches to study the function of a single AKT isoform. We have developed and characterized nanobodies that specifically interact with the AKT1 or AKT2 isoforms. These new tools should enable future studies of AKT1 and AKT2 isoform-specific functions. Furthermore, for both isoforms we obtained a nanobody that interferes with the AKT-PIP3-interaction, an essential step in the activation of the kinase. The nanobodies characterized in this study are a new stepping stone towards unravelling AKT isoform-specific signalling.
Collapse
Affiliation(s)
- Tijs Merckaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Chen YF, Lee AS, Chen WY, Lin CH, Kuo CL, Chung JG. Partitioned Extracts of Bauhinia championii Induce G 0/G 1 Phase Arrest and Apoptosis in Human Colon Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:719-736. [PMID: 32349516 DOI: 10.1142/s0192415x20500366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bauhinia championii (Benth.) is one of the commonly used herbs in Taiwan. The stem of this plant has been used to treat epigastria pain and rheumatoid arthritis. However, the antitumor activities of this herb have never been reported. This study aims to investigate the mechanism of anticancer activity of the extracts from B. championii (BC). BC was fractionated with a series of organic solvents, including n-hexane (H), ethyl acetate (EA), 1-butanol (B), and water (W). We first investigated the effects of BC-H, BC-EA, BC-B and BC-W partitioned fraction on cell viability. In HCT 116 colon cancer cell lines, BC-EA showed the highest inhibition of cell viability and changed the morphology of cells. With dose- and time-dependent manners, BC-EA inhibited the proliferation of HCT 116 cells by inducing apoptosis and G0/G1 phase arrest of cell cycle. To determine the underlying mechanisms, down-regulated CDK2, Cyclin D, and Cyclin E and up-regulated p16, p21, and p53 may account for the cell cycle arrest, while the apoptotic effect of BC-EA may attribute to increased intracellular Ca2+, loss of mitochondria membrane potential (ΔΨm), increase of Bax, Bak, puma, and AIF, and decrease of Bcl-2. Furthermore, the inactivation of Ras signaling pathway by BC-EA also contributed to its apoptotic effect on HCT 116. Our study demonstrates that BC-EA not only inhibits cell growth but also induces apoptosis through inhibiting Ras signal pathway and increasing p53 expression levels. We suggest that BC-EA may be a new dietary supplement and a useful tool to search for therapeutic candidates against colon cancer.
Collapse
Affiliation(s)
- Yun-Fang Chen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University Taichung 404, Taiwan
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Cardiovascular Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Yu Chen
- Graduate Institute of Basic Medical Science, China Medical University Taichung 404, Taiwan
| | - Chia-Hsin Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University Taichung 404, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University Taichung 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
22
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
23
|
Prediction of the potential biological activity of novel spiropyrazolo[3,4-b]pyridines and spiropyrazolo[3,4-b]pyridine-5,5'-pyrimidines by a ligand-protein inverse-docking approach. J Mol Graph Model 2020; 97:107581. [PMID: 32199275 DOI: 10.1016/j.jmgm.2020.107581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
The interaction of a series of spiropyrazolo[3,4-b]pyridines and spiropyrazolo[3,4-b]pyridine-5,5'-pyrimidines with 975 molecular targets involved in different diseases and biochemical alterations in humans was assessed. In-silico and in-vivo methods were used to predict the potential biological activity of these compounds. The exposure of several individuals of C. elegans to these compounds shows that their lethality would be less than 10% and that they do not induce any alteration in their locomotion. The compounds identified as PRV-8 and 13-G were the most bioactive, and also showed other advantages such as; better structural properties, adequate pharmacokinetic and pharmacodynamic properties, and good flexibility and unsaturation, which placed them as the compounds of greatest interest to be tested in-vitro and in-vivo. The series of compounds described here exhibited significant interactions with the estrogen signaling pathway.
Collapse
|
24
|
Lin K, Rong Y, Chen D, Zhao Z, Bo H, Qiao A, Hao X, Wang J. Combination of Ruthenium Complex and Doxorubicin Synergistically Inhibits Cancer Cell Growth by Down-Regulating PI3K/AKT Signaling Pathway. Front Oncol 2020; 10:141. [PMID: 32133289 PMCID: PMC7041628 DOI: 10.3389/fonc.2020.00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 01/21/2023] Open
Abstract
Combinational use of drugs has been a common strategy in cancer treatment because of synergistic advantages in reducing dose and toxicity, minimizing or delaying drug resistance. To improve the efficacy of chemotherapy, various potential combinations have been investigated. Ruthenium complex is considered a potential alternative of the platinum-based drugs due to its significant efficacy and safety. Previously, we reported that ruthenium(II) complex (Δ-Ru1) has great anticancer potential and minor toxicity toward normal tissues. However, the therapeutic efficacy and mechanism of action of ruthenium(II) complex combined with other anticancer drugs is still unknown. Here, we investigated the combinational effect of Δ-Ru1 and doxorubicin in different cancer cells. The data assessed by Chou-Talalay method showed significant synergism in MCF-7 cells. Furthermore, the results in antiproliferation efficacy indicated that the combination showed strong cytotoxicity and increasing apoptosis of MCF-7 cells in 2D and 3D multicellular tumor spheroids (MCTSs). Significant inhibition of MCF-7 cells accompanied with increased ROS generation was observed. Furthermore, the expression of PI3K/AKT was significantly down-regulated, while the expression of PTEN was strongly up-regulated in cells treated with combination of Δ-Ru1 and doxorubicin. The expression of NF-κB and XIAP decreased while the expression of P53 increased and associated with apoptosis. These findings suggest that the combination of ruthenium complex and doxorubicin has a significant synergistic effect by down-regulating the PI3K/AKT signaling pathway in MCF-7 cells. This study may trigger more research in ruthenium complex and combination therapy that will be able to provide opportunities for developing better therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Ke Lin
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Rong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zizhuo Zhao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Qiao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaojuan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
| | - Jinquan Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
25
|
Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019; 17:154. [PMID: 31752925 PMCID: PMC6873690 DOI: 10.1186/s12964-019-0450-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AKT, also known as protein kinase B, is a key element of the PI3K/AKT signaling pathway. Moreover, AKT regulates the hallmarks of cancer, e.g. tumor growth, survival and invasiveness of tumor cells. After AKT was discovered in the early 1990s, further studies revealed that there are three different AKT isoforms, namely AKT1, AKT2 and AKT3. Despite their high similarity of 80%, the distinct AKT isoforms exert non-redundant, partly even opposing effects under physiological and pathological conditions. Breast cancer as the most common cancer entity in women, frequently shows alterations of the PI3K/AKT signaling. MAIN CONTENT A plethora of studies addressed the impact of AKT isoforms on tumor growth, metastasis and angiogenesis of breast cancer as well as on therapy response and overall survival in patients. Therefore, this review aimed to give a comprehensive overview about the isoform-specific effects of AKT in breast cancer and to summarize known downstream and upstream mechanisms. Taking account of conflicting findings among the studies, the majority of the studies reported a tumor initiating role of AKT1, whereas AKT2 is mainly responsible for tumor progression and metastasis. In detail, AKT1 increases cell proliferation through cell cycle proteins like p21, p27 and cyclin D1 and impairs apoptosis e.g. via p53. On the downside AKT1 decreases migration of breast cancer cells, for instance by regulating TSC2, palladin and EMT-proteins. However, AKT2 promotes migration and invasion most notably through regulation of β-integrins, EMT-proteins and F-actin. Whilst AKT3 is associated with a negative ER-status, findings about the role of AKT3 in regulation of the key properties of breast cancer are sparse. Accordingly, AKT1 is mutated and AKT2 is amplified in some cases of breast cancer and AKT isoforms are associated with overall survival and therapy response in an isoform-specific manner. CONCLUSIONS Although there are several discussed hypotheses how isoform specificity is achieved, the mechanisms behind the isoform-specific effects remain mostly unrevealed. As a consequence, further effort is necessary to achieve deeper insights into an isoform-specific AKT signaling in breast cancer and the mechanism behind it.
Collapse
Affiliation(s)
- Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Kim EY, Ashlock D, Yoon SH. Identification of critical connectors in the directed reaction-centric graphs of microbial metabolic networks. BMC Bioinformatics 2019; 20:328. [PMID: 31195955 PMCID: PMC6567475 DOI: 10.1186/s12859-019-2897-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Detection of central nodes in asymmetrically directed biological networks depends on centrality metrics quantifying individual nodes' importance in a network. In topological analyses on metabolic networks, various centrality metrics have been mostly applied to metabolite-centric graphs. However, centrality metrics including those not depending on high connections are largely unexplored for directed reaction-centric graphs. RESULTS We applied directed versions of centrality metrics to directed reaction-centric graphs of microbial metabolic networks. To investigate the local role of a node, we developed a novel metric, cascade number, considering how many nodes are closed off from information flow when a particular node is removed. High modularity and scale-freeness were found in the directed reaction-centric graphs and betweenness centrality tended to belong to densely connected modules. Cascade number and bridging centrality identified cascade subnetworks controlling local information flow and irreplaceable bridging nodes between functional modules, respectively. Reactions highly ranked with bridging centrality and cascade number tended to be essential, compared to reactions that other central metrics detected. CONCLUSIONS We demonstrate that cascade number and bridging centrality are useful to identify key reactions controlling local information flow in directed reaction-centric graphs of microbial metabolic networks. Knowledge about the local flow connectivity and connections between local modules will contribute to understand how metabolic pathways are assembled.
Collapse
Affiliation(s)
- Eun-Youn Kim
- School of Basic Sciences, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Daniel Ashlock
- Department of Mathematics and Statistics, the University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
27
|
Abstract
In addition to the pivotal roles for histone methylation in the transcriptional regulation, emerging evidence suggests important roles for methylation of non-histone proteins in response to extra-cellular stimulatory events, with implications in governing tumorigenesis. Among the increasing list of non-histone proteins targeted for methylation, the tri-lysine-methylation modification of AKT has been recently identified to fine-tune its kinase activity and oncogenic functions. Moreover, our results implicate the histone methyltransferase SETDB1 as the methyltransferase modifying and activating AKT in a PI3K dependent manner. As such, the oncogenic function of SETDB1 in various cancers may be attributed to tumorigenesis, at least in part, through activating AKT. Therefore, targeting SETDB1, which modulates both epigenetic marks and AKT kinase activity simultaneously, is a potential strategy for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jianping Guo
- a Precision Medicine Institute, The First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong , China.,b Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Wenyi Wei
- b Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
28
|
Kapinova A, Kubatka P, Liskova A, Baranenko D, Kruzliak P, Matta M, Büsselberg D, Malicherova B, Zulli A, Kwon TK, Jezkova E, Blahutova D, Zubor P, Danko J. Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol 2019; 145:1087-1109. [PMID: 30903319 DOI: 10.1007/s00432-019-02892-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Cancer is a serious health issue and a leading cause of death worldwide. Most of the cancer patients (approximately 90%) do not die from the consequences of the primary tumor development, but due to a heavily treatable metastatic invasion. During the lengthy multistep process of carcinogenesis, there are a lot of opportunities available to reverse or slow down the tissue invasion or the process of tumor metastasis formation. RESULTS Current research has brought many promising results from anti-metastatic experimental studies, and has shown that chemoprevention by natural or semisynthetic phytochemicals with plethora of biological activities could be one of the potentially effective options in the fight against this problem. However, there is a lack of clinical trials to confirm these findings. In this review, we focused on summarization and discussion of the general features of metastatic cancer, and recent preclinical and clinical studies dealing with anti-metastatic potential of various plant-derived compounds. CONCLUSIONS Based on our findings, we can conclude and confirm our hypothesis that phytochemicals with pleiotropic anticancer effects can be very useful in retarding and/or reversing the metastasis process, and can also be used to prevent tissue invasion and metastases. But, further studies in this area are certainly necessary and desirable.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Polní 3, 639 00, Brno, Czech Republic.
