1
|
Liu D, Li LF, Zhai H, Wang T, Lan J, Cao M, Yao M, Wang Y, Li J, Song X, Sun Y, Qiu HJ. Resveratrol inhibits African swine fever virus replication via the Nrf2-mediated reduced glutathione and antioxidative activities. Emerg Microbes Infect 2025; 14:2469662. [PMID: 39964001 PMCID: PMC11878180 DOI: 10.1080/22221751.2025.2469662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
African swine fever (ASF) is a highly contagious and severe infectious disease caused by African swine fever virus (ASFV). The disease significantly threatens the sustainable development of the global pig industry. Unfortunately, to date, no safe and efficacious vaccines are commercially available except in Vietnam. Antioxidative stress is a critical factor in antiviral strategies. In this study, we show that ASFV infection elevates the level of reactive oxygen species (ROS) and suppresses the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vitro and in vivo. Moreover, overexpressing Nrf2 can significantly inhibit ASFV replication. Through high-throughput screening of natural small molecules against ASFV, we identify resveratrol (RES), an Nrf2 activator, as a compound capable of inducing the cellular antiviral responses and effectively inhibiting ASFV replication in primary porcine alveolar macrophages (PAMs). Notably, untargeted metabolomics profiling reveals that glutathione emerges as a primary differential metabolite related to the antiviral activities of RES against ASFV. Mechanistically, RES exerts its antiviral effects and attenuates the elevated level of ROS caused by ASFV infection by inducing the production of reduced glutathione (GSH) via the activation of the Nrf2 signaling pathway. In conclusion, RES exhibits broad efficacy as a potentially effective compound for inhibiting ASFV infection and alleviating the oxidative stress induced by ASFV infection via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People’s Republic of China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Technology, Yangtze University, Jingzhou, People’s Republic of China
| | - Mengxiang Cao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People’s Republic of China
| | - Yijing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jia Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Xin Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Technology, Yangtze University, Jingzhou, People’s Republic of China
| |
Collapse
|
2
|
Wang F, Amona FM, Pang Y, Zhang Q, Liang Y, Chen X, Ke Y, Chen J, Song C, Wang Y, Li Z, Zhang C, Fang X, Chen X. Porcine reproductive and respiratory syndrome virus nsp5 inhibits the activation of the Nrf2/HO-1 pathway by targeting p62 to antagonize its antiviral activity. J Virol 2025; 99:e0158524. [PMID: 40019253 PMCID: PMC11998497 DOI: 10.1128/jvi.01585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infections often trigger oxidative stress and cytokine storms, resulting in significant tissue damage that causes fatalities in piglets and reproductive issues in sows. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to PRRSV infection. Here, we found that PRRSV induced cellular oxidative stress by triggering the production of reactive oxygen species and inhibiting the expression of antioxidant enzymes. Although Nrf2 is an important redox regulator that initiates the expression of downstream antioxidant genes, PRRSV can impair the Nrf2/HO-1 pathway. The overexpression of Nrf2 showed a significant anti-PRRSV effect, and inhibiting the expression of Nrf2 promoted the proliferation of PRRSV. Further analysis showed that Nrf2 positively regulated the production of type I interferons and interferon-stimulated genes, which may contribute to its anti-PRRSV effect. By screening the PRRSV-encoded protein, we found that the PRRSV nsp5 protein can degrade Nrf2 at the protein level. Mechanistically, nsp5 promotes Nrf2-Keap1 binding affinity by inhibiting p62-mediated Keap1 sequestration and increasing Keap1 expression. Subsequently, this increased Keap1-mediated degradation of Nrf2 ubiquitination through K48-linked polyubiquitin. Furthermore, we found that the residues Tyr146 and Arg147 of nsp5 are crucial for inhibiting the activation of the p62-mediated Nrf2 antioxidant pathway. Thus, our findings uncover a novel mechanism by which PRRSV disrupts the host antioxidant defense system and highlight the crucial role of the Nrf2/HO-1 antioxidant pathway in host defense against PRRSV.IMPORTANCEOxidative stress-induced redox imbalance is a crucial pathogenic mechanism in viral infections. Nrf2 and its antioxidant genes serve as the main defense pathways against oxidative stress. However, the role of Nrf2 in the context of porcine reproductive and respiratory syndrome virus (PRRSV) infection remains unclear. In this study, we demonstrated that PRRSV infection decreased the expression of antioxidant genes of the Nrf2 signaling pathway and overexpression of Nrf2 triggered a strong anti-PRRSV effect. PRRSV nsp5 enhanced Keap1-dependent degradation of Nrf2 ubiquitination, thereby weakening cellular resistance to oxidative stress and antagonizing the antiviral activity of Nrf2. Our study further revealed a new mechanism by which PRRSV evades host antiviral innate immunity by disturbing cellular redox homeostasis, providing a new target for developing anti-PRRSV drugs.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
3
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
Dorresteijn MJ, Dekker D, Zwaag J, Heemskerk S, Roelofs HM, Smits P, van der Hoeven JG, Wagener FA, Pickkers P. Atazanavir-induced unconjugated hyperbilirubinemia prevents vascular hyporeactivity during experimental human endotoxemia. Front Immunol 2023; 14:1176775. [PMID: 37261364 PMCID: PMC10228648 DOI: 10.3389/fimmu.2023.1176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Inflammation-induced free radical release is important in the pathogenesis of several diseases, including atherosclerosis and sepsis. Heme oxygenase (HO) breaks down heme into carbon monoxide, iron, and biliverdin. Biliverdin IXα is directly converted to bilirubin by biliverdin reductase. Unconjugated bilirubin is a powerful antioxidant, and elevated levels have beneficial effects in preclinical models and human cardiovascular disease. However, its impact during acute inflammation in humans is unknown. In the present study, we investigated the impact of atazanavir-induced (unconjugated) hyperbilirubinemia on antioxidant capacity, inflammation, and vascular dysfunction in human experimental endotoxemia. Approach and results Following double-blinded four-day treatment with atazanavir 2dd300 mg (or placebo), twenty healthy male volunteers received 2 ng/kg Escherichia coli lipopolysaccharide intravenously. Blood was drawn to determine the bilirubin levels, antioxidant capacity, and cytokine response. It was demonstrated that following atazanavir treatment, total bilirubin concentrations increased to maximum values of 4.67 (95%CI 3.91-5.59) compared to 0.82 (95%CI 0.64-1.07) mg/dL in the control group (p<0.01). Furthermore, the anti-oxidant capacity, as measured by the ferric-reducing ability of plasma (FRAP), was significantly increased with 36% in hyperbilirubinemia subjects (p<0.0001), and FRAP concentrations correlated strongly to bilirubin concentrations (R2 = 0.77, p<0.001). Hyperbilirubinemia attenuated the release of interleukin-10 from 377 (95%CI 233-609) to 219 (95%CI 152-318) pg/mL (p=0.01), whereas the release of pro-inflammatory cytokines remained unaltered. In vitro, in the absence of hyperbilirubinemia, atazanavir did not influence lipopolysaccharide-induced cytokine release in a whole blood assay. Vascular function was assessed using forearm venous occlusion plethysmography after intra-arterial infusion of acetylcholine and nitroglycerin. Hyperbilirubinemia completely prevented the LPS-associated blunted vascular response to acetylcholine and nitroglycerin. Conclusions Atazanavir-induced hyperbilirubinemia increases antioxidant capacity, attenuates interleukin-10 release, and prevents vascular hyporesponsiveness during human systemic inflammation elicited by experimental endotoxemia. Clinical trial registration http://clinicaltrials.gov, identifier NCT00916448.
