1
|
Kotera Y, Asai Y, Okano S, Tokutake Y, Hosomi A, Saito K, Yonekura S, Katou S. Peroxisomal Localization of Benzyl Alcohol O-Benzoyltransferase HSR201 is Mediated by a Non-canonical Peroxisomal Targeting Signal and Required for Salicylic Acid Biosynthesis. PLANT & CELL PHYSIOLOGY 2024; 65:2054-2065. [PMID: 39471420 DOI: 10.1093/pcp/pcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024]
Abstract
The phytohormone salicylic acid (SA) regulates plant responses to various types of environmental stress, particularly pathogen infections. We previously revealed that the benzyl alcohol O-benzoyltransferase HSR201 was required for pathogen signal-induced SA synthesis, and its overexpression together with NtCNL, encoding a cinnamate-coenzyme A ligase, was sufficient for the production of significant amounts of SA in tobacco. We herein examined the subcellular localization of HSR201 and found that it fused to a yellow fluorescent protein localized in peroxisomes. Most peroxisomal matrix proteins possess peroxisomal targeting signal type-1 (PTS1) located at the extreme C-terminus or PTS2 located at the N-terminus; however, a bioinformatics analysis failed to identify similar signals for HSR201. Deletion and mutation analyses of HSR201 identified one essential (extreme C-terminal Leu460) and three important (Ile455, Ile456 and Ala459) amino acid residues for its peroxisomal localization. The virus-induced gene silencing (VIGS) of PEX5, a PTS1 receptor, but not PEX7, a PTS2 receptor, compromised the peroxisomal targeting of HSR201 in Nicotiana benthamiana. When overexpressed with NtCNL, HSR201 mutants with reduced or non-peroxisomal targeting induced lower SA levels than the wild type; however, these mutations did not affect the protein stability or activity of HSR201. VIGS of the HSR201 homolog compromised pathogen signal-induced SA accumulation in N. benthamiana, which was complemented by the HSR201 wild type, but not the mutant with non-peroxisomal targeting. These results suggest that the peroxisomal localization of HSR201 is mediated by a non-canonical PTS1 and required for SA biosynthesis.
Collapse
Affiliation(s)
- Yu Kotera
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Yoshika Asai
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Shutaro Okano
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Yukako Tokutake
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Akira Hosomi
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Katsuharu Saito
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Shinichi Yonekura
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Shinpei Katou
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| |
Collapse
|
2
|
Kim J, Huang K, Vo PTT, Miao T, Correia J, Kumar A, Simons MJP, Bai H. Peroxisomal import stress activates integrated stress response and inhibits ribosome biogenesis. PNAS NEXUS 2024; 3:pgae429. [PMID: 39398621 PMCID: PMC11470064 DOI: 10.1093/pnasnexus/pgae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Impaired organelle-specific protein import triggers a variety of cellular stress responses, including adaptive pathways to balance protein homeostasis. Most of the previous studies focus on the cellular stress response triggered by misfolded proteins or defective protein import in the endoplasmic reticulum or mitochondria. However, little is known about the cellular stress response to impaired protein import in the peroxisome, an understudied organelle that has recently emerged as a key signaling hub for cellular and metabolic homeostasis. To uncover evolutionarily conserved cellular responses upon defective peroxisomal import, we carried out a comparative transcriptomic analysis on fruit flies with tissue-specific peroxin knockdown and human HEK293 cells expressing dominant-negative PEX5C11A. Our RNA-seq results reveal that defective peroxisomal import upregulates integrated stress response (ISR) and downregulates ribosome biogenesis in both flies and human cells. Functional analyses confirm that impaired peroxisomal import induces eIF2α phosphorylation and ATF4 expression. Loss of ATF4 exaggerates cellular damage upon peroxisomal import defects, suggesting that ATF4 activation serves as a cellular cytoprotective mechanism upon peroxisomal import stress. Intriguingly, we show that peroxisomal import stress decreases the expression of rRNA processing genes and inhibits early pre-rRNA processing, which leads to the accumulation of 47S precursor rRNA and reduction of downstream rRNA intermediates. Taken together, we identify ISR activation and ribosome biogenesis inhibition as conserved adaptive stress responses to defective peroxisomal import and uncover a novel link between peroxisomal dysfunction and rRNA processing.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pham Thuy Tien Vo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacinta Correia
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mirre J P Simons
- Department of Animal and Plant Sciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Jahan K, Supty MSA, Lee JS, Choi KH. Transcriptomic Analysis Provides New Insights into the Tolerance Mechanisms of Green Macroalgae Ulva prolifera to High Temperature and Light Stress. BIOLOGY 2024; 13:725. [PMID: 39336152 PMCID: PMC11428574 DOI: 10.3390/biology13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Our research focused on understanding the genetic mechanisms that contribute to the tolerance of Ulva prolifera (Chlorophyta), a marine macroalgae, to the combined stress of high temperature and high light intensity. At the mRNA level, the up-regulated DEGs showed enrichment in pathways related to ribosomes, proteasomes, and peroxisomes. The spliceosome pathway genes were found to be vital for U. prolifera's ability to adapt to various challenging situations in all the comparison groups. In response to elevated temperature and light intensity stress, there was a significant increase in genes and pathways related to ribosomes, proteasomes, and peroxisomes, whereas autophagy showed an increase in response to stress after 24 h, but not after 48 h. These findings provide novel insights into how U. prolifera adapts to elevated temperature and light stress.
Collapse
Affiliation(s)
| | | | | | - Keun-Hyung Choi
- Department of Earth, Environmental and Space Sciences, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon 34134, Republic of Korea; (K.J.)
| |
Collapse
|
4
|
Sun TF, Ge ZW, Xu HR, Zhang H, Huang SS, Feng MG, Ying SH. Unlocking the Siderophore Biosynthesis Pathway and Its Biological Functions in the Fungal Insect Pathogen Beauveria bassiana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18455-18464. [PMID: 39109629 DOI: 10.1021/acs.jafc.4c02957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Siderophores are small molecule iron chelators. The entomopathogenic fungus Beauveria bassiana produces a plethora of siderophores under iron-limiting conditions. In this study, a siderophore biosynthesis pathway, akin to the general pathway observed in filamentous fungi, was revealed in B. bassiana. Among the siderophore biosynthesis genes (SID), BbSidA was required for the production of most siderophores, and the SidC and SidD biosynthesis gene clusters were indispensable for the production of ferricrocin and fusarinine C, respectively. Biosynthesis genes play various roles in siderophore production, vegetative growth, stress resistance, development, and virulence, in which BbSidA plays the most important role. Accordingly, B. bassiana employs a cocktail of siderophores for iron metabolism, which is essential for fungal physiology and host interactions. This study provides the initial network for the genetic modification of siderophore biosynthesis, which not only aims to improve the efficacy of biocontrol agents but also ensures the efficient production of siderophores.
