1
|
Magerl B, Cavazza T. ELL3 regulates spindle assembly to prevent maternally inherited aneuploidy and infertility. Nat Struct Mol Biol 2025; 32:217-219. [PMID: 39843981 DOI: 10.1038/s41594-024-01475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Affiliation(s)
- Bernhard Magerl
- Department of Reproductive Endocrinology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Tommaso Cavazza
- Department of Reproductive Endocrinology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Zhu S, Xie P, Yang Y, Wang Y, Zhang C, Zhang Y, Si S, Zhang J, He J, Si H, Fang K, Ma B, Jiang X, Huang L, Li J, Min T, Zheng B, Da L, Lin D, Gao K, Li Y, Huang M, Qiao F, Huo H, Feng H, Zhao H, Chen Z, Xu Z, Xie J, Cao H, Liu J, Yao X, Xie W, Sun Y, Wu K, Xiong B, Hu P, Luo Z, Lin C. Maternal ELL3 loss-of-function leads to oocyte aneuploidy and early miscarriage. Nat Struct Mol Biol 2025; 32:381-392. [PMID: 39820605 DOI: 10.1038/s41594-024-01471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Up to an estimated 10% of women experience miscarriage in their lifetimes. Embryonic aneuploidy is a leading cause for miscarriage, infertility and congenital defects. Here we identify variants of ELL3, a gene encoding a transcription elongation factor, in couples who experienced consecutive early miscarriages due to embryonic aneuploidy. Maternal ELL3 knockout leads to mouse oocyte aneuploidy, subfertility and miscellaneous embryonic defects. Mechanistically, we find that ELL3 localizes to the spindle during meiosis, and that ELL3 depletion in both mouse and human oocytes increases the incidence of meiotic spindle abnormality. ELL3 coordinates with TPX2 to ensure the proper function of the microtubule motor KIF11. Live imaging analysis shows that ELL3 is paramount for promoting spindle assembly and driving chromosome movement. Together, our findings implicate maternal ELL3 deficiency in causing oocyte aneuploidy and early miscarriage.
Collapse
Affiliation(s)
- Shiqi Zhu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Peng Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yi Yang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxin Zhang
- Center of Reproductive Medicine, Shandong University, Jinan, China
| | - Yu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuhan Si
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jin Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jingjing He
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Hao Si
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Ke Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Binbin Ma
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xu Jiang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Lindi Huang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiamin Li
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tian Min
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Beihong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fujuan, China
| | - Lincui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fujuan, China
| | - Dianliang Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fujuan, China
| | - Kun Gao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yuanyuan Li
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mingtao Huang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Haiqin Huo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyang Feng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhao
- Center of Reproductive Medicine, Shandong University, Jinan, China
| | - Zijiang Chen
- Center of Reproductive Medicine, Shandong University, Jinan, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xie
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Cao
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fujuan, China
| | - Jin Liu
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Xuebiao Yao
- Laboratory for Organelle Dynamics and Plasticity Control, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fujuan, China.
| | - Keliang Wu
- Center of Reproductive Medicine, Shandong University, Jinan, China.
| | - Bo Xiong
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Shenzhen Research Institute, Southeast University, Shenzhen, China.
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and Technology, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Chian R, Guan Y, He X, Xu J, Shu J, Li J. The quality of human eggs and its pre-IVF incubation. Reprod Med Biol 2025; 24:e12652. [PMID: 40321658 PMCID: PMC12048747 DOI: 10.1002/rmb2.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Background Multi-factors influence the success rate of infertility treatments, and one of the important points is to obtain good quality eggs. Methods Based on the literatures and unpublished data, the factors affecting egg quality were summarized. Main Findings Results Egg quality is an important determinant in successful infertility treatment. In addition to maternal age, controlled ovarian hyperstimulation (COH) protocols also play a key role in affecting the quality of the egg. After egg retrieval, the insemination occurs 3-6 h after collection, with a pre-IVF incubation time by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (39-42 h post-HCG injection). The pre-IVF incubation refers to the short period time of 3 to 6 h after oocyte retrieval and before the insemination by IVF or ICSI. The pre-IVF incubation of collected eggs in the designed culture medium improves egg quality in terms of maturation and early embryonic development. Conclusions Pre-IVF incubation of the collected eggs contributes to the improvement of the quality of eggs; therefore, it may increase subsequent pregnancy and implantation rates following embryo transfer.
Collapse
Affiliation(s)
- Ri‐Cheng Chian
- Laboratory of Research and DevelopmentARSCI Biomedical Inc.Jiaxing CityPeople's Republic of China
| | - Yi‐Chun Guan
- Center for Reproductive MedicineThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhou CityPeople's Republic of China
| | - Xiao‐Jin He
- Center for Reproductive MedicineThe First People's Hospital of Jiaotong UniversityShanghaiPeople's Republic of China
| | - Jian Xu
- Center for Reproductive MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuPeople's Republic of China
| | - Jin‐Hui Shu
- Center of Reproductive MedicineMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningPeople's Republic of China
| | - Jian‐Hua Li
- Reproductive Medical Center, Department of Obstetrics and GynecologySeventh Medical Center of PLA General HospitalBeijingPeople's Republic of China
| |
Collapse
|
4
|
Delaval A, Glover KA, Solberg MF, Fjelldal PG, Hansen T, Harvey AC. Chromosomal aberrations and early mortality in a non-mammalian vertebrate: example from pressure-induced triploid Atlantic salmon. Heredity (Edinb) 2024; 133:426-436. [PMID: 39369146 PMCID: PMC11589116 DOI: 10.1038/s41437-024-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
In commercial aquaculture, the production of triploid fish is currently the most practical approach to prevent maturation and farm-to-wild introgression following escapes. However, triploids often exhibit poor welfare, and the underlying mechanisms remain unclear. Inheritance issues associated with sub-optimal hydrostatic pressure treatments used to induce triploidy, or the genetic background of parental fish, have been speculated to contribute. We tested this by quantifying the frequency and type of chromosomal aberrations in Atlantic salmon subjected to a gradient of sub-optimal pressure treatments (Experiment 1) and from multiple mothers (Experiment 2). From these experiments, we genotyped a subsample of ~900 eyed eggs and all ~3300 surviving parr across ~20 microsatellites. In contrast to the low frequency of chromosomal aberrations in the diploid (no hydrostatic pressure) and triploid (full 9500 PSI treatment) controls, eyed eggs subjected to sub-optimal pressure treatments (6500-8500 PSI) had a higher incidence of chromosomal aberrations such as aneuploidy and uniparental disomy, corresponding to lower triploidization success and higher egg mortality rates. We also observed maternal effects on triploidization success and incidence of chromosomal aberrations, with certain half-sibling families exhibiting more aberrations than others. Chromosomal aberrations were rare among surviving parr, suggesting a purge of maladapted individuals during early development. This study demonstrates that sub-optimal hydrostatic pressure treatments and maternal effects not only influence the success of triploidization treatments, but may also affect the incidence of chromosomal aberrations and early mortality. The results have important implications for aquaculture breeding programs and their efforts to prevent farm-to-wild introgression.