Collapse
Affiliation(s)
- Mirrin J. Dorresteijn
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Douwe Dekker
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jelle Zwaag
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Suzanne Heemskerk
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hennie M.J. Roelofs
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul Smits
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes G. van der Hoeven
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A.D.T.G. Wagener
- Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Zhou R, Hu J, Qiu J, Lu S, Lin H, Huang R, Zhou S, Huang G, He J. Phenolic compound SG-1 from Balanophora harlandii and its derivatives exert anti-influenza A virus activity via activation of the Nrf2/HO-1 pathway. Biochem Pharmacol 2023; 210:115495. [PMID: 36918045 DOI: 10.1016/j.bcp.2023.115495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Influenza A virus (IAV) is one of the leading causes of respiratory illness and continues to cause pandemics around the world. Against this backdrop, drug resistance poses a challenge to existing antiviral drugs, and hence, there is an urgent need for developing new antiviral drugs. In this study, we obtained a phenolic compound SG-7, a derivative of natural compound 2-hydroxymethyl-1,4-hydroquinone, which exhibits inhibitory activity toward a panel of influenza viruses and has low cellular toxicity. Mechanistic studies have shown that SG-7 exerts its anti-IAV properties by acting on the virus itself and modulating host signaling pathways. Namely, SG-7 targets the HA2 subunit of hemagglutinin (HA) to block the fusion of viral-cellular membranes and inhibits IAV-induced oxidative stress and overexpression of pro-inflammatory factors by activating the Nrf2/HO-1 pathway and reducing NF-κB activation. In addition, SG-7 can enhance type I IFN antiviral response by inducing Nrf2 expression. Importantly, SG-7 showed the ability to inhibit viral replication in the lungs of IAV-infected mice and reduce their mortality. Therefore, SG-7 may be a promising lead compound for anti-influenza drug development.
Collapse
Affiliation(s)
- Runhong Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jianan Hu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jingnan Qiu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Haixing Lin
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ruifeng Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shaofen Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Guoqing Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| |
Collapse
|
6
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
7
|
Xu L, Lu G, Zhan B, Wei L, Deng X, Zhang Q, Shen X, Wang J, Feng H. Uncovering the efficacy and mechanisms of Genkwa flos and bioactive ingredient genkwanin against L. monocytogenes infection. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115571. [PMID: 35870686 DOI: 10.1016/j.jep.2022.115571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genkwa flos (yuanhua in Chinese), the dried flower buds of the plant Daphne genkwa Siebold & Zucc., as a traditional herb widely used for the treatment of inflammation-related symptoms and diseases, with the efficacies of diuretic, phlegm-resolving and cough suppressant. AIM OF THE STUDY Traditional Chinese Medicine (TCM) is presumed to be of immense potential against pathogens infection. Whereas, the potential efficacy and mechanisms of Genkwa flos against L. monocytogenes infection has not been extensively explored. The present study aimed to identify the bioactive ingredients of Genkwa flos against L. monocytogenes infection and to delineate the underlying mechanisms of action. MATERIALS AND METHODS Bioinformatics approach at protein network level was employed to investigate the therapeutic mechanisms of Genkwa flos against L. monocytogenes infection. And hemolysis inhibition assay, cytoprotection test, western blotting, oligomerization assay and molecular docking analysis were applied to substantiate the multiple efficacies of Genkwa flos and the bioactive ingredient genkwanin. Histopathological analysis and biochemistry detection were conducted to evaluate the in vivo protective effect of genkwanin. RESULTS Network pharmacology and experimental validation revealed that Traditional Chinese Medicine (TCM) Genkwa flos exhibited anti-L. monocytogenes potency and was found to inhibit the hemolytic activity of LLO. Bioactive ingredient genkwanin interfered with the pore-forming activity of LLO by engaging the active residues Tyr414, Tyr98, Asn473, Val100, Tyr440 and Val438, and thereby attenuated LLO-mediated cytotoxicity. Consistent with the bioinformatics prediction, exposed to genkwanin could upregulate the Nrf2 level and promote the translocation of Nrf2. In vivo, genkwanin oral administration (80 mg/kg) significantly protected against systemic L. monocytogenes infection, as evidenced by reduced myeloperoxidase (MPO) and malondialdehyde (MDA) levels, increased mice survival rate by 30% and decreased pathogen colonization. CONCLUSION Our study demonstrated that Genkwa flos is a potential anti-L. monocytogenes TCM, highlighted the therapeutic potential of Genkwa flos active ingredient genkwanin by targeting the pore-forming cytolysin LLO and acting as a promising antioxidative candidate against L. monocytogenes infection.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Gejin Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, China.
| | - Baihe Zhan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Lijuan Wei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Hebei Veterinary Medicine Technology Innovation Center, Shijiazhuang, 050041, Hebei, China.
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Qiaoling Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Lee H, Liu Z, Dong L, Cheong SH, Lee DS. Lycopus maackianus Makino MeOH Extract Exhibits Antioxidant and Anti-Neuroinflammatory Effects in Neuronal Cells and Zebrafish Model. Antioxidants (Basel) 2022; 11:antiox11040690. [PMID: 35453375 PMCID: PMC9025111 DOI: 10.3390/antiox11040690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Lycopus maackianus Makino belongs to the Labiatae family and is used in traditional medicine to manage postpartum edema and boils. However, few studies on its antioxidant and anti-inflammatory effects have been conducted. Here, the compounds in L. maackianus methanol (MeOH) extract were profiled using ultra-high-performance liquid chromatography–time-of-flight high-resolution mass spectrometry analysis. The antioxidant activity of L. maackianus MeOH extract was shown to increase in a concentration-dependent manner by investigating the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity. Next, in lipopolysaccharide-treated BV2 cells, L. maackianus extract inactivated the nuclear factor-kappa B pathway, inhibiting nitric oxide, prostaglandin E2, interleukin-6, and tumor necrosis factor-α production and inducible nitric oxide synthase and cyclooxygenase-2 protein expression. Furthermore, L. maackianus extract protected against oxidative stress-induced cellular damage in glutamate-stimulated HT22 cells. L. maackianus MeOH extract induced heme oxygenase-1 expression and increased the translocation of nuclear factor E2-related factor 2 in the nucleus, thus exhibiting antioxidant and anti-inflammatory effects. Moreover, the in vivo antioxidant and anti-inflammatory effects of the extract were demonstrated in a zebrafish (Danio rerio) model treated with hydrogen peroxide and lipopolysaccharide. MeOH L. maackianus extract showed antioxidant and anti-neuroinflammatory effects by increasing the expression of heme oxygenase-1, establishing its therapeutic potential for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
| | - Linsha Dong
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
- Correspondence: ; Tel.: +82-63-230-6386
| |
Collapse
|
10
|
Reverte M, Snäkä T, Fasel N. The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens 2022; 11:pathogens11040409. [PMID: 35456085 PMCID: PMC9029764 DOI: 10.3390/pathogens11040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites preferentially invade macrophages, the professional phagocytic cells, at the site of infection. Macrophages play conflicting roles in Leishmania infection either by the destruction of internalized parasites or by providing a safe shelter for parasite replication. In response to invading pathogens, however, macrophages induce an oxidative burst as a mechanism of defense to promote pathogen removal and contribute to signaling pathways involving inflammation and the immune response. Thus, oxidative stress plays a dual role in infection whereby free radicals protect against invading pathogens but can also cause inflammation resulting in tissue damage. The induced oxidative stress in parasitic infections triggers the activation in the host of the antioxidant response to counteract the damaging oxidative burst. Consequently, macrophages are crucial for disease progression or control. The ultimate outcome depends on dangerous liaisons between the infecting Leishmania spp. and the type and strength of the host immune response.