Collapse
Affiliation(s)
- Ting-Fei Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Wei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hang-Rong Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuai-Shuai Huang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Ying SH. Subcellular biochemistry and biology of filamentous entomopathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:35-58. [PMID: 39389707 DOI: 10.1016/bs.aambs.2024.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Filamentous entomopathogenic fungi (EPF) function as important biotic factors regulating the arthropod population in natural ecosystems and have great potential as biocontrol agents in modern agriculture. In the infection cycle, EPF undergo a plethora of physiological processes, including metabolism (e.g., cuticle hydrolysis and nutrient utilization), development (e.g., dimorphism and conidiation), stress response (e.g., oxidative and osmotic stresses), and immune evasion from the host. In-depth explorations of the mechanisms involved in the lifecycle of EPF offer excellent opportunities to increase their virulence and stability, which increases the efficacy of EPF in biocontrol programs. This review discusses the current state of knowledge relating to the biological roles and regulatory mechanisms of organelles and subcellular structures in the physiology of EPF, as well as some suggestions for future investigation.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
6
|
Bao X, Jia H, Zhang X, Tian S, Zhao Y, Li X, Lin P, Ma C, Wang P, Song CP, Zhu X. Mapping of cytosol-facing organelle outer membrane proximity proteome by proximity-dependent biotinylation in living Arabidopsis cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:7-23. [PMID: 38261530 DOI: 10.1111/tpj.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.
Collapse
Affiliation(s)
- Xinyue Bao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huifang Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoyan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sang Tian
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanming Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangyun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ping Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chongyang Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
7
|
Lei JH, Sun TF, Feng MG, Ying SH. Functional insights of three RING-finger peroxins in the life cycle of the insect pathogenic fungus Beauveria bassiana. Curr Genet 2023; 69:267-276. [PMID: 37910177 DOI: 10.1007/s00294-023-01275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Peroxisomes play important roles in fungal physiological processes. The RING-finger complex consists of peroxins Pex2, Pex10, and Pex12 and is essential for recycling of receptors responsible for peroxisomal targeting of matrix proteins. In this study, these three peroxins were functionally characterized in the entomopathogenic fungus Beauveria bassiana (Bb). These three peroxins are associated with peroxisomes, in which BbPex2 interacted with BbPex10 and BbPex12. Ablation of these peroxins did not completely block the peroxisome biogenesis, but abolish peroxisomal targeting of matrix proteins via both PTS1 and PTS2 pathways. Three disruptants displayed different phenotypic defects in growth on nutrients and under stress conditions, but have similar defects in acetyl-CoA biosynthesis, development, and virulence. Strikingly, BbPex10 played a less important role in fungal growth on tested nutrients than other two peroxins; whereas, BbPex2 performed a less important contribution to fungal growth under stresses. This investigation reinforces the peroxisomal roles in the lifecycle of entomopathogenic fungi and highlights the unequal functions of different peroxins in peroxisomal biology.
Collapse
Affiliation(s)
- Jia-Hui Lei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting-Fei Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Brechting PJ, Shah C, Rakotondraibe L, Shen Q, Rappleye CA. Histoplasma capsulatum requires peroxisomes for multiple virulence functions including siderophore biosynthesis. mBio 2023; 14:e0328422. [PMID: 37432032 PMCID: PMC10470777 DOI: 10.1128/mbio.03284-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/30/2023] [Indexed: 07/12/2023] Open
Abstract
Peroxisomes are versatile eukaryotic organelles essential for many functions in fungi, including fatty acid metabolism, reactive oxygen species detoxification, and secondary metabolite biosynthesis. A suite of Pex proteins (peroxins) maintains peroxisomes, while peroxisomal matrix enzymes execute peroxisome functions. Insertional mutagenesis identified peroxin genes as essential components supporting the intraphagosomal growth of the fungal pathogen Histoplasma capsulatum. Disruption of the peroxins Pex5, Pex10, or Pex33 in H. capsulatum prevented peroxisome import of proteins targeted to the organelle via the PTS1 pathway. This loss of peroxisome protein import limited H. capsulatum intracellular growth in macrophages and attenuated virulence in an acute histoplasmosis infection model. Interruption of the alternate PTS2 import pathway also attenuated H. capsulatum virulence, although only at later time points of infection. The Sid1 and Sid3 siderophore biosynthesis proteins contain a PTS1 peroxisome import signal and localize to the H. capsulatum peroxisome. Loss of either the PTS1 or PTS2 peroxisome import pathway impaired siderophore production and iron acquisition in H. capsulatum, demonstrating compartmentalization of at least some biosynthetic steps for hydroxamate siderophore biosynthesis. However, the loss of PTS1-based peroxisome import caused earlier virulence attenuation than either the loss of PTS2-based protein import or the loss of siderophore biosynthesis, indicating additional PTS1-dependent peroxisomal functions are important for H. capsulatum virulence. Furthermore, disruption of the Pex11 peroxin also attenuated H. capsulatum virulence independently of peroxisomal protein import and siderophore biosynthesis. These findings demonstrate peroxisomes contribute to H. capsulatum pathogenesis by facilitating siderophore biosynthesis and another unidentified role(s) for the organelle during fungal virulence. IMPORTANCE The fungal pathogen Histoplasma capsulatum infects host phagocytes and establishes a replication-permissive niche within the cells. To do so, H. capsulatum overcomes and subverts antifungal defense mechanisms which include the limitation of essential micronutrients. H. capsulatum replication within host cells requires multiple distinct functions of the fungal peroxisome organelle. These peroxisomal functions contribute to H. capsulatum pathogenesis at different times during infection and include peroxisome-dependent biosynthesis of iron-scavenging siderophores to enable fungal proliferation, particularly after activation of cell-mediated immunity. The multiple essential roles of fungal peroxisomes reveal this organelle as a potential but untapped target for the development of therapeutics.
