1
|
Downes KW, Zanetti G. Mechanisms of COPII coat assembly and cargo recognition in the secretory pathway. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00839-y. [PMID: 40133632 PMCID: PMC7617623 DOI: 10.1038/s41580-025-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
One third of all proteins in eukaryotes transit between the endoplasmic reticulum (ER) and the Golgi to reach their functional destination inside or outside of the cell. During export, secretory proteins concentrate at transitional zones of the ER known as ER exit sites, where they are packaged into transport carriers formed by the highly conserved coat protein complex II (COPII). Despite long-standing knowledge of many of the fundamental pathways that govern traffic in the early secretory pathway, we still lack a complete mechanistic model to explain how the various steps of COPII-mediated ER exit are regulated to efficiently transport diverse cargoes. In this Review, we discuss the current understanding of the mechanisms underlying COPII-mediated vesicular transport, highlighting outstanding knowledge gaps. We focus on how coat assembly and disassembly dictate carrier morphogenesis, how COPII selectively recruits a vast number of cargo and cargo adaptors, and finally discuss how COPII mechanisms in mammals might have adapted to enable transport of large proteins.
Collapse
Affiliation(s)
- Katie W Downes
- Institute of Structural and Molecular Biology, UCL, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- The Francis Crick Institute, London, UK
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, UCL, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Milano SN, Bayer LV, Ko JJ, Casella CE, Bratu DP. The role of ER exit sites in maintaining P-body organization and integrity during Drosophila melanogaster oogenesis. EMBO Rep 2025; 26:494-520. [PMID: 39653851 PMCID: PMC11772875 DOI: 10.1038/s44319-024-00344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated in vitro, a nuanced understanding of how their assembly is regulated in vivo remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in Drosophila melanogaster egg chambers. Employing a combination of live and super-resolution imaging, we find that P-bodies associated with ER exit sites are larger and less mobile than cytoplasmic P-bodies, indicating that they constitute a distinct class of P-bodies. Moreover, we demonstrate that altering the composition of ER exit sites has differential effects on core P-body proteins (Me31B, Cup, and Trailer Hitch), suggesting a potential role for ER exit sites in P-body organization. Furthermore, we show that in the absence of ER exit sites, P-body integrity is compromised and the stability and translational repression efficiency of the maternal mRNA, oskar, are reduced. Together, our data highlights the crucial role of ER exit sites in governing P-body organization.
Collapse
Affiliation(s)
- Samantha N Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Livia V Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Julie J Ko
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Caroline E Casella
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Diana P Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA.
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Suda Y, Tachikawa H, Suda T, Kurokawa K, Nakano A, Irie K. Remodeling of the secretory pathway is coordinated with de novo membrane formation in budding yeast gametogenesis. iScience 2024; 27:110855. [PMID: 39319263 PMCID: PMC11419814 DOI: 10.1016/j.isci.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Gametogenesis in budding yeast involves a large-scale rearrangement of membrane traffic to allow the de novo formation of a membrane, called the prospore membrane (PSM). However, the mechanism underlying this event is not fully elucidated. Here, we show that the number of endoplasmic reticulum exit sites (ERES) per cell fluctuates and switches from decreasing to increasing upon the onset of PSM formation. Reduction in ERES number, presumably accompanying a transient stall in membrane traffic, resulting in the loss of preexisting Golgi apparatus from the cell, was followed by local ERES regeneration, leading to Golgi reassembly in nascent spores. We have revealed that protein phosphatase-1 (PP-1) and its development-specific subunit, Gip1, promote ERES regeneration through Sec16 foci formation. Furthermore, sed4Δ, a mutant with impaired ERES formation, showed defects in PSM growth and spore formation. Thus, ERES regeneration in nascent spores facilitates the segregation of membrane traffic organelles, leading to PSM growth.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Hiroyuki Tachikawa
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Tomomi Suda
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Gallo R, Rai AK, McIntyre ABR, Meyer K, Pelkmans L. DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites. Dev Cell 2023; 58:1880-1897.e11. [PMID: 37643612 DOI: 10.1016/j.devcel.2023.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
The dual-specificity kinase DYRK3 controls the formation and dissolution of multiple biomolecular condensates, regulating processes including stress recovery and mitotic progression. Here, we report that DYRK3 functionally interacts with proteins associated with endoplasmic reticulum (ER) exit sites (ERESs) and that inhibition of DYRK3 perturbs the organization of the ERES-Golgi interface and secretory trafficking. DYRK3-mediated regulation of ERES depends on the N-terminal intrinsically disordered region (IDR) of the peripheral membrane protein SEC16A, which co-phase separates with ERES components to form liquid-like condensates on the surface of the ER. By modulating the liquid-like properties of ERES, we show that their physical state is essential for functional cargo trafficking through the early secretory pathway. Our findings support a mechanism whereby phosphorylation by DYRK3 and its reversal by serine-threonine phosphatases regulate the material properties of ERES to create a favorable physicochemical environment for directional membrane traffic in eukaryotic cells.
Collapse
Affiliation(s)
- Raffaella Gallo
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| | - Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| |
Collapse
|
5
|
Morón-Oset J, Fischer LKS, Jauré N, Zhang P, Jahn AJ, Supèr T, Pahl A, Isaacs AM, Grönke S, Partridge L. Repeat length of C9orf72-associated glycine-alanine polypeptides affects their toxicity. Acta Neuropathol Commun 2023; 11:140. [PMID: 37644512 PMCID: PMC10463776 DOI: 10.1186/s40478-023-01634-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023] Open
Abstract
G4C2 hexanucleotide repeat expansions in a non-coding region of the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G4C2 insertion length is variable, and patients can carry up to several thousand repeats. Dipeptide repeat proteins (DPRs) translated from G4C2 transcripts are thought to be a main driver of toxicity. Experiments in model organisms with relatively short DPRs have shown that arginine-rich DPRs are most toxic, while polyGlycine-Alanine (GA) DPRs cause only mild toxicity. However, GA is the most abundant DPR in patient brains, and experimental work in animals has generally relied on the use of low numbers of repeats, with DPRs often tagged for in vivo tracking. Whether repeat length or tagging affect the toxicity of GA has not been systematically assessed. Therefore, we generated Drosophila fly lines expressing GA100, GA200 or GA400 specifically in adult neurons. Consistent with previous studies, expression of GA100 and GA200 caused only mild toxicity. In contrast, neuronal expression of GA400 drastically reduced climbing ability and survival of flies, indicating that long GA DPRs can be highly toxic in vivo. This toxicity could be abolished by tagging GA400. Proteomics analysis of fly brains showed a repeat-length-dependent modulation of the brain proteome, with GA400 causing earlier and stronger changes than shorter GA proteins. PolyGA expression up-regulated proteins involved in ER to Golgi trafficking, and down-regulated proteins involved in insulin signalling. Experimental down-regulation of Tango1, a highly conserved regulator of ER-to Golgi transport, partially rescued GA400 toxicity, suggesting that misregulation of this process contributes to polyGA toxicity. Experimentally increasing insulin signaling also rescued GA toxicity. In summary, our data show that long polyGA proteins can be highly toxic in vivo, and that they may therefore contribute to ALS/FTD pathogenesis in patients.
