1
|
Zhou Y, Chen W, Zhang Y, Yang L, Lu F, Yan W, Xie Q, Huang Y, Huang W, Wang L, Zeng Z, Xiao Z. Caveolin-1 negatively regulates the calcitonin receptor-like receptor and neuroinflammation in a female mouse model of migraine. J Neuroinflammation 2025; 22:134. [PMID: 40399967 PMCID: PMC12093816 DOI: 10.1186/s12974-025-03466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 05/10/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Caveolin-1 (CAV1), a scaffolding protein critical for caveolae formation, regulates G-protein-coupled receptor (GPCR) signaling via caveolae-mediated endocytosis. The calcitonin receptor-like receptor (CLR), a GPCR and core subunit of the calcitonin gene-related peptide (CGRP) receptor, is a therapeutic target for migraine. However, the role of CAV1 in CLR regulation and migraine remains unclear. METHODS A migraine model was established in female mice via dural inflammatory soup (IS) application. Migraine-like behaviors were assessed using Von Frey filament, spontaneous pain behavior counts, light/dark box, and acetone test. CAV1 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. Methyl-β-cyclodextrin (MβCD) was used to inhibit caveolae-mediated endocytosis. The molecular mechanism of CAV1 on CLR and neuroinflammation was investigated using biochemistry, multiplex immunohistochemistry staining, internalization assay, and co-immunoprecipitation. RESULTS Repeated IS stimulation elevated CLR expression and internalization in the trigeminal nucleus caudalis (TNC), concurrently activating ERK/CREB signaling, promoting microglial activation, and increasing inflammatory cytokines (TNFα, IL-1β). CAV1 directly interacted with CLR, promoting its degradation. CAV1 knockdown in the TNC exacerbated migraine pathology, characterized by CLR accumulation, enhanced ERK/CREB phosphorylation, and amplified neuroinflammation. Conversely, CAV1 overexpression or MβCD-mediated caveolae disruption normalized CLR levels, reduced signaling hyperactivity, and reversed nociceptive behaviors. CONCLUSION CAV1 negatively regulates CLR stability, suppressing ERK/CREB signaling and microglial inflammation in a preclinical female migraine model. These findings suggest that CAV1 contributes to migraine-related hyperalgesia and may represent a novel therapeutic target for migraine treatment.
Collapse
Affiliation(s)
- Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Fu Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Wen Yan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Qingfang Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ying Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Lintao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ziming Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China.
| |
Collapse
|
2
|
Doktorova M, Daum S, Reagle TR, Cannon HI, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. Proc Natl Acad Sci U S A 2025; 122:e2417024122. [PMID: 40359049 PMCID: PMC12107156 DOI: 10.1073/pnas.2417024122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoans and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active, intercalating into lipid monolayers of various compositions. CAV1-8S can also incorporate into preformed bilayers, but only upon removal of phospholipids from the outer-facing leaflet. Atomistic and coarse-grained simulations of biomimetic bilayers support this "leaflet replacement" model and also reveal that CAV1-8S accumulates 40 to 70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Solna171 65, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle06120, Germany
| | - Tyler R. Reagle
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903
| | - Hannah I. Cannon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle06120, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle06120, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Uppsala752 37, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala752 37, Sweden
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle06120, Germany
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
3
|
Luse MA, Schug WJ, Dunaway LS, Nyshadham S, Loeb SA, Carvalho A, Tessema R, Pavelic C, Keller TCS, Shu X, Ruddiman CA, Kosmach A, Sveeggen TM, Mitchell R, Bagher P, Minshal RD, Leitnger N, Columbus L, Levental KR, Levental I, Cortese-Krott M, Isakson BE. Nitrosation of CD36 Regulates Endothelial Function and Serum Lipids. Arterioscler Thromb Vasc Biol 2025. [PMID: 40242868 DOI: 10.1161/atvbaha.124.321964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND During obesity, endothelial cells (ECs) become lipid laden, leading to endothelial dysfunction. We tested posttranslational modification on CD36 that may regulate EC lipid accumulation. METHODS We used an EC-specific Cav1 (caveolin-1) knockout mouse, nitrosation and palmitoylation assays, and whole animal Nγ-nitro-l-arginine methyl ester administration to examine blood lipids. RESULTS EC-specific Cav1 knockout male mice are hyperlipidemic regardless of diet but retain endothelial cell function. We found these mice have significantly increased NO in response to the lack of Cav1, and the presence or absence of NO toggled inversely EC lipid content and plasma lipid in mice. The NO nitrosated the fatty acid translocase CD36 at the same cysteines that are palmitoylated on CD36. The nitrosation of CD36 prevented its trafficking to the plasma membrane and decreased lipid accumulation. The physiological effect of this mechanism was a reliance on NO for endothelial function and not dilation. CONCLUSIONS This work suggests that CD36 nitrosation occurs as a protective mechanism to prevent EC lipotoxicity.