Collapse
Affiliation(s)
| | - Chandan Shah
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Liva Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Qian Shen
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
| | - Chad A. Rappleye
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
10
|
Zhang Y, Wang X, Wang X, Wang Y, Liu J, Wang S, Li W, Jin Y, Akhter D, Chen J, Hu J, Pan R. Bioinformatic analysis of short-chain dehydrogenase/reductase proteins in plant peroxisomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1180647. [PMID: 37360717 PMCID: PMC10288848 DOI: 10.3389/fpls.2023.1180647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles housing not only many important oxidative metabolic reactions, but also some reductive reactions that are less known. Members of the short-chain dehydrogenase/reductase (SDR) superfamily, which are NAD(P)(H)-dependent oxidoreductases, play important roles in plant peroxisomes, including the conversion of indole-3-butyric acid (IBA) to indole-3-acetic acid (IAA), auxiliary β-oxidation of fatty acids, and benzaldehyde production. To further explore the function of this family of proteins in the plant peroxisome, we performed an in silico search for peroxisomal SDR proteins from Arabidopsis based on the presence of peroxisome targeting signal peptides. A total of 11 proteins were discovered, among which four were experimentally confirmed to be peroxisomal in this study. Phylogenetic analyses showed the presence of peroxisomal SDR proteins in diverse plant species, indicating the functional conservation of this protein family in peroxisomal metabolism. Knowledge about the known peroxisomal SDRs from other species also allowed us to predict the function of plant SDR proteins within the same subgroup. Furthermore, in silico gene expression profiling revealed strong expression of most SDR genes in floral tissues and during seed germination, suggesting their involvement in reproduction and seed development. Finally, we explored the function of SDRj, a member of a novel subgroup of peroxisomal SDR proteins, by generating and analyzing CRISPR/Cas mutant lines. This work provides a foundation for future research on the biological activities of peroxisomal SDRs to fully understand the redox control of peroxisome functions.
Collapse
Affiliation(s)
- Yuchan Zhang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| | - Xiaowen Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xinyu Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yukang Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jun Liu
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Saisai Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Weiran Li
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yijun Jin
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Delara Akhter
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jiarong Chen
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, United States
| | - Ronghui Pan
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
11
|
Demers ND, Riccio V, Jo DS, Bhandari S, Law KB, Liao W, Kim C, McQuibban GA, Choe SK, Cho DH, Kim PK. PEX13 prevents pexophagy by regulating ubiquitinated PEX5 and peroxisomal ROS. Autophagy 2023:1-22. [PMID: 36541703 DOI: 10.1080/15548627.2022.2160566] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisomes are rapidly degraded during amino acid and oxygen deprivation by a type of selective autophagy called pexophagy. However, how damaged peroxisomes are detected and removed from the cell is poorly understood. Recent studies suggest that the peroxisomal matrix protein import machinery may serve double duty as a quality control machinery, where they are directly involved in activating pexophagy. Here, we explored whether any matrix import factors are required to prevent pexophagy, such that their loss designates peroxisomes for degradation. Using gene editing and quantitative fluorescence microscopy on culture cells and a zebrafish model system, we found that PEX13, a component of the peroxisomal matrix import system, is required to prevent the degradation of otherwise healthy peroxisomes. The loss of PEX13 caused an accumulation of ubiquitinated PEX5 on peroxisomes and an increase in peroxisome-dependent reactive oxygen species that coalesce to induce pexophagy. We also found that PEX13 protein level is downregulated to aid in the induction of pexophagy during amino acid starvation. Together, our study points to PEX13 as a novel pexophagy regulator that is modulated to maintain peroxisome homeostasis.Abbreviations: AAA ATPases: ATPases associated with diverse cellular activities; ABCD3: ATP binding cassette subfamily D member; 3ACOX1: acyl-CoA oxidase; 1ACTA1: actin alpha 1, skeletal muscle; ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; CAT: catalase; CQ: chloroquine; Dpf: days post fertilization: FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H2O2: hydrogen peroxide; HA - human influenza hemagglutinin; HBSS: Hanks' Balanced Salt Solution; HCQ; hydroxychloroquine; KANL: lysine alanine asparagine leucine; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYC: MYC proto-oncogene, bHLH transcription factor; MZ: maternal and zygotic; NAC: N-acetyl cysteine; NBR1 - NBR1 autophagy cargo receptor; PBD: peroxisome biogenesis disorder; PBS: phosphate-buffered saline; PEX: peroxisomal biogenesis factor; PTS1: peroxisome targeting sequence 1; RFP: red fluorescent protein; ROS: reactive oxygen speciess; iRNA: short interfering RNA; SKL: serine lysine leucine; SLC25A17/PMP34: solute carrier family 25 member 17; Ub: ubiquitin; USP30: ubiquitin specific peptidase 30.
Collapse
Affiliation(s)
- Nicholas D Demers
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Victoria Riccio
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Doo Sin Jo
- School of Life Sciences, BK21 Four Knu Creative BioResearch Group Kyungpook National University, Republic of Korea
| | - Sushil Bhandari
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Kelsey B Law
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Weifang Liao
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Choy Kim
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - G Angus McQuibban
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 Four Knu Creative BioResearch Group Kyungpook National University, Republic of Korea
| | - Peter K Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| |
Collapse
|
12
|
Sawada H, Saito T. Mechanisms of Sperm-Egg Interactions: What Ascidian Fertilization Research Has Taught Us. Cells 2022; 11:2096. [PMID: 35805180 PMCID: PMC9265791 DOI: 10.3390/cells11132096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Fertilization is an essential process in terrestrial organisms for creating a new organism with genetic diversity. Before gamete fusion, several steps are required to achieve successful fertilization. Animal spermatozoa are first activated and attracted to the eggs by egg-derived chemoattractants. During the sperm passage of the egg's extracellular matrix or upon the sperm binding to the proteinaceous egg coat, the sperm undergoes an acrosome reaction, an exocytosis of acrosome. In hermaphrodites such as ascidians, the self/nonself recognition process occurs when the sperm binds to the egg coat. The activated or acrosome-reacted spermatozoa penetrate through the proteinaceous egg coat. The extracellular ubiquitin-proteasome system, the astacin-like metalloproteases, and the trypsin-like proteases play key roles in this process in ascidians. In the present review, we summarize our current understanding and perspectives on gamete recognition and egg coat lysins in ascidians and consider the general mechanisms of fertilization in animals and plants.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya 463-8521, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
13
|
Kumar A, Mathew V, Stirling PC. Nuclear protein quality control in yeast: the latest INQuiries. J Biol Chem 2022; 298:102199. [PMID: 35760103 PMCID: PMC9305344 DOI: 10.1016/j.jbc.2022.102199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The nucleus is a highly organized organelle with an intricate substructure of chromatin, RNAs, and proteins. This environment represents a challenge for maintaining protein quality control, since non-native proteins may interact inappropriately with other macromolecules and thus interfere with their function. Maintaining a healthy nuclear proteome becomes imperative during times of stress, such as upon DNA damage, heat shock, or starvation, when the proteome must be remodeled to effect cell survival. This is accomplished with the help of nuclear-specific chaperones, degradation pathways, and specialized structures known as protein quality control (PQC) sites that sequester proteins to help rapidly remodel the nuclear proteome. In this review, we focus on the current knowledge of PQC sites in Saccharomyces cerevisiae, particularly on a specialized nuclear PQC site called the intranuclear quality control site, a poorly understood nuclear inclusion that coordinates dynamic proteome triage decisions in yeast.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada.