Collapse
Affiliation(s)
- Javier Morón-Oset
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | | | - Nathalie Jauré
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Annika Julia Jahn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tessa Supèr
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - André Pahl
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Yorimitsu T, Sato K. Sec16 and Sed4 interdependently function as interaction and localization partners at ER exit sites. J Cell Sci 2023; 136:308925. [PMID: 37158682 PMCID: PMC10184828 DOI: 10.1242/jcs.261094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
COPII proteins assemble at ER exit sites (ERES) to form transport carriers. The initiation of COPII assembly in the yeast Saccharomyces cerevisiae is triggered by the ER membrane protein Sec12. Sec16, which plays a critical role in COPII organization, localizes to ERES independently of Sec12. However, the mechanism underlying Sec16 localization is poorly understood. Here, we show that a Sec12 homolog, Sed4, is concentrated at ERES and mediates ERES localization of Sec16. We found that the interaction between Sec16 and Sed4 ensures their correct localization to ERES. Loss of the interaction with Sec16 leads to redistribution of Sed4 from the ERES specifically to high-curvature ER areas, such as the tubules and edges of the sheets. The luminal domain of Sed4 mediates this distribution, which is required for Sed4, but not for Sec16, to be concentrated at ERES. We further show that the luminal domain and its O-mannosylation are involved in the self-interaction of Sed4. Our findings provide insight into how Sec16 and Sed4 function interdependently at ERES.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
8
|
Zhang C, Kalaitsidou E, Damen JMA, Grond R, Rabouille C, Wu W. Novel Components of the Stress Assembly Sec Body Identified by Proximity Labeling. Cells 2023; 12:cells12071055. [PMID: 37048128 PMCID: PMC10093351 DOI: 10.3390/cells12071055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Sec bodies are membraneless stress-induced assemblies that form by the coalescence of endoplasmic reticulum exit sites (ERES). Through APEX2 tagging of Sec24AB, we biotinylated and identified the full complement of Sec body proteins. In the presence of biotin-phenol and H2O2 (APEX on), APEX2 facilitates the transfer of a biotin moiety to nearby interactors of chimeric Sec24AB. Using this unbiased approach comparing APEX on and off (−H2O2) conditions, we identified 52 proteins specifically enriched in Sec bodies. These include a large proportion of ER and Golgi proteins, packaged without defined stoichiometry, which we could selectively verify by imaging. Interestingly, Sec body components are neither transcriptionally nor translationally regulated under the conditions that induce Sec body formation, suggesting that incorporation of these proteins into granules may be driven instead by the aggregation of nucleating proteins with a high content of intrinsically disordered regions. This reinforces the notion that Sec bodies may act as storage for ERES, ER and Golgi components during stress.
Collapse
|
9
|
dSec16 Acting in Insulin-like Peptide Producing Cells Controls Energy Homeostasis in Drosophila. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010081. [PMID: 36676030 PMCID: PMC9862641 DOI: 10.3390/life13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Many studies show that genetics play a major contribution to the onset of obesity. Human genome-wide association studies (GWASs) have identified hundreds of genes that are associated with obesity. However, the majority of them have not been functionally validated. SEC16B has been identified in multiple obesity GWASs but its physiological role in energy homeostasis remains unknown. Here, we use Drosophila to determine the physiological functions of dSec16 in energy metabolism. Our results showed that global RNAi of dSec16 increased food intake and triglyceride (TAG) levels. Furthermore, this TAG increase was observed in flies with a specific RNAi of dSec16 in insulin-like peptide producing cells (IPCs) with an alteration of endocrine peptides. Together, our study demonstrates that dSec16 acting in IPCs controls energy balance and advances the molecular understanding of obesity.
Collapse
|
10
|
van Leeuwen W, Nguyen DTM, Grond R, Veenendaal T, Rabouille C, Farías GG. Stress-induced phase separation of ERES components into Sec bodies precedes ER exit inhibition in mammalian cells. J Cell Sci 2022; 135:jcs260294. [PMID: 36325988 PMCID: PMC10112967 DOI: 10.1242/jcs.260294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Phase separation of components of ER exit sites (ERES) into membraneless compartments, the Sec bodies, occurs in Drosophila cells upon exposure to specific cellular stressors, namely, salt stress and amino acid starvation, and their formation is linked to the early secretory pathway inhibition. Here, we show Sec bodies also form in secretory mammalian cells upon the same stress. These reversible and membraneless structures are positive for ERES components, including both Sec16A and Sec16B isoforms and COPII subunits. We find that Sec16A, but not Sec16B, is a driver for Sec body formation, and that the coalescence of ERES components into Sec bodies occurs by fusion. Finally, we show that the stress-induced coalescence of ERES components into Sec bodies precedes ER exit inhibition, leading to their progressive depletion from ERES that become non-functional. Stress relief causes an immediate dissolution of Sec bodies and the concomitant restoration of ER exit. We propose that the dynamic conversion between ERES and Sec body assembly, driven by Sec16A, regulates protein exit from the ER during stress and upon stress relief in mammalian cells, thus providing a conserved pro-survival mechanism in response to stress.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Dan T. M. Nguyen
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Tineke Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, Groningen 9713 AV, The Netherlands
| | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
11
|
Ouyang S, Ma J, Sun Q, Li J, Chen Y, Luo L. Comprehensive Bioinformatics Analysis to Reveal Key RNA Targets and Hub Competitive Endogenous RNA Network of Keratoconus. Front Genet 2022; 13:896780. [PMID: 35747602 PMCID: PMC9209702 DOI: 10.3389/fgene.2022.896780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Keratoconus (KC) is the most common corneal ectatic disease, with its pathological mechanisms unclear. We mainly performed bioinformatics approaches to reveal core RNA targets and hub competitive endogenous RNA (ceRNA) network and explored the potential regulatory mechanisms of ceRNA in KC. The high-throughput sequencing datasets GSE77938 and GSE151631 were downloaded from the Gene Expression Omnibus (GEO) database. The differential expression of mRNAs and lncRNAs was identified using the DESeq2 package. Functional enrichment analyses and protein–protein interaction (PPI) were executed. Then, the hub genes were filtered and molecular docking analysis was performed. Moreover, we predicted miRNAs through a website database and validated them using quantitative PCR (qPCR). Eventually, the lncRNA–miRNA–mRNA regulatory network was constructed by Cytoscape. We revealed that 428 intersected differentially expressed mRNA (DEGs) and 68 intersected differentially expressed lncRNA (DELs) were shared between the two datasets. Functional enrichment results innovatively showed that the ubiquitin-dependent protein catabolic process was upregulated in KC. The pathway enrichment showed that DEGs were mainly involved in NF-kB signaling and neurodegenerative diseases. In addition, we uncovered the top 20 hub genes in which FBXW11, FBXO9, RCHY1, and CD36 were validated by qPCR. Particularly, a small-molecule drug triptolide was predicted by molecular docking to be a candidate drug for treating KC. Moreover, we innovatively predicted and validated four core miRNAs (miR-4257, miR-4494, miR-4263, and miR-4298) and constructed a ceRNA network that contained 165 mRNA, eight lncRNAs, and four core miRNAs. Finally, we proposed a potential regulatory mechanism for KC. Overall, we uncovered a hub ceRNA network that might underlie a critical posttranslational regulatory mechanism in KC, in which miR-4257, miR-4494, miR-4263, and miR-4298 could be valuable biomarkers and provided core RNAs therapeutic targets for KC.
