1
|
Scaletti Hutchinson E, Martínez-Carranza M, Fu B, Mäler L, Stenmark P. Structure and membrane interactions of Arabidopsis thaliana DGD2, a glycosyltransferase in the chloroplast membrane. J Biol Chem 2025; 301:108431. [PMID: 40120685 PMCID: PMC12022483 DOI: 10.1016/j.jbc.2025.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Galactolipids are characteristic lipids of the photosynthesis membranes of higher plants and cyanobacteria. Due to their close relationship to the stability of the photosystem protein complexes, the biogenesis of galactolipids has been intensively studied on the genetic and molecular levels. There are two major types of galactolipids in chloroplastic membranes: monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG). Under phosphate-limiting conditions, the amount of DGDG increases dramatically to allow for phosphate salvage from phospholipids. In Arabidopsis thaliana, the membrane-associated glycosyltransferase digalactosyldiacylglycerol synthase 2 (atDGD2) is highly responsive to phosphate starvation and is significantly upregulated during such conditions. The lipid galactosylation reactions are also fundamentally interesting as they require a catalyst that is capable of bringing a hydrophilic and lipophilic substrate together at the solution-membrane phase border. Here, we present the X-ray crystal structure of atDGD2, which is the first reported DGDG synthase structure. AtDGD2 is most structurally similar to functionally unrelated GT-B enzymes. Interestingly, in spite of significant donor substrate binding differences, we identified four amino acids (Gly22, His151, Lys243, and Glu321, atDGD2 numbering) which were entirely conserved between the structurally similar enzymes. We also investigated the membrane interaction kinetics and membrane anchoring mechanism of atDGD2. This demonstrated that atDGD2 is membrane-bound but also showed that membrane binding is highly dynamic. Furthermore, our structural information in context of previous biophysical studies highlights regions of the enzyme exhibiting a high degree of structural plasticity, which we propose to be important for allowing atDGD2 to quickly adapt its activity based on the membrane lipid environment.
Collapse
Affiliation(s)
| | | | - Biao Fu
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
2
|
Peng J, Li W, Yao D, Xia Y, Wang Q, Cai Y, Li S, Cao M, Shen Y, Ma P, Liao R, Zhao J, Qin A, Cao Y. The structural basis for the human procollagen lysine hydroxylation and dual-glycosylation. Nat Commun 2025; 16:2436. [PMID: 40069201 PMCID: PMC11897130 DOI: 10.1038/s41467-025-57768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
The proper assembly and maturation of collagens necessitate the orchestrated hydroxylation and glycosylation of multiple lysyl residues in procollagen chains. Dysfunctions in this multistep modification process can lead to severe collagen-associated diseases. To elucidate the coordination of lysyl processing activities, we determine the cryo-EM structures of the enzyme complex formed by LH3/PLOD3 and GLT25D1/ColGalT1, designated as the KOGG complex. Our structural analysis reveals a tetrameric complex comprising dimeric LH3/PLOD3s and GLT25D1/ColGalT1s, assembled with interactions involving the N-terminal loop of GLT25D1/ColGalT1 bridging another GLT25D1/ColGalT1 and LH3/PLOD3. We further elucidate the spatial configuration of the hydroxylase, galactosyltransferase, and glucosyltransferase sites within the KOGG complex, along with the key residues involved in substrate binding at these enzymatic sites. Intriguingly, we identify a high-order oligomeric pattern characterized by the formation of a fiber-like KOGG polymer assembled through the repetitive incorporation of KOGG tetramers as the biological unit.
Collapse
Affiliation(s)
- Junjiang Peng
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Wenguo Li
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Deqiang Yao
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ying Xia
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Qian Wang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yan Cai
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Shaobai Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Mi Cao
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yafeng Shen
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Peixiang Ma
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| |
Collapse
|
3
|
Laugieri ME, Speciale I, Gimeno A, Lin S, Byers BW, Poveda A, Núñez‐Franco R, Iturrioz I, Moure MJ, Jiménez‐Osés G, Russo‐Krauss I, Notaro A, Van Etten JL, Lowary TL, Jimenez‐Barbero J, De Castro C, Tonetti M, Rojas AL. Unveiling the GT114 family: Structural characterization of A075L, a glycosyltransferase from Paramecium bursaria chlorella virus-1 (PBCV-1). Protein Sci 2024; 33:e5196. [PMID: 39555664 PMCID: PMC11571054 DOI: 10.1002/pro.5196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Protein A075L is a β-xylosyltransferase that participates in producing the core of the N-glycans found in VP54, the major viral capsid protein of Paramecium bursaria chlorella virus-1 (PBCV-1). In this study, we present an X-ray crystallographic analysis of the apo form of A075L, along with its complexes with the sugar donor and with a trisaccharide acceptor. The protein structure shows a typical GT-B folding, with two Rossmann-like fold domains, in which the acceptor substrate binds to the N-terminal region, and the nucleotide-sugar donor binds to the C-terminal region. We propose that the catalytic mechanism follows a direct displacement SN2-like reaction, where Asp73 serves as a catalytic base that deprotonates the incoming nucleophile of the acceptor, facilitating direct displacement of the UDP with the inversion of the anomeric configuration of the acceptor without metal ion dependence, while the interactions with side chains of Arg158 and Arg208 stabilize the developing negative charge. Using isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and molecular dynamics simulations, the catalytic activity and specificity of this enzyme have been unraveled.
Collapse
Affiliation(s)
| | | | - Ana Gimeno
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Sicheng Lin
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Brock W. Byers
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Ana Poveda
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - Reyes Núñez‐Franco
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - Idoia Iturrioz
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - María J. Moure
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - Gonzalo Jiménez‐Osés
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Irene Russo‐Krauss
- Department of Chemical SciencesUniversità di Napoli Federico IINaplesItaly
| | - Anna Notaro
- Department of Agricultural SciencesUniversità di Napoli Federico IIPorticiItaly
| | - James L. Van Etten
- Nebraska Centre for Virology and Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Todd L. Lowary
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Biological ChemistryTaipeiTaiwan
- Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan
| | - Jesús Jimenez‐Barbero
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Cristina De Castro
- Department of Chemical SciencesUniversità di Napoli Federico IINaplesItaly
| | | | - Adriana L. Rojas
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| |
Collapse
|
4
|
Xun SS, Wang GW, Lu SM, Zhou YG. Cooperative Diarylborinic Acid/Chloride-Catalyzed Formal S Ni Reaction of cis-4-Hydroxymethyl-1,2-Cyclopentene Oxides. Org Lett 2024; 26:8350-8355. [PMID: 39325546 DOI: 10.1021/acs.orglett.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A catalytic formal SNi reaction was designed to achieve stereoretentive products for cis-4-hydroxymethyl-1,2-cyclopentene oxides by using diarylborinic acid as a dual role catalyst and chloride as a catalytic transient nucleophile through a double-displacement mechanism. This reaction offers the advantages of a low catalyst loading of 0.1 mol % and wide substrate scope, even including N-substituents. The use of chiral boron acid as a catalyst for this reaction was also attempted.