Collapse
|
11
|
Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Merino VF, Yan Y, Kim J, Davis SL, Komm O, Powell JD, D'Alessio FR, Yolken RH, Jain SK, Jones-Brando L. Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Commun Biol 2022; 5:242. [PMID: 35304580 PMCID: PMC8933402 DOI: 10.1038/s42003-022-03189-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has incited a global health crisis. Currently, there are limited therapeutic options for the prevention and treatment of SARS-CoV-2 infections. We evaluated the antiviral activity of sulforaphane (SFN), the principal biologically active phytochemical derived from glucoraphanin, the naturally occurring precursor present in high concentrations in cruciferous vegetables. SFN inhibited in vitro replication of six strains of SARS-CoV-2, including Delta and Omicron, as well as that of the seasonal coronavirus HCoV-OC43. Further, SFN and remdesivir interacted synergistically to inhibit coronavirus infection in vitro. Prophylactic administration of SFN to K18-hACE2 mice prior to intranasal SARS-CoV-2 infection significantly decreased the viral load in the lungs and upper respiratory tract and reduced lung injury and pulmonary pathology compared to untreated infected mice. SFN treatment diminished immune cell activation in the lungs, including significantly lower recruitment of myeloid cells and a reduction in T cell activation and cytokine production. Our results suggest that SFN should be explored as a potential agent for the prevention or treatment of coronavirus infections.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - C Korin Bullen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andres F Villabona-Rueda
- Division of Pulmonology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mitchell L Turner
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vanessa F Merino
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Yan
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Kim
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie L Davis
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oliver Komm
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franco R D'Alessio
- Division of Pulmonology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K Jain
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorraine Jones-Brando
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Paparo L, Maglio MA, Cortese M, Bruno C, Capasso M, Punzo E, Ferrucci V, Lasorsa VA, Viscardi M, Fusco G, Cerino P, Romano A, Troncone R, Zollo M. A New Butyrate Releaser Exerts a Protective Action against SARS-CoV-2 Infection in Human Intestine. Molecules 2022; 27:862. [PMID: 35164139 PMCID: PMC8838168 DOI: 10.3390/molecules27030862] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Butyrate is a major gut microbiome metabolite that regulates several defense mechanisms against infectious diseases. Alterations in the gut microbiome, leading to reduced butyrate production, have been reported in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A new butyrate releaser, useful for all the known applications of butyrate, presenting physiochemical characteristics suitable for easy oral administration, (N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), has been recently developed. We investigated the protective action of FBA against SARS-CoV-2 infection in the human small intestine and enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), neuropilin-1 (NRP1), pro-inflammatory cytokines expression, genes involved in the antiviral response and the activation of Nf-kB nuclear factor (erythroid-derived 2-like) 2 (Nfr2) pathways. We found that FBA positively modulates the crucial aspects of the infection in small intestinal biopsies and human enterocytes, reducing the expression of ACE2, TMPRSS2 and NRP1, pro-inflammatory cytokines interleukin (IL)-15, monocyte chemoattractant protein-1 (MCP-1) and TNF-α, and regulating several genes involved in antiviral pathways. FBA was also able to reduce the number of SARS-CoV-2-infected cells, and ACE2, TMPRSS2 and NRP1 expression. Lastly, through the inhibition of Nf-kB and the up-regulation of Nfr2, it was also able to reduce the expression of pro-inflammatory cytokines IL-15, MCP-1 and TNF-α in human enterocytes. The new butyrate releaser, FBA, exerts a preventive action against SARS-CoV-2 infection. It could be considered as an innovative strategy to limit COVID-19.
Collapse
Affiliation(s)
- Lorella Paparo
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Maria Antonia Maglio
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
| | - Maddalena Cortese
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Cristina Bruno
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Mario Capasso
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Erika Punzo
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Veronica Ferrucci
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Vito Alessandro Lasorsa
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Maurizio Viscardi
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Giovanna Fusco
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Pellegrino Cerino
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Alessia Romano
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Riccardo Troncone
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
| | - Massimo Zollo
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| |
Collapse
|
13
|
Escherichia coli and Staphylococcus aureus Differentially Regulate Nrf2 Pathway in Bovine Mammary Epithelial Cells: Relation to Distinct Innate Immune Response. Cells 2021; 10:cells10123426. [PMID: 34943933 PMCID: PMC8700232 DOI: 10.3390/cells10123426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli and Staphylococcus aureus are major mastitis causing pathogens in dairy cattle but elicit distinct immune and an inflammatory response in the udder. However, the host determinants responsible for this difference remains largely unknown. Our initial studies focused on the global transcriptomic response of primary bovine mammary epithelial cells (pbMECs) to heat-killed E. coli and S. aureus. RNA-sequencing transcriptome analysis demonstrates a significant difference in expression profiles induced by E. coli compared with S. aureus. A major differential response was the activation of innate immune response by E. coli, but not by S. aureus. Interestingly, E. coli stimulation increased transcript abundance of several genes downstream of Nrf2 (nuclear factor erythroid 2-related factor 2) that were enriched in gene sets with a focus on metabolism and immune system. However, none of these genes was dysregulated by S. aureus. Western blot analysis confirms that S. aureus impairs Nrf2 activation as compared to E. coli. Using Nrf2-knockdown cells we demonstrate that Nrf2 is necessary for bpMECs to mount an effective innate defensive response. In support of this notion, nuclear Nrf2 overexpression augmented S. aureus-stimulated inflammatory response. We also show that, unlike E. coli, S. aureus disrupts the non-canonical p62/SQSTM1-Keap1 pathway responsible for Nrf2 activation through inhibiting p62/SQSTM1 phosphorylation at S349. Collectively, our findings provide important insights into the contribution of the Nrf2 pathway to the pathogen-species specific immune response in bovine mammary epithelial cells and raise a possibility that impairment of Nrf2 activation contributes to, at least in part, the weak inflammatory response in S. aureus mastitis.
Collapse
|
14
|
Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Davis SL, Komm O, Powell JD, D'Alessio FR, Yolken RH, Jain SK, Jones-Brando L. Sulforaphane exhibits in vitro and in vivo antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791708 DOI: 10.1101/2021.03.25.437060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has incited a global health crisis. Currently, there are no orally available medications for prophylaxis for those exposed to SARS-CoV-2 and limited therapeutic options for those who develop COVID-19. We evaluated the antiviral activity of sulforaphane (SFN), a naturally occurring, orally available, well-tolerated, nutritional supplement present in high concentrations in cruciferous vegetables with limited side effects. SFN inhibited in vitro replication of four strains of SARS-CoV-2 as well as that of the seasonal coronavirus HCoV-OC43. Further, SFN and remdesivir interacted synergistically to inhibit coronavirus infection in vitro. Prophylactic administration of SFN to K18-hACE2 mice prior to intranasal SARS-CoV-2 infection significantly decreased the viral load in the lungs and upper respiratory tract and reduced lung injury and pulmonary pathology compared to untreated infected mice. SFN treatment diminished immune cell activation in the lungs, including significantly lower recruitment of myeloid cells and a reduction in T cell activation and cytokine production. Our results suggest that SFN is a promising treatment for prevention of coronavirus infection or treatment of early disease.
