1
|
Hwang J, Lauinger L, Kaiser P. Distinct Stress Regulators in the CRL Family: Emerging Roles of F-Box Proteins: Cullin-RING Ligases and Stress-Sensing. Bioessays 2025; 47:e202400249. [PMID: 40091294 DOI: 10.1002/bies.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Cullin-RING ligases (CRLs) are central regulators of environmental and cellular stress responses, orchestrating diverse processes through the ubiquitination of substrate proteins. As modular complexes, CRLs employ substrate-specific adaptors to target proteins for degradation and other ubiquitin-mediated processes, enabling dynamic adaptation to environmental cues. Recent advances have highlighted the largest CRL subfamily SCF (Skp1-cullin-F-box) in environmental sensing, a role historically underappreciated for SCF ubiquitin ligases. Notably, emerging evidence suggests that the F-box domain, a 50-amino acid motif traditionally recognized for mediating protein-protein interactions, can act as a direct environmental sensor due to its ability to bind heavy metals. Despite these advances, the roles of many CRL components in environmental sensing remain poorly understood. This review provides an overview of CRLs in stress response regulation and emphasizes the emerging functions of F-box proteins in environmental adaptation.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
2
|
Thorpe RJ, Bruce MA, Wilder T, Jones HP, Thomas Tobin C, Norris KC. Health Disparities at the Intersection of Racism, Social Determinants of Health, and Downstream Biological Pathways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:703. [PMID: 40427819 PMCID: PMC12111065 DOI: 10.3390/ijerph22050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Despite overall improvements in the accessibility, quality, and outcomes of care in the U.S. health care system over the last 30 years, a large proportion of marginalized racial and ethnic minority (minoritized) groups continue to suffer from worse outcomes across most domains. Many of these health disparities are driven by inequities in access to and the scope of society's health-affirming structural resources and opportunities commonly referred to as structural drivers or social determinants of health-SDoH. Persistently health-undermining factors in the social environment and the downstream effects of these inequities on neurocognitive and biological pathways exacerbate these disparities. The consequences of these circumstances manifest as behavioral, neurohormonal, immune, and inflammatory and oxidative stress responses, as well as epigenetic changes. We propose a theoretical model of the interdependent characteristics of inequities in the SDoH driven by race-based discriminatory laws, policies, and practices that eventually culminate in poor health outcomes. This model provides a framework for developing and validating multi-level interventions designed to target root causes, thereby lessening health disparities and accelerating improved health outcomes for minoritized groups.
Collapse
Affiliation(s)
- Roland J. Thorpe
- Program for Research on Men’s Health, Hopkins Center for Health Disparities Solutions, Baltimore, MD 21205, USA;
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marino A. Bruce
- Faith, Justice and Health Collaboratory, University of Houston Population Health, University of Houston, Houston, TX 77204, USA;
- Department of Behavioral and Social Sciences, University of Houston, Tilman J. Fertitta Family College of Medicine, Houston, TX 77204, USA
| | - Tanganyika Wilder
- School of Allied Health Sciences, Division of Health Sciences, Florida A&M University, Tallahassee, FL 32317, USA;
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- Institute for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Courtney Thomas Tobin
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90995, USA;
| | - Keith C. Norris
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Zhou H, Zhou J, Liu S, Niu J, Pan J, Li R. Hsa-miR-532-3p protects human decidual mesenchymal stem cells from oxidative stress in recurrent spontaneous abortion via targeting KEAP1. Redox Biol 2025; 80:103508. [PMID: 39908863 PMCID: PMC11847473 DOI: 10.1016/j.redox.2025.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Human decidual mesenchymal stem cells (hDMSCs) play crucial roles in pregnancy. The decreased resistance of hDMSCs to oxidative stress is a key factor contributing to recurrent spontaneous abortion (RSA). miRNAs have essential functions in the proliferation and apoptosis of decidual tissues. However, the miRNAs involved in regulating oxidative stress in hDMSCs remain unclear. METHODS Decidual tissues and hDMSCs were collected from patients with RSA and early pregnancy miscarriages. We assessed the antioxidant capacity of hDMSCs in both groups by detecting relevant indicators. Furthermore, differentially expressed miRNAs in hDMSCs were analyzed through miRNA sequencing. We evaluated the interaction between hsa-miR-532-3p and KEAP1 using a luciferase reporter assay. A mouse model of RSA was constructed for confirmation. Finally, we analyzed the correlations between serum hsa-miR-532-3p levels and the clinical features of pregnant women with RSA. RESULTS miRNA sequencing revealed 44 miRNAs whose expression was downregulated and 9 miRNAs whose expression was upregulated in hDMSCs from the RSA group compared with those from the control group. The overexpression of hsa-miR-532-3p led to a significantly increased antioxidant capacity in hDMSCs. The knockdown or overexpression of hsa-miR-532-3p led to the upregulation or downregulation of KEAP1 expression, respectively. In a mouse model, the overexpression of hsa-miR-532-3p reduced embryo absorption rates in RSA mice, decreased KEAP1 expression levels in decidual tissues, and concurrently enhanced the resistance to oxidative stress. Furthermore, in patients diagnosed with RSA, serum hsa-miR-532-3p levels were significantly and negatively correlated with the gestational age. CONCLUSIONS Our study revealed a lower expression level of hsa-miR-532-3p in the hDMSCs of patients with RSA. Moreover, hsa-miR-532-3p protects hDMSCs from oxidative stress by targeting the Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (KEAP1/NRF2) pathway. Hsa-miR-532-3p is closely related to gestational age and has good predictive value for identifying RSA.
Collapse
Affiliation(s)
- Hong Zhou
- Reproductive Medical Center, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jiaxin Zhou
- Reproductive Medical Center, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, China; International School, Jinan University, Guangzhou, Guangdong, 510632, China
| | - ShanShan Liu
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Jing Niu
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Jinghua Pan
- General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Karlsen OA, Rasinger JD, Brattås M, Tollefsen KE, Goksøyr A, Nahrgang J. Quantitative analysis of the polar cod (Boreogadus saida) hepatic proteome highlights interconnected responses in cellular adaptation and defence mechanisms after dietary benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178510. [PMID: 39824120 DOI: 10.1016/j.scitotenv.2025.178510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound. Functional annotation and pathway analyses of the proteins affected by BaP revealed a concerted cellular response for handling and adopting to its exposure, involving numerous interconnected signalling pathways and metabolic processes. In accordance with BaP being a strong aryl hydrocarbon receptor (Ahr) agonist, a prominent activation of the canonical Ahr signalling pathway was observed, including upregulation of Ahr target proteins like cytochrome P450 enzymes and microsomal glutathione transferase. Furthermore, cellular pathways for handling oxidative stress, protein misfolding and degradation, as well as endoplasmic reticulum stress and calcium homeostasis, were also activated by BaP, possibly as a result of the formation of harmful and redox reactive BaP metabolites via phase I metabolism. Activation of proteins that participate in the acute-phase response was also observed, suggesting prevalent tissue- and cellular damage that triggers the immune system and inflammatory responses. Our results at the protein level aligns well with previous analyses on the effects of BaP on the polar cod liver transcriptome and support that exposure to BaP and structural similar PAHs can cause adverse effects on polar cod physiology. Although more data is required for demonstrating how these molecular responses propagate to higher levels of biological organisation, increased knowledge about the initial cellular and molecular mechanisms that induce toxicity is a key-step towards a mechanistically informed impact assessment of PAH pollutants in the Arctic.
Collapse
Affiliation(s)
- O A Karlsen
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway.
| | - J D Rasinger
- Institute of Marine Research, Nordnesgaten 50, N-5050 Bergen, Norway
| | - M Brattås
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway
| | - K E Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - A Goksøyr
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway
| | - J Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
5
|
Fejes I, Markacz P, Tatai J, Rudas M, Dunkel P, Gyuris M, Nyerges M, Provost N, Duvivier V, Delerive P, Martiny V, Bristiel A, Vidal B, Richardson W, Rothweiler EM, Tranberg-Jensen J, Manning CE, Sweeney MN, Chalk R, Huber KVM, Bullock AN, Herner A, Seedorf K, Vinson C, Weber C, Kotschy A. Covalent Inhibitors of KEAP1 with Exquisite Selectivity. J Med Chem 2024; 67:21208-21222. [PMID: 39572012 DOI: 10.1021/acs.jmedchem.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The NRF2-KEAP1 interaction is central for cytoprotection against stresses, giving it high clinical significance. Covalent modification of KEAP1 is an efficient approach, but the covalent inhibitors used in the clinic carry undesired side effects originating in their moderate selectivity. Starting with a phenotypic screen, we identified a new covalent inhibitor chemotype that was optimized to deliver a series of potent and highly selective KEAP1 binders. While the developed compounds showed both cellular and in vivo activity, upregulating antioxidant response element-dependent target genes, they showed no genotoxicity in vitro. The lead compound exhibited broad selectivity in activity-based protein profiling and showed no significant interaction with a panel of commonly studied receptors nor with a broad panel of kinases. The nature of its interaction with KEAP1 and the origin of its selectivity were revealed by X-ray crystallography.
Collapse
Affiliation(s)
- Imre Fejes
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Piroska Markacz
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Janos Tatai
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Monika Rudas
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Petra Dunkel
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Mario Gyuris
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Miklos Nyerges
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Nicolas Provost
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - Valérie Duvivier
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - Philippe Delerive
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - Virginie Martiny
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - Alexandra Bristiel
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - Brice Vidal
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Elisabeth M Rothweiler
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Jeppe Tranberg-Jensen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Charlotte E Manning
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Melissa N Sweeney
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Rod Chalk
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Kilian V M Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ Oxford, U.K
| | - Andras Herner
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Klaus Seedorf
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - Cedric Vinson
- Institute de Recherche Servier, 22 Route 128, 91190 Gif-sur-Yvette, France
| | - Csaba Weber
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| |
Collapse
|
6
|
Li Y, Wu A, Jin X, Shen H, Zhao C, Yi X, Nie H, Wang M, Yin S, Zuo H, Ju Z, Jiang Z, Wang H. DDO1002, an NRF2-KEAP1 inhibitor, improves hematopoietic stem cell aging and stress response. LIFE MEDICINE 2024; 3:lnae043. [PMID: 39872153 PMCID: PMC11748272 DOI: 10.1093/lifemedi/lnae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025]
Abstract
Oxidative stress diminishes the functionality of hematopoietic stem cells (HSCs) as age advances, with heightened reactive oxygen species (ROS) levels exacerbating DNA damage, cellular senescence, and hematopoietic impairment. DDO1002, a potent inhibitor of the NRF2-KEAP1 pathway, modulates the expression of antioxidant genes. Yet, the extent to which it mitigates hematopoietic decline post-total body irradiation (TBI) or in the context of aging remains to be elucidated. Our study has elucidated the role of DDO1002 in modulating NRF2 activity, which, in turn, activates the NRF2-driven antioxidant response element (ARE) signaling cascade. This activation can diminish intracellular levels of ROS, thereby attenuating cellular senescence. In addition, DDO1002 has been demonstrated to ameliorate DNA damage and avert HSC apoptosis, underscoring its potential to mitigate hematopoietic injury precipitated by TBI. Competitive transplantation assay revealed that the administration of DDO1002 can improve the reconstitution and self-renewal capacity of HSCs in aged mice. Single-cell sequencing analysis elucidated that DDO1002 treatment attenuated intracellular inflammatory signaling pathways and mitigated ROS pathway in aged HSCs, suggesting its potential to restore the viability of these cells. Consequently, DDO1002 effectively activated the NRF2-ARE pathway, delaying cellular senescence and ameliorating impaired hematopoiesis, thereby demonstrating its potential as a therapeutic agent for age-related hematopoietic disorders.