Collapse
Affiliation(s)
| | | | | | | | - Tom Hansen
- Institute of Marine Research, Matre Research Station, Matredal, Norway
| | | |
Collapse
|
5
|
Satouh Y, Suzuki E, Sasaki K, Sato K. Improved low-invasive mRNA electroporation method into immature mouse oocytes visualizes protein dynamics during development†. Biol Reprod 2024; 111:931-941. [PMID: 39073915 DOI: 10.1093/biolre/ioae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
One of the major causes of oocyte quality deterioration, chromosome segregation abnormalities manifest mainly during meiosis I, which occurs before and during ovulation. However, currently, there is a technical limitation in the introduction of mRNA into premature oocytes without impairing embryonic developmental ability. In this study, we established a low-invasive electroporation (EP) method to introduce mRNA into pre-ovulatory, germinal vesicle (GV) mouse oocytes in an easier manner than the traditional microinjection method. The EP method with an optimized impedance value resulted in the efficient introduction of mRNAs encoding enhanced green fluorescent protein (EGFP) into the GV oocytes surrounded by cumulus cells at a survival rate of 95.0%. Furthermore, the introduction of histone H2B-EGFP mRNA into the GV oocytes labeled most of the oocytes without affecting the blastocyst development rate, indicating the feasibility of the visualization of oocyte chromosomal dynamics that enable us to assay chromosomal integrity in oocyte maturation and cell count in embryonic development. The establishment of this EP method offers extensive assays to select pre-implantation embryos and enables the surveying of essential factors for mammalian oocyte quality determination.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Emiko Suzuki
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Keisuke Sasaki
- Bioresource Center, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
6
|
Gong T, McNally KL, Konanoor S, Peraza A, Bailey C, Redemann S, McNally FJ. Roles of Tubulin Concentration during Prometaphase and Ran-GTP during Anaphase of Caenorhabditis elegans Meiosis. Life Sci Alliance 2024; 7:e202402884. [PMID: 38960623 PMCID: PMC11222656 DOI: 10.26508/lsa.202402884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
In many animal species, the oocyte meiotic spindle, which is required for chromosome segregation, forms without centrosomes. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in Caenorhabditis elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly occurred after auxin-induced degradation of Ran-GEF, but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown. We found that the concentration of soluble tubulin in the metaphase spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules. Measurement of the volume occupied by yolk granules and mitochondria indicated that volume exclusion would be sufficient to explain the concentration of tubulin in the spindle volume. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Siri Konanoor
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Alma Peraza
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Stefanie Redemann
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
7
|
Wu T, Luo Y, Zhang M, Chen B, Du X, Gu H, Xie S, Pan Z, Yu R, Hai R, Niu X, Hao G, Jin L, Shi J, Sun X, Kuang Y, Li W, Sang Q, Wang L. Mechanisms of minor pole-mediated spindle bipolarization in human oocytes. Science 2024; 385:eado1022. [PMID: 39172836 DOI: 10.1126/science.ado1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Spindle bipolarization, the process of a microtubule mass transforming into a bipolar spindle, is a prerequisite for accurate chromosome segregation. In contrast to mitotic cells, the process and mechanism of spindle bipolarization in human oocytes remains unclear. Using high-resolution imaging in more than 1800 human oocytes, we revealed a typical state of multipolar intermediates that form during spindle bipolarization and elucidated the mechanism underlying this process. We found that the minor poles formed in multiple kinetochore clusters contribute to the generation of multipolar intermediates. We further determined the essential roles of HAUS6, KIF11, and KIF18A in spindle bipolarization and identified mutations in these genes in infertile patients characterized by oocyte or embryo defects. These results provide insights into the physiological and pathological mechanisms of spindle bipolarization in human oocytes.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Meiling Zhang
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
| | - Xingzhu Du
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Siyuan Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ran Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ruiqi Hai
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530029, China
| | - Guimin Hao
- Hebei Clinical Research Center for Birth Defects, Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Liping Jin
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Juanzi Shi
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an 710003, China
| | - Xiaoxi Sun
- Shanghai JIAI Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wen Li
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Wang X, Tian PZ, Zhao YJ, Lu J, Dong CY, Zhang CL. The association between female age and pregnancy outcomes in patients receiving first elective single embryo transfer cycle: a retrospective cohort study. Sci Rep 2024; 14:19216. [PMID: 39160203 PMCID: PMC11333704 DOI: 10.1038/s41598-024-70249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
This study aimed to explore the relationship between female age and pregnancy outcomes in patients undergoing their first elective single embryo transfer (eSET) of in vitro fertilization (IVF) cycles. The retrospective cohort study encompassed 7089 IVF/intracytoplasmic sperm injection (ICSI) patients of the Reproductive Medicine Center, Henan Provincial Peoples' Hospital of China, from September 1, 2016, to May 31, 2022. Patients all received the first eSET in their IVF/ICSI cycles. A generalized additive model (GAM) was employed to examine the the dose-response correlation between age and pregnancy outcomes, namely the clinical pregnancy rate (CPR) and ongoing pregnancy rate (OPR). Logistic regression model was employed to ascertain the correlation between the CPR/OPR and age. The study cohort has an average age of 30.74; 3843 patients got clinical pregnancy rate of 61.40% and ongoing pregnancy rate of 54.21%. The multiple pregnancy rate of is 1.24%. For patients aged 34 and above, the CPR decreased by 10% for every 1-year increase in age (adjusted OR 0.90, 95% CI 0.84-0.96, p < 0.0001). Similarly, the OPR decreased by 16% for every 1-year increase in age (adjusted OR 0.84, 95% CI 0.81-0.88, p < 0.0001). Patients aged 35-37 years had an acceptable OPR of 52.4% after eSET, with a low multiple pregnancy rate (1.1%). Pregnancy outcomes were significantly better in blastocyst cycles compared to cleavage embryo cycles, and this trend was more pronounced in older patients. There was a non-linear relationship between female age and pregnancy outcomes in patients undergoing their first eSET cycles. The clinical pregnancy rate and ongoing pregnancy rate decreased significantly with age, especially in women older than 34 years. For patients under 37 years old, single embryo transfer should be prioritized. For patients over 38 years old with available blastocysts, eSET is also recommended.