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- St. Anne's University Hospital, Brno, Czech Republic.
| | - Milan Matta
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Education City, Qatar Foundation, Doha, Qatar
| | - Bibiana Malicherova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Eva Jezkova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Pavol Zubor
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Danko
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
29
|
Dronamraju V, Ibrahim BA, Briski KP, Sylvester PW. γ-Tocotrienol Suppression of the Warburg Effect Is Mediated by AMPK Activation in Human Breast Cancer Cells. Nutr Cancer 2019; 71:1214-1228. [PMID: 30955359 DOI: 10.1080/01635581.2019.1599969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cell metabolism is characterized by aerobic glycolysis or the "Warburg effect". Enhanced Akt signaling is associated with activation of various downstream enzymes involved in the glycolytic process, whereas activation of 5'-AMP-activated kinase (AMPK) acts to terminate energy expending mechanisms and decrease glycolytic enzyme expression. Studies were conducted to determine if the anticancer effects of γ-tocotrienol, are mediated through a suppression in aerobic glycolysis. Results show that treatment with 0-7 μM γ-tocotrienol throughout a 4-day culture period resulted in a dose-responsive increase in AMPK activation, and corresponding decrease in Akt activity in human MCF-7 and MDA-MB-231 breast cancer cells. γ-Tocotrienol treatment was also found to induce a dose-responsive decrease in phosphorylated-Fox03 (inactivated), a transcription factor that acts to inhibit in the levels of glycolytic enzyme, and this decrease was associated with a reduction in glycolytic enzyme levels and activity, as well as glucose consumption in these cells. PCR microarray analysis shows that γ-tocotrienol treatment decreases the expression of genes associate with metabolic signaling and glycolysis in MCF-7 and MDA-MB-231 breast cancer cells. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are mediated, at least in part, by a suppression in the Warburg effect.
Collapse
Affiliation(s)
| | - Baher A Ibrahim
- College of Pharmacy, University of Louisiana at Monroe , Monroe , Louisiana , USA
| | - Karen P Briski
- College of Pharmacy, University of Louisiana at Monroe , Monroe , Louisiana , USA
| | - Paul W Sylvester
- College of Pharmacy, University of Louisiana at Monroe , Monroe , Louisiana , USA
| |
Collapse
|
30
|
Qu J, Liu B, Li B, Du G, Li Y, Wang J, He L, Wan X. TRIB3 suppresses proliferation and invasion and promotes apoptosis of endometrial cancer cells by regulating the AKT signaling pathway. Onco Targets Ther 2019; 12:2235-2245. [PMID: 30988628 PMCID: PMC6441550 DOI: 10.2147/ott.s189001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to examine the effect of TRIB3 on proliferation, apoptosis, and migration of endometrial cancer (EC) cells and explore the relationship between TRIB3 and AKT signaling pathway in EC progression. Methods Immunohistochemical analysis was performed to measure the expression level of TRIB3 in normal endometrium tissues and EC tissues. Overexpression and shRNA knockdown techniques were applied by transfecting EC cells (ISK and AN3CA), and the effect of TRIB3 on EC cell biological behaviors was evaluated. Cell Counting Kit-8 and colony formation assays were utilized to investigate EC cell proliferation ability, and flow cytometry was performed to assess the apoptosis of EC cells. Moreover, the migration and invasion of EC cells were detected by transwell assay, and the levels of MMP-2 and MMP-9 were measured by ELISA. Additionally, Western blot analysis was carried out to determine the levels of AKT and p-AKT. Results The expression level of TRIB3 was higher in EC than normal endometrium tissues, and its overexpression promoted apoptosis and suppressed proliferation of EC cells. Furthermore, TRIB3 retarded the migration and invasion of EC cells and decreased the levels of MMP-2 and MMP-9. Conversely, TRIB3 inhibition enhanced the expression levels of MMP-2 and MMP-9, and proliferation and migration of EC cells but suppressed their apoptosis. Similarly, TRIB3 overexpression reduced while its knockdown increased the level of p-AKT. Conclusion TRIB3 inhibited proliferation and migration and promoted apoptosis of EC cells probably through regulating AKT signaling pathway.