Collapse
Affiliation(s)
- Shan-Shan Xun
- School of Chemistry and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Gao-Wei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
5
|
Zhu X, Wen S, Gul H, Xu P, Yang Y, Liao X, Ye Y, Xu Z, Zhang X, Wu L. Exploring regulatory network of icariin synthesis in Herba Epimedii through integrated omics analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1409601. [PMID: 38933461 PMCID: PMC11203402 DOI: 10.3389/fpls.2024.1409601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Herba Epimedii's leaves are highly valued in traditional Chinese medicine for their substantial concentration of flavonoids, which play a crucial role in manifesting the plant's therapeutic properties. This study investigated the metabolomic, transcriptomic and proteomic profiles of leaves from two Herba Epimedii cultivars, Epipremnum sagittatum (J) and Epipremnum pubescens (R), at three different developmental stages. Metabolite identification and analysis revealed a total of 1,412 and 1,421 metabolites with known structures were found. Flavonoids made up of 33%, including 10 significant accumulated icariin analogues. Transcriptomic analysis unveiled totally 41,644 differentially expressed genes (DEGs) containing five encoded genes participated in icariin biosynthesis pathways. Totally, 9,745 differentially expressed proteins (DEPs) were found, including Cluster-47248.2.p1 (UDP-glucuronosy/UDP-glucosyltransferase), Cluster-30441.2.p1 (O-glucosyltransferase), and Cluster-28344.9.p1 (anthocyanidin 3-O-glucoside 2 "-O-glucosyltransferase-like) through proteomics analysis which are involved to icariin biosynthesis. Protein-protein interaction (PPI) assay exhibited, totally 12 proteins showing a strong relationship of false discovery rate (FDR) <0.05 with these three proteins containing 2 leucine-rich repeat receptor kinase-like protein SRF7, and 5 methyl jasmonate esterase 1. Multi-omics connection networks uncovered 237 DEGs and 72 DEPs exhibited significant associations with the 10 icariin analogues. Overall, our integrated omics approach provides comprehensive insights into the regulatory network underlying icariin synthesis in Herba Epimedii, offering valuable resources for further research and development in medicinal plant cultivation and pharmaceutical applications.
Collapse
Affiliation(s)
- Xuedong Zhu
- Fuling Academy of Southwest University/Southeast Chongqing Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hameed Gul
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Pan Xu
- Fuling Academy of Southwest University/Southeast Chongqing Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yang Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Ximei Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing, China
| | - Yunling Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zijian Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xiaofang Zhang
- Fuling Academy of Southwest University/Southeast Chongqing Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin Wu
- Fuling Academy of Southwest University/Southeast Chongqing Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
6
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Pérez S. Computational modeling of protein-carbohydrate interactions: Current trends and future challenges. Adv Carbohydr Chem Biochem 2023; 83:133-149. [PMID: 37968037 DOI: 10.1016/bs.accb.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The article leads the reader through an up-to-date presentation of the concepts, developments, and main applications of computational modeling to study protein-carbohydrate interactions. It follows with the presentation of some current issues and perspectives arising from the expected evolution of generic methodological developments in deep learning, immersive analytics, and virtual reality for molecular visualization and data management. Such methodological developments for macromolecular interactions would greatly benefit a wide range of scientific endeavors in the field of carbohydrate chemistry and biochemistry, including the following interrelated efforts dealing with highly crowded media, with examples concerning glycoside transferases, the extracellular matrix, and the exploration of interactions between complex carbohydrates and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Serge Pérez
- Centre de Recherches sur les Macromolécules Végétales, CNRS, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
8
|
Piniello B, Macías-León J, Miyazaki S, García-García A, Compañón I, Ghirardello M, Taleb V, Veloz B, Corzana F, Miyagawa A, Rovira C, Hurtado-Guerrero R. Molecular basis for bacterial N-glycosylation by a soluble HMW1C-like N-glycosyltransferase. Nat Commun 2023; 14:5785. [PMID: 37723184 PMCID: PMC10507012 DOI: 10.1038/s41467-023-41238-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
Soluble HMW1C-like N-glycosyltransferases (NGTs) catalyze the glycosylation of Asn residues in proteins, a process fundamental for bacterial autoaggregation, adhesion and pathogenicity. However, our understanding of their molecular mechanisms is hindered by the lack of structures of enzymatic complexes. Here, we report structures of binary and ternary NGT complexes of Aggregatibacter aphrophilus NGT (AaNGT), revealing an essential dyad of basic/acidic residues located in the N-terminal all α-domain (AAD) that intimately recognizes the Thr residue within the conserved motif Asn0-X+1-Ser/Thr+2. Poor substrates and inhibitors such as UDP-galactose and UDP-glucose mimetics adopt non-productive conformations, decreasing or impeding catalysis. QM/MM simulations rationalize these results, showing that AaNGT follows a SN2 reaction mechanism in which the acceptor asparagine uses its imidic form for catalysis and the UDP-glucose phosphate group acts as a general base. These findings provide key insights into the mechanism of NGTs and will facilitate the design of structure-based inhibitors to treat diseases caused by non-typeable H. influenzae or other Gram-negative bacteria.
Collapse
Affiliation(s)
- Beatriz Piniello
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Javier Macías-León
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Shun Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Mattia Ghirardello
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Víctor Taleb
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Billy Veloz
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Atsushi Miyagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
- Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|
9
|
Chang H, Bai J, Zhang H, Huang R, Chu H, Wang Q, Liu H, Cheng J, Jiang H. Origin and evolution of the main starch biosynthetic enzymes. Synth Syst Biotechnol 2023; 8:462-468. [PMID: 37692203 PMCID: PMC10485787 DOI: 10.1016/j.synbio.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 09/12/2023] Open
Abstract
Starch, a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications. Despite the starch biosynthetic pathway's main enzymes have been characterized, their origin and evolution remained a subject of debate. In this study, we conducted the comprehensive phylogenetic and structural analysis of three types of starch biosynthetic enzymes: starch synthase (SS), starch branching enzyme (SBE) and isoamylase-type debranching enzyme (ISA) from 51,151 annotated genomes. Our findings provide valuable insights into the possible scenario for the origin and evolution of the starch biosynthetic pathway. Initially, the ancestor of SBE can be traced back to an unidentified bacterium that existed before the formation of the last eukaryotic common ancestor (LECA) via horizontal gene transfer (HGT). This transfer event likely provided the eukaryote ancestor with the ability to synthesize glycogen. Furthermore, during the emergence of Archaeplastida, one clade of SS was transferred from Deltaproteobacteria by HGT, while ISA and the other clade of SS originated from Chlamydiae through endosymbiosis gene transfer (EGT). Both these transfer events collectively contributed to the establishment of the original starch biosynthetic pathway. Subsequently, after the divergence of Viridiplantae from Rhodophyta, all three enzymes underwent multiple duplications and N-terminus extension domain modifications, resulting in the formation of functionally specialized isoforms and ultimately leading to the complete starch biosynthetic pathway. By shedding light on the evolutionary origins of key enzymes involved in the starch biosynthetic pathway, this study provides important insights into the evolutionary events of plants.