Collapse
Affiliation(s)
- Xue Wang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei-Zhe Tian
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Jun Zhao
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Lu
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Yue Dong
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui-Lian Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Chang H, Huang C, Cheng S, Li J, Wang X. Fbxo28 is essential for spindle migration and morphology during mouse oocyte meiosis I. Int J Biol Macromol 2024; 275:133232. [PMID: 38960234 DOI: 10.1016/j.ijbiomac.2024.133232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Spindle migration and assembly regulates asymmetric oocyte division, which is essential for fertility. Fbxo28, as a member of SCF (Skp1-Cul1-F-box) ubiquitin E3 ligases complex, is specifically expressed in oocytes. However, little is known about the functions of Fbxo28 in spindle assembly and migration during oocyte meiosis I. In present study, microinjection with morpholino oligonucleotides and exogenous mRNA for knockdown and rescue experiments, and immunofluorescence staining, western blot, timelapse confocal microscopy and chromosome spreading were utilized to explore the roles of Fbxo28 in asymmetric division during meiotic maturation. Our data suggested that Fbxo28 mainly localized at chromosomes and acentriolar microtubule-organizing centers (aMTOCs). Depletion of Fbxo28 did not affect polar body extrusion but caused defects in spindle morphology and migration, indicative of the failure of asymmetric division. Moreover, absence of Fbxo28 disrupted both cortical and cytoplasmic actin assembly and decreased the expression of ARPC2 and ARP3. These defects could be rescued by exogenous Fbxo28-myc mRNA supplement. Collectively, this study demonstrated that Fbxo28 affects spindle morphology and actin-based spindle migration during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Haoya Chang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China; Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siyu Cheng
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
10
|
Mihalas BP, Marston AL, Wu LE, Gilchrist RB. Reproductive Ageing: Metabolic contribution to age-related chromosome missegregation in mammalian oocytes. Reproduction 2024; 168:e230510. [PMID: 38718822 PMCID: PMC11301428 DOI: 10.1530/rep-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
In brief Chromosome missegregation and declining energy metabolism are considered to be unrelated features of oocyte ageing that contribute to poor reproductive outcomes. Given the bioenergetic cost of chromosome segregation, we propose here that altered energy metabolism during ageing may be an underlying cause of age-related chromosome missegregation and aneuploidy. Abstract Advanced reproductive age in women is a major cause of infertility, miscarriage and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review, we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.
Collapse
Affiliation(s)
- Bettina P Mihalas
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Adele L Marston
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lindsay E Wu
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Robert B Gilchrist
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
11
|
Teramoto S, Ueno T, Aono F, Okubo T, Segawa T, Osada H, Shozu M. Anticentromere antibodies are the most potent antinuclear antibodies in reducing live birth outcomes after ICSI. Reprod Biomed Online 2024; 49:103864. [PMID: 38688121 DOI: 10.1016/j.rbmo.2024.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 05/02/2024]
Abstract
RESEARCH QUESTION How, and to what extent, do anticentromere antibodies (ACA) reduce live birth outcomes after ICSI? STUDY DESIGN Retrospective cohort study of infertile women aged 30-43 years who underwent ICSI between September 2016 and March 2021. Women with a history or current diagnosis of symptomatic connective tissue disease were excluded. Immunofluorescence staining detected antinuclear antibodies (ANA). Staining pattern and titre (cut-off, 1:160) were used to divide infertile women into three groups: positive for ACA (ACA+) (n = 28); positive for ANA other than ACA (ANA+) (n = 77); and negative for both ACA and ANA (control) (n = 3723). RESULTS Cumulative live birth rate (CLB) was lowest in ACA+ (7%, 31% and 46% in ACA+, ANA+ and control, respectively) (ACA+ versus control, P < 0.0001; ACA+ versus ANA+, P = 0.011; ANA+ versus control, P = 0.012). A small impairment in meiosis I and a larger impairment in meiosis II, fertilization and embryo cleavage caused the decrease. Multiple pronuclei formation increased (RR versus control, 5.33; 95% CI 4.26 to 6.65) and good-quality blastocyst development decreased (RR 0.34; 95% CI 0.22 to 0.53). Multiple logistic regression analysis showed that ACA was associated with CLB outcome (OR 0.08, 95% CI 0.02 to 0.36); the other four ANA staining patterns were not. CONCLUSIONS The effect of ACA on live birth outcomes is strongest after ICSI among ANA, primarily through the impairment of meiosis II and subsequent stages. Repeated ICSI failure and eggs with multiple pronuclei may warrant specific testing for ACA.