Collapse
|
12
|
Cargo receptor Surf4 regulates endoplasmic reticulum export of proinsulin in pancreatic β-cells. Commun Biol 2022; 5:458. [PMID: 35562580 PMCID: PMC9106718 DOI: 10.1038/s42003-022-03417-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Insulin is an essential peptide hormone that maintains blood glucose levels. Although the mechanisms underlying insulin exocytosis have been investigated, the mechanism of proinsulin export from the endoplasmic reticulum (ER) remains unclear. Here, we demonstrated that Surf4, a cargo receptor homolog, regulates the ER export of proinsulin via its recruitment to ER exit sites (ERES). Under high-glucose conditions, Surf4 expression was upregulated, and Surf4 proteins mainly localized to the ER at a steady state and accumulated in the ERES, along with proinsulin in rat insulinoma INS-1 cells. Surf4-knockdown resulted in proinsulin retention in the ER and decreased the levels of mature insulin in secretory granules, thereby significantly reducing insulin secretion. Surf4 forms an oligomer and can physically interact with proinsulin and Sec12, essential for COPII vesicle formation. Our findings suggest that Surf4 interacts with proinsulin and delivers it into COPII vesicles for ER export in co-operation with Sec12 and COPII.
Collapse
|
13
|
A tango for coats and membranes: New insights into ER-to-Golgi traffic. Cell Rep 2022; 38:110258. [DOI: 10.1016/j.celrep.2021.110258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
|
14
|
Zhang C, van Leeuwen W, Blotenburg M, Aguilera-Gomez A, Brussee S, Grond R, Kampinga HH, Rabouille C. Activation of salt Inducible Kinases, IRE1 and PERK leads to Sec bodies formation in Drosophila S2 cells. J Cell Sci 2021; 134:272062. [PMID: 34350957 PMCID: PMC8445602 DOI: 10.1242/jcs.258685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the endoplasmic reticulum (ER) exit sites under the stress of amino acid starvation. Here, we address which signaling pathways cause Sec body formation and find that two pathways are critical. The first is the activation of the salt-inducible kinases (SIKs; SIK2 and SIK3) by Na+ stress, which, when it is strong, is sufficient. The second is activation of IRE1 and PERK (also known as PEK in flies) downstream of ER stress induced by the absence of amino acids, which needs to be combined with moderate salt stress to induce Sec body formation. SIK, and IRE1 and PERK activation appear to potentiate each other through the stimulation of the unfolded protein response, a key parameter in Sec body formation. This work shows the role of SIKs in phase transition and re-enforces the role of IRE1 and PERK as a metabolic sensor for the level of circulating amino acids and salt. This article has an associated First Person interview with the first author of the paper. Summary: In S2 cells, the phase-separated Sec bodies form upon the combined activation of salt-inducible kinases, IRE1 and PERK.
Collapse
Affiliation(s)
- Chujun Zhang
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | - Sem Brussee
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands.,Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
15
|
Zou X, Li L, Liao F, Chen W. iTRAQ-based quantitative proteomic analysis reveals NtGNL1-dependent regulatory network underlying endosome trafficking for pollen tube polar growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:200-209. [PMID: 33636685 DOI: 10.1016/j.plaphy.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Endosome trafficking has been reported to play an essential role in pollen tube polar growth and NtGNL1 (Nicotiana tabacum GNOM-LIKE 1) regulates the polar growth through endosome trafficking. However, the regulation network and detailed molecular mechanisms underlying endosome trafficking remain unclear. Here, comparative proteomic analysis was carried out to survey the overall effect of NtGNL1 on pollen tube polar growth and NtGNL1-dependent endosome trafficking. With multiple comparative systems (RNAi, Wild type, and BFA or wortmannin treatments), 481 distinct proteins were identified including 43 common DEPs (differentially expressed proteins), of which 16 significant DEPs were common among RNAi, BFA, and wortmannin treated pollen tubes, indicating their close relation to the endosome trafficking. GO annotation indicates that the vesicle trafficking of gnl1HE pollen tubes differs from that of the BFA and wortmannin treated pollen tubes in the COPII-coated vesicle budding process. KEGG pathway analysis suggests that the Pentose phosphate pathway is critical for the NtGNL1-dependent endosome trafficking. Yeast two-hybrid further confirmed that the NtGNL1-Sec7 domain interacted strongly with VPS32.2, TCTP, PIS2, and PDIL2-1, suggesting that the core functional region of NtGNL1 is the Sec7 domain. Therefore, NtGNL1 likely functions via its Sec7 binding with these proteins to affect endosome trafficking. Our results provide a clear outline of proteins involving in NtGNL1-dependent endosome trafficking and valuable clues for understanding the regulatory mechanism of NtGNL1 guided pollen tube polar growth.
Collapse
Affiliation(s)
- Xinjian Zou
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ling Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Fanglei Liao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China.
| | - Wenrong Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
16
|
Nakamura A, Boroojeni SF, Haroon N. Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol 2021; 43:245-253. [PMID: 33532928 DOI: 10.1007/s00281-020-00833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
The strong association of HLA-B*27 with ankylosing spondylitis (AS) was first reported nearly 50 years ago. However, the mechanistic link between HLA-B*27 and AS has remained an enigma. While 85-90% of AS patients possess HLA-B*27, majority of HLA-B*27 healthy individuals do not develop AS. This suggests that additional genes and genetic regions interplay with HLA-B*27 to cause AS. Previous genome-wide association studies (GWAS) identified key genes that are distinctively expressed in AS, including the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and ERAP2. As these gene-encoding molecules are primarily implicated in the process of peptide processing and presentation, potential pathological interaction of these molecules with HLA-B*27 may operate to cause AS by activating downstream immune responses. The aberrant peptide processing also gives rise to the accumulation of unstable protein complex in endoplasmic reticulum (ER), which drives endoplasmic reticulum-associated protein degradation (ERAD) and unfolded protein response (UPR) and activates autophagy. In this review, we describe the current hypotheses of AS pathogenesis, focusing on antigen processing and presentation operated by HLA-B*27 and associated molecules that may contribute to the disease initiation and progression of AS.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
17
|
Feng Z, Yang K, Pastor-Pareja JC. Tales of the ER-Golgi Frontier: Drosophila-Centric Considerations on Tango1 Function. Front Cell Dev Biol 2021; 8:619022. [PMID: 33505971 PMCID: PMC7829582 DOI: 10.3389/fcell.2020.619022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
18
|
Brumfield A, Chaudhary N, Molle D, Wen J, Graumann J, McGraw TE. Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10. Mol Biol Cell 2021; 32:57-73. [PMID: 33175605 PMCID: PMC8098823 DOI: 10.1091/mbc.e20-06-0356] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/05/2022] Open
Abstract
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.