Collapse
|
15
|
Laugier L, Ferreira LRP, Ferreira FM, Cabantous S, Frade AF, Nunes JP, Ribeiro RA, Brochet P, Teixeira PC, Santos RHB, Bocchi EA, Bacal F, Cândido DDS, Maso VE, Nakaya HI, Kalil J, Cunha-Neto E, Chevillard C. miRNAs may play a major role in the control of gene expression in key pathobiological processes in Chagas disease cardiomyopathy. PLoS Negl Trop Dis 2020; 14:e0008889. [PMID: 33351798 PMCID: PMC7787679 DOI: 10.1371/journal.pntd.0008889] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/06/2021] [Accepted: 10/14/2020] [Indexed: 01/19/2023] Open
Abstract
Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may play a major pathogenetic role, little is known about the molecular mechanisms responsible for its severity. The aim of this study is to study the genes and microRNAs expression in tissues and their connections in regards to the pathobiological processes. To do so, we integrated for the first time global microRNA and mRNA expression profiling from myocardial tissue of CCC patients employing pathways and network analyses. We observed an enrichment in biological processes and pathways associated with the immune response and metabolism. IFNγ, TNF and NFkB were the top upstream regulators. The intersections between differentially expressed microRNAs and differentially expressed target mRNAs showed an enrichment in biological processes such as Inflammation, inflammation, Th1/IFN-γ-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant response. MicroRNAs also played a role in the regulation of gene expression involved in the key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia. Significantly, a discrete number of differentially expressed microRNAs targeted a high number of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that miRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and therapy. Chronic Chagas disease cardiomyopathy (CCC), an aggressive dilated cardiomyopathy caused by Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Little is known about the molecular mechanisms responsible for its severity. Authors study the possible role of microRNAs in the regulation of gene expression in relevant pathways and pathobiological processes. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) -small RNAs that can regulate gene expression—associated to severe cardiomyopathy development. The inflammatory mediator Interferon-γ was the most likely inducer of gene expression in CCC, and most genes belonged to the immune response, fibrosis, hypertrophy and mitochondrial metabolism. A discrete number of differentially expressed mRNAs targeted a high number of differentially expressed mRNAs in multiple processes. Moreover, several pathways had multiple targets regulated by microRNAs, suggesting synergic effect. Results suggest that microRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue.
Collapse
Affiliation(s)
- Laurie Laugier
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, Marseille, France; INSERM, U906, Marseille, France
| | - Ludmila Rodrigues Pinto Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Sandrine Cabantous
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, Marseille, France; INSERM, U906, Marseille, France
| | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Joao Paulo Nunes
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Rafael Almeida Ribeiro
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Pauline Brochet
- Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Inserm, INSERM, UMR_1090, Marseille, France
| | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | | | - Edimar A Bocchi
- Division of Transplantation, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Fernando Bacal
- Division of Transplantation, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Darlan da Silva Cândido
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Vanessa Escolano Maso
- Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Christophe Chevillard
- Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Inserm, INSERM, UMR_1090, Marseille, France
| |
Collapse
|
16
|
Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, Hait A, Hernaez B, Knudsen A, Iversen MB, Schilling M, Jørgensen SE, Thomsen M, Reinert LS, Lappe M, Hoang HD, Gilchrist VH, Hansen AL, Ottosen R, Nielsen CG, Møller C, van der Horst D, Peri S, Balachandran S, Huang J, Jakobsen M, Svenningsen EB, Poulsen TB, Bartsch L, Thielke AL, Luo Y, Alain T, Rehwinkel J, Alcamí A, Hiscott J, Mogensen TH, Paludan SR, Holm CK. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020; 11:4938. [PMID: 33009401 PMCID: PMC7532469 DOI: 10.1038/s41467-020-18764-3] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.
Collapse
Affiliation(s)
- David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark.
| | - Ensieh Farahani
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Jacob Thyrsted
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Julia Blay-Cadanet
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Angela Herengt
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Manja Idorn
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Alon Hait
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Bruno Hernaez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Alice Knudsen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Mirjam Schilling
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sofie E Jørgensen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michelle Thomsen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | - Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Victoria H Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Anne Louise Hansen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Rasmus Ottosen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Camilla G Nielsen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Charlotte Møller
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Demi van der Horst
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Suraj Peri
- Fox Chase Cancer Center, 333 Cottman Avenue, Philidelphia, PA, 19111-2497, USA
| | | | - Jinrong Huang
- Lars Bolund Institute of Regenerative Medicine, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Martin Jakobsen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | | | - Lydia Bartsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Anne L Thielke
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, BGI-Shenzhen, Shenzhen, 518083, China
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161, Rome, Italy
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
17
|
Leite JA, Isaksen TJ, Heuck A, Scavone C, Lykke-Hartmann K. The α 2 Na +/K +-ATPase isoform mediates LPS-induced neuroinflammation. Sci Rep 2020; 10:14180. [PMID: 32843655 PMCID: PMC7447643 DOI: 10.1038/s41598-020-71027-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Na+/K+-ATPase is a transmembrane ion pump that is essential for the maintenance of ion gradients and regulation of multiple cellular functions. Na+/K+-ATPase has been associated with nuclear factor kappa B (NFκB) signalling, a signal associated with lipopolysaccharides (LPSs)-induced immune response in connection with activated Toll-like receptor 4 (TLR4) signalling. However, the contribution of Na+/K+-ATPase to regulating inflammatory responses remains elusive. We report that mice haploinsufficient for the astrocyte-enriched α2Na+/K+-ATPase isoform (α2+/G301R mice) have a reduced proinflammatory response to LPS, accompanied by a reduced hypothermic reaction compared to wild type litter mates. Following intraperitoneal injection of LPS, gene expressions of Tnf-α, Il-1β, and Il-6 was reduced in the hypothalamus and hippocampus from α2+/G301R mice compared to α2+/+ littermates. The α2+/G301R mice experienced increased expression of the gene encoding an antioxidant enzyme, NRF2, in hippocampal astrocytes. Our findings indicate that α2Na+/K+-ATPase haploinsufficiency negatively modulates LPS-induced immune responses, highlighting a rational pharmacological target for reducing LPS-induced inflammation.
