1
|
Wang Z, Zhou X, Han J, Xie G, Liu J. DNA coated CoZn-ZIF metal-organic frameworks for fluorescent sensing guanosine triphosphate and discrimination of nucleoside triphosphates. Anal Chim Acta 2022; 1207:339806. [DOI: 10.1016/j.aca.2022.339806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
2
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Singh H, Tiwari K, Tiwari R, Pramanik SK, Das A. Small Molecule as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations. Chem Rev 2019; 119:11718-11760. [DOI: 10.1021/acs.chemrev.9b00379] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Harwinder Singh
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Karishma Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajeshwari Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
4
|
Wu N, Lan J, Yan L, You J. A sensitive colorimetric and fluorescent sensor based on imidazolium-functionalized squaraines for the detection of GTP and alkaline phosphatase in aqueous solution. Chem Commun (Camb) 2014; 50:4438-41. [PMID: 24643794 DOI: 10.1039/c4cc00752b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazolium-functionalized squaraine ImSQ8 is synthesized as a sensitive colorimetric and fluorescent chemosensor for GTP in aqueous solution. The detection limit of GTP reaches 5.4 ppb. Its applications in the live-cell imaging and enzyme activity assay have also been demonstrated.
Collapse
Affiliation(s)
- Ningjie Wu
- Key Laboratory of Green Chemistry, Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | | | | | | |
Collapse
|
5
|
Vethe NT, Ali AM, Reine PA, Andersen AM, Bremer S, Line PD, Rootwelt H, Bergan S. Simultaneous quantification of IMPDH activity and purine bases in lymphocytes using LC-MS/MS: assessment of biomarker responses to mycophenolic acid. Ther Drug Monit 2014; 36:108-118. [PMID: 24061448 DOI: 10.1097/ftd.0b013e3182a13900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The development of biomarkers describing the individual responses to the immunosuppressant mycophenolic acid (MPA) has focused on the target enzyme activity [inosine 5'-monophosphate dehydrogenase (IMPDH)]. An extended strategy is to quantify the metabolic consequences of IMPDH inhibition. The aim of this study was to develop an assay for quantification of IMPDH activity and related purine bases and to provide preliminary data on the behavior of these biomarkers during clinical exposure to MPA. METHODS Liquid chromatography-mass spectrometry was used to determine xanthine (IMPDH activity in incubated cell lysate), hypoxanthine, guanine, and adenine derived from free nucleotides in lymphocytes. Analytical performance was assessed, and the biomarkers were examined in CD4⁺ cells from 2 groups: Healthy individuals in a single-dose MPA study (n = 5) and liver transplant recipients on MPA therapy (n = 15). RESULTS Coefficients of variation between series were below 10% and 15% for measurement of the purines and IMPDH activity, respectively. Although IMPDH was inhibited, the purine levels increased in response to MPA in 3 of the 5 healthy individuals, and this positive response seemed to be associated with IMPDH1 c.579 + 119 G/G and c.580 - 106 G/G. In the liver transplant study, guanine was not reduced in response to the transient drop in IMPDH activity after MPA dosing. However, there were trends toward decrease in guanine and elevation of hypoxanthine during prolonged MPA therapy. The guanine/hypoxanthine ratio (median) was 37% lower and the adenine level was 21% lower at day 17 compared with day 4 after transplantation. CONCLUSIONS The assay allows precise quantification of IMPDH activity, hypoxanthine, guanine, and adenine in lymphocytes. Some individuals may possess a counteracting purine response to the MPA-mediated inhibition of IMPDH. Reduction of the guanine/hypoxanthine ratio may be related to prolonged inhibition of IMPDH and seems as an intriguing pharmacodynamic biomarker for MPA.