| |
Collapse
|
14
|
Hou J, Lin H, Ding J, Feng M, Ying S. Peroxins in Peroxisomal Receptor Export System Contribute to Development, Stress Response, and Virulence of Insect Pathogenic Fungus Beauveria bassiana. J Fungi (Basel) 2022; 8:622. [PMID: 35736105 PMCID: PMC9224678 DOI: 10.3390/jof8060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
In filamentous fungi, recycling of receptors responsible for protein targeting to peroxisomes depends on the receptor export system (RES), which consists of peroxins Pex1, Pex6, and Pex26. This study seeks to functionally characterize these peroxins in the entomopathogenic fungus Beauveria bassiana. BbPex1, BbPex6, and BbPex26 are associated with peroxisomes and interact with each other. The loss of these peroxins did not completely abolish the peroxisome biogenesis. Three peroxins were all absolutely required for PTS1 pathway; however, only BbPex6 and BbPex26 were required for protein translocation via PTS2 pathway. Three gene disruption mutants displayed the similar phenotypic defects in assimilation of nutrients (e.g., fatty acid, protein, and chitin), stress response (e.g., oxidative and osmotic stress), and virulence. Notably, all disruptant displayed significantly enhanced sensitivity to linoleic acid, a polyunsaturated fatty acid. This study reinforces the essential roles of the peroxisome in the lifecycle of entomopathogenic fungi and highlights peroxisomal roles in combating the host defense system.
Collapse
Affiliation(s)
| | | | | | | | - Shenghua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (H.L.); (J.D.); (M.F.)
| |
Collapse
|
15
|
Mano S, Hayashi Y, Hikino K, Otomo M, Kanai M, Nishimura M. Ubiquitin-conjugating activity by PEX4 is required for efficient protein transport to peroxisomes in Arabidopsis thaliana. J Biol Chem 2022; 298:102038. [PMID: 35595097 PMCID: PMC9190015 DOI: 10.1016/j.jbc.2022.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
Protein transport to peroxisomes requires various proteins, such as receptors in the cytosol and components of the transport machinery on peroxisomal membranes. The Arabidopsis apem (aberrant peroxisome morphology) mutant apem7 shows decreased efficiency of peroxisome targeting signal 1–dependent protein transport to peroxisomes. In apem7 mutants, peroxisome targeting signal 2–dependent protein transport is also disturbed, and plant growth is repressed. The APEM7 gene encodes a protein homologous to peroxin 4 (PEX4), which belongs to the ubiquitin-conjugating (UBC) protein family; however, the UBC activity of Arabidopsis PEX4 remains to be investigated. Here, we show using electron microscopy and immunoblot analysis using specific PEX4 antibodies and in vitro transcription/translation assay that PEX4 localizes to peroxisomal membranes and possesses UBC activity. We found that the substitution of proline with leucine by apem7 mutation alters ubiquitination of PEX4. Furthermore, substitution of the active-site cysteine residue at position 90 in PEX4, which was predicted to be a ubiquitin-conjugation site, with alanine did not restore the apem7 phenotype. Taken together, these findings indicate that abnormal ubiquitination in the apem7 mutant alters ubiquitin signaling during the process of protein transport, suggesting that the UBC activity of PEX4 is indispensable for efficient protein transport to peroxisomes.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Japan.
| | - Yasuko Hayashi
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Masayoshi Otomo
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| |
Collapse
|
16
|
Goto-Yamada S, Oikawa K, Yamato KT, Kanai M, Hikino K, Nishimura M, Mano S. Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Front Cell Dev Biol 2022; 10:883491. [PMID: 35592252 PMCID: PMC9110829 DOI: 10.3389/fcell.2022.883491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are present in eukaryotic cells and have essential roles in various biological processes. Plant peroxisomes proliferate by de novo biosynthesis or division of pre-existing peroxisomes, degrade, or replace metabolic enzymes, in response to developmental stages, environmental changes, or external stimuli. Defects of peroxisome functions and biogenesis alter a variety of biological processes and cause aberrant plant growth. Traditionally, peroxisomal function-based screening has been employed to isolate Arabidopsis thaliana mutants that are defective in peroxisomal metabolism, such as lipid degradation and photorespiration. These analyses have revealed that the number, subcellular localization, and activity of peroxisomes are closely related to their efficient function, and the molecular mechanisms underlying peroxisome dynamics including organelle biogenesis, protein transport, and organelle interactions must be understood. Various approaches have been adopted to identify factors involved in peroxisome dynamics. With the development of imaging techniques and fluorescent proteins, peroxisome research has been accelerated. Image-based analyses provide intriguing results concerning the movement, morphology, and number of peroxisomes that were hard to obtain by other approaches. This review addresses image-based analysis of peroxisome dynamics in plants, especially A. thaliana and Marchantia polymorpha.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsuyuki T. Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mikio Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Shoji Mano
| |
Collapse
|
17
|
Pacheco-Garcia JL, Anoz-Carbonell E, Vankova P, Kannan A, Palomino-Morales R, Mesa-Torres N, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biol 2021; 46:102112. [PMID: 34537677 PMCID: PMC8455868 DOI: 10.1016/j.redox.2021.102112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 10/31/2022] Open
Abstract
The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, 128 43, Czech Republic
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Rogelio Palomino-Morales
- Departmento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, Granada, Spain
| | - Noel Mesa-Torres
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
18
|
Pang MY, Lin HY, Hou J, Feng MG, Ying SH. Different contributions of the peroxisomal import protein Pex5 and Pex7 to development, stress response and virulence of insect fungal pathogen Beauveria bassiana. J Appl Microbiol 2021; 132:509-519. [PMID: 34260798 DOI: 10.1111/jam.15216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
AIMS Peroxins Pex5 and Pex7 belong to the peroxisomal import machinery and recognize proteins containing peroxisomal targeting signal (PTS) type 1 and type 2, respectively. This study seeks to characterize these two peroxins in the entomopathogenic fungus Beauveria bassiana. METHODS AND RESULTS The orthologs of Pex5 and Pex7 in B. bassiana (BbPex5 and BbPex7) were functionally analyzed via protein localization and gene disruption. BbPex5 and BbPex7 were associated with peroxisome and specifically required for PTS1 and PTS2 pathways, respectively, which were demonstrated to be involved in development, tolerance to oxidative stress and virulence. ΔBbPex5 mutant displayed additionally defectives that were undetected in ΔBbPex7 in vegetative growth and resistance to osmotic and cell wall-perturbing stresses. Notably, Woronin body major protein Hex1 with PTS1 linked this organelle to the development and virulence of B. bassiana, which indicates that Woronin body is associated with the roles of PTS1 pathway. CONCLUSION Both PTS1 and PTS2 pathways are involved in broad physiological process, and the PTS1 pathway acts as a main peroxisomal import pathway. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the functional divergence of different peroxins and improves our understanding of organellar physiology involved in biocontrol potential of the entomopathogenic fungi.