Collapse
Affiliation(s)
- J A Leite
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Pharmacology, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - T J Isaksen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - A Heuck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - C Scavone
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - K Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark. .,Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus N, Denmark.
| |
Collapse
|
18
|
Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial Reactive Oxygen Species: Double-Edged Weapon in Host Defense and Pathological Inflammation During Infection. Front Immunol 2020; 11:1649. [PMID: 32922385 PMCID: PMC7457135 DOI: 10.3389/fimmu.2020.01649] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are inevitable sources for the generation of mitochondrial reactive oxygen species (mtROS) due to their fundamental roles in respiration. mtROS were reported to be bactericidal weapons with an innate effector function during infection. However, the controlled generation of mtROS is vital for the induction of efficient immune responses because excessive production of mtROS with mitochondrial damage leads to sustained inflammation, resulting in pathological outcomes such as sepsis. Here, we discuss the beneficial and detrimental roles of mtROS in the innate immune system during bacterial, viral, and fungal infections. Recent evidence suggests that several pathogens have evolved multiple strategies to modulate mtROS for their own benefit. We are just beginning to understand the mechanisms by which mtROS generation is regulated and how mtROS affect protective and pathological responses during infection. Several agents/small molecules that prevent the uncontrolled production of mtROS are known to be beneficial in the maintenance of tissue homeostasis during sepsis. mtROS-targeted approaches need to be incorporated into preventive and therapeutic strategies against a variety of infections.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
19
|
Glucose negatively affects Nrf2/SKN-1-mediated innate immunity in C. elegans. Aging (Albany NY) 2019; 10:3089-3103. [PMID: 30442878 PMCID: PMC6286829 DOI: 10.18632/aging.101610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
High glucose levels negatively affect immune response. However, the underlying mechanisms are not well understood. Upon infection, the round worm C. elegans induces multiple gene transcription programs, including the Nrf2/SKN-1-mediated detoxification program, to activate the innate immunity. In this study, we find that high glucose conditions inhibit the SKN-1-mediated immune response to Salmonella typhimurium, exacerbate the infection and greatly decrease survival. The effect of glucose shows specificity to SKN-1 pathway, as UPRmit and UPRER that are known to be induced by infection, are not affected. Hyper-activation of SKN-1 by wdr-23 RNAi restores partly the immune response and increases the survival rate in response to S. typhimurium. In all, our study reveals a molecular pathway responsible for glucose’s negative effect on innate immunity, which could help to better understand diseases associated with hyperglycemia.
Collapse
|
20
|
Campbell NK, Williams DG, Fitzgerald HK, Barry PJ, Cunningham CC, Nolan DP, Dunne A. Trypanosoma brucei Secreted Aromatic Ketoacids Activate the Nrf2/HO-1 Pathway and Suppress Pro-inflammatory Responses in Primary Murine Glia and Macrophages. Front Immunol 2019; 10:2137. [PMID: 31572363 PMCID: PMC6749089 DOI: 10.3389/fimmu.2019.02137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
African trypanosomes, such as Trypanosoma brucei (T. brucei), are protozoan parasites of the mammalian vasculature and central nervous system that are best known for causing fatal human sleeping sickness. As exclusively extracellular parasites, trypanosomes are subject to constant challenge from host immune defenses but they have developed very effective strategies to evade and modulate these responses to maintain an infection while simultaneously prolonging host survival. Here we investigate host parasite interactions, especially within the CNS context, which are not well-understood. We demonstrate that T. brucei strongly upregulates the stress response protein, Heme Oxygenase 1 (HO-1), in primary murine glia and macrophages in vitro. Furthermore, using a novel AHADHinT. brucei cell line, we demonstrate that specific aromatic ketoacids secreted by bloodstream forms of T. brucei are potent drivers of HO-1 expression and are capable of inhibiting pro-IL1β induction in both glia and macrophages. Additionally, we found that these ketoacids significantly reduced IL-6 and TNFα production by glia, but not macrophages. Finally, we present data to support Nrf2 activation as the mechanism of action by which these ketoacids upregulate HO-1 expression and mediate their anti-inflammatory activity. This study therefore reports a novel immune evasion mechanism, whereby T. brucei secretes amino-acid derived metabolites for the purpose of suppressing both the host CNS and peripheral immune response, potentially via induction of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - David G Williams
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paul J Barry
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity Biomedical Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, Olagnier D. Nrf2 Negatively Regulates Type I Interferon Responses and Increases Susceptibility to Herpes Genital Infection in Mice. Front Immunol 2019; 10:2101. [PMID: 31555293 PMCID: PMC6742979 DOI: 10.3389/fimmu.2019.02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections for which no effective vaccines or prophylactic treatment currently exist. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in the detoxification of reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. Here, we evaluated the importance of Nrf2 in the control of HSV-2 genital infection, and its role in the regulation of HSV-induced innate antiviral immunity. Comparison of antiviral gene expression profile by RNA-sequencing analysis of wild type and Nrf2-mutant (Nrf2 AY/AY ) murine macrophages showed an upregulation at the basal level of the type I interferon-associated gene network. The same basal increased antiviral profile was also observed in the spleen of Nrf2 -/- mice. Interestingly, the lack of Nrf2 in murine cells was sufficient to increase the responsiveness to HSV-derived dsDNA and protect cells from HSV-2 infection in vitro. Surprisingly, there was no indication of an alteration in STING expression in murine cells as previously reported in cells of human origin. Additionally, genetic activation of Nrf2 in Keap1 -/- mouse embryonic fibroblasts increased HSV-2 infectivity and replication. Finally, using an in vivo vaginal herpes infection model, we showed that Nrf2 controlled early innate immune responses to HSV-2 without affecting STING expression levels. Nrf2 -/- mice exhibited reduced viral replication that was associated with higher level of type I interferons in vaginal washes. Nrf2 -/- mice also displayed reduced weight loss, lower disease scores, and higher survival rates than wild type animals. Collectively, these data identify Nrf2 as a negative regulator of the interferon-driven antiviral response to HSV-2 without impairing STING mRNA and protein expression levels in murine cells.
Collapse
Affiliation(s)
- Camilla Gunderstofte
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Suraj Peri
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anne Thielke
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | - Christian Kanstrup Holm
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Chen WC, Tseng CK, Lin CK, Wang SN, Wang WH, Hsu SH, Wu YH, Hung LC, Chen YH, Lee JC. Lucidone suppresses dengue viral replication through the induction of heme oxygenase-1. Virulence 2018; 9:588-603. [PMID: 29338543 PMCID: PMC5955471 DOI: 10.1080/21505594.2017.1421893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) infection causes life-threatening diseases such as dengue hemorrhagic fever and dengue shock syndrome. Currently, there is no effective therapeutic agent or vaccine against DENV infection; hence, there is an urgent need to discover anti-DENV agents. The potential therapeutic efficacy of lucidone was first evaluated in vivo using a DENV-infected Institute of Cancer Research (ICR) suckling mouse model by monitoring body weight, clinical score, survival rate, and viral titer. We found that lucidone effectively protected mice from DENV infection by sustaining survival rate and reducing viral titers in DENV-infected ICR suckling mice. Then, the anti-DENV activity of lucidone was confirmed by western blotting and quantitative-reverse-transcription-polymerase chain reaction analysis, with an EC50 value of 25 ± 3 μM. Lucidone significantly induced heme oxygenase-1 (HO-1) production against DENV replication by inhibiting DENV NS2B/3 protease activity to induce the DENV-suppressed antiviral interferon response. The inhibitory effect of lucidone on DENV replication was attenuated by silencing of HO-1 gene expression or blocking HO-1 activity. In addition, lucidone-stimulated nuclear factor erythroid 2-related factor 2 (Nrf2), which is involved in transactivation of HO-1 expression for its anti-DENV activity. Taken together, the mechanistic investigations revealed that lucidone exhibits significant anti-DENV activity in in vivo and in vitro by inducing Nrf2-mediated HO-1 expression, leading to blockage of viral protease activity to induce the anti-viral interferon (IFN) response. These results suggest that lucidone is a promising candidate for drug development.