Collapse
Affiliation(s)
- Yuwen Li
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Haiping Shen
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyan Zhao
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao Yi
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Nie
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingwei Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongna Zuo
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenyu Ju
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Zhenyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Abdelrahman RS, Abdelmageed ME. Hepatoprotective effects of the xanthine oxidase inhibitor Febuxostat against thioacetamide-induced liver injury in rats: The role of the Nrf2/ HO-1 and TLR4/ NF-κB pathways. Food Chem Toxicol 2024; 194:115087. [PMID: 39489394 DOI: 10.1016/j.fct.2024.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Experimental models of liver injury have been established utilizing thioacetamide (TAA), a classic liver toxic chemical that causes organ damage via oxidative stress and inflammatory induction. This study examined the impact of Febuxostat (a xanthine oxidase inhibitor; Febu, 10-15 mg/kg, orally) against TAA (500 mg/kg, i.p.) -induced liver injury in rats. Febu significantly attenuated TAA-induced alterations in liver function parameters, in addition to promoting hepatic antioxidant effects through a significant elevation of Heme-oxygenase-1(HO-1), nuclear factor erythroid 2-related factor2 (Nrf2), reduced glutathione (GSH) and superoxide dismutase (SOD) levels and reduction in hepatic malondialdehyde (MDA) content. Moreover, Febu improved the hepatic anti-inflammatory status by increasing the anti-inflammatory cytokine Interleukin (IL-10) level and reducing the levels of the pro-inflammatory cytokines (Nuclear factor kappa B (NF-κB), IL-1β, high-mobility group box1 (HMGB1), receptor for advanced glycation end products (RAGE), and toll-like receptor4 (TLR4) levels, in addition to suppressing the increased protein and mRNA expression levels of tumor necrosis factor alpha (TNF-α) and IL-6, hepatic expression of TNF-α and activated mitogen-activated protein kinases (p-JNK/p-p38 MAPK). Histopathologically, Febu markedly normalized TAA-induced alteration in liver sections. In conclusion, Febu, in a dose-dependent fashion, refines TAA-induced hepatotoxicity by enhancing antioxidant capabilities and decreasing inflammatory signals.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
8
|
Gong G, Kam H, Bai Y, Cheang WS, Wu S, Cheng X, Giesy JP, Lee SMY. 6-benzylaminopurine causes endothelial dysfunctions to human umbilical vein endothelial cells and exacerbates atorvastatin-induced cerebral hemorrhage in zebrafish. ENVIRONMENTAL TOXICOLOGY 2024; 39:1258-1268. [PMID: 37929299 DOI: 10.1002/tox.24012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
6-benzylaminopurine (6-BA), a multifunctional plant growth regulator, which is frequently used worldwide to improve qualities of various crops, is an important ingredient in production of "toxic bean sprouts." Although there is no direct evidence of adverse effects, its hazardous effects, as well as joint toxicity with other chemicals, have received particular attention and aroused furious debate between proponents and environmental regulators. By use of human umbilical vein endothelial cells (HUVECs), adverse effects of 6-BA to human-derived cells were first demonstrated in this study. A total of 25-50 mg 6-BA/L inhibited proliferation, migration, and formation of tubular-like structures by 50% in vitro. Results of Western blot analyses revealed that exposure to 6-BA differentially modulated the MAPK signal transduction pathway in HUVECs. Specifically, 6-BA decreased phosphorylation of MEK and ERK, but increased phosphorylation of JNK and P38. In addition, 6-BA exacerbated atorvastatin-induced cerebral hemorrhage via increasing hemorrhagic occurrence by 60% and areas by 4 times in zebrafish larvae. In summary, 6-BA elicited toxicity to the endothelial system of HUVECs and zebrafish. This was due, at least in part, to discoordination of MAPK signaling pathway, which should pose potential risks to the cerebral vascular system.
Collapse
Affiliation(s)
- Guiyi Gong
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yubin Bai
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuilong Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoning Cheng
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - John P Giesy
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Toxicology Centre, University of Saskatchewan, Saskatchewan, Canada
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas, United States
| |
Collapse
|
9
|
Mohmad Saberi SE, Chua LS. Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sci 2023; 333:122170. [PMID: 37827234 DOI: 10.1016/j.lfs.2023.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Orthosiphon aristatus has been traditionally used as a medicinal herb for various illnesses in Southeast Asia and Europe. The most dominant bioactive compound of the herb is rosmarinic acid (RosA) which has been demonstrated for its remarkable anti-inflammatory properties. This review describes the recent progress of studies on multi-target molecular pathways of RosA in relation to targeted inflammatory-associated diseases. An inclusive literature search was conducted using electronic databases such as Google Scholar, Scopus, Springer Link, PubMed, Medline, Wiley and Science Direct for studies reporting on the anti-inflammatory actions of RosA from 2008 until 2023. The keywords of the search were RosA and anti-inflammatory in relation to hepatoprotective, chondroprotective, cardioprotective, neuroprotective and toxicity. Only publications that are written in English are included in this review. The inhibition and deactivation of pro-inflammatory biomolecules by RosA were explained based on the initial inflammation stimuli and their location in the body. The activation of Nrf2/HO-1 expression to inhibit NF-κB pathway is the key mechanism for hepatoprotection. Besides NF-κB inhibition, RosA activates PPARγ to alleviate ischemia/reperfusion (I/R)-induced myocardial injury for cardioprotection. The regulation of MAPK and T-cell activation is important for chondroprotection, whereas the anti-oxidant property of RosA is the main contributor of neuroprotection. Even though less studies on the anti-inflammation of RosA extracts from O. aristatus, but the effective pharmacological properties of RosA has promoted it as a natural potent lead for further investigation.
Collapse
Affiliation(s)
- Salfarina Ezrina Mohmad Saberi
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
10
|
Laster M, Kozman D, Norris KC. Addressing Structural Racism in Pediatric Clinical Practice. Pediatr Clin North Am 2023; 70:725-743. [PMID: 37422311 DOI: 10.1016/j.pcl.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Structural racism is the inequitable allocation of various social determinants of health to different communities. Exposure to this and other discrimination levied from intersectional identities is the primary driver of disproportionately adverse health outcomes for minoritized children and their families. Pediatric clinicians must vigilantly identify and mitigate racism in health care systems and delivery, assess for any impact of patient and family exposure to racism and direct them to appropriate health resources, foster an environment of inclusion and respect, and ensure that all care is delivered through a race-conscious lens with the utmost cultural humility and shared decision-making.
Collapse
Affiliation(s)
- Marciana Laster
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Pediatric Nephrology, UCLA Department of Pediatrics, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA 90095-1752, USA
| | - Daniel Kozman
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA; UCLA Department of Medicine, Section of Medicine-Pediatrics & Preventive Medicine
| | - Keith C Norris
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of General Internal Medicine and Health Services Research, UCLA Department of Medicine, 1100 Glendon Avenue, Suite 710, Los Angeles, CA 90024, USA.
| |
Collapse
|
11
|
Yang T, Qu X, Zhao J, Wang X, Wang Q, Dai J, Zhu C, Li J, Jiang L. Macrophage PTEN controls STING-induced inflammation and necroptosis through NICD/NRF2 signaling in APAP-induced liver injury. Cell Commun Signal 2023; 21:160. [PMID: 37370115 DOI: 10.1186/s12964-023-01175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling has been known to play a critical role in maintaining cellular and tissue homeostasis, which also has an essential role in the inflammatory response. However, it remains unidentified whether and how the macrophage PTEN may govern the innate immune signaling stimulator of interferon genes (STING) mediated inflammation and hepatocyte necroptosis in APAP-induced liver injury (AILI). METHODS Myeloid-specific PTEN knockout (PTENM-KO) and floxed PTEN (PTENFL/FL) mice were treated with APAP (400 mg/kg) or PBS. In a parallel in vitro study, bone marrow-derived macrophages (BMMs) were isolated from these conditional knockout mice and transfected with CRISPR/Cas9-mediated Notch1 knockout (KO) or CRISPR/Cas9-mediated STING activation vector followed by LPS (100 ng/ml) stimulation. RESULTS Here, we report that myeloid-specific PTEN knockout (PTENM-KO) mice were resistant to oxidative stress-induced hepatocellular injury with reduced macrophage/neutrophil accumulation and proinflammatory mediators in AILI. PTENM-KO increased the interaction of nuclear Notch intracellular domain (NICD) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) in the macrophage nucleus, reducing reactive oxygen species (ROS) generation. Mechanistically, it is worth noting that macrophage NICD and NRF2 co-localize within the nucleus under inflammatory conditions. Additionally, Notch1 promotes the interaction of immunoglobulin kappa J region (RBPjκ) with NRF2. Disruption of the Notch1 signal in PTEN deletion macrophages, reduced RBPjκ and NRF2 binding, and activated STING signaling. Moreover, PTENM-KO macrophages with STING activated led to ROS generation and TNF-α release, resulting in hepatocyte necroptosis upon co-culture with primary hepatocytes. CONCLUSIONS Our findings demonstrate that the macrophage PTEN-NICD/NRF2-STING axis is critical to regulating oxidative stress-induced liver inflammation and necroptosis in AILI and implies the therapeutic potential for managing sterile liver inflammation. Video Abstract.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Jiangsu University, The Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xiaoye Qu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaying Zhao
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jingjing Dai
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Wang J, Ren B, Yang Y, Li Y. C1q/tumor necrosis factor-related protein-9 exerts antioxidant and anti-inflammatory effects on oxygen-glucose deprivation/reoxygenation-stimulated neurons by modulating the Akt-GSK-3β-Nrf2 cascade via AdipoR1. Int Immunopharmacol 2023; 118:110045. [PMID: 36996742 DOI: 10.1016/j.intimp.2023.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
C1q/tumor necrosis factor-related protein-9 (CTRP9) is linked to diverse pathological conditions via the effects on cell apoptosis, inflammatory response, and oxidative stress. However, its functional relevance in ischemic brain injury is not well determined. The present work aimed to evaluate the role of CTRP9 in ischemia/reperfusion-associated neuronal injury using an in vitro model. The cultured cortical neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate ischemia/reperfusion in vitro. CTRP9 level was lowered in cultured neurons exposed to OGD/R. Neurons with overexpressed CTRP9 were resistant to OGD/R-elicited injuries, including neuronal apoptosis, oxidative stress, and pro-inflammatory response. Mechanism research revealed that CTRP9 could boost the activation of the nuclear factor erythroid 2-related factor (Nrf2) pathway associated with modulation of the Akt-glycogen synthase kinase-3β (GSK-3β) axis. CTRP9 regulated the transduction of the Akt-GSK-3β-Nrf2 cascade via adiponectin receptor 1 (AdipoR1). Restraining Nrf2 could diminish CTRP9-mediated neuroprotective effects in OGD/R-injured neurons. Altogether, these results confirmed that CTRP9 exerts a protective effect on OGD/R-injured neurons by modulating Akt-GSK-3β-Nrf2 cascade via AdipoR1. This work suggests a possible link between CTRP9 and ischemic brain injury.