Collapse
Affiliation(s)
- Hong Chang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jie Bai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hejian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Rong Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Huanyu Chu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hao Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
10
|
Abstract
Glycosyltransferases (GTs) attach sugar molecules to a broad range of acceptors, generating a remarkable amount of structural diversity in biological systems. GTs are classified as either "retaining" or "inverting" enzymes. Most retaining GTs typically use an SNi mechanism. In a recent article in the JBC, Doyle et al. demonstrate a covalent intermediate in the dual-module KpsC GT (GT107) supporting a double displacement mechanism.
Collapse
Affiliation(s)
- Marcelo E Guerin
- Department of Structural and Molecular Biology, Structural Glycobiology Laboratory, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
Mattoteia D, Chiapparino A, Fumagalli M, De Marco M, De Giorgi F, Negro L, Pinnola A, Faravelli S, Roscioli T, Scietti L, Forneris F. Identification of Regulatory Molecular "Hot Spots" for LH/PLOD Collagen Glycosyltransferase Activity. Int J Mol Sci 2023; 24:11213. [PMID: 37446392 DOI: 10.3390/ijms241311213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.
Collapse
Affiliation(s)
- Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
12
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
In silico modelling of the function of disease-related CAZymes. Essays Biochem 2023; 67:355-372. [PMID: 36912236 PMCID: PMC10154626 DOI: 10.1042/ebc20220218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/14/2023]
Abstract
In silico modelling of proteins comprises a diversity of computational tools aimed to obtain structural, electronic, and/or dynamic information about these biomolecules, capturing mechanistic details that are challenging to experimental approaches, such as elusive enzyme-substrate complexes, short-lived intermediates, and reaction transition states (TS). The present article gives the reader insight on the use of in silico modelling techniques to understand complex catalytic reaction mechanisms of carbohydrate-active enzymes (CAZymes), along with the underlying theory and concepts that are important in this field. We start by introducing the significance of carbohydrates in nature and the enzymes that process them, CAZymes, highlighting the conformational flexibility of their carbohydrate substrates. Three commonly used in silico methods (classical molecular dynamics (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and enhanced sampling techniques) are described for nonexpert readers. Finally, we provide three examples of the application of these methods to unravel the catalytic mechanisms of three disease-related CAZymes: β-galactocerebrosidase (GALC), responsible for Krabbe disease; α-mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5), involved in cancer; and O-fucosyltransferase 1 (POFUT1), involved in several human diseases such as leukemia and the Dowling-Degos disease.
Collapse
|
14
|
Forrester TJB, Ovchinnikova OG, Li Z, Kitova EN, Nothof JT, Koizumi A, Klassen JS, Lowary TL, Whitfield C, Kimber MS. The retaining β-Kdo glycosyltransferase WbbB uses a double-displacement mechanism with an intermediate adduct rearrangement step. Nat Commun 2022; 13:6277. [PMID: 36271007 PMCID: PMC9587256 DOI: 10.1038/s41467-022-33988-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
WbbB, a lipopolysaccharide O-antigen synthesis enzyme from Raoultella terrigena, contains an N-terminal glycosyltransferase domain with a highly modified architecture that adds a terminal β-Kdo (3-deoxy-D-manno-oct-2-ulosonic acid) residue to the O-antigen saccharide, with retention of stereochemistry. We show, using mass spectrometry, that WbbB forms a covalent adduct between the catalytic nucleophile, Asp232, and Kdo. We also determine X-ray structures for the CMP-β-Kdo donor complex, for Kdo-adducts with D232N and D232C WbbB variants, for a synthetic disaccharide acceptor complex, and for a ternary complex with both a Kdo-adduct and the acceptor. Together, these structures show that the enzyme-linked Asp232-Kdo adduct rotates to reposition the Kdo into a second sub-site, which then transfers Kdo to the acceptor. Retaining glycosyltransferases were thought to use only the front-side SNi substitution mechanism; here we show that retaining glycosyltransferases can also potentially use double-displacement mechanisms, but incorporating an additional catalytic subsite requires rearrangement of the protein's architecture.
Collapse
Affiliation(s)
- Taylor J. B. Forrester
- grid.34429.380000 0004 1936 8198Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1 Canada
| | - Olga G. Ovchinnikova
- grid.34429.380000 0004 1936 8198Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1 Canada
| | - Zhixiong Li
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 Canada
| | - Elena N. Kitova
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 Canada
| | - Jeremy T. Nothof
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 Canada
| | - Akihiko Koizumi
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 Canada
| | - John S. Klassen
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 Canada
| | - Todd L. Lowary
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 Canada ,grid.506934.d0000 0004 0633 7878Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Biochemical Sciences, National Taiwan University, Section 4, #1, Roosevelt Road, Taipei, 10617 Taiwan
| | - Chris Whitfield
- grid.34429.380000 0004 1936 8198Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1 Canada
| | - Matthew S. Kimber
- grid.34429.380000 0004 1936 8198Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1 Canada
| |
Collapse
|
15
|
Paparella A, Cahill SM, Aboulache BL, Schramm VL. Clostridioides difficile TcdB Toxin Glucosylates Rho GTPase by an S Ni Mechanism and Ion Pair Transition State. ACS Chem Biol 2022; 17:2507-2518. [PMID: 36038138 PMCID: PMC9486934 DOI: 10.1021/acschembio.2c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Toxins TcdA and TcdB from Clostridioides difficile glucosylate human colon Rho GTPases. TcdA and TcdB glucosylation of RhoGTPases results in cytoskeletal changes, causing cell rounding and loss of intestinal integrity. Clostridial toxins TcdA and TcdB are proposed to catalyze glucosylation of Rho GTPases with retention of stereochemistry from UDP-glucose. We used kinetic isotope effects to analyze the mechanisms and transition-state structures of the glucohydrolase and glucosyltransferase activities of TcdB. TcdB catalyzes Rho GTPase glucosylation with retention of stereochemistry, while hydrolysis of UDP-glucose by TcdB causes inversion of stereochemistry. Kinetic analysis revealed TcdB glucosylation via the formation of a ternary complex with no intermediate, supporting an SNi mechanism with nucleophilic attack and leaving group departure occurring on the same face of the glucose ring. Kinetic isotope effects combined with quantum mechanical calculations revealed that the transition states of both glucohydrolase and glucosyltransferase activities of TcdB are highly dissociative. Specifically, the TcdB glucosyltransferase reaction proceeds via an SNi mechanism with the formation of a distinct oxocarbenium phosphate ion pair transition state where the glycosidic bond to the UDP leaving group breaks prior to attack of the threonine nucleophile from Rho GTPase.