Collapse
Affiliation(s)
- Shokichi Teramoto
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008
| | - Tsuyoshi Ueno
- Shimbashi Yume Clinic, 2-5-1, Shimbashi, Minato-ku, Tokyo, Japan, 105-0004
| | - Fumihito Aono
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008
| | - Tsuyoshi Okubo
- Shimbashi Yume Clinic, 2-5-1, Shimbashi, Minato-ku, Tokyo, Japan, 105-0004
| | - Tomoya Segawa
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008.; Shimbashi Yume Clinic, 2-5-1, Shimbashi, Minato-ku, Tokyo, Japan, 105-0004
| | - Hisao Osada
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008
| | - Makio Shozu
- Natural ART Clinic at Nihonbashi, 2-7-1, Nihonbashi, Chuo-ku, Tokyo, Japan, 103-6008.; Evolution and Reproduction Biology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, Chiba Prefecture, Japan, 260-8673..
| |
Collapse
|
12
|
Gong T, McNally KL, Konanoor S, Peraza A, Bailey C, Redemann S, McNally FJ. Roles of Tubulin Concentration during Prometaphase and Ran-GTP during Anaphase of C. elegans meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590357. [PMID: 38659754 PMCID: PMC11042349 DOI: 10.1101/2024.04.19.590357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In many animal species, the oocyte meiotic spindle, which is required for chromosome segregation, forms without centrosomes. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in C. elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly occurred after auxin-induced degradation of Ran-GEF but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown. We found that the concentration of soluble tubulin in the metaphase spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules. Measurement of the volume occupied by yolk granules and mitochondria indicated that volume exclusion would be sufficient to explain the concentration of tubulin in the spindle volume. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular and Cellular Biology, university of California, Davis, Davis, CA 95616, USA
| | - Karen L McNally
- Department of Molecular and Cellular Biology, university of California, Davis, Davis, CA 95616, USA
| | - Siri Konanoor
- Department of Molecular and Cellular Biology, university of California, Davis, Davis, CA 95616, USA
| | - Alma Peraza
- Department of Molecular and Cellular Biology, university of California, Davis, Davis, CA 95616, USA
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, university of California, Davis, Davis, CA 95616, USA
| | - Stefanie Redemann
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, university of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Boylan CF, Sambo KM, Neal-Perry G, Brayboy LM. Ex ovo omnia-why don't we know more about egg quality via imaging? Biol Reprod 2024; 110:1201-1212. [PMID: 38767842 PMCID: PMC11180616 DOI: 10.1093/biolre/ioae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Determining egg quality is the foremost challenge in assisted reproductive technology (ART). Although extensive advances have been made in multiple areas of ART over the last 40 years, oocyte quality assessment tools have not much evolved beyond standard morphological observation. The oocyte not only delivers half of the nuclear genetic material and all of the mitochondrial DNA to an embryo but also provides complete developmental support during embryonic growth. Oocyte mitochondrial numbers far exceed those of any somatic cell, yet little work has been done to evaluate the mitochondrial bioenergetics of an oocyte. Current standard oocyte assessment in in vitro fertilization (IVF) centers include the observation of oocytes and their surrounding cell complex (cumulus cells) via stereomicroscope or inverted microscope, which is largely primitive. Additional oocyte assessments include polar body grading and polarized light meiotic spindle imaging. However, the evidence regarding the aforementioned methods of oocyte quality assessment and IVF outcomes is contradictory and non-reproducible. High-resolution microscopy techniques have also been implemented in animal and human models with promising outcomes. The current era of oocyte imaging continues to evolve with discoveries in artificial intelligence models of oocyte morphology selection albeit at a slow rate. In this review, the past, current, and future oocyte imaging techniques will be examined with the goal of drawing attention to the gap which limits our ability to assess oocytes in real time. The implications of improved oocyte imaging techniques on patients undergoing IVF will be discussed as well as the need to develop point of care oocyte assessment testing in IVF labs.
Collapse
Affiliation(s)
- Caitlin F Boylan
- University of North Carolina, Chapel Hill, NC, USA
- Eastern Virginia Medical School, Norfolk, VA, USA
| | - Keshia M Sambo
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Lynae M Brayboy
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Klinik für Pädiatrie m. S. Neurologie, Charité Campus Virchow Klinikum, Berlin, Germany
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, MA, USA
| |
Collapse
|
14
|
Jin Z, Zhang ZC, Xiao CY, Li MQ, Li QR, Gao LL. CRMP5 participates in oocyte meiosis by regulating spastin to correct microtubule-kinetochore misconnection. ZYGOTE 2024; 32:21-27. [PMID: 38047349 DOI: 10.1017/s0967199423000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
Collapse
Affiliation(s)
- Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhi-Cai Zhang
- Department of Dispatching Management, Zibo Medical Emergency Command Center, Zibo, Shandong, 255030, China
| | - Chen-Yu Xiao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Mei-Qi Li
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Qian-Ru Li
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lei-Lei Gao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
15
|
El Yakoubi W, Akera T. Condensin dysfunction is a reproductive isolating barrier in mice. Nature 2023; 623:347-355. [PMID: 37914934 PMCID: PMC11379054 DOI: 10.1038/s41586-023-06700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Guo Y, Sun H, Chen H, Yang G, Wang J, Qi Z, Pang W, Chu G, Gao L. Vitrification induces a focused spindle pole in mouse MI oocytes. Theriogenology 2023; 211:232-240. [PMID: 37660475 DOI: 10.1016/j.theriogenology.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Immature oocyte (germinal vesicle stage, GV) vitrification can avoid a cycle of ovarian stimulation, which is friendly to patients with hormone-sensitive tumors. However, the in vitro maturation of vitrification-thawed GV oocyte usually results in aneuploidy, and the underlying mechanism remains unclear. Stable spindle poles are important for accurate chromosome segregation. Acentriolar microtubule-organizing centers (aMTOCs) undergo fragmentation and reaggregation to form spindle poles. Microtubule nucleation is facilitated via the perichromosome Ran after GVBD, which plays an important role in aMTOCs fragmentation. This study showed that vitrification may reduce microtubule density by decreasing perichromosomal Ran levels, which reduced the localization of pKIF11, thereby decreased the fragmentation of aMTOCs and formed a more focused spindle pole, ultimately resulted in aneuploidy. This study revealed the mechanism of abnormal spindle pole formation in vitrified oocytes and offered a theoretical support to further improve the quality of vitrified oocytes.