Collapse
Affiliation(s)
- Nils Tore Vethe
- *Department of Medical Biochemistry, Oslo University Hospital; †School of Pharmacy, University of Oslo; and Departments of ‡Anaesthesiology, §Pharmacology, and ¶Transplantation, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang XJ, Leveson-Gower D, Golab K, Wang LJ, Marek-Trzonkowska N, Krzystyniak A, Wardowska A, Millis JM, Trzonkowski P, Witkowski P. Influence of pharmacological immunomodulatory agents on CD4(+)CD25(high)FoxP3(+) T regulatory cells in humans. Int Immunopharmacol 2013; 16:364-70. [PMID: 23499512 DOI: 10.1016/j.intimp.2013.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
T regulatory cells (Tregs) play a critical role in the immunologic tolerance to the graft in transplantation. Thus, due to their immunosuppressive capability, ex vivo expanded Tregs may be used as a cellular therapy and an attractive novel strategy to control chronic rejection and eliminate need for lifelong pharmacological immunosuppression. Since Treg therapy is still in its infancy, initially Tregs still need to be applied in combination with pharmacological agents to prevent rejection. Fortunately, some of the medications have been shown to enhance the function and number of Tregs. In the clinic, different immunosuppressive regimens are used for individual patients for different types of organ transplantation. In this review, we present the most commonly used pharmacological agents for immunosuppression and discuss how they affect the Treg population. It is extremely difficult to dissect the effect of single agent on Tregs population in clinical settings since usually the combination of several medications is applied at the same time for graft protection. Nevertheless, experimental and clinical data indicate that thymoglobulin as immunosuppressive induction and mTOR inhibitors as immunosuppressive maintenance agents have the most beneficial effect on Treg population in the blood. Among supplemental agents promoting Tregs, anti-TNFα preparations have been in clinical use (in autoimmune diseases) for many years, so they are optimal candidates for testing in transplant settings in combination with Treg based cellular therapy.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- Department of Surgery, Section of Transplantation, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liang LJ, Huang CZ. Spectral study on the unique enhanced fluorescence of guanosine triphosphate by zinc ions. Talanta 2012; 104:198-203. [PMID: 23597910 DOI: 10.1016/j.talanta.2012.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/26/2022]
Abstract
Binding effect of guanosine triphosphate (GTP) with metal ions is involved in many biologically important processes, and so its investigation has been one interesting research focus for many chemical and biochemical research groups. In this contribution, we presented the unique fluorescence recovery and enhancement of GTP induced by Zn(II) based on the spectrofluorometric method. When excited at 280 nm, GTP is hardly fluorescent at the alkaline condition. However, the presence of Zn(II) caused an obvious fluorescence emission of GTP at 346 nm, and the binding molar ratio between GTP and Zn(II) had been proved to be 1. The investigations of binding property of various nucleotides with metal ions demonstrated that this fluorescence recovery and enhancement of GTP with Zn(II) was highly specific, which could successfully discriminate GTP from other structurally similar nucleotides including GDP and GMP. Furthermore, similar fluorescence response of the bacterial alarmone ppGpp to Zn(II) had also been identified.
Collapse
Affiliation(s)
- Li Jiao Liang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | |
Collapse
|
8
|
Liang LJ, Zhen SJ, Zhao XJ, Huang CZ. A ratiometric fluorescence recognition of guanosine triphosphate on the basis of Zn(II) complex of 1,4-bis(imidazol-1-ylmethyl) benzene. Analyst 2012; 137:5291-6. [PMID: 23013938 DOI: 10.1039/c2an35743g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As one vital member among the family of phosphates, guanosine triphosphate (GTP) not only plays a very important role in many critical biological processes but also closely associates with definite pathological states. Based on the ratiometric fluorescence response of the zinc complex of 1,4-bis(imidazol-1-ylmethyl) benzene (bix) in this contribution, a highly selective recognition of GTP has been successfully developed. The fluorescence of bix-Zn(II) at 289 nm decreased in the presence of GTP with the appearance of one new emission band at 341 nm, resulting in ratiometric fluorescence changes with the concentration of GTP. With that, ratiometric fluorescence recognition for GTP could be effectively established, and so GTP could be successfully discriminated from other structurally similar anions, including ATP and PPi. Furthermore, bix-Zn(II) also has a ratiometric fluorescence response to DNA sequences containing guanine.