Collapse
|
16
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
17
|
Coines J, Cuxart I, Teze D, Rovira C. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. J Phys Chem B 2022; 126:802-812. [PMID: 35073079 PMCID: PMC8819650 DOI: 10.1021/acs.jpcb.1c09536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Glycoside hydrolases
and glycosyltransferases are the main classes
of enzymes that synthesize and degrade carbohydrates, molecules essential
to life that are a challenge for classical chemistry. As such, considerable
efforts have been made to engineer these enzymes and make them pliable
to human needs, ranging from directed evolution to rational design,
including mechanism engineering. Such endeavors fall short and are
unreported in numerous cases, while even success is a necessary but
not sufficient proof that the chemical rationale behind the design
is correct. Here we review some of the recent work in CAZyme mechanism
engineering, showing that computational simulations are instrumental
to rationalize experimental data, providing mechanistic insight into
how native and engineered CAZymes catalyze chemical reactions. We
illustrate this with two recent studies in which (i) a glycoside hydrolase
is converted into a glycoside phosphorylase and (ii) substrate specificity
of a glycosyltransferase is engineered toward forming O-, N-, or S-glycosidic bonds.
Collapse
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - David Teze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
18
|
Hassan BA, Milicaj J, Ramirez-Mondragon CA, Sham YY, Taylor EA. Ligand-Induced Conformational and Dynamical Changes in a GT-B Glycosyltransferase: Molecular Dynamics Simulations of Heptosyltransferase I Complexes. J Chem Inf Model 2022; 62:324-339. [PMID: 34967618 PMCID: PMC8864558 DOI: 10.1021/acs.jcim.1c00868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the dynamical motions and ligand recognition motifs of heptosyltransferase I (HepI) can be critical to discerning the behavior of other glycosyltransferase (GT) enzymes. Prior studies in our lab have demonstrated that GTs in the GT-B structural class, which are characterized by their connection of two Rossman-like domains by a linker region, have conserved structural fold and dynamical motions, despite low sequence homology, therefore making discoveries found in HepI transferable to other GT-B enzymes. Through molecular dynamics simulations and ligand binding free energy analysis of HepI in the apo and bound complexes (for all kinetically relevant combinations of the native substrates/products), we have determined the energetically favored enzymatic pathway for ligand binding and release. Our principal component, dynamic cross correlation, and network analyses of the simulations have revealed correlated motions involving residues within the N-terminal domain communicating with C-terminal domain residues via both proximal amino acid residues and also functional groups of the bound substrates. Analyses of the structural changes, energetics of substrate/product binding, and changes in pKa have elucidated a variety of inter and intradomain interactions that are critical for enzyme catalysis. These data corroborate our experimental observations of protein conformational changes observed in both presteady state kinetic and circular dichroism analyses of HepI. These simulations provided invaluable structural insights into the regions involved in HepI conformational rearrangement upon ligand binding. Understanding the specific interactions governing conformational changes is likely to enhance our efforts to develop novel dynamics disrupting inhibitors against GT-B structural enzymes in the future.
Collapse
Affiliation(s)
- Bakar A. Hassan
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jozafina Milicaj
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Carlos Andres Ramirez-Mondragon
- Department of Integrative Biology and Physiology, Medical School and Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuk Yin Sham
- Department of Integrative Biology and Physiology, Medical School and Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erika A. Taylor
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
19
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Quirke JCK, Crich D. Side Chain Conformation Restriction in the Catalysis of Glycosidic Bond Formation by Leloir Glycosyltransferases, Glycoside Phosphorylases, and Transglycosidases. ACS Catal 2021; 11:5069-5078. [PMID: 34367723 PMCID: PMC8336929 DOI: 10.1021/acscatal.1c00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate side chain conformation is an important factor in the control of reactivity at the anomeric center, ie, in the making and breaking of glycosidic bonds, whether chemically or, for hydrolysis, by glycoside hydrolases. In nature glycosidic bond formation is catalyzed out by glycosyltransferases (GTs), glycoside phosphoryases, and transglycosidases. By analysis of 118 crystal structures of sugar nucleotide dependent (Leloir) GTs, 136 crystal structures of glycoside phosphorylases, and 54 crystal structures of transglycosidases bound to hexopyranosides or their analogs at the donor site (-1 site), we determined that most enzymes that catalyze glycoside synthesis, be they GTs, glycoside phosphorylases or transglycosidases, restrict their substrate side chains to the most reactive gauche,gauche (gg) conformation to achieve maximum stabilization of the oxocarbenium ion-like transition state for glycosyl transfer. The galactose series deviates from this trend, with α-galactosyltransferases preferentially restricting their substrates to the second-most reactive gauche,trans (gt) conformation, and β-galactosyltransferases favoring the least reactive trans,gauche (tg) conformation. This insight will help progress the design and development of improved, conformationally-restricted GT inhibitors that take advantage of these inherent side chain preferences.