Collapse
Affiliation(s)
| | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Dorothee Molle
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Johannes Graumann
- Weill Cornell Medical College in Qatar, Education City, 24144 Doha, State of Qatar
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
19
|
Steinmetz TD, Schlötzer-Schrehardt U, Hearne A, Schuh W, Wittner J, Schulz SR, Winkler TH, Jäck HM, Mielenz D. TFG is required for autophagy flux and to prevent endoplasmic reticulum stress in CH12 B lymphoma cells. Autophagy 2020; 17:2238-2256. [PMID: 32910713 DOI: 10.1080/15548627.2020.1821546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasma cells depend on quality control of newly synthesized antibodies in the endoplasmic reticulum (ER) via macroautophagy/autophagy and proteasomal degradation. The cytosolic adaptor protein TFG (Trk-fused gene) regulates ER-Golgi transport, the secretory pathway and proteasome activity in non-immune cells. We show here that TFG is upregulated during lipopolysaccharide- and CpG-induced differentiation of B1 and B2 B cells into plasmablasts, with the highest expression of TFG in mature plasma cells. CRISPR-CAS9-mediated gene disruption of tfg in the B lymphoma cell line CH12 revealed increased apoptosis, which was reverted by BCL2 but even more by ectopic TFG expression. Loss of TFG disrupted ER structure, leading to an expanded ER and increased expression of ER stress genes. When compared to wild-type CH12 cells, tfg KO CH12 cells were more sensitive toward ER stress induced by tunicamycin, monensin and proteasome inhibition or by expression of an ER-bound immunoglobulin (Ig) μ heavy (µH) chain. CH12 tfg KO B cells displayed more total LC3, lower LC3-II turnover and increased numbers and size of autophagosomes. Tandem-fluorescent-LC3 revealed less accumulation of GFP-LC3 in starved and chloroquine-treated CH12 tfg KO B cells. The GFP:RFP ratio of tandem-fluorescent-LC3 was higher in tunicamycin-treated CH12 tfg KO B cells, suggesting less autophagy flux during induced ER stress. Based on these data, we suggest that TFG controls autophagy flux in CH12 B cells and propose that TFG is a survival factor that alleviates ER stress through the support of autophagy flux in activated B cells and mature plasma cells.Abbreviations: Ab, antibody; Ag, antigen; ASC, antibody-secreting cells; ATG, autophagy-related; BCR, B cell receptor; COPII, coat protein complex II; CpG, non-methylated CpG oligonucleotide; ER, endoplasmic reticulum; ERAD, ER-associated degradation; FO, follicular; GFP, green fluorescent protein; HC, heavy chain; Ig, immunoglobulin; IRES, internal ribosomal entry site; LC, light chain; MZ, marginal zone; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; TLR, toll-like receptor; UPR, unfolded protein response.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | - Abigail Hearne
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Chair of Genetics, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
20
|
Cortés GT, Wiser MF, Gómez-Alegría CJ. Identification of Plasmodium falciparum HSP70-2 as a resident of the Plasmodium export compartment. Heliyon 2020; 6:e04037. [PMID: 32529065 PMCID: PMC7276435 DOI: 10.1016/j.heliyon.2020.e04037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022] Open
Abstract
The malarial parasite remodels the host erythrocyte following invasion. Well-known examples are adhesive proteins inserted into the host erythrocyte membrane, which function as virulence factors. The modification of the host erythrocyte may be mediated by a specialized domain of the endoplasmic reticulum, or Plasmodium export compartment (PEC). Previously, monoclonal antibodies recognizing the PEC were generated and one of these monoclonal antibodies recognize a 68 kDa parasite protein. In this study, the 68 kDa protein was affinity purified and analyzed by peptide mapping using mass spectrometry. The results demonstrate that the 68 kDa protein is the P. falciparum homolog of the endoplasmic reticulum resident HSP70 called PfHSP70-2. This finding is consistent with the PEC being a domain of the endoplasmic reticulum and suggests a role for PfHSP70-2 in the export of Plasmodium proteins into the host erythrocyte.
Collapse
Affiliation(s)
- Gladys T Cortés
- Departamento de Salud Pública, Facultad de Medicina, Laboratorio de Equipos Comunes, Universidad Nacional de Colombia, Calle 45 No. 30-03, Edificio 471, Bogotá, Colombia
| | - Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Claudio J Gómez-Alegría
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Grupo UNIMOL, Colombia
| |
Collapse
|
21
|
Yorimitsu T, Sato K. Sec16 function in ER export and autophagy is independent of its phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell 2019; 31:149-156. [PMID: 31851588 PMCID: PMC7001475 DOI: 10.1091/mbc.e19-08-0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coat protein complex II (COPII) protein assembles at the endoplasmic reticulum exit site (ERES) to form vesicle carrier for transport from the ER to the Golgi apparatus. Sec16 has a critical role in COPII assembly to form ERES. Sec16∆565N mutant, which lacks the N-terminal 565 amino acids, is defective in ERES formation and ER export. Several phosphoproteomic studies have identified 108 phosphorylated Ser/Thr/Tyr residues in Sec16 of Saccharomyces cerevisiae, of which 30 residues are located in the truncated part of Sec16∆565N. The exact role of the phosphorylation in Sec16 function remains to be determined. Therefore, we analyzed nonphosphorylatable Sec16 mutants, in which all identified phosphorylation sites are substituted with Ala. These mutants show ERES and ER export comparable to those of wild-type Sec16, although the nonphosphorylatable mutant binds the COPII subunit Sec23 more efficiently than the wild-type protein. Because nutrient starvation–induced autophagy depends on Sec16, Sec16∆565N impairs autophagy, whereas the nonphosphorylatable mutants do not affect autophagy. We conclude that Sec16 phosphorylation is not essential for its function.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
22
|
Saito K, Maeda M. Not just a cargo receptor for large cargoes; an emerging role of TANGO1 as an organizer of ER exit sites. J Biochem 2019; 166:115-119. [PMID: 31098622 DOI: 10.1093/jb/mvz036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Proteins synthesized within the endoplasmic reticulum (ER) are exported from ER exit sites via coat protein complex II (COPII)-coated vesicles. Although the mechanisms of COPII-vesicle formation at the ER exit sites are highly conserved among species, vertebrate cells secrete a wide range of materials, including collagens and chylomicrons, which form bulky structures within the ER that are too large to fit into conventional carriers. Transport ANd Golgi Organization 1 (TANGO1) was initially identified as a cargo receptor for collagens but has been recently rediscovered as an organizer of ER exit sites. We would like to review recent advances in the mechanism of large cargo secretion and organization of ER exit sites through the function of TANGO1.
