1
|
Leal V, Ribeiro CF, Oliveiros B, António N, Silva S. Intrinsic Vascular Repair by Endothelial Progenitor Cells in Acute Coronary Syndromes: an Update Overview. Stem Cell Rev Rep 2020; 15:35-47. [PMID: 30345477 DOI: 10.1007/s12015-018-9857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) play a key role in the maintenance of endothelial homeostasis and endothelial repair at areas of vascular damage. The quantification of EPCs in peripheral blood by flow cytometry is a strategy to assess this reparative capacity. The number of circulating EPCs is inversely correlated with the number of cardiovascular risk factors and to the occurrence of cardiovascular events. Therefore, monitoring EPCs levels may provide an accurate assessment of susceptibility to cardiovascular injury, greatly improving risk stratification of patients with high cardiovascular risk, such as those with an acute myocardial infarction. However, there are many issues in the field of EPC identification and quantification that remain unsolved. In fact, there have been conflicting protocols used to the phenotypic identification of EPCs and there is still no consensual immunophenotypical profile that corresponds exactly to EPCs. In this paper we aim to give an overview on EPCs-mediated vascular repair with special focus on acute coronary syndromes and to discuss the different phenotypic profiles that have been used to identify and quantify circulating EPCs in several clinical studies. Finally, we will synthesize evidence on the prognostic role of EPCs in patients with high cardiovascular risk.
Collapse
Affiliation(s)
- Vânia Leal
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - Carlos Fontes Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Natália António
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Cardiology Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - Sónia Silva
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 2019; 21:1137-1150. [PMID: 31668487 DOI: 10.1016/j.jcyt.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Despite advancements in wound care, healing of chronic diabetic wounds remains a great challenge for the clinical fraternity because of the intricacies of the healing process. Due to the limitations of existing treatment strategies for chronic wounds, stem/progenitor cell transplantation therapies have been explored as an alternative for tissue regeneration at the wound site. The non-healing phenotype of chronic wounds is directly associated with lack of vascularization. Therefore, endothelial progenitor cell (EPC) transplantation is proving to be a promising approach for the treatment of hypo-vascular chronic wounds. With the existing knowledge in EPC biology, significant efforts have been made to enrich EPCs at the chronic wound site, generating EPCs from somatic cells, induced pluripotent stem cells (iPSCs) using transcription factors, or from adult stem cells using chemicals/drugs for use in transplantation, as well as modulating the endogenous dysfunctional/compromised EPCs under diabetic conditions. This review mainly focuses on the pre-clinical and clinical approaches undertaken to date with EPC-based translational therapy for chronic diabetic as well as non-diabetic wounds to evaluate their vascularity-mediated regeneration potential.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India.
| |
Collapse
|
3
|
Floris A, Piga M, Pinna S, Angioni MM, Congia M, Mascia P, Chessa E, Cangemi I, Mathieu A, Cauli A. Assessment Of Circulating Endothelial Cells And Their Progenitors As Potential Biomarkers Of Disease Activity And Damage Accrual In Behçet's Syndrome. Open Access Rheumatol 2019; 11:219-227. [PMID: 31632164 PMCID: PMC6790121 DOI: 10.2147/oarrr.s225168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose To explore the potential role of circulating endothelial cells (CECs) and their progenitors (EPCs) as biomarkers of disease activity and damage accrual in patients with Behçet’s syndrome (BS), by using a standardised and reliable flow cytometry protocol. Patients and methods CECs and EPCs were assessed in 32 BS patients and 11 gender/age/smoking habits matched healthy controls (HC). They were identified by flow cytometry as alive/nucleated/CD45-negative/CD34-bright/CD146-positive and alive/nucleated/CD45-negative/CD34-bright/CD309-positive events, respectively. In BS patients, demographic and clinical features, including disease activity (assessed by Behçet’s disease current disease activity form, BDCAF) and irreversible damage accrual (by the vasculitis damage index, VDI) were recorded. Uni- and multivariate analysis were performed to compare the CECs and EPCs concentrations in BS vs HC and to identify potential associations with demographic or clinical features. Results The CECs concentration was significantly higher in the BS patients than HCs [median (IQR) 15.0 (7.5–23.0) vs 6.0 (2.0–13.0) CECs/mL, p=0.024]. In BS patients, no significant associations were found between CECs and demographic features, present and past clinical manifestations, BDCAF score and ongoing treatment. A significant association was observed between CECs and organ damage, as assessed by the VDI (rho 0.356, p=0.045). Higher levels of CECs were especially associated with vascular damage [median (IQR) 23.0 (14.0–47.0) vs 13.0 (6.0–19.0) CECs/mL, p=0.011], including arterial aneurysm and stenosis, complicated venous thrombosis, cerebrovascular accident. The concentration of EPCs did not significantly differ between the BS and HC [median 26.5 (13.0–46.0) vs 19.0 (4.0–42.0) EPCs/mL, p=0.316] and no significant associations were observed between their levels and any clinical characteristic. Conclusion Our study suggests that the CECs concentration is significantly higher in BS than healthy subjects, and it mainly correlates with vascular damage. A longitudinal extension of the present study on a wider cohort would be useful to validate the potential role of CECs as a marker or, hopefully, predictor of vascular damage in BS.