Collapse
Affiliation(s)
- Jonathan C. K. Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
21
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
22
|
Teze D, Coines J, Fredslund F, Dubey KD, Bidart GN, Adams PD, Dueber JE, Svensson B, Rovira C, Welner DH. O-/N-/S-Specificity in Glycosyltransferase Catalysis: From Mechanistic Understanding to Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Joan Coines
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Folmer Fredslund
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kshatresh D. Dubey
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Gonzalo N. Bidart
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Paul D. Adams
- Department of Bioengineering, University of California, Berkeley, California 94704, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John E. Dueber
- Department of Bioengineering, University of California, Berkeley, California 94704, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Carme Rovira
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08018, Spain
| | - Ditte H. Welner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
24
|
Hira D, Onoue T, Oka T. Structural basis for the core-mannan biosynthesis of cell wall fungal-type galactomannan in Aspergillus fumigatus. J Biol Chem 2020; 295:15407-15417. [PMID: 32873705 DOI: 10.1074/jbc.ra120.013742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/17/2020] [Indexed: 11/06/2022] Open
Abstract
Fungal cell walls and their biosynthetic enzymes are potential targets for novel antifungal agents. Recently, two mannosyltransferases, namely core-mannan synthases A (CmsA/Ktr4) and B (CmsB/Ktr7), were found to play roles in the core-mannan biosynthesis of fungal-type galactomannan. CmsA/Ktr4 is an α-(1→2)-mannosyltransferase responsible for α-(1→2)-mannan biosynthesis in fungal-type galactomannan, which covers the cell surface of Aspergillus fumigatus Strains with disrupted cmsA/ktr4 have been shown to exhibit strongly suppressed hyphal elongation and conidiation alongside reduced virulence in a mouse model of invasive aspergillosis, indicating that CmsA/Ktr4 is a potential novel antifungal candidate. In this study we present the 3D structures of the soluble catalytic domain of CmsA/Ktr4, as determined by X-ray crystallography at a resolution of 1.95 Å, as well as the enzyme and Mn2+/GDP complex to 1.90 Å resolution. The CmsA/Ktr4 protein not only contains a highly conserved binding pocket for the donor substrate, GDP-mannose, but also has a unique broad cleft structure formed by its N- and C-terminal regions and is expected to recognize the acceptor substrate, a mannan chain. Based on these crystal structures, we also present a 3D structural model of the enzyme-substrate complex generated using docking and molecular dynamics simulations with α-Man-(1→6)-α-Man-(1→2)-α-Man-OMe as the model structure for the acceptor substrate. This predicted enzyme-substrate complex structure is also supported by findings from single amino acid substitution CmsA/Ktr4 mutants expressed in ΔcmsA/ktr4 A. fumigatus cells. Taken together, these results provide basic information for developing specific α-mannan biosynthesis inhibitors for use as pharmaceuticals and/or pesticides.
Collapse
Affiliation(s)
- Daisuke Hira
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.
| | - Takuya Onoue
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.
| |
Collapse
|
25
|
Kóňa J. How inverting β-1,4-galactosyltransferase-1 can quench a high charge of the by-product UDP 3- in catalysis: a QM/MM study of enzymatic reaction with native and UDP-5' thio galactose substrates. Org Biomol Chem 2020; 18:7585-7596. [PMID: 32945815 DOI: 10.1039/d0ob01490g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The catalysis of inverting glycosyltransferases consists of several biophysical and biochemical processes during which the transfer of a sugar residue from the purine phosphate donor substrate to an acceptor substrate occurs with stereo-inversion of the anomeric C1 center at a product. During catalysis a highly charged phosphate by-product (UDP3-) is formed and a mechanism of how the enzyme stabilizes it back to the UDP2- form is not known. Using methods of molecular modeling (hybrid DFT-QM/MM calculations) we proposed and validated a catalytic mechanism of bovine inverting β-1,4-galactosyltransferase-1 (β4Gal-T1) with native (UDP-galactose) and thio donor substrates (UDP-5' thio galactose). We focused on three aspects of the mechanism not yet investigated: (i) the formation of an oxocarbenium ion intermediate, which was only found for the retaining glycosyltransferases for the time being; (ii) the mechanism of stabilization of a highly charged phosphate by-product (UDP3-) back to its standard in vivo form (UDP2-); (iii) explanation for why in experimental measurements the rate of catalysis with the thio donor substrate is only 8% of the rate of that with the natural substrate. To understand the differences in the interaction patterns between the complexes enzyme : UDP-Gal and enzyme : UDP-5S-Gal, fragmented molecular orbital (FMO) decomposition energy analysis was carried out at the DFT level.
Collapse
Affiliation(s)
- J Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovak Republic.
| |
Collapse
|
26
|
Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity. Biochem Soc Trans 2020; 48:1583-1598. [DOI: 10.1042/bst20191140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022]
Abstract
A prominent attribute of chemical structure in microbial and plant natural products is aromatic C-glycosylation. In plants, various flavonoid natural products have a β-C-d-glucosyl moiety attached to their core structure. Natural product C-glycosides have attracted significant attention for their own unique bioactivity as well as for representing non-hydrolysable analogs of the canonical O-glycosides. The biosynthesis of natural product C-glycosides is accomplished by sugar nucleotide-dependent (Leloir) glycosyltransferases. Here, we provide an overview on the C-glycosyltransferases of microbial, plant and insect origin that have been biochemically characterized. Despite sharing basic evolutionary relationships, as evidenced by their common membership to glycosyltransferase family GT-1 and conserved GT-B structural fold, the known C-glycosyltransferases are diverse in the structural features that govern their reactivity, selectivity and specificity. Bifunctional glycosyltransferases can form C- and O-glycosides dependent on the structure of the aglycon acceptor. Recent crystal structures of plant C-glycosyltransferases and di-C-glycosyltransferases complement earlier structural studies of bacterial enzymes and provide important molecular insight into the enzymatic discrimination between C- and O-glycosylation. Studies of enzyme structure and mechanism converge on the view of a single displacement (SN2)-like mechanism of enzymatic C-glycosyl transfer, largely analogous to O-glycosyl transfer. The distinction between reactions at the O- or C-acceptor atom is achieved through the precise positioning of the acceptor relative to the donor substrate in the binding pocket. Nonetheless, C-glycosyltransferases may differ in the catalytic strategy applied to induce nucleophilic reactivity at the acceptor carbon. Evidence from the mutagenesis of C-glycosyltransferases may become useful in engineering these enzymes for tailored reactivity.
Collapse
|
27
|
Del Arco J, Perona A, González L, Fernández-Lucas J, Gago F, Sánchez-Murcia PA. Reaction mechanism of nucleoside 2'-deoxyribosyltransferases: free-energy landscape supports an oxocarbenium ion as the reaction intermediate. Org Biomol Chem 2020; 17:7891-7899. [PMID: 31397456 DOI: 10.1039/c9ob01315f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Insight into the catalytic mechanism of Lactobacillus leichmannii nucleoside 2'-deoxyribosyltransferase (LlNDT) has been gained by calculating a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape of the reaction within the enzyme active site. Our results support an oxocarbenium species as the reaction intermediate and thus an SN1 reaction mechanism in this family of bacterial enzymes. Our mechanistic proposal is validated by comparing experimental kinetic data on the impact of the single amino acid replacements Tyr7, Glu98 and Met125 with Ala, Asp and Ala/norLeu, respectively, and accounts for the specificity shown by this enzyme on a non-natural substrate. This work broadens our understanding of enzymatic C-N bond cleavage and C-N bond formation.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, European University of Madrid, Villaviciosa de Odón, Spain
| | - Almudena Perona
- Applied Biotechnology Group, European University of Madrid, Villaviciosa de Odón, Spain
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, Währinger Str. 17, A-1090 University of Vienna, Vienna, Austria.