Collapse
Affiliation(s)
- Kota Saito
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Japan
| | - Miharu Maeda
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Japan
| |
Collapse
|
23
|
van Leeuwen W, Rabouille C. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic 2019; 20:623-638. [PMID: 31152627 PMCID: PMC6771618 DOI: 10.1111/tra.12669] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022]
Abstract
In cells at steady state, two forms of cell compartmentalization coexist: membrane-bound organelles and phase-separated membraneless organelles that are present in both the nucleus and the cytoplasm. Strikingly, cellular stress is a strong inducer of the reversible membraneless compartments referred to as stress assemblies. Stress assemblies play key roles in survival during cell stress and in thriving of cells upon stress relief. The two best studied stress assemblies are the RNA-based processing-bodies (P-bodies) and stress granules that form in response to oxidative, endoplasmic reticulum (ER), osmotic and nutrient stress as well as many others. Interestingly, P-bodies and stress granules are heterogeneous with respect to both the pathways that lead to their formation and their protein and RNA content. Furthermore, in yeast and Drosophila, nutrient stress also leads to the formation of many other types of prosurvival cytoplasmic stress assemblies, such as metabolic enzymes foci, proteasome storage granules, EIF2B bodies, U-bodies and Sec bodies, some of which are not RNA-based. Nutrient stress leads to a drop in cytoplasmic pH, which combined with posttranslational modifications of granule contents, induces phase separation.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
- Department of Biomedical Science of Cells and SystemsUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
24
|
Zhang C, Rabouille C. Membrane-Bound Meet Membraneless in Health and Disease. Cells 2019; 8:cells8091000. [PMID: 31470564 PMCID: PMC6770257 DOI: 10.3390/cells8091000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Membraneless organelles (MLOs) are defined as cellular structures that are not sealed by a lipidic membrane and are shown to form by phase separation. They exist in both the nucleus and the cytoplasm that is also heavily populated by numerous membrane-bound organelles. Even though the name membraneless suggests that MLOs are free of membrane, both membrane and factors regulating membrane trafficking steps are emerging as important components of MLO formation and function. As a result, we name them biocondensates. In this review, we examine the relationships between biocondensates and membrane. First, inhibition of membrane trafficking in the early secretory pathway leads to the formation of biocondensates (P-bodies and Sec bodies). In the same vein, stress granules have a complex relationship with the cyto-nuclear transport machinery. Second, membrane contributes to the regulated formation of phase separation in the cells and we will present examples including clustering at the plasma membrane and at the synapse. Finally, the whole cell appears to transit from an interphase phase-separated state to a mitotic diffuse state in a DYRK3 dependent manner. This firmly establishes a crosstalk between the two types of cell organization that will need to be further explored.
Collapse
Affiliation(s)
- Chujun Zhang
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
- Department of Biomedical Science of Cells and Systems, University Medical Center Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
25
|
Coat flexibility in the secretory pathway: a role in transport of bulky cargoes. Curr Opin Cell Biol 2019; 59:104-111. [PMID: 31125831 PMCID: PMC7116127 DOI: 10.1016/j.ceb.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
Abstract
Membrane trafficking in eukaryotic cells is a highly dynamic process, which needs to adapt to a variety of cargo proteins. The COPII coat mediates ER export of thousands of proteins with a wide range of sizes by generating coated membrane vesicles that incapsulate cargo. The process of assembly and disassembly of COPII, regulated by GTP hydrolysis, is a major determinant of the size and shape of transport carriers. Here, we analyse our knowledge of the COPII coat architecture and it assembly/disassembly dynamics, and link coat flexibility to the role of COPII in transport of large cargoes. We propose a common mechanism of action of regulatory factors that modulate COPII GTP hydrolysis cycle to promote budding.
Collapse
|
26
|
Hernández-González M, Bravo-Plaza I, de Los Ríos V, Pinar M, Pantazopoulou A, Peñalva MA. COPI localizes to the early Golgi in Aspergillus nidulans. Fungal Genet Biol 2018; 123:78-86. [PMID: 30550852 DOI: 10.1016/j.fgb.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/21/2023]
Abstract
Coatomer-I (COPI) is a heteromeric protein coat that facilitates the budding of membranous carriers mediating Golgi-to-ER and intra-Golgi transport. While the structural features of COPI have been thoroughly investigated, its physiological role is insufficiently understood. Here we exploit the amenability of A. nidulans for studying intracellular traffic, taking up previous studies by Breakspear et al. (2007) with the α-COP/CopA subunit of COPI. Endogenously tagged α-COP/CopA largely localizes to SedVSed5 syntaxin-containing early Golgi cisterna, and acute inactivation of ER-to-Golgi traffic delocalizes COPI to a haze, consistent with the cisternal maturation model. In contrast, the Golgi localization of COPI is independent of the TGN regulators HypBSec7 and HypATrs120, implying that COPI budding predominates at the SedVSed5 early Golgi, with lesser contribution of the TGN. This finding agrees with the proposed role of COPI-mediated intra-Golgi retrograde traffic in driving cisternal maturation, which predicts that the capacity of the TGN to generate COPI carriers is low. The COPI early Golgi compartments intimately associates with Sec13-containing ER exit sites. Characterization of the heat-sensitive copA1ts (sodVIC1) mutation showed that it results in a single residue substitution in the ε-COP-binding Carboxyl-Terminal-Domain of α-COP that likely destabilizes its folding. However, we show that Golgi disorganization by copA1ts necessitates >150 min-long incubation at 42 °C. This weak subcellular phenotype makes it unsuitable for inactivating COPI traffic acutely for microscopy studies, and explains the aneuploidy-stabilizing role of the mutation at subrestrictive temperatures.
Collapse
Affiliation(s)
- Miguel Hernández-González
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centre for Mechanochemical Cell Biology, Gibbet Hill Road, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK(1)
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Vivian de Los Ríos
- Proteomics and Genomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Department of Molecular Genetics and Cell Biology, Biological Sciences Division, The University of Chicago, United States(1).