Collapse
Affiliation(s)
- Alberto Floris
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Matteo Piga
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Silvia Pinna
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | | | - Mattia Congia
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Piero Mascia
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Elisabetta Chessa
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Ignazio Cangemi
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, AOU University Clinic and University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Annese T, Tamma R, Ruggieri S, Ribatti D. Erythropoietin in tumor angiogenesis. Exp Cell Res 2019; 374:266-273. [DOI: 10.1016/j.yexcr.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
|
5
|
Maroun-Eid C, Ortega-Hernández A, Modrego J, Abad-Cardiel M, García-Donaire JA, Reinares L, Martell-Claros N, Gómez-Garre D. Effect of intensive multifactorial treatment on vascular progenitor cells in hypertensive patients. PLoS One 2018; 13:e0190494. [PMID: 29304136 PMCID: PMC5755814 DOI: 10.1371/journal.pone.0190494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/24/2017] [Indexed: 12/16/2022] Open
Abstract
Background Most hypertensive patients, despite a proper control of their cardiovascular risk factors, have cardiovascular complications, evidencing the importance of controlling and/or reversing target-organ damage. In this sense, endothelial dysfunction has been associated with the presence of cardiovascular risk factors and related cardiovascular outcomes. Since hypertension often clusters with other risk factors such as dyslipemia, diabetes and obesity, in this study we have investigated the effect of intensive multifactorial treatment on circulating vascular progenitor cell levels on high-risk hypertensive patients. Design We included108 hypertensive patients receiving intensive multifactorial pharmacologic treatment and dietary recommendations targeting blood pressure, dyslipemia, hyperglycemia and weight for 12 months. After the treatment period, blood samples were collected and circulating levels of endothelial (CD34+/KDR+, CD34+/VE-cadherin+) and smooth muscle (CD14+/endoglin+) progenitor cells were identified by flow cytometry. Additionally, plasma concentration of vascular endothelial growth factor (VEGF) was determined by ELISA. Results Most hypertensive patients (61±12 years, 47% men) showed cardiovascular parameters within normal ranges at baseline. Moreover, body mass index and the majority of the biochemical parameters (systolic and diastolic blood pressure, fasting glucose, total cholesterol, HDL-c, LDL-c, creatinine and hs-CRP) significantly decreased overtime. After 12 months of intensive treatment, CD34+/KDR+ and CD14+/endoglin+ levels did not change, but CD34+/VE-cadherin+ cells increased significantly at month 12 [0.9(0.05–0.14)% vs 0.05(0.02–0.09)% P<0.05]. However, VEGF plasma concentration decreased significantly overtime [89.1(53.9–218.7) vs [66.2(47.5–104.6) pg/mL, P<0.05]. Conclusions Long-term intensive treatment in hypertensive patients further improves cardiovascular risk and increases circulating EPCs, suggesting that these cells could be a therapeutic target.
Collapse
Affiliation(s)
- Charbel Maroun-Eid
- Unit of Hypertension, Área de Prevención Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Adriana Ortega-Hernández
- Vascular Biology Research Laboratory, Hospital Clínico San Carlos-IdISSC, Madrid, Spain
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Javier Modrego
- Vascular Biology Research Laboratory, Hospital Clínico San Carlos-IdISSC, Madrid, Spain
| | - María Abad-Cardiel
- Unit of Hypertension, Área de Prevención Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Antonio García-Donaire
- Unit of Hypertension, Área de Prevención Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Leonardo Reinares
- Unit of Lipids, Área de Prevención Cardiovascular, Hospital Clínico San Carlos-IdISSC, Madrid, Spain
| | - Nieves Martell-Claros
- Unit of Hypertension, Área de Prevención Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Vascular Biology Research Laboratory, Hospital Clínico San Carlos-IdISSC, Madrid, Spain
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Wang D, Li LK, Dai T, Wang A, Li S. Adult Stem Cells in Vascular Remodeling. Am J Cancer Res 2018; 8:815-829. [PMID: 29344309 PMCID: PMC5771096 DOI: 10.7150/thno.19577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.
Collapse
|
7
|
Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, Tokgözoglu L, Ylä-Herttuala S. Stabilisation of atherosclerotic plaques. Thromb Haemost 2017; 106:1-19. [DOI: 10.1160/th10-12-0784] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/29/2011] [Indexed: 01/04/2023]
Abstract
SummaryPlaque rupture and subsequent thrombotic occlusion of the coronary artery account for as many as three quarters of myocardial infarctions. The concept of plaque stabilisation emerged about 20 years ago to explain the discrepancy between the reduction of cardiovascular events in patients receiving lipid lowering therapy and the small decrease seen in angiographic evaluation of atherosclerosis. Since then, the concept of a vulnerable plaque has received a lot of attention in basic and clinical research leading to a better understanding of the pathophysiology of the vulnerable plaque and acute coronary syndromes. From pathological and clinical observations, plaques that have recently ruptured have thin fibrous caps, large lipid cores, exhibit outward remodelling and invasion by vasa vasorum. Ruptured plaques are also focally inflamed and this may be a common denominator of the other pathological features. Plaques with similar characteristics, but which have not yet ruptured, are believed to be vulnerable to rupture. Experimental studies strongly support the validity of anti-inflammatory approaches to promote plaque stability. Unfortunately, reliable non-invasive methods for imaging and detection of such plaques are not yet readily available. There is a strong biological basis and supportive clinical evidence that low-density lipoprotein lowering with statins is useful for the stabilisation of vulnerable plaques. There is also some clinical evidence for the usefulness of antiplatelet agents, beta blockers and renin-angiotensin-aldosterone system inhibitors for plaque stabilisation. Determining the causes of plaque rupture and designing diagnostics and interventions to prevent them are urgent priorities for current basic and clinical research in cardiovascular area.
Collapse
|
8
|
Kokkinopoulos I, Wong MM, Potter CMF, Xie Y, Yu B, Warren DT, Nowak WN, Le Bras A, Ni Z, Zhou C, Ruan X, Karamariti E, Hu Y, Zhang L, Xu Q. Adventitial SCA-1 + Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia. Stem Cell Reports 2017; 9:681-696. [PMID: 28757161 PMCID: PMC5549964 DOI: 10.1016/j.stemcr.2017.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient) mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.