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, European University of Madrid, Villaviciosa de Odón, Spain and Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Colombia
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, Währinger Str. 17, A-1090 University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 2019; 15:853-864. [PMID: 31427814 DOI: 10.1038/s41589-019-0350-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology.
Collapse
|
29
|
Metadynamics to Enhance Sampling in Biomolecular Simulations. Methods Mol Biol 2019. [PMID: 31396904 DOI: 10.1007/978-1-4939-9608-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Molecular dynamics is a powerful simulation method to provide detailed atomic-scale insight into a range of biological processes including protein folding, biochemical reactions, ligand binding, and many others. Over the last several decades, enhanced sampling methods have been developed to address the large separation in time scales between a molecular dynamics simulation (usually microseconds or shorter) and the time scales of biological processes (often orders of magnitude longer). This chapter specifically focuses on the metadynamics family of methods, which achieves enhanced sampling through the introduction of a history-dependent bias potential that is based on one or more slow degrees of freedom, called collective variables. We introduce the method and its recent variants related to biomolecular studies and then discuss frontier areas of the method. A large part of this chapter is devoted to helping new users of the method understand how to choose metadynamics parameters properly and apply the method to their system of interest.
Collapse
|
30
|
Royer CJ, Cook PD. A structural and functional analysis of the glycosyltransferase BshA from Staphylococcus aureus: Insights into the reaction mechanism and regulation of bacillithiol production. Protein Sci 2019; 28:1083-1094. [PMID: 30968475 DOI: 10.1002/pro.3617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
Bacillithiol is a glucosamine-derived antioxidant found in several pathogenic Gram-positive bacteria. The compound is involved in maintaining the appropriate redox state within the cell as well as detoxifying foreign agents like the antibiotic fosfomycin. Bacillithiol is produced via the action of three enzymes, including BshA, a retaining GT-B glycosyltransferase that utilizes UDP-N-acetylglucosamine and l-malate to produce N-acetylglucosaminyl-malate. Recent studies suggest that retaining GT-B glycosyltransferases like BshA utilize a substrate-assisted mechanism that goes through an SN i-like transition state. In a previous study, we relied on X-ray crystallography as well as computational simulations to hypothesize the manner in which substrates would bind the enzyme, but several questions about substrate binding and the role of one of the amino acid residues persisted. Another study demonstrated that BshA might be subject to feedback inhibition by bacillithiol, but this phenomenon was not analyzed further to determine the exact mechanism of inhibition. Here we present X-ray crystallographic structures and steady-state kinetics results that help elucidate both of these issues. Our ligand-bound crystal structures demonstrate that the active site provides an appropriate steric and geometric arrangement of ligands to facilitate the substrate-assisted mechanism. Finally, we show that bacillithiol is competitive for UDP-N-acetylglucosamine with a Ki value near 120-130 μM and likely binds within the BshA active site, suggesting that bacillithiol modulates BshA activity via feedback inhibition. The work presented here furthers our understanding of bacillithiol metabolism and can aid in the development of inhibitors to counteract resistance to antibiotics such as fosfomycin.
Collapse
Affiliation(s)
| | - Paul D Cook
- Department of Chemistry, Grand Valley State University, Allendale, Michigan
| |
Collapse
|
31
|
Limb MAL, Suardíaz R, Grant IM, Mulholland AJ. Quantum Mechanics/Molecular Mechanics Simulations Show Saccharide Distortion is Required for Reaction in Hen Egg-White Lysozyme. Chemistry 2019; 25:764-768. [PMID: 30347479 DOI: 10.1002/chem.201805250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 01/07/2023]
Abstract
Hybrid quantum mechanics/molecular mechanics (QM/MM) calculations on lysozyme show significant distortion of the bound saccharide is required to facilitate the catalytic reaction.
Collapse
Affiliation(s)
- Michael A L Limb
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS81TS, UK
| | - Reynier Suardíaz
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS81TS, UK
| | - Ian M Grant
- Present address: Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Adrian J Mulholland
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS81TS, UK
| |
Collapse
|
32
|
Esposito D, Günster RA, Martino L, El Omari K, Wagner A, Thurston TLM, Rittinger K. Structural basis for the glycosyltransferase activity of the Salmonella effector SseK3. J Biol Chem 2018; 293:5064-5078. [PMID: 29449376 PMCID: PMC5892559 DOI: 10.1074/jbc.ra118.001796] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Indexed: 01/03/2023] Open
Abstract
The Salmonella-secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an N-acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating DXD motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free N-acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine N-glycosylation reaction. Homology models of SseK1, SseK2, and the Escherichia coli orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine N-glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors.
Collapse
Affiliation(s)
- Diego Esposito
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Regina A Günster
- the Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Luigi Martino
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Kamel El Omari
- the Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Armin Wagner
- the Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Teresa L M Thurston
- the Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Katrin Rittinger
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom,
| |
Collapse
|
33
|
Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly. Sci Rep 2018. [PMID: 29515200 PMCID: PMC5841429 DOI: 10.1038/s41598-018-22527-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lytic transglycosylases (LTs) catalyze the non-hydrolytic cleavage of the bacterial cell wall by an intramolecular transacetalization reaction. This reaction is critically and broadly important in modifications of the bacterial cell wall in the course of its biosynthesis, recycling, manifestation of virulence, insertion of structural entities such as the flagellum and the pili, among others. The first QM/MM analysis of the mechanism of reaction of an LT, that for the Escherichia coli MltE, is undertaken. The study reveals a conformational itinerary consistent with an oxocarbenium-like transition state, characterized by a pivotal role for the active-site glutamic acid in proton transfer. Notably, an oxazolinium intermediate, as a potential intermediate, is absent. Rather, substrate-assisted catalysis is observed through a favorable dipole provided by the N-acetyl carbonyl group of MurNAc saccharide. This interaction stabilizes the incipient positive charge development in the transition state. This mechanism coincides with near-synchronous acetal cleavage and acetal formation.
Collapse
|
34
|
Jaña GA, Mendoza F, Osorio MI, Alderete JB, Fernandes PA, Ramos MJ, Jiménez VA. A QM/MM approach on the structural and stereoelectronic factors governing glycosylation by GTF-SI fromStreptococcus mutans. Org Biomol Chem 2018; 16:2438-2447. [DOI: 10.1039/c8ob00284c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript contains novel insights into the reaction mechanism catalyzed by GTF-SI. Structural and electronic features of the system are revealed, such as the strong hydrogen bond depicted above.