Collapse
Affiliation(s)
- Wei-Chun Chen
- a Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Chin-Kai Tseng
- b Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan , Taiwan.,c Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Chun-Kuang Lin
- d Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University , Kaohsiung , Taiwan
| | - Shen-Nien Wang
- e Division of Hepatobiliary Surgery , Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung Taiwan.,f Department of Surgery , Faculty of Medicine, Kaohsiung Medical University Hospital , Kaohsiung Taiwan
| | - Wen-Hung Wang
- g Department of Internal Medicine , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Shih-Hsien Hsu
- a Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yu-Hsuan Wu
- b Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan , Taiwan.,c Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Ling-Chien Hung
- h Division of Infectious Diseases , Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,i School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yen-Hsu Chen
- h Division of Infectious Diseases , Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,i School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University , Kaohsiung , Taiwan.,j Department of Biological Science and Technology , College of Biological Science and Technology, National Chiao Tung University , HsinChu , Taiwan.,k Center for Infectious Disease and Cancer Research, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jin-Ching Lee
- a Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,l Department of Biotechnology , College of Life Science, Kaohsiung Medical University , Kaohsiung , Taiwan.,m Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung , Taiwan.,n Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung , Taiwan.,o Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| |
Collapse
|
23
|
Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat Commun 2018; 9:3506. [PMID: 30158636 PMCID: PMC6115435 DOI: 10.1038/s41467-018-05861-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
The transcription factor Nrf2 is a critical regulator of inflammatory responses. If and how Nrf2 also affects cytosolic nucleic acid sensing is currently unknown. Here we identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells. Here, Nrf2 activation decreases STING expression and responsiveness to STING agonists while increasing susceptibility to infection with DNA viruses. Mechanistically, Nrf2 regulates STING expression by decreasing STING mRNA stability. Repression of STING by Nrf2 occurs in metabolically reprogrammed cells following TLR4/7 engagement, and is inducible by a cell-permeable derivative of the TCA-cycle-derived metabolite itaconate (4-octyl-itaconate, 4-OI). Additionally, engagement of this pathway by 4-OI or the Nrf2 inducer sulforaphane is sufficient to repress STING expression and type I IFN production in cells from patients with STING-dependent interferonopathies. We propose Nrf2 inducers as a future treatment option in STING-dependent inflammatory diseases. Understanding how regulators of inflammation affect nucleic acid sensing is important for targeting research against inflammatory diseases and conditions. Here, the authors identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells.
Collapse
|
24
|
Hydroxysafflor yellow A protects against angiotensin II‑induced hypertrophy. Mol Med Rep 2018; 18:3649-3656. [PMID: 30132539 PMCID: PMC6131570 DOI: 10.3892/mmr.2018.9399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is life-threatening and is generally accompanied by myocardial hypertrophy. Notably, Hydroxysafflor yellow A (HSYA) can prevent tissue injuries. The objective of this study was to investigate the effect of HSYA on hypertrophy after MI. Hematoxylin and eosin (H&E) staining assays were performed to measure cell area. The protein synthesis rate was assessed using the 3H Leucine incorporation assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and the immunohistochemical assay were used to detect the expression of target genes. The activity of superoxide dismutase (SOD), malondialdehyde (MDA) and the reactive oxygen species (ROS) generation were examined using commercial kits. Decreased myocardial hypertrophy was observed in animals treated with HSYA. Furthermore, the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was higher in HSYA administration groups compared with that in the MI model group. In H9c2 cardiomyocytes, the pretreatment with HSYA increased the cell viability, however, it reduced protein synthesis rate, mitigated cell surface area and decreased the expression of Brain natriuretic factor (BNP) and β-myosin heavy chain (β-MHC). By contrast, the downregulation of Nrf2 deteriorated and reversed the effect of Ang II and HSYA. Furthermore, oxidative stress was alleviated by HSYA via inhibiting ROS generation, modulating the activities of SOD and MDA. In addition, the expression of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were recovered by the pretreatment of HSYA that was combated by siNrf2. In conclusion, HSYA exerted anti-hypertrophic effects, which was pertinent with the activation of Nrf2/NQO-1/HO-1 signaling pathway. The findings of this study may inspire a novel strategy to combat MI.
Collapse
|
25
|
Ferreira LRP, Ferreira FM, Laugier L, Cabantous S, Navarro IC, da Silva Cândido D, Rigaud VC, Real JM, Pereira GV, Pereira IR, Ruivo L, Pandey RP, Savoia M, Kalil J, Lannes-Vieira J, Nakaya H, Chevillard C, Cunha-Neto E. Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection. Sci Rep 2017; 7:17990. [PMID: 29269773 PMCID: PMC5740174 DOI: 10.1038/s41598-017-18080-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America. Its acute phase is associated with high parasitism, myocarditis and profound myocardial gene expression changes. A chronic phase ensues where 30% develop severe heart lesions. Mouse models of T. cruzi infection have been used to study heart damage in Chagas disease. The aim of this study was to provide an interactome between miRNAs and their targetome in Chagas heart disease by integrating gene and microRNA expression profiling data from hearts of T. cruzi infected mice. Gene expression profiling revealed enrichment in biological processes and pathways associated with immune response and metabolism. Pathways, functional and upstream regulator analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs revealed enrichment in biological processes and pathways such as IFNγ, TNFα, NF-kB signaling signatures, CTL-mediated apoptosis, mitochondrial dysfunction, and Nrf2-modulated antioxidative responses. We also observed enrichment in other key heart disease-related processes like myocarditis, fibrosis, hypertrophy and arrhythmia. Our correlation study suggests that miRNAs may be implicated in the pathophysiological processes taking place the hearts of acutely T. cruzi-infected mice.
Collapse
Affiliation(s)
- Ludmila Rodrigues Pinto Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil.
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil.
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil.
- Departamento Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG., Brazil.
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| | - Laurie Laugier
- INSERM, Aix-Marseille University AMU, Faculté de Médecine, Marseille, U1108, France
| | - Sandrine Cabantous
- INSERM, Aix-Marseille University AMU, Faculté de Médecine, Marseille, U1108, France
| | - Isabela Cunha Navarro
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| | - Darlan da Silva Cândido
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| | - Vagner Carvalho Rigaud
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| | - Juliana Monte Real
- TUCCA Association for Children and Adolescents with Cancer, Department of Pediatric Oncology, Santa Marcelina Hospital, São Paulo, Brazil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Glaucia Vilar Pereira
- Laboratory of Biology of Interactions, Oswaldo Cruz Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | - Isabela Resende Pereira
- Laboratory of Biology of Interactions, Oswaldo Cruz Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | - Leonardo Ruivo
- Laboratory of Biology of Interactions, Oswaldo Cruz Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | - Ramendra Pati Pandey
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| | - Marilda Savoia
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of Interactions, Oswaldo Cruz Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | - Helder Nakaya
- Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 077010, Brazil
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christophe Chevillard
- INSERM, Aix-Marseille University AMU, Faculté de Médecine, Marseille, U1108, France.
- INSERM, Aix-Marseille University AMU, UMR1090, Parc Scientifique de Luminy case 928, 163 avenue de Luminy, Marseille, France.