Collapse
Affiliation(s)
- Yaoyao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haowei Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hui Chen
- Animal Husbandry Industry Test and Demonstration Center of Shaanxi Province, Jingyang, 713708, Shaanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jialun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhengjun Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Dong J, Jin L, Bao S, Chen B, Zeng Y, Luo Y, Du X, Sang Q, Wu T, Wang L. Ectopic expression of human TUBB8 leads to increased aneuploidy in mouse oocytes. Cell Discov 2023; 9:105. [PMID: 37875488 PMCID: PMC10598138 DOI: 10.1038/s41421-023-00599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/26/2023] [Indexed: 10/26/2023] Open
Abstract
Aneuploidy seriously compromises female fertility and increases incidence of birth defects. Rates of aneuploidy in human eggs from even young women are significantly higher than those in other mammals. However, intrinsic genetic factors underlying this high incidence of aneuploidy in human eggs remain largely unknown. Here, we found that ectopic expression of human TUBB8 in mouse oocytes increases rates of aneuploidy by causing kinetochore-microtubule (K-MT) attachment defects. Stretched bivalents in mouse oocytes expressing TUBB8 are under less tension, resulting in continuous phosphorylation status of HEC1 by AURKB/C at late metaphase I that impairs the established correct K-MT attachments. This reduced tension in stretched bivalents likely correlates with decreased recruitment of KIF11 on meiotic spindles. We also found that ectopic expression of TUBB8 without its C-terminal tail decreases aneuploidy rates by reducing erroneous K-MT attachments. Importantly, variants in the C-terminal tail of TUBB8 were identified in patients with recurrent miscarriages. Ectopic expression of an identified TUBB8 variant in mouse oocytes also compromises K-MT attachments and increases aneuploidy rates. In conclusion, our study provides novel understanding for physiological mechanisms of aneuploidy in human eggs as well as for pathophysiological mechanisms involved in recurrent miscarriages.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xingzhu Du
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| | - Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Milagre I, Pereira C, Oliveira RA. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11933. [PMID: 37569309 PMCID: PMC10418648 DOI: 10.3390/ijms241511933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented.
Collapse
Affiliation(s)
- Inês Milagre
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | | | - Raquel A. Oliveira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
19
|
Domingo-Muelas A, Skory RM, Moverley AA, Ardestani G, Pomp O, Rubio C, Tetlak P, Hernandez B, Rhon-Calderon EA, Navarro-Sánchez L, García-Pascual CM, Bissiere S, Bartolomei MS, Sakkas D, Simón C, Plachta N. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 2023; 186:3166-3181.e18. [PMID: 37413989 PMCID: PMC11170958 DOI: 10.1016/j.cell.2023.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Proper preimplantation development is essential to assemble a blastocyst capable of implantation. Live imaging has uncovered major events driving early development in mouse embryos; yet, studies in humans have been limited by restrictions on genetic manipulation and lack of imaging approaches. We have overcome this barrier by combining fluorescent dyes with live imaging to reveal the dynamics of chromosome segregation, compaction, polarization, blastocyst formation, and hatching in the human embryo. We also show that blastocyst expansion mechanically constrains trophectoderm cells, causing nuclear budding and DNA shedding into the cytoplasm. Furthermore, cells with lower perinuclear keratin levels are more prone to undergo DNA loss. Moreover, applying trophectoderm biopsy, a mechanical procedure performed clinically for genetic testing, increases DNA shedding. Thus, our work reveals distinct processes underlying human development compared with mouse and suggests that aneuploidies in human embryos may not only originate from chromosome segregation errors during mitosis but also from nuclear DNA shedding.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Igenomix Foundation and Carlos Simon Foundation, Spain
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University College London, London WC1E 6BT, UK
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Carlos Simón
- Igenomix Foundation and Carlos Simon Foundation, Spain; Department of Pediatrics Obstetrics & Gynecology, University of Valencia, Valencia 46010, Spain; INCLIVA Health Research Institute, Valencia 46010, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Pitayu-Nugroho L, Aubry M, Laband K, Geoffroy H, Ganeswaran T, Primadhanty A, Canman JC, Dumont J. Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Nat Commun 2023; 14:4032. [PMID: 37419936 PMCID: PMC10329006 DOI: 10.1038/s41467-023-39702-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
During cell division, chromosome congression to the spindle center, their orientation along the spindle long axis and alignment at the metaphase plate depend on interactions between spindle microtubules and kinetochores, and are pre-requisite for chromosome bi-orientation and accurate segregation. How these successive phases are controlled during oocyte meiosis remains elusive. Here we provide 4D live imaging during the first meiotic division in C. elegans oocytes with wild-type or disrupted kinetochore protein function. We show that, unlike in monocentric organisms, holocentric chromosome bi-orientation is not strictly required for accurate chromosome segregation. Instead, we propose a model in which initial kinetochore-localized BHC module (comprised of BUB-1Bub1, HCP-1/2CENP-F and CLS-2CLASP)-dependent pushing acts redundantly with Ndc80 complex-mediated pulling for accurate chromosome segregation in meiosis. In absence of both mechanisms, homologous chromosomes tend to co-segregate in anaphase, especially when initially mis-oriented. Our results highlight how different kinetochore components cooperate to promote accurate holocentric chromosome segregation in oocytes of C. elegans.