Collapse
Affiliation(s)
- Ioannis Kokkinopoulos
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mei Mei Wong
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Claire M F Potter
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yao Xie
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Baoqi Yu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Derek T Warren
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Witold N Nowak
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Alexandra Le Bras
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Zhichao Ni
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Chao Zhou
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Xiongzhong Ruan
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Eirini Karamariti
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yanhua Hu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
9
|
Number and function of circulating endothelial progenitor cells in patients with primary Budd-Chiari syndrome. Clin Res Hepatol Gastroenterol 2017; 41:139-146. [PMID: 27863925 DOI: 10.1016/j.clinre.2016.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Primary Budd-Chiari syndrome (BCS) is associated with vascular endothelial injury. Circulating endothelial progenitor cells (EPCs) provide an endogenous mechanism to repair endothelial injury. This study investigated the levels and functionality of EPCs in patients with primary BCS. METHODS EPCs (CD34+/CD133+/KDR+) were quantified in 82 patients with primary BCS (inferior vena cava type: n=19; hepatic vein type: n=22; and mixed type: n=41), 10 cirrhosis controls (CC group) and 10 age-matched healthy controls (HC group), using flow cytometry. EPCs proliferation was detected by MTT assay, adhesion by adhesion activity assay, and migration capacity by Transwell assay. RESULTS EPCs levels were significantly lower in the BCS group (0.020±0.005%) than in the CC and HC groups (0.260±0.201%, 0.038±0.007%; P<0.001 for each). EPCs cultured in vitro from BCS and CC groups had, respectively, lower proliferation activity (0.20±0.04, 0.23±0.06 vs 0.58±0.07, each P<0.001), adhesion activity (15.8±1.7, 18.2±4.3 vs 35.0±2.5 cells/random microscopic field (RMF), each P<0.001) and migration activity (16.1±1.5, 16.7±3.0 vs 23.9±2.0 cells/RMF, each P<0.001) than in the HC group. EPCs functionality did not significantly differ between the BCS and CC groups. The numbers and functions of EPCs did not significantly differ among patients with inferior vena cava type, hepatic vein type and mixed type of BCS. CONCLUSION Patients with primary BCS had lower EPCs levels, with less proliferation, adhesion and migration activities. These findings suggest that lower levels of less functional EPCs may be associated with venous occlusion in primary BCS patients.
Collapse
|
10
|
Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality. Stem Cells Int 2017; 2017:8270498. [PMID: 28232850 PMCID: PMC5292398 DOI: 10.1155/2017/8270498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/18/2016] [Indexed: 02/08/2023] Open
Abstract
Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation.
Collapse
|
11
|
Atkins GB, Orasanu G, Jain MK. Endothelial Cells. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Wade CE, Cardenas JC. Obesity and the balancing act of endothelial damage and repair: Commentary on an article by Maria-Victoria Noci, MD, et al.: "Changes in endothelial microparticles and endothelial progenitor cells in obese patients in response to surgical stress". J Bone Joint Surg Am 2015; 97:e28. [PMID: 25740037 DOI: 10.2106/jbjs.n.01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Jessica C Cardenas
- The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
13
|
Hydrogen peroxide inhibits proliferation and endothelial differentiation of bone marrow stem cells partially via reactive oxygen species generation. Life Sci 2014; 112:33-40. [DOI: 10.1016/j.lfs.2014.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 12/11/2022]
|
14
|
Hoffmann BR, Wagner JR, Prisco AR, Janiak A, Greene AS. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress. Physiol Genomics 2013; 45:1021-34. [PMID: 24022223 PMCID: PMC3841787 DOI: 10.1152/physiolgenomics.00070.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/09/2013] [Indexed: 01/13/2023] Open
Abstract
Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration.
Collapse
Affiliation(s)
- Brian R Hoffmann
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | | | | | | | |
Collapse
|
15
|
JI KANGTING, XING CHENG, JIANG FENGCHUN, WANG XIAOYAN, GUO HUIHUI, NAN JINLIANG, QIAN LU, YANG PENGLIN, LIN JIAFENG, LI MEIDE, LI JINNONG, LIAO LIANMING, TANG JIFEI. Benzo[a]pyrene induces oxidative stress and endothelial progenitor cell dysfunction via the activation of the NF-κB pathway. Int J Mol Med 2013; 31:922-30. [DOI: 10.3892/ijmm.2013.1288] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/08/2013] [Indexed: 11/06/2022] Open
|
16
|
Circulating CD34(+) progenitor cell frequency is associated with clinical and genetic factors. Blood 2013; 121:e50-6. [PMID: 23287867 DOI: 10.1182/blood-2012-05-424846] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circulating blood CD34(+) cells consist of hematopoietic stem/progenitor cells, angiogenic cells, and endothelial cells. In addition to their clinical use in hematopoietic stem cell transplantation, CD34(+) cells may also promote therapeutic neovascularization. Therefore, understanding the factors that influence circulating CD34(+) cell frequency has wide implications for vascular biology in addition to stem cell transplantation. In the present study, we examined the clinical and genetic characteristics associated with circulating CD34(+) cell frequency in a large, community-based sample of 1786 Framingham Heart Study participants.Among subjects without cardiovascular disease (n = 1595), CD34(+) frequency was inversely related to older age, female sex, and smoking. CD34(+) frequency was positively related to weight, serum total cholesterol, and statin therapy. Clinical covariates accounted for 6.3% of CD34(+) variability. CD34(+) frequency was highly heritable (h(2) = 54%; P < .0001). Genome-wide association analysis of CD34(+) frequency identified suggestive associations at several loci, including OR4C12 (chromosome 11; P = 6.7 × 10(-7)) and ENO1 and RERE (chromosome 1; P = 8.8 × 10(-7)). CD34(+) cell frequency is reduced in older subjects and is influenced by environmental factors including smoking and statin use. CD34(+) frequency is highly heritable. The results of the present study have implications for therapies that use CD34(+) cell populations and support efforts to better understand the genetic mechanisms that underlie CD34(+) frequency.