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
27
|
Liang XH, Sun H, Nichols JG, Allen N, Wang S, Vickers TA, Shen W, Hsu CW, Crooke ST. COPII vesicles can affect the activity of antisense oligonucleotides by facilitating the release of oligonucleotides from endocytic pathways. Nucleic Acids Res 2018; 46:10225-10245. [PMID: 30239896 PMCID: PMC6212795 DOI: 10.1093/nar/gky841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
RNase H1-dependent, phosphorothioate-modified antisense oligonucleotides (PS-ASOs) can enter cells through endocytic pathways and need to be released from the membrane-enclosed organelles, a limiting step for antisense activity. Accumulating evidence has suggested that productive PS-ASO release mainly occurs from late endosomes (LEs). However, how PS-ASOs escape from LEs is not well understood. Here, we report that upon PS-ASO incubation, COPII vesicles, normally involved in ER-Golgi transport, can re-locate to PS-ASO-containing LEs. Reduction of COPII coat proteins significantly decreased PS-ASO activity, without affecting the levels of PS-ASO uptake and early-to-late endosome transport, but caused slower PS-ASO release from LEs. COPII co-localization with PS-ASOs at LEs does not require de novo assembly of COPII at ER. Interestingly, reduction of STX5 and P115, proteins involved in tethering and fusion of COPII vesicles with Golgi membranes, impaired COPII re-localization to LEs and decreased PS-ASO activity. STX5 can re-locate to LEs upon PS-ASO incubation, can bind PS-ASOs, and the binding appears to be required for this pathway. Our study reveals a novel release pathway in which PS-ASO incubation causes LE re-localization of STX5, which mediates the recruitment of COPII vesicles to LEs to facilitate endosomal PS-ASO release, and identifies another key PS-ASO binding protein.
Collapse
Affiliation(s)
- Xue-hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Nickolas Allen
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Shiyu Wang
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Wen Shen
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chih-Wei Hsu
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
28
|
Aguilera-Gomez A, Zacharogianni M, van Oorschot MM, Genau H, Grond R, Veenendaal T, Sinsimer KS, Gavis ER, Behrends C, Rabouille C. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation. Cell Rep 2018; 20:935-948. [PMID: 28746877 DOI: 10.1016/j.celrep.2017.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/22/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein.
Collapse
Affiliation(s)
- Angelica Aguilera-Gomez
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Margarita Zacharogianni
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marinke M van Oorschot
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Heide Genau
- Institute of Biochemistry II, Medical School Goethe University, 60323 Frankfurt am Main, Germany
| | - Rianne Grond
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Tineke Veenendaal
- Department of Cell Biology, UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60323 Frankfurt am Main, Germany
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Cell Biology, UMC Utrecht, 3584 CT Utrecht, the Netherlands; Department of Cell Biology, UMC Groningen, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
29
|
van Leeuwen W, van der Krift F, Rabouille C. Modulation of the secretory pathway by amino-acid starvation. J Cell Biol 2018; 217:2261-2271. [PMID: 29669743 PMCID: PMC6028531 DOI: 10.1083/jcb.201802003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
As a major anabolic pathway, the secretory pathway needs to adapt to the demands of the surrounding environment and responds to different exogenous signals and stimuli. In this context, the transport in the early secretory pathway from the endoplasmic reticulum (ER) to the Golgi apparatus appears particularly regulated. For instance, protein export from the ER is critically stimulated by growth factors. Conversely, nutrient starvation also modulates functions of the early secretory pathway in multiple ways. In this review, we focus on amino-acid starvation and how the function of the early secretory pathway is redirected to fuel autophagy, how the ER exit sites are remodeled into novel cytoprotective stress assemblies, and how secretion is modulated in vivo in starving organisms. With the increasingly exciting knowledge on mechanistic target of rapamycin complex 1 (mTORC1), the major nutrient sensor, it is also a good moment to establish how the modulation of the secretory pathway by amino-acid restriction intersects with this major signaling hub.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - Felix van der Krift
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands .,Department of Cell Biology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Chua CEL, Tang BL. Rab 10-a traffic controller in multiple cellular pathways and locations. J Cell Physiol 2018; 233:6483-6494. [PMID: 29377137 DOI: 10.1002/jcp.26503] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/24/2018] [Indexed: 12/29/2022]
Abstract
Rab GTPases are key regulators of eukaryotic membrane traffic, and their functions and activities are limited to particular intracellular transport steps and their membrane localization is by and large restricted. Some Rabs do participate in more than one transport steps, but broadly speaking, there is a clear demarcation between exocytic and endocytic Rabs. One Rab protein, Rab10, however, appears to be anomalous in this regard and has a diverse array of functions and subcellular localizations. Rab10 has been implicated in a myriad of activities ranging from polarized exocytosis and endosomal sorting in polarized cells, insulin-dependent Glut4 transport in adipocytes, axonal growth in neurons, and endo-phagocytic processes in macrophages. It's reported subcellular localizations include the endoplasmic reticulum (ER), Golgi/TGN, the endosomes/phagosomes and the primary cilia. In this review, we summarize and discuss the multitude of known roles of Rab10 in cellular membrane transport and the molecular players and mechanisms associated with these roles.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
31
|
Crosstalk of Autophagy and the Secretory Pathway and Its Role in Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:153-184. [DOI: 10.1016/bs.ircmb.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Farhan H, Kundu M, Ferro-Novick S. The link between autophagy and secretion: a story of multitasking proteins. Mol Biol Cell 2017; 28:1161-1164. [PMID: 28468940 PMCID: PMC5415012 DOI: 10.1091/mbc.e16-11-0762] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
The secretory and autophagy pathways can be thought of as the biosynthetic (i.e., anabolic) and degradative (i.e., catabolic) branches of the endomembrane system. In analogy to anabolic and catabolic pathways in metabolism, there is mounting evidence that the secretory and autophagy pathways are intimately linked and that certain regulatory elements are shared between them. Here we highlight the parallels and points of intersection between these two evolutionarily highly conserved and fundamental endomembrane systems. The intersection of these pathways may play an important role in remodeling membranes during cellular stress.