Collapse
Affiliation(s)
| | - Mélanie Aubry
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Kimberley Laband
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Hélène Geoffroy
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | | | | | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
21
|
Qu J, Qin L, Guo J, Zhu L, Luo Y, Li C, Xie J, Wang J, Shi C, Huang G, Li J. Near-infrared fluorophore IR-61 improves the quality of oocytes in aged mice via mitochondrial protection. Biomed Pharmacother 2023; 162:114571. [PMID: 36989715 DOI: 10.1016/j.biopha.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Maternal aging is associated with a decline in oocyte quality, which leads to the decreased fertility. Therefore, developing approaches to reduce aging-induced deterioration of oocyte quality in older women is important. Near-infrared cell protector-61 (IR-61), a novel heptamethine cyanine dye, has the potential for antioxidant effects. In this study, we found that IR-61 can accumulate in the ovaries and improved ovarian function of naturally aged mice; it also increased the oocyte maturation rate and quality by maintaining the integrity of the spindle/chromosomal structure and reducing the aneuploidy rate. In addition, the embryonic developmental competence of aged oocytes was improved. Finally, RNA-sequencing analysis indicated that IR-61 might perform the beneficial effects on aged oocytes by regulating mitochondrial function, this was confirmed by immunofluorescence analysis of mitochondrial distribution and reactive oxygen species. Taken together, our findings demonstrate that IR-61 supplementation in vivo can increase oocyte quality and protect oocytes from aging-induced mitochondrial dysfunction, and thus could improve the fertility of older women and efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Jiadan Qu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lifeng Qin
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yunyao Luo
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
22
|
Das A, Destouni A. Novel insights into reproductive ageing and menopause from genomics. Hum Reprod 2023; 38:195-203. [PMID: 36478237 DOI: 10.1093/humrep/deac256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
The post-reproductive phase or menopause in females is triggered by a physiological timer that depends on a threshold of follicle number in the ovary. Curiously, reproductive senescence appears to be decoupled from chronological age and is instead thought to be a function of physiological ageing. Ovarian ageing is associated with a decrease in oocyte developmental competence, attributed to a concomitant increase in meiotic errors. Although many biological hallmarks of general ageing are well characterized, the precise mechanisms underlying the programmed ageing of the female reproductive system remain elusive. In particular, the molecular pathways linking the external menopause trigger to the internal oocyte chromosome segregation machinery that controls fertility outcomes is unclear. However, recent large scale genomics studies have begun to provide insights into this process. Next-generation sequencing integrated with systems biology offers the advantage of sampling large datasets to uncover molecular pathways associated with a phenotype such as ageing. In this mini-review, we discuss findings from these studies that are crucial for advancing female reproductive senescence research. Targets identified in these studies can inform future animal models for menopause. We present three potential hypotheses for how external pathways governing ovarian ageing can influence meiotic chromosome segregation, with evidence from both animal models and molecular targets revealed from genomics studies. Although still in incipient stages, we discuss the potential of genomics studies combined with epigenetic age acceleration models for providing a predictive toolkit of biomarkers controlling menopause onset in women. We also speculate on future research directions to investigate extending female reproductive lifespan, such as comparative genomics in model systems that lack menopause. Novel genomics insights from such organisms are predicted to provide clues to preserving female fertility.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aspasia Destouni
- Laboratory of Cytogenetics and Molecular Genetics, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
23
|
Satouh Y, Sato K. Reorganization, specialization, and degradation of oocyte maternal components for early development. Reprod Med Biol 2023; 22:e12505. [PMID: 36726596 PMCID: PMC9884333 DOI: 10.1002/rmb2.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| |
Collapse
|
24
|
McCarty KJ, Haywood ME, Lee R, Henry L, Arnold A, McReynolds S, McCallie B, Schoolcraft B, Katz-Jaffe M. Segmental aneuploid hotspots identified across the genome concordant on reanalysis. Mol Hum Reprod 2022; 29:6865036. [PMID: 36458926 DOI: 10.1093/molehr/gaac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize a large set of full segmental aneuploidies identified in trophectoderm (TE) biopsies and evaluate concordance in human blastocysts. Full segmental aneuploid errors were identified in TE biopsies (n = 2766) from preimplantation genetic testing for aneuploid (PGT-A) cycles. Full segmental deletions (n = 1872; 66.1%) presented twice as many times as duplications (n = 939; 33.9%), mapped more often to the q-arm (n = 1696; 61.3%) than the p-arm (n = 847; 31.0%) or both arms (n = 223; 8.1%; P < 0.05), and were eight times more likely to include the distal end of a chromosome than not (P < 0.05). Additionally, 37 recurring coordinates (each ≥ 10 events) were discovered across 17 different chromosomes, which were also significantly enriched for distal regions (P = 4.1 × 10-56). Blinded concordance analysis of 162 dissected blastocysts validated the original TE PGT-A full segmental result for a concordance of 96.3% (n = 156); remaining dissected blastocysts were identified as mosaic (n = 6; 3.7%). Origin of aneuploid analysis revealed full segmental aneuploid errors were mostly paternally derived (67%) in contrast to whole chromosome aneuploid errors (5.8% paternally derived). Errors from both parental gametes were observed in 6.5% of aneuploid embryos when multiple whole chromosomes were affected. The average number of recombination events was significantly less in paternally derived (1.81) compared to maternally derived (3.81) segmental aneuploidies (P < 0.0001). In summary, full segmental aneuploidies were identified at hotspots across the genome and were highly concordant upon blinded analysis. Nevertheless, future studies assessing the reproductive potential of full (non-mosaic) segmental aneuploid embryos are critical to rule out potential harmful reproductive risks.
Collapse
Affiliation(s)
| | - Mary E Haywood
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | - Rachel Lee
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | - Lauren Henry
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | - Alison Arnold
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | | | - Blair McCallie
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | | | | |
Collapse
|
25
|
Schmidt S. Aged before Their Time: Atrazine and Diminished Egg Quality in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:124001. [PMID: 36520536 PMCID: PMC9754090 DOI: 10.1289/ehp12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
|
26
|
Albertini DF. The fan base for embryo selection strategies: enlightened or flummoxed. J Assist Reprod Genet 2022; 39:2437-2438. [PMID: 36447080 PMCID: PMC9723044 DOI: 10.1007/s10815-022-02672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
27
|
Wu T, Gu H, Luo Y, Wang L, Sang Q. Meiotic defects in human oocytes: Potential causes and clinical implications. Bioessays 2022; 44:e2200135. [PMID: 36207289 DOI: 10.1002/bies.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Meiotic defects cause abnormal chromosome segregation leading to aneuploidy in mammalian oocytes. Chromosome segregation is particularly error-prone in human oocytes, but the mechanisms behind such errors remain unclear. To explain the frequent chromosome segregation errors, recent investigations have identified multiple meiotic defects and explained how these defects occur in female meiosis. In particular, we review the causes of cohesin exhaustion, leaky spindle assembly checkpoint (SAC), inherently unstable meiotic spindle, fragmented kinetochores or centromeres, abnormal aurora kinases (AURK), and clinical genetic variants in human oocytes. We mainly focus on meiotic defects in human oocytes, but also refer to the potential defects of female meiosis in mouse models.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Metabolic and epigenetic dysfunctions underlie the arrest of in vitro fertilized human embryos in a senescent-like state. PLoS Biol 2022; 20:e3001682. [PMID: 35771762 PMCID: PMC9246109 DOI: 10.1371/journal.pbio.3001682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Around 60% of in vitro fertilized (IVF) human embryos irreversibly arrest before compaction between the 3- to 8-cell stage, posing a significant clinical problem. The mechanisms behind this arrest are unclear. Here, we show that the arrested embryos enter a senescent-like state, marked by cell cycle arrest, the down-regulation of ribosomes and histones and down-regulation of MYC and p53 activity. The arrested embryos can be divided into 3 types. Type I embryos fail to complete the maternal-zygotic transition, and Type II/III embryos have low levels of glycolysis and either high (Type II) or low (Type III) levels of oxidative phosphorylation. Treatment with the SIRT agonist resveratrol or nicotinamide riboside (NR) can partially rescue the arrested phenotype, which is accompanied by changes in metabolic activity. Overall, our data suggests metabolic and epigenetic dysfunctions underlie the arrest of human embryos.