Collapse
|
13
|
Chhunchha B, Kubo E, Krueger RR, Singh DP. Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants (Basel) 2023; 12:140. [PMID: 36671002 PMCID: PMC9854670 DOI: 10.3390/antiox12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
A major hallmark of aging-associated diseases is the inability to evoke cellular defense responses. Transcriptional protein Nrf2 (nuclear factor erythroid-derived 2-related factor) plays a pivotal role in the oxidative stress response, cellular homeostasis, and health span. Nrf2's activation has been identified as a therapeutic target to restore antioxidant defense in aging. Here, we demonstrated that FDA-approved drug, hydralazine (Hyd), was a reactivator of the Nrf2/ARE (antioxidant response element) pathway in various ages and types of mouse (m) or human (h) lens epithelial cells (LECs) and mice lenses in-vitro/in-vivo. This led to Hyd-driven abatement of carbonyls, reduced reactive oxygen species (ROS), and reduced 4-HNE/MDA-adducts with cytoprotection, and extended lens healthspan by delaying/preventing lens opacity against aging/oxidative stress. We elucidated that Hyd activated the protective signaling by inducing Nrf2 to traverse from the cytoplasm to the nucleus and potentiated the ARE response by direct interaction of Nrf2 and ARE sequences of the promoter. Loss-of-function study and cotreatment of Hyd and antioxidant, N-acetyl cysteine (NAC) or Peroxiredoxin (Prdx)6, specified that Nrf2/ARE-driven increase in the promoter activity was Hyd-dependent. Our study provides proof-of concept evidence and, thereby, paves the way to repurposing Hyd as a therapeutic agent to delay/prevent aging and oxidative-related disorders.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan
| | - Ronald R. Krueger
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Vaamonde-García C, Capelo-Mera E, Flórez-Fernández N, Torres MD, Rivas-Murias B, Mejide-Faílde R, Blanco FJ, Domínguez H. In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment. Int J Mol Sci 2022; 23:14236. [PMID: 36430716 PMCID: PMC9698873 DOI: 10.3390/ijms232214236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis, one of the most common joint degenerative pathologies, still has no cure, and current treatments, such as nonsteroidal anti-inflammatory drugs, can cause serious adverse effects when taken for a long time. Brown seaweed crude fucoidans are used for the clinical treatment of several pathologies. In this study, the therapeutical potential of these biocompounds was analyzed in primary chondrocytes and the 260TT human chondrocyte cell line. Crude fucoidan from Undaria pinnatifida (Up) and Sargassum muticum (Sm) was obtained by different extraction techniques (microwave-assisted extraction, pressurized hot-water extraction, ultrasound-assisted extraction) and chemically and structurally characterized by Fourier transform infrared spectroscopy, high-performance size-exclusion chromatography, proton nuclear magnetic resonance, and scanning electron microscopy. Once cell viability was confirmed in chondrocytes treated with crude fucoidans, we evaluated their anti-inflammatory effects, observing a significant reduction in IL-6 production stimulated by IL-1β. Findings were confirmed by analysis of IL-6 and IL-8 gene expression, although only fucoidans from Up achieved a statistically significant reduction. Besides this, the antioxidant capacity of crude fucoidans was observed through the upregulation of Nrf-2 levels and the expression of its transcriptional target genes HO-1 and SOD-2, with compounds from Up again showing a more consistent effect. However, no evidence was found that crude fucoidans modulate senescence, as they failed to reduced β-galactosidase activity, cell proliferation, or IL-6 production in chondrocytes stimulated with etoposide. Thus, the findings of this research seem to indicate that the tested crude fucoidans are capable of partially alleviating OA-associated inflammation and oxidative stress, but fail to attenuate chondrocyte senescence.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Emma Capelo-Mera
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Noelia Flórez-Fernández
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - María Dolores Torres
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Rosa Mejide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
15
|
Du G, Jiang J, Henning NJ, Safaee N, Koide E, Nowak RP, Donovan KA, Yoon H, You I, Yue H, Eleuteri NA, He Z, Li Z, Huang HT, Che J, Nabet B, Zhang T, Fischer ES, Gray NS. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chem Biol 2022; 29:1470-1481.e31. [PMID: 36070758 PMCID: PMC9588736 DOI: 10.1016/j.chembiol.2022.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Targeted protein degradation (TPD) uses small molecules to recruit E3 ubiquitin ligases into the proximity of proteins of interest, inducing ubiquitination-dependent degradation. A major bottleneck in the TPD field is the lack of accessible E3 ligase ligands for developing degraders. To expand the E3 ligase toolbox, we sought to convert the Kelch-like ECH-associated protein 1 (KEAP1) inhibitor KI696 into a recruitment handle for several targets. While we were able to generate KEAP1-recruiting degraders of BET family and murine focal adhesion kinase (FAK), we discovered that the target scope of KEAP1 was narrow, as targets easily degraded using a cereblon (CRBN)-recruiting degrader were refractory to KEAP1-mediated degradation. Linking the KEAP1-binding ligand to a CRBN-binding ligand resulted in a molecule that induced degradation of KEAP1 but not CRBN. In sum, we characterize tool compounds to explore KEAP1-mediated ubiquitination and delineate the challenges of exploiting new E3 ligases for generating bivalent degraders.
Collapse
Affiliation(s)
- Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathaniel J Henning
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nozhat Safaee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eriko Koide
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Inchul You
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nicholas A Eleuteri
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Hubert T Huang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
17
|
Sulforaphane inhibits angiotensin II-induced cardiomyocyte apoptosis by acetylation modification of Nrf2. Aging (Albany NY) 2022; 14:6740-6755. [PMID: 36006435 PMCID: PMC9467410 DOI: 10.18632/aging.204247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Oxidative stress is the central cause of angiotensin II (Ang II)-induced myocardial injury, and nuclear factor erythroid 2-related factor (Nrf2) is the core molecule of the anti-oxidant defense system. We have previously demonstrated that sulforaphane (SFN) can prevent Ang II-induced myocardial injury by activating Nrf2; however, the underlying molecular mechanism is still unclear. This study aimed to evaluate whether SFN prevents Ang II-induced cardiomyocyte apoptosis through acetylation modification of <i>Nrf2</i>. Wild-type and <i>Nrf2</i> knockdown embryonic rat cardiomyocytes (H9C2) were exposed to Ang II to induce apoptosis, oxidative stress, and inflammatory responses. SFN treatment significantly reduced Ang II-induced cardiomyocyte apoptosis, inflammation and oxidative stress. Activation of Nrf2 played a critical role in preventing cardiomyocyte apoptosis. After Nrf2 was knockdown, the anti-inflammatory, antioxidant stress of SFN were eliminated. Furthermore, Nrf2 activation by SFN was closely related to the decreased activity of histone deacetylases (HDACs) and increased histone-3 (H3) acetylation levels in <i>Nrf2</i> promoter region. These findings confirm that Nrf2 plays a key role in SFN preventing Ang II-induced cardiomyocyte apoptosis. SFN activates Nrf2 by inhibiting HDACs expression and activation.
Collapse
|
18
|
Wang YM, Gong FC, Qi X, Zheng YJ, Zheng XT, Chen Y, Yang ZT, Qing-Ye, Mao EQ, Chen EZ. Mucin 1 Inhibits Ferroptosis and Sensitizes Vitamin E to Alleviate Sepsis-Induced Acute Lung Injury through GSK3 β/Keap1-Nrf2-GPX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2405943. [PMID: 35910848 PMCID: PMC9334047 DOI: 10.1155/2022/2405943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ferroptosis is a nonapoptotic form of programmed cell death, which may be related to the occurrence and development of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). Mucin 1 (MUC1) is a kind of macromolecule transmembrane glycoprotein. Previous studies have shown that MUC1 could relieve ALI in sepsis and predict whether sepsis patients would develop into ARDS. However, the role of MUC1 in the ferroptosis of sepsis-induced ALI/ARDS remains unclear. MATERIALS AND METHODS Sera samples from 50 patients with sepsis/septic shock were used to detect iron metabolism-related markers. Western blot and qRT-PCR were conducted to detect the expression levels of ferroptosis-related genes. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate inflammatory factors. Transmission electron microscopy (TEM) was used to assess morphological changes of cells. RESULTS The results showed that the iron metabolism-related indicators in sepsis-induced ARDS patients changed significantly, suggesting the iron metabolism disorder. The expression levels of ferroptosis-related genes in lung tissues of sepsis had marked changes, and the lipid peroxidation levels increased, while Ferrostatin-1 (Fer-1) could reverse the above results, which confirmed the occurrence of ferroptosis. In terms of mechanism studies, inhibition of MUC1 dimerization could increase the expression level of Keap1, reduce the phosphorylation level of GSK3β, inhibit the entry of Nrf2 into the nucleus, further inhibit the expression level of GPX4, enhance the lipid peroxidation level of lung tissues, trigger ferroptosis, and aggravate lung injury. Besides, inhibiting MUC1 reversed the alleviating effect of vitamin E on ALI caused by sepsis, increased the aggregation of inflammatory cells in lung tissues, and aggravated alveolar injury and edema. CONCLUSIONS Our study was the first to explore the changes of iron metabolism indicators in ALI/ARDS of sepsis, clarify the important role of ferroptosis in ALI/ARDS induced by sepsis, and reveal the effects and specific mechanisms of MUC1 in regulating ferroptosis, as well as the sensitization on vitamin E.