Collapse
Affiliation(s)
- Junjie Qu
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| | - Binya Liu
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| | - Bilan Li
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| | - Guiqiang Du
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| | - Yiran Li
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| | - Jingyun Wang
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| | - Laman He
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| | - Xiaoping Wan
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China,
| |
Collapse
|
31
|
Marcial-Medina C, Ordoñez-Moreno A, Gonzalez-Reyes C, Cortes-Reynosa P, Perez Salazar E. Oleic acid induces migration through a FFAR1/4, EGFR and AKT-dependent pathway in breast cancer cells. Endocr Connect 2019; 8:252-265. [PMID: 30721135 PMCID: PMC6410766 DOI: 10.1530/ec-18-0543] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Free fatty acids (FFAs) are an energy source, and induce activation of signal transduction pathways that mediate several biological processes. In breast cancer cells, oleic acid (OA) induces proliferation, matrix metalloproteinase-9 (MMP-9) secretion, migration and invasion. However, the signal transduction pathways that mediate migration and invasion induced by OA in breast cancer cells have not been studied in detail. We demonstrate here that FFAR1 and FFAR4 mediate migration induced by OA in MDA-MB-231 and MCF-7 breast cancer cells. Moreover, OA induces migration, invasion, AKT1 and AKT2 activation, 12-LOX secretion and an increase of NFκB-DNA binding activity in breast cancer cells. Cell migration requires FFAR1, FFAR4, EGFR, AKT and PI3K activity, whereas invasion is mediated though a PI3K/Akt-dependent pathway. Furthermore, OA promotes relocalization of paxillin to focal contacts and it requires PI3K and EGFR activity, whereas NFκB-DNA binding activity requires PI3K and AKT activity.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Mexico City, Mexico
- Correspondence should be addressed to E Perez Salazar:
| |
Collapse
|
32
|
Zeng M, Luo Y, Xu C, Li R, Chen N, Deng X, Fang D, Wang L, Wu J, Luo M. Platelet-endothelial cell interactions modulate smooth muscle cell phenotype in an in vitro model of type 2 diabetes mellitus. Am J Physiol Cell Physiol 2018; 316:C186-C197. [PMID: 30517030 DOI: 10.1152/ajpcell.00428.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Platelet (PLT)-endothelial cell (EC) interaction appears to contribute to phenotypic transition of vascular smooth muscle cells (VSMCs), which play an important role in the physiological and pathological process of vascular complications in type 2 diabetes mellitus (DM2). However, the precise mechanisms by which interactions between PLTs and ECs affect VSMC phenotype have largely remained unclear. We determined the effect of diabetic PLT-EC interaction to influence VSMC migration, proliferation, and phenotypic transformation in triple-cell coculture models using the quantitative real-time PCR, Western blot, fluorescence microscopy, wound scratch assays, CCK-8 assays, and gelatin zymography assays. Our results revealed DM2 PLT-EC interaction to be associated with a significant downregulation of VSMC-specific contractile phenotypic genes and proteins, including SM22α, smooth muscle actin, Smoothelin-B, and smooth muscle-myosin heavy chain. Inversely, VSMC-specific proliferative phenotype gene and protein levels, including cyclin D1 and 2, nonmuscle myosin heavy chain B, and PCNA were in upregulation. Furthermore, the DM2-originated PLT-EC interaction promoted the expression level of transforming growth factor-β1, and the PI3K/Akt and matrix metalloproteinase 9 signaling pathway was activated subsequently. Finally, these reactions contributed to a synthetic phenotype of VSMCs, including the proliferation, migration, and gelatinolytic activities. These findings suggest that PLT-EC interaction modulates the phenotypic transition of VSMCs between a contractile and proliferative/synthetic phenotype under diabetic conditions, conceivably providing important implications regarding the mechanisms controlling the VSMC phenotypic transition and the development of cardiovascular complications.
Collapse
Affiliation(s)
- Min Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Dalton Cardiovascular Research Center, University of Missouri-Columbia , Columbia, Missouri
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.,Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Wei Y, Zhou J, Yu H, Jin X. AKT phosphorylation sites of Ser473 and Thr308 regulate AKT degradation. Biosci Biotechnol Biochem 2018; 83:429-435. [PMID: 30488766 DOI: 10.1080/09168451.2018.1549974] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase B (AKT) is a serine-threonine kinase that mediates diverse cellular processes in a variety of human diseases. Phosphorylation is always the best studied posttranslational modification of AKT and a connection between phosphorylation and ubiquitination has been explored recently. Ubiquitination of AKT is an important step for its phosphorylation and activation, while whether phosphorylated AKT regulated its ubiquitination status is still unknow. In the present study, we mimic dephosphorylation of AKT by using mutagenesis techniques at both Thr308 and Ser473 into Alanine (AKT-2A). After losing phosphorylation activity, AKT enhances its degradation and prevents itself release from the plasma membrane after insulin stimulation. Fourthermore, AKT-2A is found to be degraded through ubiquitin- proteasome pathway which declared that un-phosphorylation of AKT at both Ser473 and Thr308 sites increases its ubiquitination level. In conclusion, AKT phosphorylated at Ser473 and Thr308 sites have a significant effect on its ubiquitination status. Abbreviations: AKT: Protein kinase B; Ser: serine; Thr: threonine; IF: immunofluorescence; Epo: Epoxomicin; Baf: Bafilomycin; PBS: phosphate buffer solution.