Collapse
|
17
|
Hagensen MK, Vanhoutte PM, Bentzon JF. Arterial endothelial cells: still the craftsmen of regenerated endothelium. Cardiovasc Res 2012; 95:281-9. [PMID: 22652005 DOI: 10.1093/cvr/cvs182] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For more than a decade, a prevailing hypothesis in research related to arterial disease has been that circulating endothelial progenitor cells (EPCs) provide protection by their innate ability to replace dysfunctional or damaged endothelium. This paradigm has led to extensive investigation of EPCs in the hope of finding therapeutic targets to control their homing and differentiation. However, from the very beginning, the nomenclature and the phenotype of EPCs have been subject to controversy and there are currently no specific markers that can unambiguously identify these cells. Moreover, many of the initial observations that EPCs differentiate to endothelial cells in the course of arterial disease have been criticized for methodological problems. The present review discusses the contrasting experimental evidence as to the role of EPCs in contributing to relining of the endothelium and highlights some of the methodological pitfalls and terminological ambiguities that confuse the field.
Collapse
Affiliation(s)
- Mette K Hagensen
- Atherosclerosis Research Unit, Institute of Clinical Medicine and Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej, Skejby, Aarhus N, Denmark.
| | | | | |
Collapse
|
18
|
Abstract
Modulation of the RAS (renin–angiotensin system), in particular of the function of the hormones AngII (angiotensin II) and Ang-(1–7) [angiotensin-(1–7)], is an important target for pharmacotherapy in the cardiovascular system. In the classical view, such modulation affects cardiovascular cells to decrease hypertrophy, fibrosis and endothelial dysfunction, and improves diuresis. In this view, excessive stimulation of AT1 receptors (AngII type 1 receptors) fulfils a detrimental role, as it promotes cardiovascular pathogenesis, and this is opposed by stimulation of the AT2 receptor (angiotensin II type 2 receptor) and the Ang-(1–7) receptor encoded by the Mas proto-oncogene. In recent years, this view has been broadened with the observation that the RAS regulates bone marrow stromal cells and stem cells, thus involving haematopoiesis and tissue regeneration by progenitor cells. This change of paradigm has enlarged the field of perspectives for therapeutic application of existing as well as newly developed medicines that alter angiotensin signalling, which now stretches beyond cardiovascular therapy. In the present article, we review the role of AngII and Ang-(1–7) and their respective receptors in haematopoietic and mesenchymal stem cells, and discuss possible pharmacotherapeutical implications.
Collapse
|
19
|
Cevese A. Totipotent stem cells could do everything ... or else nothing: the case of vascular reendothelialization. Cardiovasc Res 2011; 93:211-2. [PMID: 22180602 DOI: 10.1093/cvr/cvr342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Colombo E, Marconi C, Taddeo A, Cappelletti M, Villa ML, Marzorati M, Porcelli S, Vezzoli A, Della Bella S. Fast reduction of peripheral blood endothelial progenitor cells in healthy humans exposed to acute systemic hypoxia. J Physiol 2011; 590:519-32. [PMID: 22155931 DOI: 10.1113/jphysiol.2011.223032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
There are hints that hypoxia exposure may affect the number of circulating endothelial progenitor cells (EPCs) in humans. To test this hypothesis, the concentration of EPCs was determined by flow cytometry in the peripheral blood of 10 young healthy adults before (0 h), at different times (0.5 h, 1 h, 2 h and 4 h) during a 4 h normobaric hypoxic breathing simulating 4100 m altitude, and in the following recovery breathing room air. Results were interpreted mainly on the basis of the changes in surface expression of CXC chemokine receptor-4 (CXCR-4, a chemokine receptor essential for EPC migration and homing) and the percentage of apoptotic cells, the plasmatic levels of markers of oxidative stress induced by hypoxic breathing. Compared to 0 h, the concentration of EPCs, identified as either CD45(dim)/CD34(+)/KDR(+) or CD45(dim)/CD34(+)/KDR(+)/CD133(+) cells, decreased from 337 ± 83 ml(-1) (mean ± SEM) to 223 ± 52 ml(-1) (0.5 h; P < 0.005) and 100 ± 37 ml(-1) (4 h; P < 0.005), and from 216 ± 91 to 161 ± 50 ml(-1) (0.5 h; P < 0.05) and 45 ± 23 ml(-1) (4 h; P < 0.005), respectively. Upon return to normoxia, their concentration increased slowly, and after 4 h was still lower than at 0 h (P < 0.05). During hypoxia, CXCR-4 expression and plasmatic stromal derived cell factor-1 (SDF-1) increased abruptly (0.5 h: +126% and +13%, respectively; P < 0.05), suggesting cell marginalization as a possible cause of the rapid hypoxia-induced EPC reduction. Moreover, hypoxia exposure induced an increase in EPC apoptosis and markers of oxidative stress, which was significantly evident only starting from 2 h and 4 h after hypoxia offset, respectively, suggesting that EPC apoptosis may contribute to the later phase of hypoxia-induced EPC reduction. Overall, these observations may provide new insights into the understanding of the mechanisms operated by EPCs to maintain endothelial homeostasis.