Collapse
Affiliation(s)
- Yu-Ming Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Chen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Qi
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan-Jun Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Tao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Tao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Ye
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Er-Zhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
20
|
Wei P, Li X, Wang S, Dong Y, Yin H, Gu Z, Na X, Wei X, Yuan J, Cao J, Gao H, Su Y, Chen YX, Jin G. Silibinin Ameliorates Formaldehyde-Induced Cognitive Impairment by Inhibiting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5981353. [PMID: 35757504 PMCID: PMC9225847 DOI: 10.1155/2022/5981353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022]
Abstract
Silibinin is a flavonoid extracted from the medicinal plant Silybum marianum (milk thistle), traditionally used to treat liver disease. Recent studies have shown that the antioxidative stress and anti-inflammatory effects of milk thistle are used in the treatment of neurological diseases. Silibinin has antioxidative stress and antiapoptotic effects and reduces cognitive impairment in models of Alzheimer's disease (AD). However, the underlying mechanism of silibinin related to improvement of cognition remains poorly understood. In this study, we used the model of lateral ventricle injection of formaldehyde to examine the related mechanism of silibinin in improving cognitive impairment disorders. Oral administration of silibinin for three weeks significantly attenuated the cognitive deficits of formaldehyde-induced mice in a Y-maze test and Morris water maze test. Y-maze results show that silibinin increases the rate of spontaneous response alternation in FA-induced mice. Silibinin increases the target quadrant spending time and decreases escape latency in the Morris water maze test. We examined the effect of silibinin on the NRF2 signaling pathway, and silibinin promoted the nuclear transfer of NRF2 and increased the expression of HO-1 but did not significantly increase the protein expression of NRF2 in the hippocampus. Well, silibinin reduces the content of DHE and decreases the levels of apoptosis of mature neuron cells. We investigated the effect of silibinin on the content of formaldehyde degrading enzymes; biochemical analyses revealed that silibinin increased GSH and ALDH2 in formaldehyde-induced mice. In addition, as one of the pathological changes of AD, TAU protein is also hyperphosphorylated in FA model mice. Silibinin inhibits the expression of GSK-3β in model mice, thereby reducing the phosphorylation of TAU proteins ser396 and ser404 mediated by GSK3β. Based on our findings, we verified that the mechanism of silibinin improving cognitive impairment may be antioxidative stress, and silibinin is one of the potentially promising drugs to prevent formaldehyde-induced cognitive impairment.
Collapse
Affiliation(s)
- Pengsheng Wei
- Basic Medical School, Shenyang Medical College, China
| | - Xue Li
- Basic Medical School, Shenyang Medical College, China
| | - Shuai Wang
- Basic Medical School, Shenyang Medical College, China
| | - Yanxin Dong
- Basic Medical School, Shenyang Medical College, China
| | - Haoran Yin
- Basic Medical School, Shenyang Medical College, China
| | - Zikun Gu
- Basic Medical School, Shenyang Medical College, China
| | - Xiaoting Na
- Basic Medical School, Shenyang Medical College, China
| | - Xi Wei
- Basic Medical School, Shenyang Medical College, China
| | - Jiayu Yuan
- Basic Medical School, Shenyang Medical College, China
| | - Jiahui Cao
- School of Pharmacy, Shenyang Medical College, China
| | - Haotian Gao
- Basic Medical School, Shenyang Medical College, China
| | - Yebo Su
- Basic Medical School, Shenyang Medical College, China
| | - Yong Xu Chen
- School of Pharmacy, Shenyang Medical College, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, China
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, China
| |
Collapse
|
21
|
Groestlinger J, Spindler V, Pahlke G, Rychlik M, Del Favero G, Marko D. Alternaria alternata Mycotoxins Activate the Aryl Hydrocarbon Receptor and Nrf2-ARE Pathway to Alter the Structure and Immune Response of Colon Epithelial Cells. Chem Res Toxicol 2022; 35:731-749. [PMID: 35405071 PMCID: PMC9115800 DOI: 10.1021/acs.chemrestox.1c00364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After ingestion of food commodities, the gastrointestinal tract (GIT) poses the first barrier against xenobiotics and pathogens. Therefore, it is regularly confronted with external stressors potentially affecting the inflammatory response and the epithelial barrier. Alternaria mycotoxins such as alternariol (AOH) and altertoxin II (ATX-II) are frequently occurring food and feed contaminants that are described for their immunomodulatory capacities. Hence, this study aimed at exploring the effect of AOH and ATX-II as single compounds or binary mixtures on the immune response and epithelial homeostasis in noncancerous colon epithelial cells HCEC-1CT. Both toxins suppressed mRNA levels of proinflammatory mediators interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and secretion of IL-8, as well as mRNA levels of the matrix metallopeptidase 2 (MMP-2). Binary combinations of AOH and ATX-II reduced the response of the single toxins. Additionally, AOH and ATX-II modified immunolocalization of transmembrane proteins such as integrin β1, zona occludens 1 (ZO-1), claudin 4 (Cldn 4), and occludin (Ocln), which support colonic tissue homeostasis and intestinal barrier function. Moreover, the cellular distribution of ZO-1 was affected by ATX-II. Mechanistically, these effects could be traced back to the involvement of several transcription factors. AOH activated the nuclear translocation of the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid 2-related factor 2 (Nrf2), governing cell metabolic competence and structural integrity. This was accompanied by altered distribution of the NF-κB p65 protein, an important regulator of inflammatory response. ATX-II also induced AhR and Nrf2 translocation, albeit failing to substantiate the effect of AOH on the colonic epithelium. Hence, both toxins coherently repress the intestinal immune response on the cytokine transcriptional and protein levels. Furthermore, both mycotoxins affected the colonic epithelial integrity by altering the cell architecture.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Veronika Spindler
- Chair of Food Analytical Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Gudrun Pahlke
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Michael Rychlik
- Chair of Food Analytical Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.,Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
22
|
Choe K, Park HY, Ikram M, Lee HJ, Park TJ, Ullah R, Kim MO. Systematic Review of the Common Pathophysiological Mechanisms in COVID-19 and Neurodegeneration: The Role of Bioactive Compounds and Natural Antioxidants. Cells 2022; 11:cells11081298. [PMID: 35455977 PMCID: PMC9031507 DOI: 10.3390/cells11081298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus (2019-nCoVCOVID-19) belongs to the Beta coronavirus family, which contains MERS-CoV (Middle East respiratory syndrome coronavirus) and SARS-CoV (severe acute respiratory syndrome coronavirus). SARS-CoV-2 activates the innate immune system, thereby activating the inflammatory mechanism, causing the release of inflammatory cytokines. Moreover, it has been suggested that COVID-19 may penetrate the central nervous system, and release inflammatory cytokines in the brains, inducing neuroinflammation and neurodegeneration. Several links connect COVID-19 with Alzheimer’s disease (AD), such as elevated oxidative stress, uncontrolled release of the inflammatory cytokines, and mitochondrial apoptosis. There are severe concerns that excessive immune cell activation in COVID-19 may aggravate the neurodegeneration and amyloid-beta pathology of AD. Here, we have collected the evidence, showing the links between the two diseases. The focus has been made to collect the information on the activation of the inflammation, its contributors, and shared therapeutic targets. Furthermore, we have given future perspectives, research gaps, and overlapping pathological bases of the two diseases. Lastly, we have given the short touch to the drugs that have equally shown rescuing effects against both diseases. Although there is limited information available regarding the exact links between COVID-19 and neuroinflammation, we have insight into the pathological contributors of the diseases. Based on the shared pathological features and therapeutic targets, we hypothesize that the activation of the immune system may induce neurological disorders by triggering oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, 6229 ER Maastricht, The Netherlands
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK;
| | - Rahat Ullah
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
23
|
Shoaib S, Islam N, Yusuf N. Phytocompounds from the medicinal and dietary plants: Multi-target agents for cancer prevention and therapy. Curr Med Chem 2022; 29:4481-4506. [PMID: 35232338 DOI: 10.2174/0929867329666220301114251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Cervical cancer is the fourth leading cause of cancer death among women worldwide. Due to cervical cancer's high incidence and mortality, there is an unmet demand for effective diagnostic, therapeutic, and preventive agents. At present, the preferred treatment strategies for advanced metastatic cervical cancer include surgery, radiotherapy, and chemotherapy. However, cervical cancer is gradually developing resistance to chemotherapy, thereby reducing its efficacy. Over the last several decades, phytochemicals, a general term for compounds produced from plants, have gained attention for their role in preventing cervical cancer. This role in cervical cancer prevention has garnered attention on the medicinal properties of fruits and vegetables. Phytochemicals are currently being evaluated for their ability to block proteins involved in carcinogenesis and chemoresistance against cervical cancer. Chemoresistance to cancer drugs like cisplatin, doxorubicin, and 5-fluorouracil has become a significant limitation of drug-based chemotherapy. However, the combination of cisplatin with other phytochemicals has been identified as a promising alternative to subjugate cisplatin resistance. Phytochemicals are promising chemo-preventive and chemotherapeutic agents as they possess antioxidant, anti-inflammatory, and anti-proliferative potential against many cancers, including cervical cancer. Furthermore, the ability of the phytochemicals to modulate cellular signaling pathways through up and down regulation of various proteins has been claimed for their therapeutic potential. Phytochemicals also display a wide range of biological functions, including cell cycle arrest, apoptosis induction, inhibition of invasion, and migration in cervical cancer cells. Numerous studies have revealed the critical role of different signaling proteins and their signaling pathways in the pathogenesis of cervical cancer. Here, we review the ability of several dietary phytochemicals to alter carcinogenesis by modulating various molecular targets.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| |
Collapse
|
24
|
Ojo AF, Peng C, Ng JC. Combined effects of mixed per- and polyfluoroalkyl substances on the Nrf2-ARE pathway in ARE reporter-HepG2 cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126827. [PMID: 34388917 DOI: 10.1016/j.jhazmat.2021.126827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Although the Nrf2-ARE pathway plays a critical role in cellular protection against toxicity and oxidative stress from environmental chemical stressors, the association between exposure to per- and polyfluoroalkyl substances (PFAS) mixtures and the changes of Nrf2-ARE pathway remains largely unexplored. This study evaluated the potential of PFAS to induce the Nrf2-ARE pathway as individual compounds and as binary, ternary, and multicomponent mixtures in the ARE reporter-HepG2 cells and compared the mixture toxicity data to the predictions by concentration addition (CA) model. The toxicological interactions between PFAS mixture components were also determined by the model deviation ratio (MDR) between the CA predicted and mixture toxicity values. The induction of the Nrf2-ARE pathway was quantified using the luciferase system, and the endpoint assessed was the concentration that induced an induction ratio (IR) of 1.5 (ECIR1.5). The results showed that exposures to both individual and mixed PFAS induced the Nrf2-ARE pathway in ARE reporter-HepG2 cells. Based on the MDRs, the combinations with PFOS showed synergistic interactive effects, while the combinations with PFOA showed additive effects. These results indicate that the CA model underestimated the mixture toxicity of PFAS with PFOS co-exposures and may have health risk assessment implications.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
25
|
Emodin ameliorates antioxidant capacity and exerts neuroprotective effect via PKM2-mediated Nrf2 transactivation. Food Chem Toxicol 2021; 160:112790. [PMID: 34971761 DOI: 10.1016/j.fct.2021.112790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022]
Abstract
Pyruvate kinase M2 (PKM2) is overexpressed in neuronal cells. However, there are few studies on the involvement of PKM2 modulators in neurodegenerative diseases. Emodin, a dominating anthraquinone derivative extracting from the rhizome of rhubarb, has received expanding consideration due to its pharmacological properties. Our data reveal that emodin could resist hydrogen peroxide- or 6-hydroxydopamine-mediated mitochondrial fission and apoptosis in PC12 cells (a neuron-like rat pheochromocytoma cell line). Notably, emodin at nontoxic concentrations significantly inhibits PKM2 activity and promotes dissociation of tetrameric PKM2 into dimers in cells. The PKM2 dimerization enhances the interaction of PKM2 and NFE2-related factor 2 (Nrf2), which further triggers the activation of the Nrf2/ARE pathway to upregulate a panel of cytoprotective genes. Modulating the PKM2/Nrf2/ARE axis by emodin unveils a novel mechanism for understanding the pharmacological functions of emodin. Our findings indicate that emodin is a potential candidate for the treatment of oxidative stress-related neurodegenerative disorders.