Collapse
Affiliation(s)
- Yingze Wei
- a Department of Pathology , Nantong Tumor Hospital , Nantong , Jiangsu , China
| | - Jianyun Zhou
- a Department of Pathology , Nantong Tumor Hospital , Nantong , Jiangsu , China
| | - Haiyan Yu
- a Department of Pathology , Nantong Tumor Hospital , Nantong , Jiangsu , China
| | - Xiaoxia Jin
- a Department of Pathology , Nantong Tumor Hospital , Nantong , Jiangsu , China
| |
Collapse
|
34
|
Ai X, Xiang L, Huang Z, Zhou S, Zhang S, Zhang T, Jiang T. Overexpression of PIK3R1 promotes hepatocellular carcinoma progression. Biol Res 2018; 51:52. [PMID: 30497511 PMCID: PMC6264640 DOI: 10.1186/s40659-018-0202-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Background Phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1) could regulate cancer cell proliferation important for cancer cell proliferation; however, its role in Hepatocellular carcinoma (HCC) remains largely unknown. Here, we investigated the role of PIK3R1 in HCC and examined the underlying molecular mechanisms. Methods The expression of PIK3R1 was evaluated by immunohistochemistry and qRT-PCR in a series of HCC tissues. The mRNA and protein expression of PIK3R1 was used by qRT-PCR and western blot assays in a series of human HCC cell lines, and then we choose MHCC97H and HCCLM3 cells as a model to investigate the effect of PIK3R1 on HCC progression. The effects of PIK3R1 knowdown on cell proliferation, migration, apoptosis of HCC were assessed by the MTT assay, clonogenic assays, wound healing assay and flow cytometry in vitro. Western blot assay was performed to assess the expression changes of PI3K/AKT/mTOR signaling pathway. Results Our results found that PIK3R1 was highly expressed in HCC tissues compared with adjacent normal tissues. Knockdown of PIK3R1 inhibited the proliferation, migration and promoted apoptosis of HCC cell lines. In addition, we proved that knockdown of PIK3R1 downregulated p-PI3K, p-AKT, and p-mTOR expressions in MHCC97H and HCCLM3 cells. Conclusions In conclusion, PIK3R1 providing potential novel targets for the treatment of HCC.
Collapse
Affiliation(s)
- Xuejun Ai
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550002, China.,Department of Digestive, Guiyang First People's Hospital, Guiyang, 550001, China
| | - Lei Xiang
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Zhi Huang
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550002, China.,Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Shi Zhou
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Shuai Zhang
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Tao Zhang
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550002, China. .,Department of Digestive, Guiyang First People's Hospital, Guiyang, 550001, China.
| | - Tianpeng Jiang
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550002, China. .,Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China.
| |
Collapse
|
35
|
Leal-Orta E, Ramirez-Ricardo J, Cortes-Reynosa P, Galindo-Hernandez O, Salazar EP. Role of PI3K/Akt on migration and invasion of MCF10A cells treated with extracellular vesicles from MDA-MB-231 cells stimulated with linoleic acid. J Cell Commun Signal 2018; 13:235-244. [PMID: 30361980 DOI: 10.1007/s12079-018-0490-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022] Open
Abstract
In breast cancer cells, the linoleic acid (LA), an ω-6 essential polyunsaturated fatty acid, induces a variety of biological processes, including migration and invasion. Extracellular vesicles (EVs) are structures released by normal and malignant cells into extracellular space, and their function is dependent on their cargo and the cell type from which are secreted. Particularly, the EVs from MDA-MB-231 breast cancer cells treated with LA promote an epithelial-mesenchymal-transition (EMT)-like process in mammary non-tumorigenic epithelial cells MCF10A. Here, we found that EVs isolated from supernatants of MDA-MB-231 breast cancer cells stimulated with 90 μM LA induces activation of Akt2, FAK and ERK1/2 in MCF10A cells. In addition, EVs induces migration through a PI3K, Akt and ERK1/2-dependent pathway, whereas invasion is dependent on PI3K activity.
Collapse
Affiliation(s)
- Elizabeth Leal-Orta
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Javier Ramirez-Ricardo
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
36
|
Wang J, Zhao W, Guo H, Fang Y, Stockman SE, Bai S, Ng PKS, Li Y, Yu Q, Lu Y, Jeong KJ, Chen X, Gao M, Liang J, Li W, Tian X, Jonasch E, Mills GB, Ding Z. AKT isoform-specific expression and activation across cancer lineages. BMC Cancer 2018; 18:742. [PMID: 30012111 PMCID: PMC6048698 DOI: 10.1186/s12885-018-4654-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/01/2018] [Indexed: 01/22/2023] Open
Abstract
Background Aberrant AKT activation is prevalent across human cancer lineages, providing an important therapeutic target. AKT comprises three isoforms that mediate critical non-redundant, even opposing functions in cancer pathophysiology. Therefore, targeting specific AKT isoforms in particular cancers may be more effective than pan-AKT inhibition while avoiding disadvantages of pan-AKT inhibition. Currently, AKT isoform-specific expression and activation in cancer are not clearly characterized. Methods We systematically characterized AKT isoform-specific expression and activation in 211 cancer cell lines derived from different lineages and genetic backgrounds using a reverse-phase protein array platform. Results We found that phosphorylation, but not expression, of AKT1 and AKT2 was coordinated in most but not all cells. Different cancer lineages displayed differential AKT1 and AKT2 expression and phosphorylation. A PIK3CA hotspot mutation H1047R but not E545K was associated with selective activation of AKT2 but not AKT1. Conclusions Our study identified and validated AKT isoform-specific expression and phosphorylation in certain cell lines and demonstrated that genetic changes can affect AKT isoform-specific activation. These results provide a more precise understanding of AKT isoform-specific signaling and, in addition, facilitate AKT isoform targeting for personalized cancer therapies. Electronic supplementary material The online version of this article (10.1186/s12885-018-4654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jue Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Wei Zhao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Huifang Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yong Fang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Sarah Elizabeth Stockman
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shanshan Bai