Collapse
Affiliation(s)
- Meei-Yuan Pang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas MC. Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. PLANT PHYSIOLOGY 2021; 186:22-35. [PMID: 33587125 PMCID: PMC8154099 DOI: 10.1093/plphys/kiab060] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Peroxisomes are redox nodes playing a diverse range of roles in cell functionality and in the perception of and responses to changes in their environment.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
- Author for communication:
| | - Maria Angeles Peláez-Vico
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C Romero-Puertas
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
20
|
Dindo M, Ambrosini G, Oppici E, Pey AL, O’Toole PJ, Marrison JL, Morrison IEG, Butturini E, Grottelli S, Costantini C, Cellini B. Dimerization Drives Proper Folding of Human Alanine:Glyoxylate Aminotransferase But Is Dispensable for Peroxisomal Targeting. J Pers Med 2021; 11:jpm11040273. [PMID: 33917320 PMCID: PMC8067440 DOI: 10.3390/jpm11040273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5′-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity. In addition, monomers are partly retained in the cytosol. To assess possible differences in import kinetics, we engineered AGT to allow binding of a membrane-permeable dye and followed its intracellular trafficking without interfering with its biochemical properties. By fluorescence recovery after photobleaching, we measured the import rate in live cells. Dimeric and monomeric AGT displayed a similar import rate, suggesting that the oligomeric state per se does not influence import kinetics. However, when dimerization is compromised, monomers are prone to misfolding events that can prevent peroxisomal import, a finding crucial to predicting the consequences of PH1-causing mutations that destabilize the dimer. Treatment with pyridoxine of cells expressing monomeric AGT promotes dimerization and folding, thus, demonstrating the chaperone role of PLP. Our data support a model in which dimerization represents a potential key checkpoint in the cytosol at the crossroad between misfolding and correct targeting, a possible general mechanism for other oligomeric peroxisomal proteins.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Joanne L. Marrison
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Ian E. G. Morrison
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
- Correspondence: ; Tel.: +39-075-585-8339
| |
Collapse
|
21
|
Dahan N, Francisco T, Falter C, Rodrigues T, Kalel V, Kunze M, Hansen T, Schliebs W, Erdmann R. Current advances in the function and biogenesis of peroxisomes and their roles in health and disease. Histochem Cell Biol 2021; 155:513-524. [PMID: 33818645 PMCID: PMC8062356 DOI: 10.1007/s00418-021-01982-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Noa Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tania Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Christian Falter
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Tony Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Vishal Kalel
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Tobias Hansen
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany
| | - Wolfgang Schliebs
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany
| | - Ralf Erdmann
- Department System Biochemistry, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University of Bochum, Universitätstr.150, 44780, Bochum, Germany.
| |
Collapse
|
22
|
Bürgi J, Ekal L, Wilmanns M. Versatile allosteric properties in Pex5-like tetratricopeptide repeat proteins to induce diverse downstream function. Traffic 2021; 22:140-152. [PMID: 33580581 DOI: 10.1111/tra.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/11/2023]
Abstract
Proteins composed of tetratricopeptide repeat (TPR) arrays belong to the α-solenoid tandem-repeat family that have unique properties in terms of their overall conformational flexibility and ability to bind to multiple protein ligands. The peroxisomal matrix protein import receptor Pex5 comprises two TPR triplets that recognize protein cargos with a specific C-terminal Peroxisomal Targeting Signal (PTS) 1 motif. Import of PTS1-containing protein cargos into peroxisomes through a transient pore is mainly driven by allosteric binding, coupling and release mechanisms, without a need for external energy. A very similar TPR architecture is found in the functionally unrelated TRIP8b, a regulator of the hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel. TRIP8b binds to the HCN ion channel via a C-terminal sequence motif that is nearly identical to the PTS1 motif of Pex5 receptor cargos. Pex5, Pex5-related Pex9, and TRIP8b also share a less conserved N-terminal domain. This domain provides a second protein cargo-binding site and plays a distinct role in allosteric coupling of initial cargo loading by PTS1 motif-mediated interactions and different downstream functional readouts. The data reviewed here highlight the overarching role of molecular allostery in driving the diverse functions of TPR array proteins, which could form a model for other α-solenoid tandem-repeat proteins involved in translocation processes across membranes.
Collapse
Affiliation(s)
- Jérôme Bürgi
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Lakhan Ekal
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.,University Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Duan Y, Jiang N, Chen J, Chen J. Expression, localization and metabolic function of "resurrected" human urate oxidase in human hepatocytes. Int J Biol Macromol 2021; 175:30-39. [PMID: 33513422 DOI: 10.1016/j.ijbiomac.2021.01.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 12/23/2022]
Abstract
A high serum uric acid (SUA) concentration is associated with hyperuricemia (HUA) and gout. In order to obtain long-acting therapeutic effect, correction of purine metabolism at genetic level is advantageous. For this purpose, we expressed three "human-like" urate oxidases in human hepatocytes (HL-7702) by lentivirus-mediated transduction. Enzymatic assay revealed that the recombinant urate oxidases expressed in HL-7702 cells were functionally active. Electron microscopy study showed that the recombinant enzymes were localized to peroxisome and formed distinct crystalloid core structures as in other mammal cells. Although similar rate of uric acid degradation was observed for all recombinant urate oxidases, HL-7702-pLVX-UOX83 cells and HL-7702-pLVX-UOX214/217 cells retained more cell viability compared with HL-7702-pLVX-UOXPBC at high uric acid level. This study provides a new direction for the treatment of gout and hyperuricemia.