Collapse
|
26
|
Graciano-Machuca O, Villegas-Rivera G, López-Pérez I, Macías-Barragán J, Sifuentes-Franco S. Multisystem Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Role of Oxidative Stress. Front Immunol 2021; 12:723654. [PMID: 34737740 PMCID: PMC8560690 DOI: 10.3389/fimmu.2021.723654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
With the appearance of the SARS-CoV-2 virus in December 2019, all countries in the world have implemented different strategies to prevent its spread and to intensively search for effective treatments. Initially, severe cases of the disease were considered in adult patients; however, cases of older school-age children and adolescents who presented fever, hypotension, severe abdominal pain and cardiac dysfunction, positive for SARS-CoV-2 infection, have been reported, with increased pro-inflammatory cytokines and tissue damage, condition denominated multisystemic inflammatory syndrome (MIS-C); The emerging data from patients with MIS-C have suggested unique characteristics in the immunological response and also clinical similarities with other inflammatory syndromes, which can support as a reference in the search for molecular mechanisms involved in MIS-C. We here in propose that oxidative stress (OE) may play a very important role in the pathophysiology of MIS-C, such as occurs in Kawasaki disease (KD), severe COVID-19 in adults and other processes with characteristics of vascular damage similar to MIS- C, for which we review the available information that can be correlated with possible redox mechanisms.
Collapse
Affiliation(s)
- Omar Graciano-Machuca
- Laboratory of Biological Systems, Department of Health Sciences, University of Guadalajara (UDG), Ameca, Mexico
| | - Geannyne Villegas-Rivera
- Department of Health Sciences—Disease as an Individual Process, University of Guadalajara (UDG), Tonalá, Mexico
| | - Iván López-Pérez
- Department of Health Sciences—Disease as an Individual Process, University of Guadalajara (UDG), Tonalá, Mexico
| | - José Macías-Barragán
- Laboratory of Biological Systems, Department of Health Sciences, University of Guadalajara (UDG), Ameca, Mexico
| | - Sonia Sifuentes-Franco
- Laboratory of Biological Systems, Department of Health Sciences, University of Guadalajara (UDG), Ameca, Mexico
- Department of Health Sciences—Disease as an Individual Process, University of Guadalajara (UDG), Tonalá, Mexico
| |
Collapse
|
27
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
28
|
Scalp Acupuncture Protects Against Neuronal Ferroptosis by Activating The p62-Keap1-Nrf2 Pathway in Rat Models of Intracranial Haemorrhage. J Mol Neurosci 2021; 72:82-96. [PMID: 34405366 PMCID: PMC8755669 DOI: 10.1007/s12031-021-01890-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Intracerebral haemorrhage (ICH) can be a catastrophic event; even if the initial stages of the pathology were well-managed, a number of patients experience varied residual neurological deficits following the insult. Ferroptosis is a recently identified type of cell demise which is tightly linked to the neurological impairment associated with ICH. In the current work, the prophylactic impact of scalp acupuncture (SA) therapy on autologous blood injection murine models of ICH was investigated in order to establish whether SA could mitigate the secondary damage arising following ICH by moderating ferroptosis. The pathophysiological mechanisms associated with this process were also explored. Ludmila Belayev tests were utilised for the characterisation of neurological damage. Haematoxylin–eosin staining was employed in order to determine the cerebral impact of the induced ICH. Malondialdehyde (MDA) and iron titres in peri-haemorrhagic cerebral tissues were appraised using purchased assay kits. Transmission electron microscopy delineated mitochondrial appearances within nerve cell bodies from the area of haemorrhage. Western blotting techniques were utilised to assay the degree of protein expression of NeuN, sequestosome 1 (p62), nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1). The frequencies of Nrf2, GPX4 and FTH1 positive cells, respectively, were documented with immunohistochemical staining. The results demonstrated that therapy with SA after ICH mitigated MDA and iron sequestration, diminished the appearance of contracted mitochondria with increased outer mitochondrial membrane diameter within the nerve cell bodies, and suppressed neuronal ferroptosis. The pathways responsible for these effects may encompass amplified p62, Nrf2, GPX4 and FTH1 expression, together with decreased Keap1 expression. Application of SA reduced identified neurobehavioural abnormalities after ICH; no disparities were observed between the consequences of SA therapy and deferoxamine delivery. It can be surmised that intervention with SA enhanced recovery after ICH by triggering the antioxidant pathway, p62/Keap1/Nrf2, and causing FTH1 and GPX4 upregulation, factors that participate in diminishing excess iron and thus in mitigating lipid peroxidation insults arising from ferroptosis following ICH.
Collapse
|
29
|
Proskurnina EV, Mikheev IV, Savinova EA, Ershova ES, Veiko NN, Kameneva LV, Dolgikh OA, Rodionov IV, Proskurnin MA, Kostyuk SV. Effects of Aqueous Dispersions of C 60, C 70 and Gd@C 82 Fullerenes on Genes Involved in Oxidative Stress and Anti-Inflammatory Pathways. Int J Mol Sci 2021; 22:ijms22116130. [PMID: 34200169 PMCID: PMC8201376 DOI: 10.3390/ijms22116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Fullerenes and metallofullerenes can be considered promising nanopharmaceuticals themselves and as a basis for chemical modification. As reactive oxygen species homeostasis plays a vital role in cells, the study of their effect on genes involved in oxidative stress and anti-inflammatory responses are of particular importance. Methods: Human fetal lung fibroblasts were incubated with aqueous dispersions of C60, C70, and Gd@C82 in concentrations of 5 nM and 1.5 µM for 1, 3, 24, and 72 h. Cell viability, intracellular ROS, NOX4, NFκB, PRAR-γ, NRF2, heme oxygenase 1, and NAD(P)H quinone dehydrogenase 1 expression have been studied. Results & conclusion: The aqueous dispersions of C60, C70, and Gd@C82 fullerenes are active participants in reactive oxygen species (ROS) homeostasis. Low and high concentrations of aqueous fullerene dispersions (AFD) have similar effects. C70 was the most inert substance, C60 was the most active substance. All AFDs have both “prooxidant” and “antioxidant” effects but with a different balance. Gd@C82 was a substance with more pronounced antioxidant and anti-inflammatory properties, while C70 had more pronounced “prooxidant” properties.
Collapse
Affiliation(s)
- Elena V. Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia; (E.A.S.); (E.S.E.); (N.N.V.); (L.V.K.); (O.A.D.); (S.V.K.)
- Correspondence:
| | - Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia; (I.V.M.); (M.A.P.)
| | - Ekaterina A. Savinova
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia; (E.A.S.); (E.S.E.); (N.N.V.); (L.V.K.); (O.A.D.); (S.V.K.)
| | - Elizaveta S. Ershova
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia; (E.A.S.); (E.S.E.); (N.N.V.); (L.V.K.); (O.A.D.); (S.V.K.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 11-5 Mokhovaya St, 125007 Moscow, Russia;
| | - Natalia N. Veiko
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia; (E.A.S.); (E.S.E.); (N.N.V.); (L.V.K.); (O.A.D.); (S.V.K.)
| | - Larisa V. Kameneva
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia; (E.A.S.); (E.S.E.); (N.N.V.); (L.V.K.); (O.A.D.); (S.V.K.)
| | - Olga A. Dolgikh
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia; (E.A.S.); (E.S.E.); (N.N.V.); (L.V.K.); (O.A.D.); (S.V.K.)
| | - Ivan V. Rodionov
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 11-5 Mokhovaya St, 125007 Moscow, Russia;
| | - Mikhail A. Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia; (I.V.M.); (M.A.P.)
| | - Svetlana V. Kostyuk
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia; (E.A.S.); (E.S.E.); (N.N.V.); (L.V.K.); (O.A.D.); (S.V.K.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 11-5 Mokhovaya St, 125007 Moscow, Russia;
| |
Collapse
|
30
|
Delaidelli A, Richner M, Jiang L, van der Laan A, Bergholdt Jul Christiansen I, Ferreira N, Nyengaard JR, Vægter CB, Jensen PH, Mackenzie IR, Sorensen PH, Jan A. α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response. Acta Neuropathol Commun 2021; 9:105. [PMID: 34092244 PMCID: PMC8183088 DOI: 10.1186/s40478-021-01209-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as ‘the master regulator of cellular anti-oxidant response’, both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.