Collapse
|
29
|
Ding ZM, Chen YW, Ahmad MJ, Wang YS, Yang SJ, Duan ZQ, Liu M, Yang CX, Liang AX, Hua GH, Huo LJ. Bisphenol F exposure affects mouse oocyte in vitro maturation through inducing oxidative stress and DNA damage. ENVIRONMENTAL TOXICOLOGY 2022; 37:1413-1422. [PMID: 35218298 DOI: 10.1002/tox.23494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is progressively used to manufacture various consumer products. Despite the established reproductive toxicity of BPF, the underlying mechanisms remain to elucidate. This in-vitro study deep in sighted the BPF toxicity on mouse oocyte meiotic maturation and quality. After treating oocytes with BPF (300 μM), the oocyte meiotic progression was blocked, accentuated by a reduced rate in the first polar body extrusion (PBE). Next, we illustrated that BPF induced α-tubulin hyper-acetylation disrupted the spindle assembly and chromosome alignment. Concurrently, BPF resulted in severe oxidative stress and DNA damage, which triggered the early apoptosis in mouse oocytes. Further, altered epigenetic modifications following BPF exposure were proved by increased H3K27me3 levels. Concerning the toxic effects on spindle structure, oxidative stress, and DNA damage in mouse oocytes, BPF toxicity was less severe to oocyte maturation and spindle structure than BPA and induced low oxidative stress. However, compared with BPA, oocytes treated with BPF were more prone to DNA damage, indicating not less intense or even more severe toxic effects of BPF than BPA on some aspects of oocytes maturation. In brief, the present study established that like wise to BPA, BPF could inhibit meiotic maturation and reduce oocyte quality, suggesting it is not a safe substitute for BPA.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Zhu Y, Wu W, Chen S, Zhang Z, Zhang G, Li J, Jiang M. Mettl3 downregulation in germinal vesicle oocytes inhibits mRNA decay and the 1st polar body extrusion during maturation. Biol Reprod 2022; 107:765-778. [PMID: 35639638 DOI: 10.1093/biolre/ioac112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
In oocytes, mRNA decay is essential for maturation and subsequent events, such as maternal-zygotic transition, zygotic genomic activation, and embryo development. Reversible N6-methyladenosine RNA methylation directly regulates transcription, pre-mRNA splicing, mRNA export, mRNA stability, and translation. Here, we identified that downregulation of N6-methyladenosine modification by microinjecting a methyltransferase-like 3 (Mettl3)-specific small interfering RNA into mouse germinal vesicle oocytes led to defects in meiotic spindles and the 1st polar body extrusion during maturation in vitro. By further quantitative real-time polymerase chain reaction and Poly(A)-tail assay analysis, we found that N6-methyladenosine methylation mainly acts by reducing deadenylation of mRNAs mediated by the Carbon catabolite repression 4 (CCR4)- negative on TATA less-(NOT) system, thereby causing mRNA accumulation in oocytes. Meanwhile, transcriptome analysis of germinal vesicle oocytes revealed the downregulation of transcripts of several genes encoding ribosomal subunits proteins in the Mettl3 small interfering RNA treated group, suggesting that N6-methyladenosine modification might affect translation. Together, our results indicate that RNA methylation accelerates mRNA decay, confirming the critical role of RNA clearance in oocyte maturation.
Collapse
Affiliation(s)
- Yan Zhu
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Wenjiao Wu
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Shaoqing Chen
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Zhen Zhang
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Guangli Zhang
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Jie Li
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Manxi Jiang
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangdong, PR China
| |
Collapse
|
31
|
Avidor-Reiss T, Achinger L, Uzbekov R. The Centriole's Role in Miscarriages. Front Cell Dev Biol 2022; 10:864692. [PMID: 35300410 PMCID: PMC8922021 DOI: 10.3389/fcell.2022.864692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Centrioles are subcellular organelles essential for normal cell function and development; they form the cell’s centrosome (a major cytoplasmic microtubule organization center) and cilium (a sensory and motile hair-like cellular extension). Centrioles with evolutionarily conserved characteristics are found in most animal cell types but are absent in egg cells and exhibit unexpectedly high structural, compositional, and functional diversity in sperm cells. As a result, the centriole’s precise role in fertility and early embryo development is unclear. The centrioles are found in the spermatozoan neck, a strategic location connecting two central functional units: the tail, which propels the sperm to the egg and the head, which holds the paternal genetic material. The spermatozoan neck is an ideal site for evolutionary innovation as it can control tail movement pre-fertilization and the male pronucleus’ behavior post-fertilization. We propose that human, bovine, and most other mammals–which exhibit ancestral centriole-dependent reproduction and two spermatozoan centrioles, where one canonical centriole is maintained, and one atypical centriole is formed–adapted extensive species-specific centriolar features. As a result, these centrioles have a high post-fertilization malfunction rate, resulting in aneuploidy, and miscarriages. In contrast, house mice evolved centriole-independent reproduction, losing the spermatozoan centrioles and overcoming a mechanism that causes miscarriages.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Luke Achinger
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Rustem Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| |
Collapse
|
32
|
Ghevaria H, SenGupta S, Naja R, Odia R, Exeter H, Serhal P, Gonzalez XV, Sun X, Delhanty J. Next Generation Sequencing Detects Premeiotic Errors in Human Oocytes. Int J Mol Sci 2022; 23:ijms23020665. [PMID: 35054849 PMCID: PMC8776218 DOI: 10.3390/ijms23020665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autosomal aneuploidy is the leading cause of embryonic and foetal death in humans. This arises mainly from errors in meiosis I or II of oogenesis. A largely ignored source of error stems from germinal mosaicism, which leads to premeiotic aneuploidy. Molecular cytogenetic studies employing metaphase fluorescence in situ hybridization and comparative genomic hybridisation suggest that premeiotic aneuploidy may affect 10–20% of oocytes overall. Such studies have been criticised on technical grounds. We report here an independent study carried out on unmanipulated oocytes that have been analysed using next generation sequencing (NGS). This study confirms that the incidence of premeiotic aneuploidy in an unselected series of oocytes exceeds 10%. A total of 140 oocytes donated by 42 women gave conclusive results; of these, 124 (88.5%) were euploid. Sixteen out of 140 (11.4%) provided evidence of premeiotic aneuploidy. Of the 140, 112 oocytes were immature (germinal vesicle or metaphase I), of which 10 were aneuploid (8.93%); the remaining 28 were intact metaphase II - first polar body complexes, and six of these were aneuploid (21.4%). Of the 16 aneuploid cells, half contained simple errors (one or two abnormal chromosomes) and half contained complex errors. We conclude that germinal mosaicism leading to premeiotic aneuploidy is a consistent finding affecting at least 10% of unselected oocytes from women undergoing egg collection for a variety of reasons. The importance of premeiotic aneuploidy lies in the fact that, for individual oocytes, it greatly increases the risk of an aneuploid mature oocyte irrespective of maternal age. As such, this may account for some cases of aneuploid conceptions in very young women.