Collapse
Affiliation(s)
- Elena Colombo
- Department of Biomedical Sciences and Technologies, Laboratory of Immunology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cheng S, Wang N, Larson MG, Palmisano JN, Mitchell GF, Benjamin EJ, Vasan RS, Levy D, McCabe EL, Vita JA, Wang TJ, Shaw SY, Cohen KS, Hamburg NM. Circulating angiogenic cell populations, vascular function, and arterial stiffness. Atherosclerosis 2011; 220:145-50. [PMID: 22093724 DOI: 10.1016/j.atherosclerosis.2011.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Several bone marrow-derived cell populations have been identified that may possess angiogenic activity and contribute to vascular homeostasis in experimental studies. We examined the extent to which lower quantities of these circulating angiogenic cell phenotypes may be related to impaired vascular function and greater arterial stiffness. METHODS We studied 1948 Framingham Heart Study participants (mean age, 66±9 years; 54% women) who were phenotyped for circulating angiogenic cells: CD34+, CD34+/KDR+, and early outgrowth colony forming units (CFU). Participants underwent non-invasive assessments of vascular function including peripheral arterial tone (PAT), arterial tonometry, and brachial reactivity testing. RESULTS In unadjusted analyses, higher CD34+ and CD34+/KDR+ concentrations were modestly associated with lower PAT ratio (β=-0.052±0.011, P<0.001 and β=-0.030±0.011, P=0.008, respectively) and with higher carotid-brachial pulse wave velocity (β=0.144±0.043, P=0.001 and β=0.112±0.043, P=0.009), but not with flow-mediated dilation; higher CD34+ was also associated with lower carotid-femoral pulse wave velocity (β=-0.229±0.094, P=0.015). However, only the association of lower CD34+ concentration with higher PAT ratio persisted in multivariable analyses that adjusted for standard cardiovascular risk factors. In all analyses, CFU was not associated with measures of vascular function or arterial stiffness. CONCLUSIONS In our large, community-based sample of men and women, circulating angiogenic cell phenotypes largely were not associated with measures of vascular function or arterial stiffness in analyses adjusting for traditional risk factors.
Collapse
Affiliation(s)
- Susan Cheng
- Framingham Heart Study, Framingham, MA 02118, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hagensen MK, Raarup MK, Mortensen MB, Thim T, Nyengaard JR, Falk E, Bentzon JF. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury. Cardiovasc Res 2011; 93:223-31. [PMID: 22012957 DOI: 10.1093/cvr/cvr278] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Endothelial regeneration after vascular injury, including percutaneous coronary intervention, is essential for vascular homeostasis and inhibition of neointima formation. Circulating endothelial progenitor cells (EPCs) have been implicated to contribute by homing and differentiating into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein (GFP) in ECs. We found that the endothelium regenerated with GFP(+) ECs as a function of time, evolving from the anastomosis sites towards the centre of the transplant. A migration front of ECs at Day 7 was verified by scanning electron microscopy and by bright-field microscopy using recipient TIE2-lacZ mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP recipient mouse. Among 1186 ECs identified in re-endothelialized transplants (n= 5) by staining for von Willebrand Factor or vascular endothelial-cadherin, we did not find any blood-derived (GFP(+)) cells. CONCLUSION Endothelial regeneration after vascular injury did not involve circulating EPCs but was mediated solely by migration of ECs from the adjacent healthy endothelium.
Collapse
Affiliation(s)
- Mette K Hagensen
- Atherosclerosis Research Unit, Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rae PC, Kelly RDW, Egginton S, St John JC. Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vasc Cell 2011; 3:11. [PMID: 21569302 PMCID: PMC3108917 DOI: 10.1186/2045-824x-3-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/11/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in vitro, to be re-introduced as a therapeutic transplant. To demonstrate the therapeutic potential of EPCs we performed in vitro transplantation of EPCs into endothelial cell (EC) tubules using a gel-based tubule formation assay. We also described the production of highly angiogenic EPC-comparable cells from pluripotent embryonic stem cells (ESCs) by direct differentiation using EC-conditioned medium (ECCM). RESULTS The effect on tubule complexity and longevity varied with transplantation quantity: significant effects were observed when tubules were transplanted with a quantity of EPCs equivalent to 50% of the number of ECs originally seeded on to the assay gel but not with 10% EPC transplantation. Gene expression of the endothelial markers VEGFR2, VE-cadherin and CD31, determined by qPCR, also changed dynamically during transplantation. ECCM-treated ESC-derived progenitor cells exhibited angiogenic potential, demonstrated by in vitro tubule formation, and endothelial-specific gene expression equivalent to natural EPCs. CONCLUSIONS We concluded the effect of EPCs is cumulative and beneficial, relying on upregulation of the angiogenic activity of transplanted cells combined with an increase in proliferative cell number to produce significant effects upon transplantation. Furthermore, EPCs derived from ESCs may be developed for use as a rapidly-expandable alternative for angiogenic transplantation therapy.