Collapse
Affiliation(s)
- Li Jiao Liang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | |
Collapse
|
9
|
The role of inosine-5'-monophosphate dehydrogenase in thiopurine metabolism in patients with inflammatory bowel disease. Ther Drug Monit 2011; 33:200-8. [PMID: 21311411 DOI: 10.1097/ftd.0b013e31820b42bb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND There is a large interindividual variability in thiopurine metabolism. High concentrations of methylthioinosine-5'-monophosphate (meTIMP) and low concentrations of 6-thioguanine nucleotides (6-TGNs) have been associated with a lower response rate and an increased risk of adverse events. In this study, the role of inosine-5'-monophosphate dehydrogenase (IMPDH) for differences in metabolite patterns of thiopurines was investigated. METHODS IMPDH activity and thiopurine metabolite concentrations were determined in patients with inflammatory bowel disease and a normal thiopurine methyltransferase (TPMT) phenotype and meTIMP/6-TGN concentration ratio > 20 (n = 26), in patients with a metabolite ratio ≤ 20 (n = 21), in a subgroup with a metabolite ratio <4 (n = 6), and in 10 patients with reduced TPMT activity. In vitro studies were conducted on human embryonic kidney cells (HEK293) with genetically engineered IMPDH and TPMT activities. RESULTS Patients with metabolite ratios >20 had lower IMPDH activity than those with ratios ≤ 20 (P < 0.001). Metabolite ratios >20 were only observed in patients with normal TPMT activity. Downregulation of IMPDH activity in HEK293 cells was associated with an increase in the concentration of meTIMP (fold change: 17 up to 93, P < 0.001) but, unexpectedly, also of 6-thioguanosine monophosphate (fold change: 2.6 up to 5.0, P < 0.001). CONCLUSIONS These data question the general view of IMPDH as the rate-limiting enzyme in the phosphorylation of thiopurines. Investigations of other mechanisms are needed to more fully explain the various metabolite patterns and outcomes in patients under treatment.
Collapse
|
10
|
Glander P, Hambach P, Liefeldt L, Budde K. Inosine 5'-monophosphate dehydrogenase activity as a biomarker in the field of transplantation. Clin Chim Acta 2011; 413:1391-7. [PMID: 21889500 DOI: 10.1016/j.cca.2011.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/09/2011] [Accepted: 08/16/2011] [Indexed: 11/25/2022]
Abstract
Inosine 5'monophosphate dehydrogenase (IMPDH) is the rate limiting enzyme in the de novo synthesis of guanine nucleotides. The direct determination of target enzyme activity as a biomarker of mycophenolic acid (MPA) may help to estimate better the individual response to the immunosuppressant. However, the assessment of the clinical utility of this approach is limited by the diversity of the assay systems, which has not yet allowed the prospective assessment of this enzyme in larger patient cohorts. A recently validated and standardized assay allows the investigation of IMPDH activity in larger clinical studies. Although descriptive results from observational studies hold promise for a more individualized therapy in transplant medicine, more studies are needed to prospectively validate this approach.
Collapse
Affiliation(s)
- Petra Glander
- Charite-Universitätsmedizin Berlin, Department of Nephrology, Berlin, Germany.
| | | | | | | |
Collapse
|
11
|
4-Pyridone-3-carboxamide-1-β-D-ribonucleoside triphosphate (4PyTP), a novel NAD metabolite accumulating in erythrocytes of uremic children: a biomarker for a toxic NAD analogue in other tissues? Toxins (Basel) 2011; 3:520-37. [PMID: 22069723 PMCID: PMC3202843 DOI: 10.3390/toxins3060520] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/13/2011] [Accepted: 05/31/2011] [Indexed: 11/24/2022] Open
Abstract
We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP), which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD+ metabolites (nicotinamide, N1-methylnicotinamide and 4Py-riboside) and the major nicotinamide metabolite N1-methyl-2-pyridone-5-carboxamide (2PY), with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD+ from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD+ analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD+ analogue that inhibits IMP dehydrogenase in other cells.