Collapse
|
31
|
Pharmacological Protection against Ischemia-Reperfusion Injury by Regulating the Nrf2-Keap1-ARE Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060823. [PMID: 34063933 PMCID: PMC8224095 DOI: 10.3390/antiox10060823] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is associated with substantial clinical implications, including a wide range of organs such as the brain, kidneys, lungs, heart, and many others. I/R injury (IRI) occurs due to the tissue injury following the reestablishment of blood supply to ischemic tissues, leading to enhanced aseptic inflammation and stimulation of oxidative stress via reactive oxygen and nitrogen species (ROS/RNS). Since ROS causes membrane lipids’ peroxidation, triggers loss of membrane integrity, denaturation of proteins, DNA damage, and cell death, oxidative stress plays a critical part in I/R pathogenesis. Therefore, ROS regulation could be a promising therapeutic strategy for IRI. In this context, Nrf2 (NF-E2-related factor 2) is a transcription factor that regulates the expression of several factors involved in the cellular defense against oxidative stress and inflammation, including heme oxygenase-1 (HO-1). Numerous studies have shown the potential role of the Nrf2/HO-1 pathway in IRI; thus, we will review the molecular aspects of Nrf2/Kelch-like ECH-associated protein 1 (Keap1)/antioxidant response element (ARE) signaling pathway in I/R, and we will also highlight the recent insights into targeting this pathway as a promising therapeutic strategy for preventing IRI.
Collapse
|
32
|
Syed AM, Ram C, Murty US, Sahu BD. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother Res 2021; 35:5068-5102. [PMID: 33894007 DOI: 10.1002/ptr.7137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| |
Collapse
|
33
|
Qu Y, Shan J, Wang S, Chang L, Pu Y, Wang X, Tan Y, Yamamoto M, Hashimoto K. Rapid-acting and long-lasting antidepressant-like action of (R)-ketamine in Nrf2 knock-out mice: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci 2021; 271:439-446. [PMID: 33180200 DOI: 10.1007/s00406-020-01208-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
The transcription nuclear factor-erythroid factor 2-related factor 2 (Nrf2) plays a key role in inflammation that is involved in depression. We previously reported that Nrf2 knock-out (KO) mice exhibit depression-like phenotypes through systemic inflammation. (R)-ketamine, an enantiomer of ketamine, has rapid-acting and long-lasting antidepressant-like effects in rodents. We investigated whether (R)-ketamine can produce antidepressant-like effects in Nrf2 KO mice. Effects of (R)-ketamine on the depression-like phenotypes in Nrf2 KO mice were examined. Furthermore, the role of TrkB in the antidepressant-like actions of (R)-ketamine was also examined. In the tail-suspension test (TST) and forced swimming test (FST), (R)-ketamine (10 mg/kg) significantly attenuated the increased immobility times of TST and FST in the Nrf2 KO mice. In the sucrose preference test (SPT), (R)-ketamine significantly ameliorated the reduced preference of SPT in Nrf2 KO mice. Decreased expression of synaptic proteins (i.e., GluA1 and PSD-95) in the medial prefrontal cortex (mPFC) of Nrf2 KO mice was significantly ameliorated after a single injection of (R)-ketamine. Furthermore, the pre-treatment with the TrkB antagonist ANA-12 (0.5 mg/kg) significantly blocked the rapid and long-lasting antidepressant-like effects of (R)-ketamine in Nrf2 KO mice. Furthermore, ANA-12 significantly antagonized the beneficial effects of (R)-ketamine on decreased expression of synaptic proteins in the mPFC of Nrf2 KO mice. These findings suggest that (R)-ketamine can produce rapid and long-lasting antidepressant-like actions in Nrf2 KO mice via TrkB signaling.
Collapse
Affiliation(s)
- Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Masayuki Yamamoto
- Departments of Medical Biochemistry and Respiratory Medicine, Tohoku University Graduate School of Medicine, SendaiMiyagi, Miyagi, 980-8575, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
34
|
Hussein RM, Sawy DM, Kandeil MA, Farghaly HS. Chlorogenic acid, quercetin, coenzyme Q10 and silymarin modulate Keap1-Nrf2/heme oxygenase-1 signaling in thioacetamide-induced acute liver toxicity. Life Sci 2021; 277:119460. [PMID: 33811899 DOI: 10.1016/j.lfs.2021.119460] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The normal functioning of Kelch-like ECH-associated protein-1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) complex is necessary for the cellular protection against oxidative stress. We investigated the effect of chlorogenic acid (CGA), quercetin (Qt), coenzyme Q10 (Q10) and silymarin on the expression of Keap1/Nrf2 complex and its downstream target; heme oxygenase-1 (HO-1) as well as inflammation and apoptosis in an acute liver toxicity model induced by thioacetamide (TAA). MAIN METHODS Wistar rats were divided into 13 groups: Control, silymarin, CGA, Qt, Q10, TAA (single dose 50 mg/kg, i.p.), TAA + silymarin (400 mg/kg, p.o.), TAA + CGA (100 & 200 mg/kg, p.o.), TAA + Qt (200 &300 mg/kg, p.o.) and TAA+ Q10 (30&50 mg/kg, p.o.) and treated for 8 days. KEY FINDINGS The results showed improved liver functions and hepatic tissue integrity in all tested doses of TAA + silymarin, TAA + CGA, TAA + Qt and TAA + Q10 groups compared to the TAA group. Furthermore, these groups showed significantly lower ROS, malondialdehyde and nitric oxide levels but higher glutathione content and superoxide dismutase activity compared to the TAA group, p < 0.05. In these groups, Keap1 expression was significantly decreased while Nrf2 expression and HO-1 activity were increased. In addition, the number of apoptotic cells and the expression level of TNF-α in the liver tissues were significantly decreased compared to the TAA group. SIGNIFICANCE CGA, Qt, Q10 and silymarin protect against TAA-induced acute liver toxicity via antioxidant, anti-inflammatory, anti-apoptotic activities and regulating Keap1-Nrf2/HO-1 expression.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, 61710 Al-Karak, Jordan; Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt.
| | - Doaa M Sawy
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hatem S Farghaly
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
35
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
36
|
Ogunmoyole T, Dada I, Adebamigbe OA. Ameliorative potentials of Persea americana leaf extract on toxicants - induced oxidative assault in multiple organs of wistar albino rat. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-020-00237-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Persea americana (PA) is a popular medicinal plant in folkloric medicines. The present study therefore investigates the ameliorative potentials of its leaves extract on carbon tetrachloride and rifampicin-induced toxicity in the liver, kidney and heart of albino rat. This was aimed at assessing the potentials of the plant in the management of liver, kidney and heart diseases.
Methodology
Forty (40) rats were randomly divided into eight (8) groups of five animals each. Groups I and II were administered with only distilled water and carbon tetrachloride (CCl4) respectively. Groups III and IV animals received 3.0 ml/kg bw of CCl4 and were treated with the extract at 50 mg/kg bw and 100 mg/kg respectively, while group V received 100 mg/kg bw. of silymarin orally for 14 days. Groups VI animals were administered with rifampicin (250 mg/kg bw.) only, while groups VII and VIII animals received rifampicin and were treated with 50 mg and 100 mg/kg bw of the extract respectively. Activities of creatine kinase, aspartate amino transferase, alanine amino transferase, alkaline phosphatase, superoxide dismutase, catalase as well as levels of urea, uric acid, bilirubin and malonidialdehyde (MDA) were assayed. Lipid profiles and histopathological examination of liver and kidney slices were also performed.
Result
Treatment with P. americana significantly (p < 0.05) restored all deranged biochemical parameters (creatine kinase, aspartate amino transferase, alanine amino transferase, alkaline phosphatase, urea, uric acid, bilirubin, MDA, lipid profile as well as superoxide dismutase and catalase) in a dose-dependent manner. Normal hepatic and renal histoarchitecture were also restored following treatment with P. americana.
Conclusion
Amelioration of distorted cardiac, hepatic and renal histoarchitecture as well as restoration of lipid profile, biomarkers of liver and kidney injury and antioxidant enzymes (catalase and superoxide dismutase) affirm the potential usefulness of P. americana in the management of liver, kidney and heart diseases.
Collapse
|
37
|
Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021; 10:302. [PMID: 33540625 PMCID: PMC7912962 DOI: 10.3390/cells10020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the SARS-CoV-2(severe acute respiratory syndrome-coronavirus-2) pandemic, arace to develop a vaccine has been initiated, considering the massive and rather significant economic and healthcare hits that this virus has caused. The pathophysiology occurring following COVID-19(coronavirus disease-2019) infection has givenhints regarding the supportive and symptomatic treatments to establish for patients, as no specific anti-SARS-CoV-2 is available yet. Patient symptoms vary greatly and range from mild symptoms to severe fatal complications. Supportive treatments include antipyretics, antiviral therapies, different combinations of broad-spectrum antibiotics, hydroxychloroquine and plasma transfusion. Unfortunately, cancer patients are at higher risk of viral infection and more likely to develop serious complications due to their immunocompromised state, the fact that they are already administering multiple medications, as well as combined comorbidity compared to the general population. It may seem impossible to find a drug that possesses both potent antiviral and anticancer effects specifically against COVID-19 infection and its complications and the existing malignancy, respectively. Thymoquinone (TQ) is the most pharmacologically active ingredient in Nigella sativa seeds (black seeds); it is reported to have anticancer, anti-inflammatory and antioxidant effects in various settings. In this review, we will discuss the multiple effects of TQ specifically against COVID-19, its beneficial effects against COVID-19 pathophysiology and multiple-organ complications, its use as an adjuvant for supportive COVID-19 therapy and cancer therapy, and finally, its anticancer effects.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Nada S. Amin
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| |
Collapse
|
38
|
Li R, Wang B, Wu C, Li D, Wu Y, Ye L, Ye L, Chen X, Li P, Yuan Y, Zhang H, Xie L, Li X, Xiao J, Wang J. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis 2021; 12:107. [PMID: 33479232 PMCID: PMC7819983 DOI: 10.1038/s41419-021-03407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Prolonged type 2 diabetes mellitus (T2DM) produces a common complication, peripheral neuropathy, which is accompanied by nerve fiber disorder, axon atrophy, and demyelination. Growing evidence has characterized the beneficial effects of acidic fibroblast growth factor (aFGF) and shown that it relieves hyperglycemia, increases insulin sensitivity, and ameliorates neuropathic impairment. However, there is scarce evidence on the role of aFGF on remodeling of aberrant myelin under hyperglycemia condition. Presently, we observed that the expression of aFGF was rapidly decreased in a db/db T2DM mouse model. Administration of exogenous aFGF was sufficient to block acute demyelination and nerve fiber disorganization. Furthermore, this strong anti-demyelinating effect was most likely dominated by an aFGF-mediated increase of Schwann cell (SC) proliferation and migration as well as suppression of its apoptosis. Mechanistically, the beneficial biological effects of aFGF on SC behavior and abnormal myelin morphology were likely due to the inhibition of hyperglycemia-induced oxidative stress activation, which was most likely activated by kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-derived-like 2 (Nrf2) signaling. Thus, this evidence indicates that aFGF is a promising protective agent for relieving myelin pathology through countering oxidative stress signaling cascades under diabetic conditions.