Collapse
Affiliation(s)
- Peter C Rae
- Centre for Cardiovascular Sciences, College of Medical & Dental Sciences, University of Birmingham, UK
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, UK
| | - Richard DW Kelly
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, UK
- Centre for Reproduction & Development, Monash Institute of Medical Research, Clayton VIC 3168, Australia
| | - Stuart Egginton
- Centre for Cardiovascular Sciences, College of Medical & Dental Sciences, University of Birmingham, UK
| | - Justin C St John
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, UK
- Centre for Reproduction & Development, Monash Institute of Medical Research, Clayton VIC 3168, Australia
| |
Collapse
|
24
|
Shaw SY, Cheng S, Cupples LA, Larson MG, McCabe EL, Ngwa JS, Wang YA, Martin RP, Klein RJ, Hashmi B, Ajijola OA, Lau E, O'Donnell CJ, Vasan RS, Cohen KS, Wang TJ. Genetic and clinical correlates of early-outgrowth colony-forming units. ACTA ACUST UNITED AC 2011; 4:296-304. [PMID: 21493818 DOI: 10.1161/circgenetics.110.958470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Several bone marrow-derived cell populations may have angiogenic activity, including cells termed endothelial progenitor cells. Decreased numbers of circulating angiogenic cell populations have been associated with increased cardiovascular risk. However, few data exist from large, unselected samples, and the genetic determinants of these traits are unclear. METHODS AND RESULTS We examined the clinical and genetic correlates of early-outgrowth colony-forming units (CFUs) in 1799 participants of the Framingham Heart Study (mean age, 66 years; 54% women). Among individuals without cardiovascular disease (n = 1612), CFU number was inversely related to advanced age (P = 0.004), female sex (P = 0.04), and triglycerides (P = 0.008) and positively related to hormone replacement (P = 0.008) and statin therapy (P = 0.027) in stepwise multivariable analyses. Overall, CFU number was inversely related to the Framingham risk score (P = 0.01) but not with prevalent cardiovascular disease. In genome-wide association analyses in the entire sample, polymorphisms were associated with CFUs at the MOSC1 locus (P = 3.3 × 10(-7)) and at the SLC22A3-LPAL2-LPA locus (P = 4.9 × 10(-7)), a previously replicated susceptibility locus for myocardial infarction. Furthermore, alleles at the SLC22A3-LPAL2-LPA locus that were associated with decreased CFUs were also related to increased risk of myocardial infarction (P = 1.1 × 10(-4)). CONCLUSIONS In a community-based sample, early-outgrowth CFUs are inversely associated with select cardiovascular risk factors. Furthermore, genetic variants at the SLC22A3-LPAL2-LPA locus are associated with both decreased CFUs and an increased risk of myocardial infarction. These findings are consistent with the hypothesis that decreased circulating angiogenic cell populations promote susceptibility to myocardial infarction.
Collapse
Affiliation(s)
- Stanley Y Shaw
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roks AJM, Rodgers K, Walther T. Effects of the renin angiotensin system on vasculogenesis-related progenitor cells. Curr Opin Pharmacol 2011; 11:162-74. [PMID: 21296616 DOI: 10.1016/j.coph.2011.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/27/2022]
Abstract
The current concept is that there are both cells that integrate into the vasculature, true endothelial progenitor cells (EPC), and cells with hematopoietic markers that support neovascularisation. As identification of the EPC is controversial and studies refer cells that might fall into either pools, we will use the term, vasculogenesis-related progenitor cells (VRPC), for this review. VRPC are considered to be an important target for the treatment of cardiovascular diseases (CVD). Angiotensin II is known to be an important player in neovascularisation and the modulation of renin angiotensin system (RAS) is one of the major pharmacotherapeutic strategies for the treatment of CVD. We will review the effects of different components of the RAS on such VRPC under physiological conditions and in CVD. The reviewed research strongly supports a critical role of the RAS in vasculogenesis and vascular regeneration. Therefore, pharmacological intervention on the components of the RAS does not only target directly end-organ remodelling and blood pressure but also influence tissue healing and/or regeneration by influencing specific progenitor cells. Thus, the interrogation of RAS effects on VRPC will be important in the optimisation of RAS intervention or regenerative therapy.
Collapse
Affiliation(s)
- Anton J M Roks
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Disease, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | |
Collapse
|
26
|
Bobryshev YV, Tran D, Botelho NK, Lord RVN, Orekhov AN. Musashi-1 expression in atherosclerotic arteries and its relevance to the origin of arterial smooth muscle cells: histopathological findings and speculations. Atherosclerosis 2011; 215:355-65. [PMID: 21296351 DOI: 10.1016/j.atherosclerosis.2011.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/11/2022]
Abstract
The origin of smooth muscle cells in developing atherosclerotic lesions is a controversial topic with accumulating evidence indicating that at least some arterial smooth muscle cells might originate from bone marrow-derived smooth muscle cell precursors circulating in the blood. The stem cell markers currently used for the identification of stem cells in the arterial intima can be expressed by a number of different cell types residing in the arterial wall, such as mast cells, endothelial cells and dendritic cells, which can make interpretation of the data obtained somewhat ambiguous. In the present study we examined whether the putative intestinal stem cell marker Musashi-1 is expressed in the arterial wall. Using a multiplexed tandem polymerase chain reaction method (MT-PCR) and immunohistochemistry, Musashi-1 expression was revealed in human coronary arterial wall tissue segments, and this finding was followed by the demonstration of significantly higher expression levels of Musashi-1 in atherosclerotic plaques compared with those in undiseased intimal sites. Double immunohistochemistry demonstrated that in the arterial wall Musashi-1 positive cells either did not display any specific markers of cells that are known to reside in the arterial intima or Musashi-1 was co-expressed by smooth muscle α-actin positive cells. Some Musashi-1 positive cells were found along the luminal surface of arteries as well as within microvessels formed in atherosclerotic plaques by neovascularization, which supports the possibility that Musashi-1 positive cells might intrude into the arterial wall from the blood and might even represent circulating smooth muscle cell precursors.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
27
|
Abstract
OBJECTIVE Statins have been shown to increase endothelial progenitor cells (EPCs) in patients with cardiovascular disease. However, there is no similar study that has been done on the patients recovering from cerebrovascular disease. We present the largest prospective study of statin therapy on EPC levels of patients recovering from stroke. METHOD Our study subjects were treated with rosuvastatin (10 mg/day) over a period of 12 weeks. Blood was collected from these patients periodically and EPC levels were measured along with other biochemical parameters. RESULTS AND CONCLUSIONS Our study shows that rosuvastatin treatment significantly reduces the low density lipoprotein (LDL) levels in the patients over the 12 weeks. However, we did not find any corresponding changes in the EPC levels during this time period. Earlier reports indicated that statin use could increase EPC proliferation. Our research, however, indicates that the in-vivo effects of rosuvastatin are not similar to those of previous reports. There may be several reasons for this lack of congruence between these two studies, including age of the study population, predominantly low high density lipoprotein (HDL) levels in our subjects and effects from other concomitant medications.