Collapse
|
12
|
New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit 2010; 31:416-35. [PMID: 19536049 DOI: 10.1097/ftd.0b013e3181aa36cd] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although therapeutic drug monitoring (TDM) of immunosuppressive drugs has been an integral part of routine clinical practice in solid organ transplantation for many years, ongoing research in the field of immunosuppressive drug metabolism, pharmacokinetics, pharmacogenetics, pharmacodynamics, and clinical TDM keeps yielding new insights that might have future clinical implications. In this review, the authors will highlight some of these new insights for the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus and the antimetabolite mycophenolic acid (MPA) and will discuss the possible consequences. For CNIs, important relevant lessons for TDM can be learned from the results of 2 recently published large CNI minimization trials. Furthermore, because acute rejection and drug-related adverse events do occur despite routine application of CNI TDM, alternative approaches to better predict the dose-concentration-response relationship in the individual patient are being explored. Monitoring of CNI concentrations in lymphocytes and other tissues, determination of CNI metabolites, and CNI pharmacogenetics and pharmacodynamics are in their infancy but have the potential to become useful additions to conventional CNI TDM. Although MPA is usually administered at a fixed dose, there is a rationale for MPA TDM, and this is substantiated by the increasing knowledge of the many nongenetic and genetic factors contributing to the interindividual and intraindividual variability in MPA pharmacokinetics. However, recent, large, randomized clinical trials investigating the clinical utility of MPA TDM have reported conflicting data. Therefore, alternative pharmacokinetic (ie, MPA free fraction and metabolites) and pharmacodynamic approaches to better predict drug efficacy and toxicity are being explored. Finally, for MPA and tacrolimus, novel formulations have become available. For MPA, the differences in pharmacokinetic behavior between the old and the novel formulation will have implications for TDM, whereas for tacrolimus, this probably will not to be the case.
Collapse
|
13
|
Pharmacodynamics of mycophenolic acid in CD4+ cells: a single-dose study of IMPDH and purine nucleotide responses in healthy individuals. Ther Drug Monit 2009; 30:647-55. [PMID: 18806697 DOI: 10.1097/ftd.0b013e31818955c3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mycophenolate mofetil is used in rejection prophylaxis after allograft transplantation. The highly variable pharmacokinetics and pharmacodynamics (PD) of the active moiety mycophenolic acid (MPA) render this drug attractive for therapeutic monitoring. The aim of this study was to characterize the exposure-response relationship for MPA to guide future strategies for individualized therapy based on PD monitoring. A single-dose (100, 250, 500, and 1000 mg mycophenolate mofetil) crossover exposure-response study of MPA PD in CD4 cells was performed in 5 healthy individuals. The activity of inosine 5'-monophosphate dehydrogenase (IMPDH) at time 0 ranged from 1.2 to 7.2 pmol per 10 cells/min. IMPDH was strongly inhibited by MPA; MPA EC50 (concentration required for 50% inhibition) of 2.3 mg/L was determined by a pooled data analysis. Decreased IMPDH gene expression was associated with the exposure to MPA. There were no immediate reductions of guanine nucleotides. On the contrary, a trend toward increased guanosine triphosphate was observed. IMPDH activity AUC0-12h approached maximum reduction at MPA AUC0-12h 22 mg x h/L (corresponding to the 500 mg dose), whereas plasma concentrations exceeding approximately 6 mg/L did not further increase the IMPDH inhibition. The results suggest that guanine nucleotides in circulating lymphocytes may not serve as immediate response biomarkers to MPA. Strategies for preventing over- or underexposure to MPA may be developed by means of IMPDH activity combined with MPA concentration measurement.