Collapse
Affiliation(s)
- Rui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China ,grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China ,grid.12981.330000 0001 2360 039XSchool of Chemistry, Sun Yat-sen University, 510275 Guangzhou, Guangdong China
| | - Beini Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Chengbiao Wu
- grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China
| | - Duohui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yanqing Wu
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Libing Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Luxia Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiongjian Chen
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Peifeng Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yuan Yuan
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Hongyu Zhang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Ling Xie
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiaokun Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Xiao
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| |
Collapse
|
39
|
Li J, Xiong C, Xu P, Luo Q, Zhang R. Puerarin induces apoptosis in prostate cancer cells via inactivation of the Keap1/Nrf2/ARE signaling pathway. Bioengineered 2021; 12:402-413. [PMID: 33356808 PMCID: PMC8291817 DOI: 10.1080/21655979.2020.1868733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we examined the antitumor effects of Puerarin (PEU) on androgen-independent (DU145 and PC-3) and androgen-dependent (LNCaP) prostate cancer cells, and explored its potential mechanisms. Supplement with PEU (2.5 μM, 5 μM, and 10 μM) exhibited a marked inhibitory effect against the growth of DU145 and PC-3 cells, especially beyond 24 h, whereas there is only slight growth inhibitory effect on LNCaP cells at the high concentration of 10 μM at 72 h. This loss of cell viability in DU145 and PC-3 cells by PEU was mediated by the induction of apoptosis via up-regulation of Bax and cleaved-caspase-3, but downregulation of Bcl-2. Moreover, more intracellular ROS and LDH production were observed in DU145 and PC-3 cells upon PEU treatment. Meanwhile, the amount of pro-inflammatory cytokines (IL-1β and IL-6) was increased, but the content of anti-inflammatory cytokines IL-10 was attenuated. Additionally, PEU pretreatment resulted in an increase of Keap1 protein expression, and a decline of Nrf2, HO-1 and NQO1 protein expression in DU145 and PC3 cells. The present findings indicated that PEU exerted its antitumor activities toward androgen-independent prostate cancer cells via inactivation of Keap1/NrF2/ARE signaling pathway.
Collapse
Affiliation(s)
- Jianjun Li
- Urology Surgery Department, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China.,Urology Surgery Department, Traditional Chinese Medicine Hospital of Fengjie , Chongqing, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences , Chengdu,China
| | - Pan Xu
- Institute for Viral Hepatitis, Chongqing Medical University, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Qiang Luo
- Institute for Viral Hepatitis, Chongqing Medical University, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Ronggui Zhang
- Urology Surgery Department, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
40
|
Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem 2021; 476:247-259. [PMID: 32918185 DOI: 10.1007/s11010-020-03901-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2) is a key transcription factor known to be involved in maintaining cell redox balance and signal transduction and plays central role in reducing intracellular oxidative stress damage, delaying cell senescence and preventing age-related diseases. However, it has been shown that the level of Nrf2 decreases with age and that the silencing of the Nrf2 gene is associated with the induction of premature senescence. Therefore, a plethora of researchers have focused on elucidating the regulatory mechanism of Nrf2 in the prevention of cell senescence. This complex regulatory mechanism of Nrf2 in the cell senescence process involves coordinated regulation of multiple signaling molecules. After summarizing the function of Nrf2 and its relationship with cell senescence pathway, this review focuses on the recent advances and progress made in elucidating the regulatory mechanism of Nrf2 in the cell senescence process. Additionally, the information collected here may provide insights for further research on Nrf2, in particular, on its regulatory mechanism in the cell senescence process.
Collapse
Affiliation(s)
- Huan Yuan
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Yan Xu
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Yi Luo
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Nuo-Xin Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Jian-Hui Xiao
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China.
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China.
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, People's Republic of China.
| |
Collapse
|
41
|
Lee SY, Kim CH, Hwang BS, Choi KM, Yang IJ, Kim GY, Choi YH, Park C, Jeong JW. Protective Effects of Oenothera biennis against Hydrogen Peroxide-Induced Oxidative Stress and Cell Death in Skin Keratinocytes. Life (Basel) 2020; 10:life10110255. [PMID: 33120909 PMCID: PMC7693688 DOI: 10.3390/life10110255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Oenothera biennis (evening primrose) produces bioactive substances with a diverse range of pharmacological functions. However, it is currently unknown whether extract prepared from the aerial parts of O. biennis (APOB) can protect the skin against oxidative stress. OBJECTIVE The aim of this study is to investigate the protective effects of APOB against oxidative stress-induced damage in human skin keratinocytes (HaCaT) and elucidate the underlying mechanisms. METHODS We pretreated HaCaT cells with various concentrations of APOB or the antioxidant N-acetyl-L-cysteine before applying H2O2. We then compared the cell viability, intracellular reactive oxygen species (ROS) production, and DNA and mitochondrial damage between pretreated and untreated control cells using a range of assays, flow cytometry, and Western blot analysis and also examined the reducing power and DPPH free radical scavenging activity of APOB. RESULTS APOB pretreatment significantly increased cell viability, effectively attenuated H2O2-induced comet tail formation, and inhibited H2O2-induced phosphorylation of the histone γH2AX, as well as the number of apoptotic bodies and Annexin V-positive cells. APOB was found to have high reducing power and DPPH radical scavenging activity and also exhibited scavenging activity against intracellular ROS accumulation and restored the loss of mitochondrial membrane potential caused by H2O2. APOB pretreatment almost totally reversed the enhanced cleavage of caspase-3, the degradation of poly (ADP-ribose)-polymerase (PARP), DNA fragmentation that usually occurs in the presence of H2O2, and increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme that is associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). CONCLUSIONS APOB can protect HaCaT cells from H2O2-induced DNA damage and cell death by blocking cellular damage related to oxidative stress via a mechanism that affects ROS elimination and by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Seung Young Lee
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - Chul Hwan Kim
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - Kyung-Min Choi
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
| | - In-Jun Yang
- Department of Physiology, College of Oriental Medicine, Dongguk University, Gyeongju 780-714, Korea;
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea;
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea
- Correspondence: (C.P.); (J.-W.J.); Tel.: +82-51-890-1530 (C.P.); +82-54-530-0884 (J.-W.J.)
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Korea; (S.Y.L.); (C.H.K.); (B.S.H.); (K.-M.C.)
- Correspondence: (C.P.); (J.-W.J.); Tel.: +82-51-890-1530 (C.P.); +82-54-530-0884 (J.-W.J.)
| |
Collapse
|
42
|
Fei L, Jingyuan X, Fangte L, Huijun D, Liu Y, Ren J, Jinyuan L, Linghui P. Preconditioning with rHMGB1 ameliorates lung ischemia-reperfusion injury by inhibiting alveolar macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. J Transl Med 2020; 18:301. [PMID: 32758258 PMCID: PMC7405465 DOI: 10.1186/s12967-020-02467-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/28/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a complex pathophysiological process that can lead to poor patient outcomes. Inflammasome-dependent macrophage pyroptosis contributes to organ damage caused by ischemia/reperfusion injury. Oxidative stress and antioxidant enzymes also play an important role in LIRI. In this study, we conducted experiments to investigate whether and how preconditioning with rHMGB1 could ameliorate LIRI in a mouse model. METHODS Adult male BALB/c mice were anesthetized, the left hilus pulmonis was clamped, and reperfusion was performed. rHMGB1 was administered via intraperitoneal injection before anesthesia, and brusatol was given intraperitoneally every other day before surgery. We measured pathohistological lung tissue damage, wet/dry mass ratios of pulmonary tissue, and levels of inflammatory mediators to assess the extent of lung injury. Alveolar macrophage pyroptosis was evaluated by measuring release of lactate dehydrogenase, caspase-1 expression was assessed using flow cytometry, and gasdermin-D expression was analyzed using immunofluorescent staining. Levels of oxidative stress markers and antioxidant enzymes were also analyzed. RESULTS Preconditioning with rHMGB1 significantly ameliorated lung injury induced by ischemia-reperfusion, based on measurements of morphology, wet/dry mass ratios, as well as expression of IL-1β, IL-6, NF-κB, and HMGB1 in lung tissues. It also alleviated alveolar macrophage pyroptosis, reduced oxidative stress and restored the activity of antioxidant enzymes. These beneficial effects were mediated at least in part by the Keap1/Nrf2/HO-1 pathway, since they were reversed by the pathway inhibitor brusatol. CONCLUSIONS Preconditioning with rHMGB1 may protect against LIRI by suppressing alveolar macrophage pyroptosis. This appears to involve reduction of oxidative stress and promotion of antioxidant enzyme activity via the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Lin Fei
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiao Jingyuan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Fangte
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dai Huijun
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ye Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Ren
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lin Jinyuan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Pan Linghui
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
43
|
Huang X, Wu J, Liu X, Wu H, Fan J, Yang X. The protective role of Nrf2 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol Mech Methods 2020; 30:580-589. [PMID: 32660364 DOI: 10.1080/15376516.2020.1795765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aristolochic acid nephropathy is a rapidly progressive tubulointerstitial disease induced by aristolochic acid (AA) and effective treatment is lacking. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been proven to be protective in acute kidney injury and chronic kidney disease progression. But its role in AA-induced renal tubular epithelial cell injury has not been determined. This study aimed to investigate the role of Nrf2 in AA-induced renal tubular epithelial cell injury in vitro. NRK-52E cells were incubated with 5-50 μM AA to evaluate cell viability, reactive oxygen species (ROS) production, cell apoptosis/necrosis, and Nrf2 signaling pathway protein levels. We found that AA reduced cell viability and induced cell apoptosis in a time-dependent manner, accompanied by increased production of intracellular ROS. Meanwhile, the expression of Nrf2 signaling pathway proteins was significantly decreased. Downregulation of Nrf2 by Nrf2 siRNA decreased its downstream antioxidant proteins HO-1 and NQO1 and resulted in increased AA-induced ROS production and cell death. On the contrary, overexpression of Nrf2 increased HO-1 and NQO1 expression and resulted in decreased cell death. In conclusion, Nrf2 plays an important role in AA-induced injury. Enhanced Nrf2 signaling pathway could ameliorate AA-induced renal tubular epithelial cell injury, while downregulation of Nrf2 signaling exacerbated the injury.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Juan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China.,Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xinhui Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
44
|
Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020; 9:E659. [PMID: 32722164 PMCID: PMC7463602 DOI: 10.3390/antiox9080659] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The Nrf2-Keap1-ARE pathway is the principal regulator of antioxidant and phase II detoxification genes. Its activation increases the expression of antioxidant and cytoprotective proteins, protecting cells against infections. Nrf2 modulates virus-induced oxidative stress, ROS generation, and disease pathogenesis, which are vital in the viral life cycle. During respiratory viral infections, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an inflammatory process, and oxidative stress of the epithelium lining cells activate the transcription factor Nrf2, which protects cells from oxidative stress and inflammation. Nrf2 reduces angiotensin-converting enzyme 2 (ACE2) receptors expression in respiratory epithelial cells. SARS-CoV2 has a high affinity for ACE2 that works as receptors for coronavirus surface spike glycoprotein, facilitating viral entry. Disease severity may also be modulated by pre-existing conditions, such as impaired immune response, obesity, and age, where decreased level of Nrf2 is a common feature. Consequently, Nrf2 activators may increase Nrf2 levels and enhance antiviral mediators' expression, which could initiate an "antiviral state", priming cells against viral infection. Therefore, this hypothesis paper describes the use of flavonoid supplements combined with vitamin D3 to activate Nrf2, which may be a potential target to prevent and/or decrease SARS-CoV-2 infection severity, reducing oxidative stress and inflammation, enhancing innate immunity, and downregulating ACE2 receptors.