Collapse
|
28
|
Abstract
Blood vessels have a fundamental role both in skeletal homeostasis and in bone repair. Angiogenesis is also important for a successful bone engineering. Therefore, scaffolds should be tested for their ability to favour endothelial cell adhesion, proliferation and functions. The type of endothelial cell to use for in vitro assays should be carefully considered, because the properties of these cells may depend on their source. Morphological and functional relationships between endothelial cells and osteoblasts are evaluated with co-cultures, but this model should still be standardized, particularly for distinguishing the two cell types. Platelet-rich plasma and recombinant growth factors may be useful for stimulating angiogenesis.
Collapse
|
29
|
Endothelial progenitor cells: Their potential role in pregnancy and preeclampsia. Pregnancy Hypertens 2011; 1:48-58. [DOI: 10.1016/j.preghy.2010.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Abstract
Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow-derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow-derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure.
Collapse
Affiliation(s)
- Michael E. Yeager
- Department of Pediatrics and Critical Care, University of Colorado at Denver and Health Sciences Center, Colorado, USA
| | - Maria G. Frid
- Developmental Lung Biology Laboratory, Denver, Colorado, USA
| | | |
Collapse
|
31
|
Cheng S, Cohen KS, Shaw SY, Larson MG, Hwang SJ, McCabe EL, Martin RP, Klein RJ, Hashmi B, Hoffmann U, Fox CS, Vasan RS, O'Donnell CJ, Wang TJ. Association of colony-forming units with coronary artery and abdominal aortic calcification. Circulation 2010; 122:1176-82. [PMID: 20823386 DOI: 10.1161/circulationaha.109.931279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Certain bone marrow-derived cell populations, called endothelial progenitor cells, have been reported to possess angiogenic activity. Experimental data suggest that depletion of these angiogenic cell populations may promote atherogenesis, but limited data are available on their relation to subclinical atherosclerotic cardiovascular disease in humans. METHODS AND RESULTS We studied 889 participants of the Framingham Heart Study who were free of clinically apparent cardiovascular disease (mean age, 65 years; 55% women). Participants underwent endothelial progenitor cell phenotyping with an early-outgrowth colony-forming unit assay and cell surface markers. Participants also underwent noncontrast multidetector computed tomography to assess the presence of subclinical atherosclerosis, as reflected by the burden of coronary artery calcification and abdominal aortic calcification. Across decreasing tertiles of colony-forming units, there was a progressive increase in median coronary artery calcification and abdominal aortic calcification scores. In multivariable analyses adjusting for traditional cardiovascular risk factors, each 1-SD increase in colony-forming units was associated with a ≈16% decrease in coronary artery calcification (P=0.02) and 17% decrease in abdominal aortic calcification (P=0.03). In contrast, neither CD34(+)/KDR(+) nor CD34(+) variation was associated with significant differences in coronary or aortic calcification. CONCLUSIONS In this large, community-based sample of men and women, lower colony-forming unit number was associated with a higher burden of subclinical atherosclerosis in the coronary arteries and aorta. Decreased angiogenic potential could contribute to the development of atherosclerosis in humans.
Collapse
Affiliation(s)
- Susan Cheng
- Cardiology Division, GRB-800, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Autonomic alterations and endothelial dysfunction in pediatric obstructive sleep apnea. Sleep Med 2010; 11:714-20. [DOI: 10.1016/j.sleep.2009.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 12/06/2009] [Accepted: 12/12/2009] [Indexed: 11/21/2022]
|
33
|
Shai SY, Sukhanov S, Higashi Y, Vaughn C, Kelly J, Delafontaine P. Smooth muscle cell-specific insulin-like growth factor-1 overexpression in Apoe-/- mice does not alter atherosclerotic plaque burden but increases features of plaque stability. Arterioscler Thromb Vasc Biol 2010; 30:1916-24. [PMID: 20671230 DOI: 10.1161/atvbaha.110.210831] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Growth factors may play a permissive role in atherosclerosis initiation and progression, in part via their promotion of vascular smooth muscle cell (VSMC) accumulation in plaques. However, unstable human plaques often have a relative paucity of VSMC, which has been suggested to contribute to plaque rupture and erosion and to clinical events. Insulin-like growth factor-1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that is a mitogen for VSMC, but when infused into Apoe(-/-) mice it paradoxically reduces atherosclerosis burden. METHODS AND RESULTS To determine the effect of stimulation of VSMC growth on atherosclerotic plaque development and to understand mechanisms of IGF-1's atheroprotective effect, we assessed atherosclerotic plaques in mice overexpressing IGF-1 in smooth muscle cells (SMC) under the control of the α-smooth muscle actin promoter, after backcrossing to the Apoe(-/-) background (SMP8/Apoe(-/-)). Compared with Apoe(-/-) mice, these SMP8/Apoe(-/-) mice developed a comparable plaque burden after 12 weeks on a Western diet, suggesting that the ability of increased circulating IGF-1 to reduce plaque burden was mediated in large part via non-SMC target cells. However, advanced plaques in SMP8/Apoe(-/-) mice displayed several features of plaque stability, including increased fibrous cap area, α-smooth muscle actin-positive SMC and collagen content, and reduced necrotic cores. CONCLUSIONS These findings indicate that stimulation of VSMC IGF-1 signaling does not alter total atherosclerotic plaque burden and may improve atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Shaw-Yung Shai