Collapse
|
14
|
Sankatsing SUC, Prins JM, Yong SLL, Roelofsen J, van Kuilenburg ABP, Kewn S, Back DJ, Bemelman FJ, ten Berge IJM. Mycophenolate mofetil inhibits T-cell proliferation in kidney transplant recipients without lowering intracellular dGTP and GTP. Transpl Int 2008; 21:1066-71. [PMID: 18699845 DOI: 10.1111/j.1432-2277.2008.00739.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To study if mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), indeed inhibits T-cell proliferation in kidney transplant recipients by lowering intracellular deoxyguanosine triphosphate (dGTP) and guanosine triphosphate (GTP) levels. Blood was drawn from 11 kidney transplant recipients. Ex vivo T-cell proliferation was measured by stimulation with phytohemagglutin (PHA) and anti-CD3 monoclonal antibody (mAb). Plasma MPA levels and intracellular dGTP and GTP in peripheral blood mononuclear cells were measured. MMF induces a significant decrease in T-lymphocyte proliferation at all time points (i.e. 24 h, 10 days and 8 weeks) after stimulation with both PHA (P = 0.001, 0.002 and 0.013 respectively) and anti-CD3 mAb (P = 0.004, 0.004 and 0.005 respectively). There was no significant change in intracellular dGTP (P = 0.31, 0.16 and 0.35) or GTP levels (P = 0.99, 0.32 and 0.49) between baseline and day 1, day 10 or week 8. All MPA levels were above the minimal required concentration for the inhibition of lymphocyte proliferation. MMF inhibits T-lymphocyte proliferation in kidney transplant recipients without lowering intracellular dGTP or GTP levels. This suggests another mechanism underlying its immunosuppressive capacity.
Collapse
Affiliation(s)
- Sanjay U C Sankatsing
- Division of Infectious Diseases, Tropical Medicine and AIDS, Department of Internal Medicine, and Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vethe NT, Bremer S, Bergan S. IMP dehydrogenase basal activity in MOLT-4 human leukaemia cells is altered by mycophenolic acid and 6-thioguanosine. Scandinavian Journal of Clinical and Laboratory Investigation 2008; 68:277-85. [PMID: 18609073 DOI: 10.1080/00365510701724871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Depletion of guanine and deoxyguanine nucleotides by inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) or introduction of 6-thioguanine nucleotide antimetabolites are two principles of retarding cell proliferation by interference with the cellular purine nucleotide pool. IMPDH activity may be a promising pharmacodynamic biomarker during immunosuppressive and anticancer pharmacotherapy. The aim of the study was to investigate the impact of mycophenolic acid (MPA) and 6-thioguanosine (tGuO) on IMPDH basal activity. MATERIAL AND METHODS We studied the IMPDH basal activity (i.e. the enzyme activity following inhibitor exposure, but measured in absence of the inhibitor) in response to increasing concentrations of the IMPDH inhibitor MPA and the antimetabolite tGuO in MOLT-4 human leukaemia cells. In parallel, IMPDH gene expression and cellular purine nucleotide concentrations were examined. RESULTS A biphasic concentration-dependent influence of MPA on the IMPDH basal activity was observed. At concentrations < or =IC50, MPA increased the IMPDH basal activity. The increase was associated with elevated expression of IMPDH2. Despite increased expression, the basal enzyme activity decreased following exposure to high MPA concentrations. The IMPDH2 expression increased modestly in response to tGuO exposure. However, the IMPDH basal activity decreased when the cells were exposed to a proliferation-blocking tGuO concentration. CONCLUSIONS These findings demonstrate that IMPDH basal activity is influenced by MPA and tGuO, and suggest that reduced IMPDH basal activity is related to the proliferation-blocking effects of these agents.
Collapse
Affiliation(s)
- N T Vethe
- Department of Medical Biochemistry, Rikshospitalet Medical Centre, Oslo, Norway
| | | | | |
Collapse
|
16
|
Sanquer S, Maison P, Tomkiewicz C, Macquin-Mavier I, Legendre C, Barouki R, Lang P. Expression of inosine monophosphate dehydrogenase type I and type II after mycophenolate mofetil treatment: a 2-year follow-up in kidney transplantation. Clin Pharmacol Ther 2007; 83:328-35. [PMID: 17713475 DOI: 10.1038/sj.clpt.6100300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of the study was to evaluate the effect of mycophenolate mofetil (MMF) on the regulation of inosine monophosphate dehydrogenase (IMPDH) during the first 2 years after renal transplantation. Twelve patients were enrolled, and 10-h time-course evaluations of the effects of MMF were regularly performed during the study. IMPDH activity and gene expression were measured in whole blood and in mononuclear cells, respectively. Type I IMPDH (IMPDH-I) mRNA was increased during the first 3 months following transplantation and reached its maximal level during acute rejection episodes, whereas type II IMPDH mRNA was stable. Furthermore, although no alteration in the predose samples was observed, patients with prolonged MMF treatment exhibited an increase in the induction potency of both IMPDH activity and gene expression. In vitro experiments confirmed that IMPDH-I is inducible, but preferentially in monocytes than in lymphocytes. This finding suggests that the measurement of IMPDH mRNAs may provide reliable information to predict acute rejection.