Collapse
Affiliation(s)
- Harita Ghevaria
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Sioban SenGupta
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
- Correspondence:
| | - Roy Naja
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Rabi Odia
- Embryology Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK; (R.O.); (H.E.)
| | - Holly Exeter
- Embryology Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK; (R.O.); (H.E.)
| | - Paul Serhal
- Clinical Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK;
| | - Xavier Viñals Gonzalez
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Xuhui Sun
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Joy Delhanty
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| |
Collapse
|
33
|
Liu Y, Shen J, Zhang Y, Peng R, Zhao J, Zhou P, Yang R, Guan Y. Controlled ovarian hyperstimulation parameters are not associated with de novo chromosomal abnormality rates and clinical pregnancy outcomes in preimplantation genetic testing. Front Endocrinol (Lausanne) 2022; 13:1080843. [PMID: 36714593 PMCID: PMC9877337 DOI: 10.3389/fendo.2022.1080843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE This study aimed to determine whether controlled ovarian hyperstimulation (COH) parameters influence the incidence of de novo chromosomal abnormalities (> 4 Mb) in blastocysts and, thus, clinical pregnancy outcomes in preimplantation genetic testing (PGT). METHODS Couples who underwent preimplantation genetic testing for structural chromosome rearrangements (PGT-SR) and monogenic disorders (PGT-M) were included in this study. The relationships of maternal age, paternal age, stimulation protocol, exogenous gonadotropin dosage, duration of stimulation, number of oocytes retrieved and estradiol (E2) levels on human chorionic gonadotropin (hCG) trigger day with the incidence of de novo chromosomal abnormalities were assessed. Blastocysts were biopsied, and nuclear DNA was sequenced using next-generation sequencing (NGS). Clinical pregnancy outcomes after single euploid blastocyst transfers under different COH parameters were assessed. RESULTS A total of 1,710 and 190 blastocysts were biopsied for PGT-SR and PGT-M, respectively. The rate of de novo chromosomal abnormalities was found to increase with maternal age (p< 0.001) and paternal age (p = 0.019) in the PGT-SR group. No significant differences in the incidence of de novo chromosomal abnormalities were seen for different maternal or paternal age groups between the PGT-SR and PGT-M groups (p > 0.05). Stratification analysis by gonadotropin dosage, stimulation protocol, duration of stimulation, number of retrieved oocytes and E2 levels on hCG trigger day revealed that de novo chromosomal abnormalities and clinical pregnancy outcomes were not correlated with COH parameters after adjusting for various confounding factors. CONCLUSION The rate of de novo chromosomal abnormalities was found to increase with maternal or paternal age. COH parameters were found to not influence the incidence of de novo chromosomal abnormalities or clinical pregnancy outcomes.
Collapse
Affiliation(s)
- Yanli Liu
- The Reproduction Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhan Shen
- The Reproduction Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuchao Zhang
- The Reproduction Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Peng
- Office of Scientific Research, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junliang Zhao
- The Reproduction Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Zhou
- The Reproduction Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujing Yang
- The Reproduction Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yichun Guan
- The Reproduction Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yichun Guan,
| |
Collapse
|
34
|
Thomas C, Wetherall B, Levasseur MD, Harris RJ, Kerridge ST, Higgins JMG, Davies OR, Madgwick S. A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat Commun 2021; 12:4322. [PMID: 34262048 PMCID: PMC8280194 DOI: 10.1038/s41467-021-24554-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Successful cell division relies on the timely removal of key cell cycle proteins such as securin. Securin inhibits separase, which cleaves the cohesin rings holding chromosomes together. Securin must be depleted before anaphase to ensure chromosome segregation occurs with anaphase. Here we find that in meiosis I, mouse oocytes contain an excess of securin over separase. We reveal a mechanism that promotes excess securin destruction in prometaphase I. Importantly, this mechanism relies on two phenylalanine residues within the separase-interacting segment (SIS) of securin that are only exposed when securin is not bound to separase. We suggest that these residues facilitate the removal of non-separase-bound securin ahead of metaphase, as inhibiting this period of destruction by mutating both residues causes the majority of oocytes to arrest in meiosis I. We further propose that cellular securin levels exceed the amount an oocyte is capable of removing in metaphase alone, such that the prometaphase destruction mechanism identified here is essential for correct meiotic progression in mouse oocytes.
Collapse
Affiliation(s)
- Christopher Thomas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. .,Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.
| | - Benjamin Wetherall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark D Levasseur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Scott T Kerridge
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Suzanne Madgwick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
35
|
Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, Choudhary M, Bucevičius J, Lukinavičius G, Elder K, Blayney M, Lucas-Hahn A, Niemann H, Herbert M, Schuh M. Parental genome unification is highly error-prone in mammalian embryos. Cell 2021; 184:2860-2877.e22. [PMID: 33964210 PMCID: PMC8162515 DOI: 10.1016/j.cell.2021.04.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Yuko Takeda
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Antonio Z Politi
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Magomet Aushev
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Patrick Aldag
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | | | - Meenakshi Choudhary
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Jonas Bucevičius
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Kay Elder
- Bourn Hall Clinic, CB23 2TN Cambridge, UK
| | | | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK; Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Melina Schuh
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
36
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|