Collapse
Affiliation(s)
- Yundi Duan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jianhua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Deb R, Joshi N, Nagotu S. Peroxisomes of the Brain: Distribution, Functions, and Associated Diseases. Neurotox Res 2021; 39:986-1006. [PMID: 33400183 DOI: 10.1007/s12640-020-00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are versatile cell organelles that exhibit a repertoire of organism and cell-type dependent functions. The presence of oxidases and antioxidant enzymes is a characteristic feature of these organelles. The role of peroxisomes in various cell types in human health and disease is under investigation. Defects in the biogenesis of the organelle and its function lead to severe debilitating disorders. In this manuscript, we discuss the distribution and functions of peroxisomes in the nervous system and especially in the brain cells. The important peroxisomal functions in these cells and their role in the pathology of associated disorders such as neurodegeneration are highlighted in recent studies. Although the cause of the pathogenesis of these disorders is still not clearly understood, emerging evidence supports a crucial role of peroxisomes. In this review, we discuss research highlighting the role of peroxisomes in brain development and its function. We also provide an overview of the major findings in recent years that highlight the role of peroxisome dysfunction in various associated diseases.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
25
|
Covill-Cooke C, Toncheva VS, Kittler JT. Regulation of peroxisomal trafficking and distribution. Cell Mol Life Sci 2020; 78:1929-1941. [PMID: 33141311 PMCID: PMC7966214 DOI: 10.1007/s00018-020-03687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Peroxisomes are organelles that perform a wide range of essential metabolic processes. To ensure that peroxisomes are optimally positioned in the cell, they must be transported by both long- and short-range trafficking events in response to cellular needs. Here, we review our current understanding of the mechanisms by which the cytoskeleton and organelle contact sites alter peroxisomal distribution. Though the focus of the review is peroxisomal transport in mammalian cells, findings from flies and fungi are used for comparison and to inform the gaps in our understanding. Attention is given to the apparent overlap in regulatory mechanisms for mitochondrial and peroxisomal trafficking, along with the recently discovered role of the mitochondrial Rho-GTPases, Miro, in peroxisomal dynamics. Moreover, we outline and discuss the known pathological and pharmacological conditions that perturb peroxisomal positioning. We conclude by highlighting several gaps in our current knowledge and suggest future directions that require attention.
Collapse
Affiliation(s)
| | - Viktoriya S Toncheva
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
26
|
Kremp M, Bittner E, Martorana D, Klingenberger A, Stehlik T, Bölker M, Freitag J. Non-AUG Translation Initiation Generates Peroxisomal Isoforms of 6-Phosphogluconate Dehydrogenase in Fungi. Front Cell Dev Biol 2020; 8:251. [PMID: 32432107 PMCID: PMC7214817 DOI: 10.3389/fcell.2020.00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Proteins destined for transport to specific organelles usually contain targeting information, which are embedded in their sequence. Many enzymes are required in more than one cellular compartment and different molecular mechanisms are used to achieve dual localization. Here we report a cryptic type 2 peroxisomal targeting signal encoded in the 5′ untranslated region of fungal genes coding for 6-phosphogluconate dehydrogenase (PGD), a key enzyme of the oxidative pentose phosphate pathway. The conservation of the cryptic PTS2 motif suggests a biological function. We observed that translation from a non-AUG start codon generates an N-terminally extended peroxisomal isoform of Ustilago maydis PGD. Non-canonical initiation occurred at the sequence AGG AUU, consisting of two near-cognate start codons in tandem. Taken together, our data reveal non-AUG translation initiation as an additional mechanism to achieve the dual localization of a protein required both in the cytosol and the peroxisomes.
Collapse
Affiliation(s)
- Marco Kremp
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | | | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
27
|
Piacentini D, Corpas FJ, D'Angeli S, Altamura MM, Falasca G. Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:312-323. [PMID: 32000108 DOI: 10.1016/j.plaphy.2020.01.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 05/21/2023]
Abstract
In plant cells, cadmium (Cd) and arsenic (As) exert toxicity mainly by inducing oxidative stress through an imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and their detoxification. Nitric oxide (NO) is a RNS acting as signalling molecule coordinating plant development and stress responses, but also as oxidative stress inducer, depending on its cellular concentration. Peroxisomes are versatile organelles involved in plant metabolism and signalling, with a role in cellular redox balance thanks to their antioxidant enzymes, and their RNS (mainly NO) and ROS. This study analysed Cd or As effects on peroxisomes, and NO production and distribution in the root system, including primary root (PR) and lateral roots (LRs). Arabidopsis thaliana wild-type and transgenic plants enabling peroxisomes to be visualized in vivo, through the expression of the 35S-cyan fluorescent protein fused to the peroxisomal targeting signal1 (PTS1) were used. Peroxisomal enzymatic activities including the antioxidant catalase, the H2O2-generating glycolate oxidase, and the hydroxypyruvate reductase, and root system morphology were also evaluated under Cd/As exposure. Results showed that Cd and As differently modulate these activities, however, catalase activity was inhibited by both. Moreover, Arabidopsis root system was altered, with the pollutants differently affecting PR growth, but similarly enhancing LR formation. Only in the PR apex, and not in LR one, Cd more than As caused significant changes in peroxisome distribution, size, and in peroxisomal NO content. By contrast, neither pollutant caused significant changes in peroxisomes size and peroxisomal NO content in the LR apex.
Collapse
Affiliation(s)
- D Piacentini
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008, Granada, Spain
| | - S D'Angeli
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - M M Altamura
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| | - G Falasca
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| |
Collapse
|
28
|
Lansing H, Doering L, Fischer K, Baune MC, Schaewen AV. Analysis of potential redundancy among Arabidopsis 6-phosphogluconolactonase isoforms in peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:823-836. [PMID: 31641750 DOI: 10.1093/jxb/erz473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
Recent work revealed that PGD2, an Arabidopsis 6-phosphogluconate dehydrogenase (6-PGD) catalysing the third step of the oxidative pentose-phosphate pathway (OPPP) in peroxisomes, is essential during fertilization. Earlier studies on the second step, catalysed by PGL3, a dually targeted Arabidopsis 6-phosphogluconolactonase (6-PGL), reported the importance of OPPP reactions in plastids but their irrelevance in peroxisomes. Assuming redundancy of 6-PGL activity in peroxisomes, we examined the sequences of other higher plant enzymes. In tomato, there exist two 6-PGL isoforms with the strong PTS1 motif SKL. However, their analysis revealed problems regarding peroxisomal targeting: reporter-PGL detection in peroxisomes required construct modification, which was also applied to the Arabidopsis isoforms. The relative contribution of PGL3 versus PGL5 during fertilization was assessed by mutant crosses. Reduced transmission ratios were found for pgl3-1 (T-DNA-eliminated PTS1) and also for knock-out allele pgl5-2. The prominent role of PGL3 showed as compromised growth of pgl3-1 seedlings on sucrose and higher activity of mutant PGL3-1 versus PGL5 using purified recombinant proteins. Evidence for PTS1-independent uptake was found for PGL3-1 and other Arabidopsis PGL isoforms, indicating that peroxisome import may be supported by a piggybacking mechanism. Thus, multiple redundancy at the level of the second OPPP step in peroxisomes explains the occurrence of pgl3-1 mutant plants.