Collapse
Affiliation(s)
- S Sanquer
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
van Hest RM, Hesselink DA, Vulto AG, Mathot RAA, van Gelder T. Individualization of mycophenolate mofetil dose in renal transplant recipients. Expert Opin Pharmacother 2007; 7:361-76. [PMID: 16503809 DOI: 10.1517/14656566.7.4.361] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The immunosuppressive agent mycophenolate mofetil has been successfully used over the past 10 years to prevent acute allograft rejection after renal transplantation. It has mainly been administered as a fixed dose of mycophenolate mofetil 1000 mg b.i.d. The pharmacokinetics of mycophenolic acid, the active moiety of the prodrug mycophenolate mofetil, show large between-patient variability, and exposure to mycophenolic acid correlates with the risk for acute rejection. This suggests that already excellent clinical results can be further improved by mycophenolate mofetil dose individualization. This review discusses different arguments in favour of individualization of mycophenolate mofetil dose, as well as strategies for managing mycophenolate mofetil therapy individualization, including pharmacokinetic and pharmacodynamic monitoring and dose individualization based on pharmacogenetic information. It is expected that pharmacokinetic monitoring of mycophenolic acid will offer the most effective and feasible tool for mycophenolate mofetil dose individualization.
Collapse
Affiliation(s)
- Reinier M van Hest
- Department of Hospital Pharmacy, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Khalpey Z, Yuen AHY, Lavitrano M, McGregor CGA, Kalsi KK, Yacoub MH, Smolenski RT. Mammalian mismatches in nucleotide metabolism: implications for xenotransplantation. Mol Cell Biochem 2007; 304:109-17. [PMID: 17657591 DOI: 10.1007/s11010-007-9491-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/19/2007] [Indexed: 02/06/2023]
Abstract
Acute humoral rejection (AHR) limits the clinical application of animal organs for xenotransplantation. Mammalian disparities in nucleotide metabolism may contribute significantly to the microvascular component in AHR; these, however remain ill-defined. We evaluated the extent of species-specific differences in nucleotide metabolism. HPLC analysis was performed on venous blood samples (nucleotide metabolites) and heart biopsies (purine enzymes) from wild type mice, rats, pigs, baboons, and human donors.Ecto-5'-nucleotidase (E5'N) activities were 4-fold lower in pigs and baboon hearts compared to human and mice hearts while rat activity was highest. Similar differences between pigs and humans were also observed with kidneys and endothelial cells. More than 10-fold differences were observed with other purine enzymes. AMP deaminase (AMPD) activity was exceptionally high in mice but very low in pig and baboon hearts. Adenosine deaminase (ADA) activity was highest in baboons. Adenosine kinase (AK) activity was more consistent across different species. Pig blood had the highest levels of hypoxanthine, inosine and adenine. Human blood uric acid concentration was almost 100 times higher than in other species studied. We conclude that species-specific differences in nucleotide metabolism may affect compatibility of pig organs within a human metabolic environment. Furthermore, nucleotide metabolic mismatches may affect clinical relevance of animal organ transplant models. Supplementation of deficient precursors or application of inhibitors of nucleotide metabolism (e.g., allopurinol) or transgenic upregulation of E5'N may overcome some of these differences.