Collapse
Affiliation(s)
- Melissa A Luse
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Wyatt J Schug
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Shruthi Nyshadham
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Alicia Carvalho
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Rachel Tessema
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Caitlin Pavelic
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, China (X.S.)
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - Anna Kosmach
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Timothy M Sveeggen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Ray Mitchell
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Pooneh Bagher
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | | | - Norbert Leitnger
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville (L.C.)
| | - Kandice R Levental
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Ilya Levental
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | | | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| |
Collapse
|
4
|
Doktorova M, Daum S, Reagle TR, Cannon HI, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.28.610209. [PMID: 39257813 PMCID: PMC11383982 DOI: 10.1101/2024.08.28.610209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active, intercalating into lipid monolayers of various compositions. CAV1-8S can also incorporate into preformed bilayers, but only upon removal of phospholipids from the outer-facing leaflet. Atomistic and coarse-grained simulations of biomimetic bilayers support this 'leaflet replacement' model and also reveal that CAV1-8S accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Tyler R. Reagle
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Hannah I. Cannon
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Sweden
- Departments of Chemistry and Biochemistry and Biomedical Engineering, Georgia Institute of Technology, USA
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| |
Collapse
|
5
|
Xu H, Li Y, Guo N, Wu S, Liu C, Gui Z, Xue W, Jiang X, Ye M, Geng Q, Feng X, Zhang C, Jin L, Hu C. Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis. Int J Biol Sci 2025; 21:490-506. [PMID: 39781461 PMCID: PMC11705642 DOI: 10.7150/ijbs.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression. In addition, we evaluated the expression of CAV1 in human liver samples, and also conducted assays in vitro to investigate the molecular role of CAV1 in MASLD progression. The results illustrate that the expression of liver CAV1 in the decreases during MASLD progression, which aggravates the accumulation of cholesterol in the liver, leading to more severe endoplasmic reticulum (ER) stress and pyroptosis. Mechanistically, CAV1 regulates the expression of FXR/NR1H4 and its downstream cholesterol transporter, ABCG5/ABCG8, suppressing ER stress and alleviating pyroptosis. Our study confirms CAV1 is a crucial regulator of cholesterol homeostasis in MASLD and plays an important role in disease progression.
Collapse
Affiliation(s)
- Hanlin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Ning Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Can Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiju Xue
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Mengjia Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Qianqian Geng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Chao Zhang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Lei Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| |
Collapse
|
6
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
7
|
Curry-Koski T, Gusek B, Potter RM, Jones TB, Dickman R, Johnson N, Stallone JN, Rahimian R, Vallejo-Elias J, Esfandiarei M. Genetic Manipulation of Caveolin-1 in a Transgenic Mouse Model of Aortic Root Aneurysm: Sex-Dependent Effects on Endothelial and Smooth Muscle Function. Int J Mol Sci 2024; 25:12702. [PMID: 39684412 DOI: 10.3390/ijms252312702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Marfan syndrome (MFS) is a systemic connective tissue disorder stemming from mutations in the gene encoding Fibrillin-1 (Fbn1), a key extracellular matrix glycoprotein. This condition manifests with various clinical features, the most critical of which is the formation of aortic root aneurysms. Reduced nitric oxide (NO) production due to diminished endothelial nitric oxide synthase (eNOS) activity has been linked to MFS aortic aneurysm pathology. Caveolin-1 (Cav1), a structural protein of plasma membrane caveolae, is known to inhibit eNOS activity, suggesting its involvement in MFS aneurysm progression by modulating NO levels. In this study, we examined the role of Cav1 in aortic smooth muscle and endothelial function, aortic wall elasticity, and wall strength in male and female MFS mice (FBN1+/Cys1041Gly) by generating developing Cav1-deficient MFS mice (MFS/Cav1KO). Our findings reveal that Cav1 ablation leads to a pronounced reduction in aortic smooth muscle contraction in response to phenylephrine, attributable to an increase in NO production in the aortic wall. Furthermore, we observed enhanced aortic relaxation responses to acetylcholine in MFS/Cav1KO mice, further underscoring Cav1's inhibitory impact on NO synthesis within the aorta. Notably, van Gieson staining and chamber myography analyses showed improved elastin fiber structure and wall strength in male MFS/Cav1KO mice, whereas these effects were absent in female counterparts. Cav1's regulatory influence on aortic root aneurysm development in MFS through NO-mediated modulation of smooth muscle and endothelial function, with notable sex-dependent variations.
Collapse
Affiliation(s)
- Tala Curry-Koski
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Brikena Gusek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Ross M Potter
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - T Bucky Jones
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Raechel Dickman
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Nathan Johnson
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - John N Stallone
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Johana Vallejo-Elias
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| |
Collapse
|