Collapse
Affiliation(s)
- Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, 3072 Oslo, Norway
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
33
|
Saito K, Maeda M, Katada T. Regulation of the Sar1 GTPase Cycle Is Necessary for Large Cargo Secretion from the Endoplasmic Reticulum. Front Cell Dev Biol 2017; 5:75. [PMID: 28879181 PMCID: PMC5572378 DOI: 10.3389/fcell.2017.00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins synthesized within the endoplasmic reticulum (ER) are transported to the Golgi via coat protein complex II (COPII)-coated vesicles. The formation of COPII-coated vesicles is regulated by the GTPase cycle of Sar1. Activated Sar1 is recruited to ER membranes and forms a pre-budding complex with cargoes and the inner-coat complex. The outer-coat complex then stimulates Sar1 inactivation and completes vesicle formation. The mechanisms of forming transport carriers are well-conserved among species; however, in mammalian cells, several cargo molecules such as collagen, and chylomicrons are too large to be accommodated in conventional COPII-coated vesicles. Thus, special cargo-receptor complexes are required for their export from the ER. cTAGE5/TANGO1 complexes and their isoforms have been identified as cargo receptors for these macromolecules. Recent reports suggest that the cTAGE5/TANGO1 complex interacts with the GEF and the GAP of Sar1 and tightly regulates its GTPase cycle to accomplish large cargo secretion.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| |
Collapse
|
34
|
Brandizzi F. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin Cell Dev Biol 2017; 80:94-105. [PMID: 28688928 DOI: 10.1016/j.semcdb.2017.06.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The biogenesis of about one third of the cellular proteome is initiated in the endoplasmic reticulum (ER), which exports proteins to the Golgi apparatus for sorting to their final destination. Notwithstanding the close proximity of the ER with other secretory membranes (e.g., endosomes, plasma membrane), the ER is also important for the homeostasis of non-secretory organelles such as mitochondria, peroxisomes, and chloroplasts. While how the plant ER interacts with most of the non-secretory membranes is largely unknown, the knowledge on the mechanisms for ER-to-Golgi transport is relatively more advanced. Indeed, over the last fifteen years or so, a large number of exciting results have contributed to draw parallels with non-plant species but also to highlight the complexity of the plant ER-Golgi interface, which bears unique features. This review reports and discusses results on plant ER-to-Golgi traffic, focusing mainly on research on COPII-mediated transport in the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Bellezza I, Scarpelli P, Pizzo SV, Grottelli S, Costanzi E, Minelli A. ROS-independent Nrf2 activation in prostate cancer. Oncotarget 2017; 8:67506-67518. [PMID: 28978049 PMCID: PMC5620189 DOI: 10.18632/oncotarget.18724] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
In prostate cancer, oxidative stress and the subsequent Nrf2 activation promote the survival of cancer cells and acquired chemoresistance. Nrf2 links prostate cancer to endoplasmic reticulum stress, an event that triggers the unfolded protein response, aiming to restore cellular homeostasis as well as an adaptive survival mechanism. Glucose-regulated protein of 78 kD /immunoglobulin heavy chain binding protein (GRP78/BiP) is a key molecular chaperone in the endoplasmic reticulum that, when expressed at the cell surface, acts as a receptor for several signaling pathways enhancing antiapoptotic and proliferative signals. We showed GRP78/BiP translocation to PC3 cell surface in the presence of tunicamycin, an ER stress inductor, and demonstrated the existence of a GRP78/BiP-dependent non-canonical Nrf2 activation, responsible for increased resistance to ER-stress induced apoptosis. We found that, even in the absence of ROS production, tunicamycin causes Nrf2 activation, and activates Akt signaling, events bulnted by anti-GRP78/BiP antibody treatment. The presence of GRP78/BiP at the cell surface might be exploited for the immunotherapeutic strategy of prostate cancer since its blockage by anti-GRP78/BiP antibodies might promote cancer death by suppressing some of the several molecular protective mechanisms found in aggressive cancer cells.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Scarpelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Silvia Grottelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Egidia Costanzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Alba Minelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
36
|
Tang BL. Sec16 in conventional and unconventional exocytosis: Working at the interface of membrane traffic and secretory autophagy? J Cell Physiol 2017; 232:3234-3243. [PMID: 28160489 DOI: 10.1002/jcp.25842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Abstract
Sec16 is classically perceived to be a scaffolding protein localized to the transitional endoplasmic reticulum (tER) or the ER exit sites (ERES), and has a conserved function in facilitating coat protein II (COPII) complex-mediated ER exit. Recent findings have, however, pointed toward a role for Sec16 in unconventional exocytosis of certain membrane proteins, such as the Cystic fibrosis transmembrane conductance regulator (CFTR) in mammalian cells, and possibly also α-integrin in certain contexts of Drosophila development. In this regard, Sec16 interacts with components of a recently deciphered pathway of stress-induced unconventional exocytosis, which is dependent on the tether protein Golgi reassembly stacking proteins (GRASPs) and the autophagy pathway. Intriguingly, Sec16 also appears to be post-translationally modified by autophagy-related signaling processes. Sec16 is known to be phosphorylated by the atypical extracellular signal regulated kinase 7 (Erk7) upon serum and amino acid starvation, both represent conditions that trigger autophagy. Recent work has also shown that Sec16 is phosphorylated, and thus regulated by the prominent autophagy-initiating Unc-51-like autophagy activating kinase 1 (Ulk1), as well as another autophagy modulator Leucine-rich repeat kinase 2 (Lrrk2). The picture emerging from Sec16's network of physical and functional interactors allows the speculation that Sec16 is situated (and may in yet undefined ways function) at the interface between COPII-mediated exocytosis of conventional vesicular traffic and the GRASP/autophagy-dependent mode of unconventional exocytosis.
Collapse
Affiliation(s)
- Bor Luen Tang
- Departmentof Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
37
|
Maeda M, Katada T, Saito K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 2017; 216:1731-1743. [PMID: 28442536 PMCID: PMC5461033 DOI: 10.1083/jcb.201703084] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mammalian endoplasmic reticulum (ER) exit sites export a variety of cargo molecules including oversized cargoes such as collagens. However, the mechanisms of their assembly and organization are not fully understood. TANGO1L is characterized as a collagen receptor, but the function of TANGO1S remains to be investigated. Here, we show that direct interaction between both isoforms of TANGO1 and Sec16 is not only important for their correct localization but also critical for the organization of ER exit sites. The depletion of TANGO1 disassembles COPII components as well as membrane-bound ER-resident complexes, resulting in fewer functional ER exit sites and delayed secretion. The ectopically expressed TANGO1 C-terminal domain responsible for Sec16 binding in mitochondria is capable of recruiting Sec16 and other COPII components. Moreover, TANGO1 recruits membrane-bound macromolecular complexes consisting of cTAGE5 and Sec12 to the ER exit sites. These data suggest that mammalian ER exit sites are organized by TANGO1 acting as a scaffold, in cooperation with Sec16 for efficient secretion.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
38
|
Aguilera-Gomez A, Rabouille C. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Dev Biol 2017; 428:310-317. [PMID: 28377034 DOI: 10.1016/j.ydbio.2017.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of maintenance of functional identities. Furthermore, membrane less-compartments are critical for sustaining developmental and cell biological events as they control major metabolic pathways. We describe two examples related to this issue in Drosophila, the role of P-bodies in the translational control of gurken in the Drosophila oocyte, and the formation of Sec bodies upon amino-acid starvation in Drosophila cells.
Collapse
Affiliation(s)
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| |
Collapse
|
39
|
Rabouille C, Alberti S. Cell adaptation upon stress: the emerging role of membrane-less compartments. Curr Opin Cell Biol 2017; 47:34-42. [PMID: 28342303 DOI: 10.1016/j.ceb.2017.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Abstract
Cells under stress transition from a growth to a quiescent state. The conventional thinking is that this is achieved through transcriptional programs, translational regulation, protein degradation, and post-translational modifications. However, there is an increasing realization that stress adaptation also goes along with dramatic changes in the architecture and organization of cells. In particular, it seems to involve the formation of membrane-less compartments and macromolecular assemblies. We propose that cells make widespread use of this ability to change macromolecular organization to adapt to stress conditions and protect themselves. Here, we address what triggers the formation of these assemblies under stress conditions. We present examples illustrating that in some cases, sophisticated signaling pathways transmit environmental fluctuations from the outside to the inside and in others, that external fluctuations directly affect the internal conditions in cells. We further argue that changes in the organization of the cytoplasm and the formation of membrane-less compartments have many advantages over other ways of altering protein function, such as protein degradation, translation or transcription. Furthermore, membrane-less compartments may act as protective devices for key cellular components.