Collapse
Affiliation(s)
- Hannes Lansing
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Lennart Doering
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Kerstin Fischer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Marie-Christin Baune
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Antje Von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| |
Collapse
|
29
|
Barros-Barbosa A, Ferreira MJ, Rodrigues TA, Pedrosa AG, Grou CP, Pinto MP, Fransen M, Francisco T, Azevedo JE. Membrane topologies of PEX13 and PEX14 provide new insights on the mechanism of protein import into peroxisomes. FEBS J 2018; 286:205-222. [PMID: 30414318 DOI: 10.1111/febs.14697] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
PEX13 and PEX14 are two core components of the so-called peroxisomal docking/translocation module, the transmembrane hydrophilic channel through which newly synthesized peroxisomal proteins are translocated into the organelle matrix. The two proteins interact with each other and with PEX5, the peroxisomal matrix protein shuttling receptor, through relatively well characterized domains. However, the topologies of these membrane proteins are still poorly defined. Here, we subjected proteoliposomes containing PEX13 or PEX14 and purified rat liver peroxisomes to protease-protection assays and analyzed the protected protein fragments by mass spectrometry, Edman degradation and western blotting using antibodies directed to specific domains of the proteins. Our results indicate that PEX14 is a bona fide intrinsic membrane protein with a Nin -Cout topology, and that PEX13 adopts a Nout -Cin topology, thus exposing its carboxy-terminal Src homology 3 [SH3] domain into the organelle matrix. These results reconcile several enigmatic findings previously reported on PEX13 and PEX14 and provide new insights into the organization of the peroxisomal protein import machinery. ENZYMES: Trypsin, EC3.4.21.4; Proteinase K, EC3.4.21.64; Tobacco etch virus protease, EC3.4.22.44.
Collapse
Affiliation(s)
- Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cláudia P Grou
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Manuel P Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Marc Fransen
- Departement Cellulaire en Moleculaire Geneeskunde, KU Leuven - Universiteit Leuven, Belgium
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Fujikawa Y, Suekawa M, Endo S, Fukami Y, Mano S, Nishimura M, Esaka M. Effect of mutation of C-terminal and heme binding region of Arabidopsis catalase on the import to peroxisomes. Biosci Biotechnol Biochem 2018; 83:322-325. [PMID: 30295129 DOI: 10.1080/09168451.2018.1530094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We evaluated the import of Arabidopsis catalase to peroxisomes under homogenous transient expression. The amino acids at -11 to -4 from the C-terminus are necessary for catalase import. The results are in agreement with the previous work under stable expression. We first demonstrate that heme-binding sites are important for peroxisomal import, suggesting the importance of catalase folding. Abbreviations: AtCat: Arabidopsis catalase; PTS: peroxisomal targeting signal; PEX: Peroxin.
Collapse
Affiliation(s)
- Yukichi Fujikawa
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Marina Suekawa
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Satoshi Endo
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Youjirou Fukami
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Shoji Mano
- b Department of Cell Biology , National Institute for Basic Biology , Okazaki , Japan.,c Department of Basic Biology , School of Life Science, SOKENDAI (The Graduate University for Advanced Studies) , Okazaki , Japan
| | - Mikio Nishimura
- d Department of Biology, Faculty of Science and Engineering , Konan University , Kobe , Japan
| | - Muneharu Esaka
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
31
|
Mix AK, Cenci U, Heimerl T, Marter P, Wirkner ML, Moog D. Identification and Localization of Peroxisomal Biogenesis Proteins Indicates the Presence of Peroxisomes in the Cryptophyte Guillardia theta and Other "Chromalveolates". Genome Biol Evol 2018; 10:2834-2852. [PMID: 30247558 PMCID: PMC6203080 DOI: 10.1093/gbe/evy214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes are single-membrane-bound organelles with a huge metabolic versatility, including the degradation of fatty acids (β-oxidation) and the detoxification of reactive oxygen species as most conserved functions. Although peroxisomes seem to be present in the majority of investigated eukaryotes, where they are responsible for many eclectic and important spatially separated metabolic reactions, knowledge about their existence in the plethora of protists (eukaryotic microorganisms) is scarce. Here, we investigated genomic data of organisms containing complex plastids with red algal ancestry (so-called “chromalveolates”) for the presence of genes encoding peroxins—factors specific for the biogenesis, maintenance, and division of peroxisomes in eukaryotic cells. Our focus was on the cryptophyte Guillardia theta, a marine microalga, which possesses two phylogenetically different nuclei of host and endosymbiont origin, respectively, thus being of enormous evolutionary significance. Besides the identification of a complete set of peroxins in G. theta, we heterologously localized selected factors as GFP fusion proteins via confocal and electron microscopy in the model diatom Phaeodactylum tricornutum. Furthermore, we show that peroxins, and thus most likely peroxisomes, are present in haptophytes as well as eustigmatophytes, brown algae, and alveolates including dinoflagellates, chromerids, and noncoccidian apicomplexans. Our results indicate that diatoms are not the only “chromalveolate” group devoid of the PTS2 receptor Pex7, and thus a PTS2-dependent peroxisomal import pathway, which seems to be absent in haptophytes (Emiliania huxleyi) as well. Moreover, important aspects of peroxisomal biosynthesis and protein import in “chromalveolates”are highlighted.