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Qinghua Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Xiaohua Chen
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Meng Gao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Wentao Li
- Department of Interventional Radiology, Cancer Hospital, Fudan University, Shanghai, 200032, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Eric Jonasch
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Zhiyong Ding
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Grassilli S, Brugnoli F, Lattanzio R, Marchisio M, Perracchio L, Piantelli M, Bavelloni A, Capitani S, Bertagnolo V. Vav1 downmodulates Akt in different breast cancer subtypes: a new promising chance to improve breast cancer outcome. Mol Oncol 2018; 12:1012-1025. [PMID: 29658179 PMCID: PMC6026867 DOI: 10.1002/1878-0261.12203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 11/07/2022] Open
Abstract
Targeting different members of the Akt pathways is a promising therapeutic chance in solid tumors including breast cancer. The variable expression levels of Akt isoforms with opposite effects on tumor growth and metastasis, however, make it difficult to select the inhibitors to be used for specific breast tumor subtypes. Using in vitro and in vivo models, we demonstrated here that Vav1, ectopically expressed in invasive breast tumors derived cells, downmodulates Akt acting at expression and/or activation levels depending on tumor subtype. The decreased p‐Akt1 (Ser473) levels are a common effect of Vav1 upmodulation, suggesting that, in breast tumor‐derived cells and independently of their phenotype, Vav1 interferes with signaling pathways ended to specifically recruit Akt1. Only in ER‐negative cell lines, the silencing of Vav1 induced the expression but not the activation of Akt2. A retrospective analysis of early invasive breast tumors allowed to establish the prognostic significance of the p‐Akt/Vav1 relationship. In particular, low Vav1 levels negatively influence the follow‐up of patients with low p‐Akt in their primary tumors and subjected to adjuvant chemotherapy. As the use of specific or pan Akt inhibitors may not be sufficient or may even be detrimental, increasing the levels of Vav1 could be a new approach to improve breast cancer outcomes. This might be particularly relevant for tumors with a triple‐negative phenotype, for which target‐based therapies are not currently available.
Collapse
Affiliation(s)
- Silvia Grassilli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio', Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University 'G. d'Annunzio', Chieti, Italy
| | - Marco Marchisio
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), University 'G. d'Annunzio', Chieti, Italy.,Department of Medicine and Aging Sciences, University 'G. d'Annunzio', Chieti, Italy
| | | | | | - Alberto Bavelloni
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Silvano Capitani
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| |
Collapse
|
38
|
Luo JJ, Su DS, Xie SL, Liu Y, Liu P, Yang XJ, Pei DS. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish. FASEB J 2018; 32:2814-2826. [PMID: 29298861 DOI: 10.1096/fj.201701171r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant (POP), an unintentional byproduct of various industrial processes, and a human carcinogen. The expression of the cytochrome P450 1A (cyp1a) gene is upregulated in the presence of TCDD through activating the aryl hydrocarbon receptor pathway in a dose-dependent manner. Several essential response elements, including the 8 potential xenobiotic response elements in the cyp1a promoter region, have been identified to be the main functional parts for the response to TCDD. Thus, we aimed to develop a convenient and sensitive biomonitoring tool to examine the level of POPs in the environment and evaluate its potential human health risks by TCDD. Here, we established a transgenic zebrafish model with a red fluorescent reporter gene ( mCherry) using the truncated cyp1a promoter. Under exposure to TCDD, the expression pattern of mCherry in the reporter zebrafish mirrored that of endogenous cyp1a mRNA, and the primary target tissues for TCDD were the brain vessels, liver, gut, cloaca, and skin. Our results indicated that exposure of the embryos to TCDD at concentrations as low as 0.005 nM for 48 h, which did not elicit morphologic abnormalities in the embryos, markedly increased mCherry expression. In addition, the reporter embryos responded to other POPs, and primary liver cell culture of zebrafish revealed that Cyp1a protein was mainly expressed in the cytoplasm of liver cells. Furthermore, our transgenic fish embryos demonstrated that TCDD exposure can regulate the expression levels of several tumor-related factors, including epidermal growth factor, TNF-α, C-myc, proliferating cell nuclear antigen, TGF-β, serine/threonine kinase (Akt), and phosphorylated Akt, suggesting that our transgenic fish can be used as a sensitive model to evaluate the carcinogenicity induced by TCDD exposure.-Luo, J.-J., Su, D.-S., Xie, S.-L., Liu, Y., Liu, P., Yang, X.-J., Pei D.-S. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish.
Collapse
Affiliation(s)
- Juan-Juan Luo
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Dong-Sheng Su
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shao-Lin Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pei Liu
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Xiao-Jun Yang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
39
|
Kino T. GR-regulating Serine/Threonine Kinases: New Physiologic and Pathologic Implications. Trends Endocrinol Metab 2018; 29:260-270. [PMID: 29501228 DOI: 10.1016/j.tem.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
Glucocorticoid hormones, end products of the hypothalamic-pituitary-adrenal axis, virtually influence all human functions both in a basal homeostatic condition and under stress. The glucocorticoid receptor (GR), a nuclear hormone receptor superfamily protein, mediates these actions of glucocorticoids by acting as a ligand-dependent transcription factor. Because glucocorticoid actions are diverse and strong, many biological pathways adjust them in local tissues by targeting the GR signaling pathway as part of the regulatory loop coordinating complex human functions. Phosphorylation of GR protein by serine/threonine kinases is one of the major regulatory mechanisms for this communication. In this review, recent progress in research investigating GR phosphorylation by these kinases is discussed, along with the possible physiologic and pathophysiologic implications.