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT, São Paulo, Brazil
| |
Collapse
|
26
|
Seo JY, Pyo E, Park J, Kim JS, Sung SH, Oh WK. Nrf2-Mediated HO-1 Induction and Antineuroinflammatory Activities of Halleridone. J Med Food 2017; 20:1091-1099. [DOI: 10.1089/jmf.2017.3949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ji Yeon Seo
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Euisun Pyo
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, Korea
| | - Sang Hyun Sung
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
27
|
Vaamonde-Garcia C, Courties A, Pigenet A, Laiguillon MC, Sautet A, Houard X, Kerdine-Römer S, Meijide R, Berenbaum F, Sellam J. The nuclear factor-erythroid 2-related factor/heme oxygenase-1 axis is critical for the inflammatory features of type 2 diabetes-associated osteoarthritis. J Biol Chem 2017; 292:14505-14515. [PMID: 28684418 DOI: 10.1074/jbc.m117.802157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological findings support the hypothesis that type 2 diabetes mellitus (T2DM) is a risk factor for osteoarthritis (OA). Moreover, OA cartilage from patients with T2DM exhibits a greater response to inflammatory stress, but the molecular mechanism is unclear. To investigate whether the antioxidant defense system participates in this response, we examined here the expression of nuclear factor-erythroid 2-related factor (Nrf-2), a master antioxidant transcription factor, and of heme oxygenase-1 (HO-1), one of its main target genes, in OA cartilage from T2DM and non-T2DM patients as well as in murine chondrocytes exposed to high glucose (HG). Ex vivo experiments indicated that Nrf-2 and HO-1 expression is reduced in T2DM versus non-T2DM OA cartilage (0.57-fold Nrf-2 and 0.34-fold HO-1), and prostaglandin E2 (PGE2) release was increased in samples with low HO-1 expression. HG-exposed, IL-1β-stimulated chondrocytes had lower Nrf-2 levels in vitro, particularly in the nuclear fraction, than chondrocytes exposed to normal glucose (NG). Accordingly, HO-1 levels were also decreased (0.49-fold) in these cells. The HO-1 inducer cobalt protoporphyrin IX more efficiently attenuated PGE2 and IL-6 release in HG+IL-1β-treated cells than in NG+IL-1β-treated cells. Greater reductions in HO-1 expression and increase in PGE2/IL-6 production were observed in HG+IL-1β-stimulated chondrocytes from Nrf-2-/- mice than in chondrocytes from wild-type mice. We conclude that the Nrf-2/HO-1 axis is a critical pathway in the hyperglucidic-mediated dysregulation of chondrocytes. Impairments in this antioxidant system may explain the greater inflammatory responsiveness of OA cartilage from T2DM patients and may inform treatments of such patients.
Collapse
Affiliation(s)
- Carlos Vaamonde-Garcia
- From the Sorbonne University, UPMC University of Paris 06, Paris, France.,Saint Antoine Medical Faculty, INSERM UMR_S938, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, 75012 Paris, France.,Tissue Engineering and Cellular Therapy Group, Department of Medicine, University of A Coruña, 15006 A Coruña, Spain
| | - Alice Courties
- From the Sorbonne University, UPMC University of Paris 06, Paris, France.,Saint Antoine Medical Faculty, INSERM UMR_S938, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, 75012 Paris, France.,Department of Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 75012 Paris, France
| | - Audrey Pigenet
- From the Sorbonne University, UPMC University of Paris 06, Paris, France.,Saint Antoine Medical Faculty, INSERM UMR_S938, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, 75012 Paris, France
| | - Marie-Charlotte Laiguillon
- From the Sorbonne University, UPMC University of Paris 06, Paris, France.,Saint Antoine Medical Faculty, INSERM UMR_S938, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, 75012 Paris, France
| | - Alain Sautet
- From the Sorbonne University, UPMC University of Paris 06, Paris, France.,Department of Orthopedic Surgery, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 75012 Paris, France, and
| | - Xavier Houard
- From the Sorbonne University, UPMC University of Paris 06, Paris, France.,Saint Antoine Medical Faculty, INSERM UMR_S938, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, 75012 Paris, France
| | - Saadia Kerdine-Römer
- INSERM UMR 996, University of Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Rosa Meijide
- Tissue Engineering and Cellular Therapy Group, Department of Medicine, University of A Coruña, 15006 A Coruña, Spain
| | - Francis Berenbaum
- From the Sorbonne University, UPMC University of Paris 06, Paris, France, .,Saint Antoine Medical Faculty, INSERM UMR_S938, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, 75012 Paris, France.,Department of Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 75012 Paris, France
| | - Jérémie Sellam
- From the Sorbonne University, UPMC University of Paris 06, Paris, France.,Saint Antoine Medical Faculty, INSERM UMR_S938, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, 75012 Paris, France.,Department of Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 75012 Paris, France
| |
Collapse
|
28
|
Weis S, Rubio I, Ludwig K, Weigel C, Jentho E. Hormesis and Defense of Infectious Disease. Int J Mol Sci 2017; 18:E1273. [PMID: 28617331 PMCID: PMC5486095 DOI: 10.3390/ijms18061273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases are a global health burden and remain associated with high social and economic impact. Treatment of affected patients largely relies on antimicrobial agents that act by directly targeting microbial replication. Despite the utility of host specific therapies having been assessed in previous clinical trials, such as targeting the immune response via modulating the cytokine release in sepsis, results have largely been frustrating and did not lead to the introduction of new therapeutic tools. In this article, we will discuss current evidence arguing that, by applying the concept of hormesis, already approved pharmacological agents could be used therapeutically to increase survival of patients with infectious disease via improving disease tolerance, a defense mechanism that decreases the extent of infection-associated tissue damage without directly targeting pathogenic microorganisms.
Collapse
Affiliation(s)
- Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
- Center for Infectious Diseases and Infection Control, University Hospital Jena, Jena 07747, Germany.
- Center for Sepsis Control and Care, University Hospital Jena, Jena 07747, Germany.
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena 07745, Germany.
| | - Kristin Ludwig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena 07745, Germany.
| | - Cynthia Weigel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
- Fritz Lipmann Institute, Leibniz Institute on Aging, Jena 07745, Germany.
| | - Elisa Jentho
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
| |
Collapse
|
29
|
Li WF, Wang P, Li H, Li TY, Feng M, Chen SF. Oleanolic acid protects against diabetic cardiomyopathy via modulation of the nuclear factor erythroid 2 and insulin signaling pathways. Exp Ther Med 2017; 14:848-854. [PMID: 28673009 DOI: 10.3892/etm.2017.4527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oleanolic acid (OL) is a pentacyclic triterpene compound used for the treatment of hepatitis, liver fibrosis and liver cirrhosis. In China, there is no published research on the effect or biological utilization of OL on liver diseases. The aim of the present study was to investigate the protective effects of OL against diabetic cardiomyopathy and its possible mechanism. A rat model of diabetes was established using streptozotocin and the effect of OL on diabetic cardiomyopathy (DCM) was evaluated. The results demonstrated that OL significantly reversed the DCM-induced changes to body weight, heart rate, echocardiography and hemodynamics, phosphorylated-glycogen synthase (GS) and glycogen phosphorylase (GP) activity in diabetic rats (all P<0.01). Treatment of diabetic rats with OL significantly inhibited oxidative stress and activated heme oxygenase (HO)-1/nuclear factor erythroid 2 (Nrf2) signaling in a rat model of diabetes (both P<0.01). The results of the present study indicate that OL protects against DCM through the HO-1/Nrf2 and insulin modulating GS/GP signaling pathways.