Collapse
Affiliation(s)
- Gonzalo A. Jaña
- Departamento de CienciasQuímicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Sede Concepción
- Talcahuano
| | - Fernanda Mendoza
- Departamento de CienciasQuímicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Sede Concepción
- Talcahuano
| | - Manuel I. Osorio
- Departamento de CienciasQuímicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Sede Concepción
- Talcahuano
| | - Joel B. Alderete
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Concepción
- Concepción
- Chile
| | - Pedro A. Fernandes
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Maria J. Ramos
- UCIBIO
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
| | - Verónica A. Jiménez
- Departamento de CienciasQuímicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Sede Concepción
- Talcahuano
| |
Collapse
|
35
|
Trnka T, Tvaroška I, Koča J. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions. J Chem Theory Comput 2017; 14:291-302. [DOI: 10.1021/acs.jctc.7b00870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Igor Tvaroška
- Institute
of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovak Republic
| | | |
Collapse
|
36
|
Eichler J, Imperiali B. Stereochemical Divergence of Polyprenol Phosphate Glycosyltransferases. Trends Biochem Sci 2017; 43:10-17. [PMID: 29183665 DOI: 10.1016/j.tibs.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023]
Abstract
In the three domains of life, lipid-linked glycans contribute to various cellular processes ranging from protein glycosylation to glycosylphosphatidylinositol anchor biosynthesis to peptidoglycan assembly. In generating many of these glycoconjugates, phosphorylated polyprenol-based lipids are charged with single sugars by polyprenol phosphate glycosyltransferases. The resultant substrates serve as glycosyltransferase donors, complementing the more common nucleoside diphosphate sugars. It had been accepted that these polyprenol phosphate glycosyltransferases acted similarly, given their considerable sequence homology. Recent findings, however, suggest that matters may not be so simple. In this Opinion we propose that the stereochemistry of sugar addition by polyprenol phosphate glycosyltransferases is not conserved across evolution, even though the GT-A fold that characterizes such enzymes is omnipresent.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Cote JM, Taylor EA. The Glycosyltransferases of LPS Core: A Review of Four Heptosyltransferase Enzymes in Context. Int J Mol Sci 2017; 18:E2256. [PMID: 29077008 PMCID: PMC5713226 DOI: 10.3390/ijms18112256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Bacterial antibiotic resistance is a rapidly expanding problem in the world today. Functionalization of the outer membrane of Gram-negative bacteria provides protection from extracellular antimicrobials, and serves as an innate resistance mechanism. Lipopolysaccharides (LPS) are a major cell-surface component of Gram-negative bacteria that contribute to protecting the bacterium from extracellular threats. LPS is biosynthesized by the sequential addition of sugar moieties by a number of glycosyltransferases (GTs). Heptosyltransferases catalyze the addition of multiple heptose sugars to form the core region of LPS; there are at most four heptosyltransferases found in all Gram-negative bacteria. The most studied of the four is HepI. Cells deficient in HepI display a truncated LPS on their cell surface, causing them to be more susceptible to hydrophobic antibiotics. HepI-IV are all structurally similar members of the GT-B structural family, a class of enzymes that have been found to be highly dynamic. Understanding conformational changes of heptosyltransferases are important to efficiently inhibiting them, but also contributing to the understanding of all GT-B enzymes. Finding new and smarter methods to inhibit bacterial growth is crucial, and the Heptosyltransferases may provide an important model for how to inhibit many GT-B enzymes.
Collapse
Affiliation(s)
- Joy M Cote
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA.
| | - Erika A Taylor
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
38
|
Rojas-Cervellera V, Raich L, Akola J, Rovira C. The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster. NANOSCALE 2017; 9:3121-3127. [PMID: 28210717 DOI: 10.1039/c6nr08498b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The labeling of proteins with heavy atom clusters is of paramount importance in biomedical research, but its detailed molecular mechanism remains unknown. Here we uncover it for the particular case of the anti-influenza N9 neuraminidase NC10 antibody against a glutathione-coated gold cluster by means of ab initio QM/MM calculations. We show that the labeling reaction follows an associative double SN2-like reaction mechanism, involving a proton transfer, with low activation barriers only if one of the two distinct peptide/peptidic ligands (the one that occupies the side position) is substituted. Positively charged residues in the vicinity of the incoming thiol result in strong interactions between the antibody and the AuMPC, favoring the ligand exchange reaction for suitable protein mutants. These results pave the way for future investigations aimed at engineering biomolecules to increase their reactivity towards a desired gold atom cluster.
Collapse
Affiliation(s)
- Víctor Rojas-Cervellera
- Departament de Química Inorgànica i Orgànica (Secció Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Lluís Raich
- Departament de Química Inorgànica i Orgànica (Secció Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Jaakko Akola
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland and COMP Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland and Department of Physics. Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain. and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08020 Barcelona, Spain
| |
Collapse
|
39
|
Agirre J. Strategies for carbohydrate model building, refinement and validation. Acta Crystallogr D Struct Biol 2017; 73:171-186. [PMID: 28177313 PMCID: PMC5297920 DOI: 10.1107/s2059798316016910] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Sugars are the most stereochemically intricate family of biomolecules and present substantial challenges to anyone trying to understand their nomenclature, reactions or branched structures. Current crystallographic programs provide an abstraction layer allowing inexpert structural biologists to build complete protein or nucleic acid model components automatically either from scratch or with little manual intervention. This is, however, still not generally true for sugars. The need for carbohydrate-specific building and validation tools has been highlighted a number of times in the past, concomitantly with the introduction of a new generation of experimental methods that have been ramping up the production of protein-sugar complexes and glycoproteins for the past decade. While some incipient advances have been made to address these demands, correctly modelling and refining carbohydrates remains a challenge. This article will address many of the typical difficulties that a structural biologist may face when dealing with carbohydrates, with an emphasis on problem solving in the resolution range where X-ray crystallography and cryo-electron microscopy are expected to overlap in the next decade.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| |
Collapse
|
40
|
Blanco Capurro JI, Hopkins CW, Pierdominici Sottile G, González Lebrero MC, Roitberg AE, Marti MA. Theoretical Insights into the Reaction and Inhibition Mechanism of Metal-Independent Retaining Glycosyltransferase Responsible for Mycothiol Biosynthesis. J Phys Chem B 2017; 121:471-478. [PMID: 27935720 DOI: 10.1021/acs.jpcb.6b10130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding enzymatic reactions with atomic resolution has proven in recent years to be of tremendous interest for biochemical research, and thus, the use of QM/MM methods for the study of reaction mechanisms is experiencing a continuous growth. Glycosyltransferases (GTs) catalyze the formation of glycosidic bonds, and are important for many biotechnological purposes, including drug targeting. Their reaction product may result with only one of the two possible stereochemical outcomes for the reacting anomeric center, and therefore, they are classified as either inverting or retaining GTs. While the inverting GT reaction mechanism has been widely studied, the retaining GT mechanism has always been controversial and several questions remain open to this day. In this work, we take advantage of our recent GPU implementation of a pure QM(DFT-PBE)/MM approach to explore the reaction and inhibition mechanism of MshA, a key retaining GT responsible for the first step of mycothiol biosynthesis, a low weight thiol compound found in pathogens like Mycobacterium tuberculosis that is essential for its survival under oxidative stress conditions. Our results show that the reaction proceeds via a front-side SNi-like concerted reaction mechanism (DNAN in IUPAC nomenclature) and has a 17.5 kcal/mol free energy barrier, which is in remarkable agreement with experimental data. Detailed analysis shows that the key reaction step is the diphosphate leaving group dissociation, leading to an oxocarbenium-ion-like transition state. In contrast, fluorinated substrate analogues increase the reaction barrier significantly, rendering the enzyme effectively inactive. Detailed analysis of the electronic structure along the reaction suggests that this particular inhibition mechanism is associated with fluorine's high electronegative nature, which hinders phosphate release and proper stabilization of the transition state.