Collapse
Affiliation(s)
- Tomoshige Kino
- Department of Human Genetics, Division of Translational Medicine, Sidra Medical and Research Center, Doha 26999, Qatar.
| |
Collapse
|
40
|
Vilardell J, Girardi C, Marin O, Cozza G, Pinna LA, Ruzzene M. The importance of negative determinants as modulators of CK2 targeting. The lesson of Akt2 S131. PLoS One 2018; 13:e0193479. [PMID: 29494643 PMCID: PMC5832243 DOI: 10.1371/journal.pone.0193479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/12/2018] [Indexed: 01/26/2023] Open
Abstract
CK2 is a pleiotropic S/T protein kinase (formerly known as casein kinase 2) which is attracting increasing interest as therapeutic target, and the identification of its substrates is a crucial step in determining its involvement in different pathological conditions. We recently found that S131 of Akt2 (homologous to the well established CK2 target S129 of Akt1) is not phosphorylated by CK2 either in vitro or in vivo, although the consensus sequence recognized by CK2 (S/T-x-x-E/D/pS/pT) is conserved in it. Here, by exploiting synthetic peptides, in cell transfection experiments, and computational analysis, we show that a single sequence element, a T at position n+1, hampers phosphorylation, causing an α-helix structure organization which prevents the recognition of its own consensus by CK2. Our results highlight the role of negative determinants as crucial modulators of CK2 targeting and corroborate the concept that Akt1 and Akt2 display isoform specific features. Experiments with synthetic peptides suggest that Akt2 S131 could be phosphorylated by kinases of the Plk (Polo-like kinase) family, which are insensitive to the presence of the n+1 T. The low phylogenetic conservation of the Akt2 sequence around S131, as opposed to the extremely well-conserved Akt1 homologous sequence, would indicate a dominant positive role in the selective pressure only for the Akt1 phosphoacceptor site committed to undergo phosphorylation by CK2. By contrast, Akt2 S131 may mediate the response to specific physio/pathological conditions, being consequently shielded against basal CK2 targeting.
Collapse
Affiliation(s)
- Jordi Vilardell
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cristina Girardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Neuroscience Institute, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Neuroscience Institute, Padova, Italy
- * E-mail:
| |
Collapse
|
41
|
Chorner PM, Moorehead RA. A-674563, a putative AKT1 inhibitor that also suppresses CDK2 activity, inhibits human NSCLC cell growth more effectively than the pan-AKT inhibitor, MK-2206. PLoS One 2018; 13:e0193344. [PMID: 29470540 PMCID: PMC5823456 DOI: 10.1371/journal.pone.0193344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
AKT is a serine-threonine kinase implicated in tumorigenesis as a central regulator of cellular growth, proliferation, survival, and metabolism. Activated AKT is commonly overexpressed in non-small cell lung cancer (NSCLC) and accordingly AKT inhibitors are under clinical investigation for NSCLC treatment. Thus far, the AKT inhibitors being evaluated broadly target all three (1–3) AKT isoforms but recent evidence suggests opposing roles in lung tumorigenesis where loss of Akt1 inhibits while the loss of Akt2 enhances lung tumor development. Based on these findings, we hypothesized that selective inhibition of AKT-1 would be a more effective therapeutic strategy than pan-AKT inhibition for NSCLC treatment. Using six NSCLC cell lines, we found that the AKT-1 inhibitor, A-674563, was significantly more effective at reducing NSCLC cell survival relative to the pan-AKT inhibitor MK-2206. Comparison of the downstream effects of the inhibitors suggests that altered cell cycle progression and off-target CDK2 inhibition are likely vital to the improved efficacy of A-674563 over MK-2206.
Collapse
Affiliation(s)
- Paige M Chorner
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Sun B, Wang G, Liu H, Liu P, Twal WO, Cheung H, Carroll SL, Ethier SP, Mevers EE, Clardy J, Roberts T, Chen C, Li Q, Wang L, Yang M, Zhao JJ, Wang Q. Oridonin inhibits aberrant AKT activation in breast cancer. Oncotarget 2018; 9:23878-23889. [PMID: 29844859 PMCID: PMC5963618 DOI: 10.18632/oncotarget.24378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Aberrant activation of phosphatidylinosito-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) signaling in cancer has led to pursuit of inhibitors for targeting this pathway. However, inhibitors of PI3K and AKT have failed to yield efficacious results without adverse effects. Here, we screened a library containing 441 authenticated traditional chinese medicine (TCM) plant extracts by examining their effect on cell viability of a human mammary epithelial cell line HMEC-PIK3CAH1047R, which expresses mutant PIK3CAH1047R and has constitutively active AKT signaling. We found that Oridonin, an extract from Rabdosia rubescens, reduced cell viability to the greatest extent. Oridonin binds to AKT1 and potentially functions as an ATP-competitive AKT inhibitor. Importantly, Oridonin selectively impaired tumor growth of human breast cancer cells with hyperactivation of PI3K/AKT signaling. Moreover, Oridonin prevented the initiation of mouse mammary tumors driven by PIK3CAH1047R. Our results suggest that Oridonin may serve as a potent and durable therapeutic agent for the treatment of breast cancers with hyperactivation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Bowen Sun
- The first Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Geng Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Anatomy, Harbin Medical University, Harbin 150081, China
| | - Huidong Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Anatomy, Harbin Medical University, Harbin 150081, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Waleed O Twal
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hiuwing Cheung
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Emily E Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Roberts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Changbin Chen
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Li
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lanfeng Wang
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meixiang Yang
- The first Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jean J Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Qi Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
43
|
The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 2018; 7:29689-707. [PMID: 27102439 PMCID: PMC5045426 DOI: 10.18632/oncotarget.8822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRβ. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma.