Collapse
Affiliation(s)
- Ann-Kathrin Mix
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Germany
| | - Pia Marter
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | | | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| |
Collapse
|
32
|
Chen X, Devarajan S, Danda N, Williams C. Insights into the Role of the Peroxisomal Ubiquitination Machinery in Pex13p Degradation in the Yeast Hansenula polymorpha. J Mol Biol 2018; 430:1545-1558. [PMID: 29694833 DOI: 10.1016/j.jmb.2018.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
The import of matrix proteins into peroxisomes in yeast requires the action of the ubiquitin-conjugating enzyme Pex4p and a complex consisting of the ubiquitin E3 ligases Pex2p, Pex10p and Pex12p. Together, this peroxisomal ubiquitination machinery is thought to ubiquitinate the cycling receptor protein Pex5p and members of the Pex20p family of co-receptors, a modification that is required for receptor recycling. However, recent reports have demonstrated that this machinery plays a role in additional peroxisome-associated processes. Hence, our understanding of the function of these proteins in peroxisome biology is still incomplete. Here, we identify a role for the peroxisomal ubiquitination machinery in the degradation of the peroxisomal membrane protein Pex13p. Our data demonstrate that Pex13p levels build up in cells lacking members of this machinery and also establish that Pex13p undergoes rapid degradation in wild-type cells. Furthermore, we show that Pex13p is ubiquitinated in wild-type cells and also establish that Pex13p ubiquitination is reduced in cells lacking a functional peroxisomal E3 ligase complex. Finally, deletion of PEX2 causes Pex13p to build up at the peroxisomal membrane. Taken together, our data provide further evidence that the role of the peroxisomal ubiquitination machinery in peroxisome biology goes much deeper than receptor recycling alone.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Srishti Devarajan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Natasha Danda
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands.
| |
Collapse
|
33
|
Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J Genet Genomics 2017; 44:395-404. [PMID: 28869112 DOI: 10.1016/j.jgg.2017.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity.
Collapse
|
34
|
Dias AF, Rodrigues TA, Pedrosa AG, Barros-Barbosa A, Francisco T, Azevedo JE. The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo. J Biol Chem 2017; 292:15287-15300. [PMID: 28765278 DOI: 10.1074/jbc.m117.805044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
A remarkable property of the machinery for import of peroxisomal matrix proteins is that it can accept already folded proteins as substrates. This import involves binding of newly synthesized proteins by cytosolic peroxisomal biogenesis factor 5 (PEX5) followed by insertion of the PEX5-cargo complex into the peroxisomal membrane at the docking/translocation module (DTM). However, how these processes occur remains largely unknown. Here, we used truncated PEX5 molecules to probe the DTM architecture. We found that the DTM can accommodate a larger number of truncated PEX5 molecules comprising amino acid residues 1-197 than full-length PEX5 molecules. A shorter PEX5 version (PEX5(1-125)) still interacted correctly with the DTM; however, this species was largely accessible to exogenously added proteinase K, suggesting that this protease can access the DTM occupied by a small PEX5 protein. Interestingly, the PEX5(1-125)-DTM interaction was inhibited by a polypeptide comprising PEX5 residues 138-639. Apparently, the DTM can recruit soluble PEX5 through interactions with different PEX5 domains, suggesting that the PEX5-DTM interactions are to some degree fuzzy. Finally, we found that the interaction between PEX5 and PEX14, a major DTM component, is stable at pH 11.5. Thus, there is no reason to assume that the hitherto intriguing resistance of DTM-bound PEX5 to alkaline extraction reflects its direct contact with the peroxisomal lipid bilayer. Collectively, these results suggest that the DTM is best described as a large cavity-forming protein assembly into which cytosolic PEX5 can enter to release its cargo.
Collapse
Affiliation(s)
- Ana F Dias
- From the Instituto de Investigação e Inovação em Saúde (i3S) and.,the Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal and.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Tony A Rodrigues
- From the Instituto de Investigação e Inovação em Saúde (i3S) and.,the Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal and.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana G Pedrosa
- From the Instituto de Investigação e Inovação em Saúde (i3S) and.,the Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal and.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Aurora Barros-Barbosa
- From the Instituto de Investigação e Inovação em Saúde (i3S) and.,the Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal and
| | - Tânia Francisco
- From the Instituto de Investigação e Inovação em Saúde (i3S) and.,the Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal and
| | - Jorge E Azevedo
- From the Instituto de Investigação e Inovação em Saúde (i3S) and .,the Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal and.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
35
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Saryi NAA, Hutchinson JD, Al-Hejjaj MY, Sedelnikova S, Baker P, Hettema EH. Pnc1 piggy-back import into peroxisomes relies on Gpd1 homodimerisation. Sci Rep 2017; 7:42579. [PMID: 28209961 PMCID: PMC5314374 DOI: 10.1038/srep42579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022] Open
Abstract
Peroxisomes are eukaryotic organelles that posttranslationally import proteins via one of two conserved peroxisomal targeting signal (PTS1 or 2) mediated pathways. Oligomeric proteins can be imported via these pathways but evidence is accumulating that at least some PTS1-containing monomers enter peroxisomes before they assemble into oligomers. Some proteins lacking a PTS are imported by piggy-backing onto PTS-containing proteins. One of these proteins is the nicotinamidase Pnc1, that is co-imported with the PTS2-containing enzyme Glycerol-3-phosphate dehydrogenase 1, Gpd1. Here we show that Pnc1 co-import requires Gpd1 to form homodimers. A mutation that interferes with Gpd1 homodimerisation does not prevent Gpd1 import but prevents Pnc1 co-import. A suppressor mutation that restores Gpd1 homodimerisation also restores Pnc1 co-import. In line with this, Pnc1 interacts with Gpd1 in vivo only when Gpd1 can form dimers. Redirection of Gpd1 from the PTS2 import pathway to the PTS1 import pathway supports Gpd1 monomer import but not Gpd1 homodimer import and Pnc1 co-import. Our results support a model whereby Gpd1 may be imported as a monomer or a dimer but only the Gpd1 dimer facilitates co-transport of Pnc1 into peroxisomes.
Collapse
Affiliation(s)
- Nadal A Al Saryi
- Department of Molecular Biology and Biotechnology University of Sheffield Firth Court, Western Bank Sheffield S10 2TN United Kingdom
| | - John D Hutchinson
- Department of Molecular Biology and Biotechnology University of Sheffield Firth Court, Western Bank Sheffield S10 2TN United Kingdom
| | - Murtakab Y Al-Hejjaj
- Department of Molecular Biology and Biotechnology University of Sheffield Firth Court, Western Bank Sheffield S10 2TN United Kingdom
| | - Svetlana Sedelnikova
- Department of Molecular Biology and Biotechnology University of Sheffield Firth Court, Western Bank Sheffield S10 2TN United Kingdom
| | - Patrick Baker
- Department of Molecular Biology and Biotechnology University of Sheffield Firth Court, Western Bank Sheffield S10 2TN United Kingdom
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology University of Sheffield Firth Court, Western Bank Sheffield S10 2TN United Kingdom
| |
Collapse
|
37
|
Chen N, Teng XL, Xiao XG. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1345. [PMID: 28824680 PMCID: PMC5539789 DOI: 10.3389/fpls.2017.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.
Collapse
|