Collapse
Affiliation(s)
- Wei-Fang Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Hua Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tian-Yi Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ming Feng
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Su-Fang Chen
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
30
|
Kogut MH, Arsenault RJ. Immunometabolic Phenotype Alterations Associated with the Induction of Disease Tolerance and Persistent Asymptomatic Infection of Salmonella in the Chicken Intestine. Front Immunol 2017; 8:372. [PMID: 28421074 PMCID: PMC5378774 DOI: 10.3389/fimmu.2017.00372] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/15/2017] [Indexed: 11/15/2022] Open
Abstract
The adaptation of Salmonella enterica to the eukaryotic host is a key process that enables the bacterium to survive in a hostile environment. Salmonella have evolved an intimate relationship with its host that extends to their cellular and molecular levels. Colonization, invasion, and replication of the bacteria in an appropriate host suggest that modification of host functions is central to pathogenesis. Intuitively, this subversion of the cell must be a complex process, since hosts are not inherently programmed to provide an environment conducive to pathogens. Hosts have evolved countermeasures to pathogen invasion, establishment, and replication through two types of defenses: resistance and tolerance. Resistance functions to control pathogen invasion and reduce or eliminate the invading pathogen. Research has primarily concentrated on resistance mechanisms that are mediated by the immune system. On the other hand, tolerance is mediated by different mechanisms that limit the damage caused by a pathogen’s growth without affecting or reducing pathogen numbers or loads. The mechanisms of tolerance appear to be separated into those that protect host tissues from the virulence factors of a pathogen and those that limit or reduce the damage caused by the host immune and inflammatory responses to the pathogen. Some pathogens, such as Salmonella, have evolved the capacity to survive the initial robust immune response and persist. The persistent phase of a Salmonella infection in the avian host usually involves a complex balance of protective immunity and immunopathology. Salmonella is able to stay in the avian ceca for months without triggering clinical signs. Chronic colonization of the intestinal tract is an important aspect of persistent Salmonella infection because it results in a silent propagation of bacteria in poultry stocks due to the impossibility to isolate contaminated animals. Data from our lab promote the hypothesis that Salmonella have evolved a unique survival strategy in poultry that minimizes host defenses (disease resistance) during the initial infection and then exploits and/or induces a dramatic immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance. Unfortunately, this disease tolerance results in the ongoing human food safety dilemma.
Collapse
Affiliation(s)
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
31
|
Tim-3 inhibits macrophage control of Listeria monocytogenes by inhibiting Nrf2. Sci Rep 2017; 7:42095. [PMID: 28205579 PMCID: PMC5311873 DOI: 10.1038/srep42095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
T cell immunoglobulin mucin-3 (Tim-3) is an immune checkpoint inhibitor and its dysregulation has been related to T cell tolerance and many immune disorders, such as tumors and infection tolerance. However, the physiopathology roles of Tim-3 in innate immunity remain elusive. Here, we demonstrate that Tim-3 inhibits macrophage phagocytosis of L. monocytogenes by inhibiting the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway and increases bacterial burden. Tim-3 signaling promotes Nrf2 degradation by increasing its ubiquitination and, as a result, decreasing its nuclear translocation. CD36 and heme oxygenase-1 (HO-1), two downstream molecules in the Tim-3-Nrf2 signaling axis, are involved in the Tim-3- mediated immune evasion of L. monocytogenes both in vitro and in vivo. We here identified new mechanisms by which Tim-3 induces infection tolerance. By modulating the Tim-3 pathway, we demonstrate the feasibility of manipulating macrophage function as a potent tool for treating infectious diseases, such as Listeria infection.
Collapse
|
32
|
|
33
|
Chitinase 3-Like 1 (Chil1) Regulates Survival and Macrophage-Mediated Interleukin-1β and Tumor Necrosis Factor Alpha during Pseudomonas aeruginosa Pneumonia. Infect Immun 2016; 84:2094-2104. [PMID: 27141083 DOI: 10.1128/iai.00055-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa causes hospital-acquired pneumonia and is associated with high mortality. An effective response to such an infection includes efficient clearance of pathogenic organisms while limiting collateral damage from the host inflammatory response, known as host resistance and host tolerance, respectively. P. aeruginosa expresses a type III secretion system (T3SS) needle complex that induces NLRC4 (NOD-like receptor C4) activation, interleukin-1β (IL-1β) production, and host tissue damage. Chitinase 3-like-1 (Chil1) is expressed during infection and binds to its receptor, IL-13 receptor α2 (IL-13Rα2), to regulate the pathogen-host response during Streptococcus pneumoniae infection, but the role Chil1 plays in balancing the host resistance and host tolerance during P. aeruginosa pneumonia is not known. We conducted experiments using C57BL/6 mice with or without a genetic deficiency of Chil1 and demonstrated that Chil1-deficient mice succumb to P. aeruginosa infection more rapidly than the wild type (WT). The decreased survival time in infected Chil1-deficient mice is associated with more neutrophils recruited to the airways, more lung parenchymal damage, and increased pulmonary consolidation while maintaining equivalent bacterial killing compared to WT mice. Infected Chil1-deficient mice and bone marrow-derived macrophages (BMDMs) from Chil1-deficient mice have increased production of tumor necrosis factor alpha (TNF-α) and IL-1β compared to infected WT mice and macrophages. Infection of Chil1-deficient BMDMs with non-NLRC4-triggering P. aeruginosa, which is deficient in the T3SS needle complex, did not alter the excessive IL-1β production compared to BMDMs from WT mice. The addition of recombinant Chil1 decreases the excessive IL-1β production but only partially rescues stimulated BMDMs from IL-13Rα2-deficient mice. Our data provide mechanistic insights into how Chil1 regulates P. aeruginosa-induced host responses.
Collapse
|
34
|
The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem Soc Trans 2015; 43:687-9. [PMID: 26551713 DOI: 10.1042/bst20150069] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 11/17/2022]
Abstract
The transcription factor nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, with gene called NFE2L2) is a master regulator of the antioxidant response. In the last decade, interest has intensified in this research area as its importance in several physiological and pathological processes has become widely recognized; these include redox signalling and redox homoeostasis, drug metabolism and disposition, intermediary metabolism, cellular adaptation to stress, chemoprevention and chemoresistance, toxicity, inflammation, neurodegeneration, lipogenesis and aging. Regulation of Nrf2 is complex and although much attention has focussed on its repression by Kelch-like ECH-associated protein-1 (Keap1), recently it has become increasingly apparent that it is also controlled by cross-talk with other signalling pathways including the glycogen synthase kinase-3 (GSK-3)-β-transducin repeat-containing protein (β-TrCP) axis, ERAD (endoplasmic reticulum-associated degradation)-associated E3 ubiquitin-protein ligase (Hrd1, also called synoviolin), nuclear factor-kappa B (NF-κB), Notch and AMP kinase. Due to its beneficial role in several diseases, Nrf2 has become a major therapeutic target, with novel natural, synthetic and targeted small molecules currently under investigation to modulate the pathway and in clinical trials.
Collapse
|