Collapse
Affiliation(s)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
45
|
Lossow K, Kopp JF, Schwarz M, Finke H, Winkelbeiner N, Renko K, Meçi X, Ott C, Alker W, Hackler J, Grune T, Schomburg L, Haase H, Schwerdtle T, Kipp AP. Aging affects sex- and organ-specific trace element profiles in mice. Aging (Albany NY) 2020; 12:13762-13790. [PMID: 32620712 PMCID: PMC7377894 DOI: 10.18632/aging.103572] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
A decline of immune responses and dynamic modulation of the redox status are observed during aging and are influenced by trace elements such as copper, iodine, iron, manganese, selenium, and zinc. So far, analytical studies have focused mainly on single trace elements. Therefore, we aimed to characterize age-specific profiles of several trace elements simultaneously in serum and organs of adult and old mice. This allows for correlating multiple trace element levels and to identify potential patterns of age-dependent alterations. In serum, copper and iodine concentrations were increased and zinc concentration was decreased in old as compared to adult mice. In parallel, decreased copper and elevated iron concentrations were observed in liver. The age-related reduction of hepatic copper levels was associated with reduced expression of copper transporters, whereas the increased hepatic iron concentrations correlated positively with proinflammatory mediators and Nrf2-induced ferritin H levels. Interestingly, the age-dependent inverse regulation of copper and iron was unique for the liver and not observed in any other organ. The physiological importance of alterations in the iron/copper ratio for liver function and the aging process needs to be addressed in further studies.
Collapse
Affiliation(s)
- Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,German Institute of Human Nutrition, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Hannah Finke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany.,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Xheni Meçi
- Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Nuthetal, Germany.,DZHK German Centre for Cardiovascular Research, Berlin, Germany
| | - Wiebke Alker
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Tilman Grune
- German Institute of Human Nutrition, Nuthetal, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| |
Collapse
|
46
|
Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020; 152:650-658. [PMID: 31953150 PMCID: PMC7382945 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) is the leading non-pharmaceutical dietary intervention to improve health- and lifespan in most model organisms. A wide array of cellular pathways is induced in response to CR and CR-mimetics, including the transcriptional activator Nuclear factor erythroid-2-related factor 2 (Nrf2), which is essential in the upregulation of multiple stress-responsive and mitochondrial enzymes. Nrf2 is necessary in tumor protection but is not essential for the lifespan extending properties of CR in outbred mice. Here, we sought to study Nrf2-knockout (KO) mice and littermate controls in male C57BL6/J, an inbred mouse strain. Deletion of Nrf2 resulted in shortened lifespan compared to littermate controls only under ad libitum conditions. CR-mediated lifespan extension and physical performance improvements did not require Nrf2. Metabolic and protein homeostasis and activation of tissue-specific cytoprotective proteins were dependent on Nrf2 expression. These results highlight an important contribution of Nrf2 for normal lifespan and stress response.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA; National Institute on General Medical Sciences, National Institute of Health, Bethesda, MD, 20892, USA
| | - Theresa Dill
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Bethany Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Sophia Levan
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
47
|
Priya Dharshini LC, Vishnupriya S, Sakthivel KM, Rasmi RR. Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cell Signal 2020; 72:109670. [PMID: 32418887 DOI: 10.1016/j.cellsig.2020.109670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Oxidative stress results from the imbalances in the development of reactive oxygen species (ROS) and antioxidants defence system resulting in tissue injury. A key issue resulting in the modulation of ROS is that it alters hosts molecular, structural and functional properties which is accomplished via various signalling pathways which either activate or inhibit numerous transcription factors (TFs). Some of the regulators include Nuclear erythroid-2 related factors (Nrf-2), CCAAT/enhancer-binding protein delta (CEBPD), Activator Protein-1 (AP-1), Hypoxia-inducible factor 1(HIF-1), Nuclear factor κB (NF-κB), Specificity Protein-1 (SP-1) and Forkhead Box class O (FoxO) transcription factors. The expression of these transcription factors are dependent upon the stress signal and are sometimes interlinked. They are highly specific having their own regulation cellular events. Depending upon the transcription factors and better knowledge on the type of the oxidative stress help researchers develop safe, novel targets which can serve as efficient therapeutic targets for several disease conditions.
Collapse
Affiliation(s)
| | - Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India.
| |
Collapse
|
48
|
Fragoulis A, Schenkel J, Herzog M, Schellenberg T, Jahr H, Pufe T, Trautwein C, Kensler TW, Streetz KL, Wruck CJ. Nrf2 Ameliorates DDC-Induced Sclerosing Cholangitis and Biliary Fibrosis and Improves the Regenerative Capacity of the Liver. Toxicol Sci 2020; 169:485-498. [PMID: 30825315 DOI: 10.1093/toxsci/kfz055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Nrf2 pathway protects against oxidative stress and induces regeneration of various tissues. Here, we investigated whether Nrf2 protects from sclerosing cholangitis and biliary fibrosis and simultaneously induces liver regeneration. Diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was fed to Nrf2-KO mice (Nrf2-/-), mice with liver-specific hyperactivated Nrf2 (HKeap1-/-) and wild-type (WT) littermates to induce cholangitis, liver fibrosis, and oval cell expansion. HKeap1-/--mice were protected from almost all DDC-induced injury compared with WT and Nrf2-/-. Liver injury in Nrf2-/- and WT mice was mostly similar, albeit Nrf2-/- suffered more from DDC diet as seen for several parameters. Nrf2 activity was especially important for the expression of the hepatic efflux transporters Abcg2 and Abcc2-4, which are involved in hepatic toxin elimination. Surprisingly, cell proliferation was more enhanced in Nrf2-/-- and HKeap1-/--mice compared with WT. Interestingly, Nrf2-/--mice failed to sufficiently activate oval cell expansion after DDC treatment and showed almost no resident oval cell population under control conditions. The resident oval cell population of untreated HKeap1-/--mice was increased and DDC treatment resulted in a stronger oval cell expansion compared with WT. We provide evidence that Nrf2 activation protects from DDC-induced sclerosing cholangitis and biliary fibrosis. Moreover, our data establish a possible role of Nrf2 in oval cell expansion.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Biology.,Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery
| | | | | | | | | | | | - Christian Trautwein
- Department of Medicine III, Medical Faculty, Uniklinik RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas W Kensler
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Konrad L Streetz
- Department of Medicine III, Medical Faculty, Uniklinik RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
49
|
Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Toxicol Appl Pharmacol 2020; 397:115014. [PMID: 32320792 DOI: 10.1016/j.taap.2020.115014] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI. Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IκB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Fengguang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shaoping Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yicheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Enhui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| |
Collapse
|
50
|
Ischemic Postconditioning Alleviates Intestinal Ischemia-Reperfusion Injury by Enhancing Autophagy and Suppressing Oxidative Stress through the Akt/GSK-3 β/Nrf2 Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6954764. [PMID: 32256957 PMCID: PMC7102478 DOI: 10.1155/2020/6954764] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/26/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Aims Ischemic postconditioning (IPO) has a strong protective effect against intestinal ischemia-reperfusion (IIR) injury that is partly related to autophagy. However, the precise mechanisms involved are unknown. Methods C57BL/6J mice were subjected to unilateral IIR with or without IPO. After 45 min ischemia and 120 min reperfusion, intestinal tissues and blood were collected for examination. HE staining and Chiu's score were used to evaluate pathologic injury. We test markers of intestinal barrier function and oxidative stress. Finally, we used WB to detect the expression of key proteins of autophagy and the Akt/GSK-3β/Nrf2 pathway. Results IPO significantly attenuated IIR injury. Expression levels of LC3 II/I, Beclin-1, and p62 were altered during IIR, indicating that IPO enhanced autophagy. IPO also activated Akt, inhibited GSK-3β/Nrf2 pathway. Conclusion Our study indicates that IPO can ameliorate IIR injury by evoking autophagy, activating Akt, inactivating GSK-3β, and activating Nrf2. These findings may provide novel insights for the alleviation of IIR injury.β/Nrf2 pathway.
Collapse
|