- Tulane University Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, La 70112, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kheirandish-Gozal L, Bhattacharjee R, Kim J, Clair HB, Gozal D. Endothelial progenitor cells and vascular dysfunction in children with obstructive sleep apnea. Am J Respir Crit Care Med 2010; 182:92-7. [PMID: 20203242 PMCID: PMC2902761 DOI: 10.1164/rccm.200912-1845oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Endothelial dysfunction is a potential complication of obstructive sleep apnea syndrome (OSAS) in children ascribed to systemic inflammatory changes. However, not all children with OSAS will manifest endothelial dysfunction. OBJECTIVES The variability in endothelial function in pediatric OSAS may be related to the ability to recruit repair mechanisms such as endothelial progenitor cells (EPCs). METHODS Prepubertal nonhypertensive children with or without polysomonographically confirmed OSAS had endothelial function assessed in a morning fasted state using a modified hyperemic test involving cuff-induced occlusion of the radial and ulnar arteries. Blood was drawn and EPCs were assessed by flow cytometry and triple staining using antibodies against CD133, CD34, and vascular endothelial growth factor receptor-2 after isolation of peripheral blood mononuclear cells. SDF-1 levels were measured by ELISA. MEASUREMENTS AND MAIN RESULTS Eighty children with OSAS (mean age 8.2 +/- 1.4 yr, mean body mass index [BMI] z-score, 1.43 +/- 0.3) and 20 controls (CO) matched for BMI, age, sex, and ethnicity were studied. Significant delays to peak capillary reperfusion after occlusion release (Tmax) occurred in OSAS children, but substantial variability was present. Despite similar OSAS severity, EPC counts, and stromal cell-derived factor-1 (SDF-1) levels were significantly lower among the 20 OSAS children with the longest Tmax, when compared with either the 20 children with normal Tmax values or to CO ( P < 0.01). Furthermore, Tmax was significantly and inversely correlated with EPCs (r(2), 0.51; P < 0.01), but neither EPCs nor Tmax were associated with apnea-hyponea index (AHI). CONCLUSIONS Endothelial dysfunction is frequently present in OSAS. Variance in endothelial functional phenotype may not only reside in the individual susceptibility but also in the ability to recruit endothelial repair mechanisms.
Collapse
Affiliation(s)
- Leila Kheirandish-Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, The University of Chicago, 5721 S Maryland Avenue, MC 8000, Suite K-160, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
35
|
Luppi P, Powers RW, Verma V, Edmunds L, Plymire D, Hubel CA. Maternal circulating CD34+VEGFR-2+ and CD133+VEGFR-2+ progenitor cells increase during normal pregnancy but are reduced in women with preeclampsia. Reprod Sci 2010; 17:643-52. [PMID: 20360595 DOI: 10.1177/1933719110366164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) may contribute to vascular endothelial cell homeostasis, and low levels of these cells are predictive of cardiovascular disease. We hypothesized that circulating EPCs increase in number during uncomplicated pregnancy but are reduced in women with preeclampsia. Peripheral blood was obtained from pregnant women and from nulligravidas in cross-sectional design. Cells expressing CD34 or CD133, in combination with vascular endothelial growth factor receptor-2 (VEGFR-2), were enumerated by flow cytometry. Both CD34(+)VEGFR-2(+) (doubly positive) and CD133(+)VEGFR-2( +) cells were significantly increased during the second and third trimesters of uncomplicated pregnancy compared to the first trimester. First trimester and nulligravida groups did not differ. Endothelial progenitor cells, quantified by flow cytometry or by circulating angiogenic cell (CAC) culture assay, were significantly reduced in women with preeclampsia compared to third trimester controls. Circulating EPCs appear to increase during normal pregnancy, and comparatively reduced numbers of these cells exist during preeclampsia.
Collapse
Affiliation(s)
- Patrizia Luppi
- Department of Pediatrics, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hagensen MK, Shim J, Thim T, Falk E, Bentzon JF. Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis. Circulation 2010; 121:898-905. [PMID: 20142446 DOI: 10.1161/circulationaha.109.885459] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It has been reported that circulating endothelial progenitor cells (EPCs) home to and differentiate into endothelial cells after various kinds of arterial injury. By inference, EPCs are also proposed to be important in the most important arterial disease, atherosclerosis, but the evidence for this theory is not clear. In the present study, we assessed the contribution of circulating EPCs to plaque endothelium in apolipoprotein E-deficient (apoE(-/-)) mice. METHODS AND RESULTS To investigate whether EPCs in the circulating blood are a source of plaque endothelial cells during atherogenesis, we examined plaques in lethally irradiated apoE(-/-) mice reconstituted with bone marrow cells from enhanced green fluorescent protein (eGFP) transgenic apoE(-/-) mice and plaques induced in segments of common carotid artery transplanted from apoE(-/-) mice into eGFP(+)apoE(-/-) mice. Among 4232 endothelial cells identified by a cell-type-specific marker (von Willebrand factor) and analyzed by high-resolution microscopy, we found only 1 eGFP(+). Using the Y chromosome to track cells after sex-mismatched transplants yielded similar results. To investigate whether circulating EPCs are involved in plaque reendothelialization after plaque disruption and superimposed thrombosis, we produced mechanical plaque disruptions in carotid bifurcation plaques in old lethally irradiated apoE(-/-) mice reconstituted with eGFP(+)apoE(-/-) bone marrow cells and carotid bifurcation plaques transplanted from old apoE(-/-) mice into eGFP(+)apoE(-/-) mice. Only 1 eGFP(+) endothelial cell was found among 3170 analyzed. CONCLUSIONS Circulating EPCs rarely, if ever, contribute to plaque endothelium in apoE(-/-) mice. These findings bring into question the prevailing theory that circulating EPCs play an important role in atherogenesis.
Collapse
Affiliation(s)
- Mette K Hagensen
- MSc, Atherosclerosis Research Unit, Institute of Clinical Medicine and Department of Cardiology, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark.
| | | | | | | | | |
Collapse
|