Collapse
Affiliation(s)
- Zain Khalpey
- Heart Science Centre, Imperial College London, Harefield, Middlesex, UB9 6JH, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 2007; 46:13-58. [PMID: 17201457 DOI: 10.2165/00003088-200746010-00002] [Citation(s) in RCA: 445] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review aims to provide an extensive overview of the literature on the clinical pharmacokinetics of mycophenolate in solid organ transplantation and a briefer summary of current pharmacodynamic information. Strategies are suggested for further optimisation of mycophenolate therapy and areas where additional research is warranted are highlighted. Mycophenolate has gained widespread acceptance as the antimetabolite immunosuppressant of choice in organ transplant regimens. Mycophenolic acid (MPA) is the active drug moiety. Currently, two mycophenolate compounds are available, mycophenolate mofetil and enteric-coated (EC) mycophenolate sodium. MPA is a potent, selective and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), leading to eventual arrest of T- and B-lymphocyte proliferation. Mycophenolate mofetil and EC-mycophenolate sodium are essentially completely hydrolysed to MPA by esterases in the gut wall, blood, liver and tissue. Oral bioavailability of MPA, subsequent to mycophenolate mofetil administration, ranges from 80.7% to 94%. EC-mycophenolate sodium has an absolute bioavailability of MPA of approximately 72%. MPA binds 97-99% to serum albumin in patients with normal renal and liver function. It is metabolised in the liver, gastrointestinal tract and kidney by uridine diphosphate gluconosyltransferases (UGTs). 7-O-MPA-glucuronide (MPAG) is the major metabolite of MPA. MPAG is usually present in the plasma at 20- to 100-fold higher concentrations than MPA, but it is not pharmacologically active. At least three minor metabolites are also formed, of which an acyl-glucuronide has pharmacological potency comparable to MPA. MPAG is excreted into the urine via active tubular secretion and into the bile by multi-drug resistance protein 2 (MRP-2). MPAG is de-conjugated back to MPA by gut bacteria and then reabsorbed in the colon. Mycophenolate mofetil and EC-mycophenolate sodium display linear pharmacokinetics. Following mycophenolate mofetil administration, MPA maximum concentration usually occurs in 1-2 hours. EC-mycophenolate sodium exhibits a median lag time in absorption of MPA from 0.25 to 1.25 hours. A secondary peak in the concentration-time profile of MPA, due to enterohepatic recirculation, often appears 6-12 hours after dosing. This contributes approximately 40% to the area under the plasma concentration-time curve (AUC). The mean elimination half-life of MPA ranges from 9 to 17 hours. MPA displays large between- and within-subject pharmacokinetic variability. Dose-normalised MPA AUC can vary more than 10-fold. Total MPA concentrations should be interpreted with caution in patients with severe renal impairment, liver disease and hypoalbuminaemia. In such individuals, MPA and MPAG plasma protein binding may be altered, changing the fraction of free MPA available. Apparent oral clearance (CL/F) of total MPA appears to increase in proportion to the increased free fraction, with a reduction in total MPA AUC. However, there may be little change in the MPA free concentration. Ciclosporin inhibits biliary excretion of MPAG by MRP-2, reducing enterohepatic recirculation of MPA. Exposure to MPA when mycophenolate mofetil is given in combination with ciclosporin is approximately 30-40% lower than when given alone or with tacrolimus or sirolimus. High dosages of corticosteroids may induce expression of UGT, reducing exposure to MPA. Other co-medications can interfere with the absorption, enterohepatic recycling and metabolism of mycophenolate. Most pharmacokinetic investigations of MPA have involved mycophenolate mofetil rather than EC-mycophenolate sodium therapy. In population pharmacokinetic studies, MPA CL/F in adults ranges from 14.1 to 34.9 L/h (ciclosporin co-therapy) and from 11.9 to 25.4 L/h (tacrolimus co-therapy). Patient bodyweight, serum albumin concentration and immunosuppressant co-therapy have a significant influence on CL/F. The majority of pharmacodynamic data on MPA have been obtained in patients receiving mycophenolate mofetil therapy in the first year after kidney transplantation. Low MPA AUC is associated with increased incidence of biopsy-proven acute rejection. Gastrointestinal adverse events may be dose related. Leukopenia and anaemia have been associated with high MPA AUC, trough concentration and metabolite concentrations in some, but not all, studies. High free MPA exposure has been identified as a risk factor for leukopenia in some investigations. Targeting a total MPA AUC from 0 to 12 hours (AUC12) of 30-60 mg.hr/L is likely to minimise the risk of acute rejection and may reduce toxicity. IMPDH monitoring is in the early experimental stage. Individualisation of mycophenolate therapy should lead to improved patient outcomes. MPA AUC12 appears to be the most useful exposure measure for such individualisation. Limited sampling strategies and Bayesian forecasting are practical means of estimating MPA AUC12 without full concentration-time profiling. Target concentration intervention may be particularly useful in the first few months post-transplant and prior to major changes in anti-rejection therapy. In patients with impaired renal or hepatic function or hypoalbuminaemia, free drug measurement could be valuable in further interpretation of MPA exposure.