Collapse
Affiliation(s)
- Juan I Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Intendente Guiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Ciudad Universitaria , Intendente Guiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Chad W Hopkins
- Department of Physics, University of Florida , Gainesville, Florida 32611, United States
| | - Gustavo Pierdominici Sottile
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes , Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Mariano C González Lebrero
- Departamento de Quimica Inorgánica, Anlı́tica y Quı́mica Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Intendente Guiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Insituto de Quimica Inorgánica, Materiales Ambiente y Energı́a (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Intendente Guiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Intendente Guiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Ciudad Universitaria , Intendente Guiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
41
|
Nishimine T, Taira H, Mori S, Matsubara O, Tokunaga E, Akiyama H, Soloshonok VA, Shibata N. Synthesis of chiral (tetrazolyl)methyl-containing acrylates via silicon-induced organocatalytic kinetic resolution of Morita–Baylis–Hillman fluorides. Chem Commun (Camb) 2017; 53:1128-1131. [DOI: 10.1039/c6cc08830a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new approach for the asymmetric installation of a (tetrazolyl)methyl group via Si/F activation using organocatalytic kinetic resolution of racemic MBH-fluorides.
Collapse
Affiliation(s)
- Takayuki Nishimine
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Hiromi Taira
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Satoru Mori
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Okiya Matsubara
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Hidehiko Akiyama
- Faculty of Medical Technology
- Fujita Health University
- Kutsukake-cho
- Japan
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I
- Faculty of Chemistry
- University of the Basque Country UPV/EHU
- Paseo Manuel Lardizábal 3
- 20018 San Sebastián
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| |
Collapse
|
42
|
Agirre J, Davies GJ, Wilson KS, Cowtan KD. Carbohydrate structure: the rocky road to automation. Curr Opin Struct Biol 2016; 44:39-47. [PMID: 27940408 DOI: 10.1016/j.sbi.2016.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
With the introduction of intuitive graphical software, structural biologists who are not experts in crystallography are now able to build complete protein or nucleic acid models rapidly. In contrast, carbohydrates are in a wholly different situation: scant automation exists, with manual building attempts being sometimes toppled by incorrect dictionaries or refinement problems. Sugars are the most stereochemically complex family of biomolecules and, as pyranose rings, have clear conformational preferences. Despite this, all refinement programs may produce high-energy conformations at medium to low resolution, without any support from the electron density. This problem renders the affected structures unusable in glyco-chemical terms. Bringing structural glycobiology up to 'protein standards' will require a total overhaul of the methodology. Time is of the essence, as the community is steadily increasing the production rate of glycoproteins, and electron cryo-microscopy has just started to image them in precisely that resolution range where crystallographic methods falter most.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Kevin D Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
43
|
Merino P, Delso I, Tejero T, Ghirardello M, Juste-Navarro V. Nucleoside Diphosphate Sugar Analogues that Target Glycosyltransferases. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pedro Merino
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Ignacio Delso
- NMR Service, Center of Chemistry and Materials of Aragon (CEQMA); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Tomás Tejero
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Mattia Ghirardello
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| | - Verónica Juste-Navarro
- Department of Synthesis and Structure of Biomolecules; Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH); University of Zaragoza, CSIC; Zaragoza, Aragón 50009 Spain
| |
Collapse
|
44
|
Winchell KR, Egeler PW, VanDuinen AJ, Jackson LB, Karpen ME, Cook PD. A Structural, Functional, and Computational Analysis of BshA, the First Enzyme in the Bacillithiol Biosynthesis Pathway. Biochemistry 2016; 55:4654-65. [PMID: 27454321 PMCID: PMC5954418 DOI: 10.1021/acs.biochem.6b00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacillithiol is a compound produced by several Gram-positive bacterial species, including the human pathogens Staphylococcus aureus and Bacillus anthracis. It is involved in maintaining cellular redox balance as well as the destruction of reactive oxygen species and harmful xenobiotic agents, including the antibiotic fosfomycin. BshA, BshB, and BshC are the enzymes involved in bacillithiol biosynthesis. BshA is a retaining glycosyltransferase responsible for the first committed step in bacillithiol production, namely the addition of N-acetylglucosamine to l-malate. Retaining glycosyltransferases like BshA are proposed to utilize an SNi-like reaction mechanism in which leaving group departure and nucleophilic attack occur on the same face of the hexose. However, significant questions regarding the details of how BshA and similar enzymes accommodate their substrates and facilitate catalysis persist. Here we report X-ray crystallographic structures of BshA from Bacillus subtilis 168 bound with UMP and/or GlcNAc-mal at resolutions of 2.15 and 2.02 Å, respectively. These ligand-bound structures, along with our functional and computational studies, provide clearer insight into how BshA and other retaining GT-B glycosyltransferases operate, corroborating the substrate-assisted, SNi-like reaction mechanism. The analyses presented herein can serve as the basis for the design of inhibitors capable of preventing bacillithiol production and, subsequently, help combat resistance to fosfomycin in various pathogenic Gram-positive microorganisms.
Collapse
Affiliation(s)
- Kelsey R. Winchell
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401, United States
| | - Paul W. Egeler
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401, United States
| | - Andrew J. VanDuinen
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan, 49401, United States
| | - Luke B. Jackson
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401, United States
| | - Mary E. Karpen
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401, United States
| | - Paul D. Cook
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan, 49401, United States
| |
Collapse
|