Collapse
|
44
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|
45
|
Vo TTL, Park JH, Seo JH, Lee EJ, Choi H, Bae SJ, Le H, An S, Lee HS, Wee HJ, Kim KW. ARD1-mediated aurora kinase A acetylation promotes cell proliferation and migration. Oncotarget 2017; 8:57216-57230. [PMID: 28915666 PMCID: PMC5593637 DOI: 10.18632/oncotarget.19332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Aurora kinase A (AuA) is a prerequisite for centrosome maturation, separation, and mitotic spindle assembly, thus, it is essential for cell cycle regulation. Overexpression of AuA is implicated in poor prognosis of many types of cancer. However, the regulatory mechanisms underlying the functions of AuA are still not fully understood. Here, we report that AuA colocalizes with arrest defective protein 1 (ARD1) acetyltransferase during cell division and cell migration. Additionally, AuA is acetylated by ARD1 at lysine residues at positions 75 and 125. The double mutations at K75/K125 abolished the kinase activity of AuA. Moreover, the double mutant AuA exhibited diminished ability to promote cell proliferation and cell migration. Mechanistic studies revealed that AuA acetylation at K75/K125 promoted cell proliferation via activation of cyclin E/CDK2 and cyclin B1. In addition, AuA acetylation stimulated cell migration by activating the p38/AKT/MMP-2 pathway. Our findings indicate that ARD1-mediated acetylation of AuA enhances cell proliferation and migration, and probably contributes to cancer development.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Eun Ji Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoon Choi
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang Le
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sunho An
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye Shin Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
46
|
Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers (Basel) 2017; 9:cancers9070086. [PMID: 28696382 PMCID: PMC5532622 DOI: 10.3390/cancers9070086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis and accounts for 15–20% of all cutaneous malignancies. Although it is usually curable by surgery, 5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important to better understand the mechanisms involved in cSCC development and progression in order to develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition of these pathways can be beneficial to counteract the disease. With the growing number of different inhibitors currently available, it would be important to further investigate the specific contribution of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising molecular targets and the best strategy to inhibit cSCC.
Collapse
|
47
|
PKBγ/AKT3 loss-of-function causes learning and memory deficits and deregulation of AKT/mTORC2 signaling: Relevance for schizophrenia. PLoS One 2017; 12:e0175993. [PMID: 28467426 PMCID: PMC5414975 DOI: 10.1371/journal.pone.0175993] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Psychiatric genetic studies have identified genome-wide significant loci for schizophrenia. The AKT3/1q44 locus is a principal risk region and gene-network analyses identify AKT3 polymorphisms as a constituent of several neurobiological pathways relevant to psychiatric risk; the neurobiological mechanisms remain unknown. AKT3 shows prenatal enrichment during human neocortical development and recurrent copy number variations involving the 1q43-44 locus are associated with cortical malformations and intellectual disability, implicating an essential role in early brain development. Here, we investigated the role of AKT3 as it relates to aspects of learning and memory and behavioral function, relevant to schizophrenia and cognitive disability, utilizing a novel murine model of Akt3 genetic deficiency. Akt3 heterozygous (Akt3-/+) or null mice (Akt3-/-) were assessed in a comprehensive test battery. Brain biochemical studies were conducted to assess the impact of Akt3 deficiency on cortical Akt/mTOR signaling. Akt3-/+ and Akt3-/- mice exhibited selective deficits of temporal order discrimination and spatial memory, tasks critically dependent on intact prefrontal-hippocampal circuitry, but showed normal prepulse inhibition, fear conditioned learning, memory for novel objects and social function. Akt3 loss-of-function, reduced brain size and dramatically impaired cortical Akt Ser473 activation in an allele-dose dependent manner. Such changes were observed in the absence of altered Akt1 or Akt2 protein expression. Concomitant reduction of the mTORC2 complex proteins, Rictor and Sin1 identifies a potential mechanism. Our findings provide novel insight into the neurodevelopmental role of Akt3, identify a non-redundant role for Akt3 in the development of prefrontal cortical-mediated cognitive function and show that Akt3 is potentially the dominant regulator of AKT/mTOR signaling in brain.
Collapse
|
48
|
Abstract
PI3K/AKT signalling is commonly disrupted in human cancers, with AKT being a central component of the pathway, influencing multiple processes that are directly involved in tumourigenesis. Targeting AKT is therefore a highly attractive anti-cancer strategy with multiple AKT inhibitors now in various stages of clinical development. In this review, we summarise the role and regulation of AKT signalling in normal cellular physiology. We highlight the mechanisms by which AKT signalling can be hyperactivated in cancers and discuss the past, present and future clinical strategies for AKT inhibition in oncology.
Collapse
Affiliation(s)
| | - Udai Banerji
- Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
49
|
Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M, Lanari C, Novaro V. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep 2017; 7:44244. [PMID: 28287129 PMCID: PMC5347151 DOI: 10.1038/srep44244] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy.
Collapse
Affiliation(s)
- Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María C Perrone
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María L Polo
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María J Rodriguez
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María May
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Martín Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas. Fac. Ciencias Médicas - Universidad Nacional La Plata (1900), Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Virginia Novaro
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| |
Collapse
|
50
|
Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep 2017; 37:BSR20160432. [PMID: 28082369 PMCID: PMC5301276 DOI: 10.1042/bsr20160432] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate PtdIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases affects cancer outcomes.
Collapse
|