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
40
|
Alam MA, Kelly JM. Proteins interacting with CreA and CreB in the carbon catabolite repression network in Aspergillus nidulans. Curr Genet 2016; 63:669-683. [PMID: 27915380 DOI: 10.1007/s00294-016-0667-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
In Aspergillus nidulans, carbon catabolite repression (CCR) is mediated by the global repressor protein CreA. The deubiquitinating enzyme CreB is a component of the CCR network. Genetic interaction was confirmed using a strain containing complete loss-of-function alleles of both creA and creB. No direct physical interaction was identified between tagged versions of CreA and CreB. To identify any possible protein(s) that may form a bridge between CreA and CreB, we purified both proteins from mycelia grown in media that result in repression or derepression. The purified proteins were analysed by LC/MS and identified using MaxQuant and Mascot databases. For both CreA and CreB, 47 proteins were identified in repressing and derepressing conditions. Orthologues of the co-purified proteins were identified in S. cerevisiae and humans. Gene ontology analyses of A. nidulans proteins and yeast and human orthologues were performed. Functional annotation analysis revealed that proteins that preferentially interact with CreA in repressing conditions include histones and histone transcription regulator 3 (Hir3). Proteins interacting with CreB tend to be involved in cellular transportation and organization. Similar findings were obtained using yeast and human orthologues, although the yeast background generated a number of other biological processes involving Mig1p which were not present in the A. nidulans or human background analyses. Hir3 was present in repressing conditions for CreA and in both growth conditions for CreB, suggesting that Hir3, or proteins interacting with Hir3, could be a possible target of CreB.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, SA, Australia.
| |
Collapse
|
41
|
Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. eLife 2016; 5. [PMID: 27874829 PMCID: PMC5127640 DOI: 10.7554/elife.21475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress. DOI:http://dx.doi.org/10.7554/eLife.21475.001
Collapse
Affiliation(s)
- Angelica Aguilera-Gomez
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Marinke M van Oorschot
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Tineke Veenendaal
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Sec16 alternative splicing dynamically controls COPII transport efficiency. Nat Commun 2016; 7:12347. [PMID: 27492621 PMCID: PMC4980449 DOI: 10.1038/ncomms12347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments. The transport of secretory proteins from the endoplasmic reticulum to the Golgi depends on COPII-coated vesicles. Here, the authors show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T cell activation.
Collapse
|
43
|
Bruno J, Brumfield A, Chaudhary N, Iaea D, McGraw TE. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. J Cell Biol 2016; 214:61-76. [PMID: 27354378 PMCID: PMC4932369 DOI: 10.1083/jcb.201509052] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Sec16A is known to be required for COPII vesicle formation from the ER. Here, Bruno et al. show that, independent of its role at the ER, Sec16A is a RAB10 effector involved in the insulin-stimulated formation of specialized transport vesicles that ferry the GLUT4 glucose transporter to the plasma membrane of adipocytes. RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10–SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4.
Collapse
Affiliation(s)
- Joanne Bruno
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | | | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - David Iaea
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
44
|
Abstract
Originally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP) family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Giuliani et al., 2011; Vinke et al., 2011; Jarvela and Linstedt, 2012), we outline here the latest findings concerning their diverse roles. New insights into the mechanics of GRASP-mediated tethering come from recent crystal structures. The models of how GRASP65 and GRASP55 tether membranes relate directly to their role in Golgi ribbon formation in mammalian cells and the unlinking of the ribbon at the onset of mitosis. However, it is also clear that GRASPs act outside the Golgi with roles at the ER and ER exit sites (ERES). Furthermore, the proteins of this family display other roles upon cellular stress, especially in mediating unconventional secretion of both transmembrane proteins (Golgi bypass) and cytoplasmic proteins (through secretory autophagosomes).
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrecht, Netherlands; The Department of Cell Biology, University Medical Center UtrechtUtrecht, Netherlands
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
45
|
Stadel D, Millarte V, Tillmann KD, Huber J, Tamin-Yecheskel BC, Akutsu M, Demishtein A, Ben-Zeev B, Anikster Y, Perez F, Dötsch V, Elazar Z, Rogov V, Farhan H, Behrends C. TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export. Mol Cell 2016; 60:89-104. [PMID: 26431026 DOI: 10.1016/j.molcel.2015.09.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/08/2015] [Accepted: 09/10/2015] [Indexed: 02/08/2023]
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse group of neurodegenerative diseases that are characterized by axonopathy of the corticospinal motor neurons. A mutation in the gene encoding for Tectonin β-propeller containing protein 2 (TECPR2) causes HSP that is complicated by neurological symptoms. While TECPR2 is a human ATG8 binding protein and positive regulator of autophagy, the exact function of TECPR2 is unknown. Here, we show that TECPR2 associates with several trafficking components, among them the COPII coat protein SEC24D. TECPR2 is required for stabilization of SEC24D protein levels, maintenance of functional ER exit sites (ERES), and efficient ER export in a manner dependent on binding to lipidated LC3C. TECPR2-deficient HSP patient cells display alterations in SEC24D abundance and ER export efficiency. Additionally, TECPR2 and LC3C are required for autophagosome formation, possibly through maintaining functional ERES. Collectively, these results reveal that TECPR2 functions as molecular scaffold linking early secretion pathway and autophagy.
Collapse
Affiliation(s)
- Daniela Stadel
- Institute of Biochemistry II, Medical School Goethe University, 60590 Frankfurt, Germany
| | - Valentina Millarte
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany; Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Kerstin D Tillmann
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany; Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Jessica Huber
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | | | - Masato Akutsu
- Institute of Biochemistry II, Medical School Goethe University, 60590 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt, Germany
| | - Alik Demishtein
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Bruria Ben-Zeev
- Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yair Anikster
- Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Franck Perez
- Institute Curie, CNRS UMR144, Paris, 75248, France
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Zvulun Elazar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Vladimir Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Hesso Farhan
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany; Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60590 Frankfurt, Germany.
| |
Collapse
|
46
|
Haase G, Rabouille C. Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles. Front Neurosci 2015; 9:448. [PMID: 26696811 PMCID: PMC4672084 DOI: 10.3389/fnins.2015.00448] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses.
Collapse
Affiliation(s)
- Georg Haase
- Centre National de la Recherche Scientifique and Aix-Marseille Université UMR 7289, Institut de Neurosciences de la Timone Marseille, France
| | - Catherine Rabouille
- The Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|