Collapse
Affiliation(s)
- Christine E Staatz
- School of Pharmacy, University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
20
|
Simultaneous determination of guanosine and guanosine-5'-triphosphate in biological sample using gold nanoparticles modified indium tin oxide electrode. Anal Chim Acta 2006; 581:32-6. [PMID: 17386422 DOI: 10.1016/j.aca.2006.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/28/2006] [Accepted: 08/08/2006] [Indexed: 11/24/2022]
Abstract
A nanogold modified indium tin oxide (ITO) electrode was used for the simultaneous determination of guanosine and GTP at pH 7.2. The electrode exhibited an effective catalytic response towards their oxidation and lowered the oxidation potential of guanosine by approximately 120 mV and GTP by approximately 183 mV. Linear concentration curves were obtained for guanosine with a detection limit of 9.8 x 10(-8) M and 5.5 x 10(-8) M for GTP. The concentration of guanosine and GTP were also estimated in the human blood plasma samples using gold nanoparticles modified ITO electrode with good reproducibility.
Collapse
|
21
|
Affiliation(s)
- Michael Oellerich
- Department of Clinical Chemistry, Georg-August University Goettingen, Goettingen, Germany.
| | | | | |
Collapse
|
22
|
Goldsmith D, Carrey EA, Edbury S, Smolenski RT, Jagodzinski P, Simmonds HA. Mycophenolate mofetil, an inhibitor of inosine monophosphate dehydrogenase, causes a paradoxical elevation of GTP in erythrocytes of renal transplant patients. Clin Sci (Lond) 2004; 107:63-8. [PMID: 14723604 DOI: 10.1042/cs20030331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 01/12/2004] [Accepted: 01/14/2004] [Indexed: 11/17/2022]
Abstract
The immunosuppressant MMF (mycophenolate mofetil) has increasingly replaced AZA (azathioprine) in renal transplantation. MMF is a prodrug of MPA (mycophenolic acid), which inhibits lymphocyte IMPDH (inosine monophosphate dehydrogenase), thereby drastically decreasing GTP concentrations essential to lymphocyte proliferation in vitro and in vivo. Erythrocyte GTP concentrations are commonly elevated in severe renal disease, but normalize following successful engraftment. Consequently, elevated GTP in renal transplant recipients might signal impending loss of immunosuppression and graft failure. In the present study, we compared erythrocyte nucleotides and plasma metabolites in two groups of 25 patients after renal transplantation, both receiving prednisolone and cyclosporin A, but one group receiving MMF and the other AZA. No patients had recent allograft biopsy evidence of rejection. Erythrocyte GTP concentrations at MMF commencement were 50.4+/-23.4 micromol/l. An increase occurred during the first 3 months after transplant when MMF was used de novo, stabilizing at 146.7+/-62.9 micromol/l after 4 months. This was significantly higher (P=2.5 x 10(-6)) than erythrocyte GTP (40.4+/-15.9 micromol/l) in the AZA group, which was essentially unchanged from values immediately after successful transplantation. The effect of MMF on erythrocyte GTP levels was reversible, since GTP levels fell when MMF therapy was terminated. The results demonstrate paradoxically high GTP concentrations in erythrocytes of renal transplant patients receiving MMF. MPA may stabilize reticulocyte IMPDH, allowing the protein to persist during erythropoiesis. This behaviour is in marked contrast with the decrease in GTP levels seen in white blood cells of patients on chronic MMF therapy.
Collapse
Affiliation(s)
- David Goldsmith
- Department of Renal Medicine, Guy's Hospital, London SE1 9RT, UK.
| | | | | | | | | | | |
Collapse
|