1
|
Yin F, Chen Y, Zhang H, Zhao H, Li X, Wang Z, Meng W, Zhao J, Tang L, Li Y, Li J, Wang X. Lactobacillus paracasei Expressing Porcine Trefoil Factor 3 and Epidermal Growth Factor: A Novel Approach for Superior Mucosal Repair. Vet Sci 2025; 12:365. [PMID: 40284867 PMCID: PMC12031595 DOI: 10.3390/vetsci12040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Trefoil factor 3 (TFF3) and epidermal growth factor (EGF) exert a promotive effect on the functions of intestinal epithelial cells and offer protection to the intestinal mucosa. Lactobacillus paracasei can ameliorate intestinal mucosal damage. In this study, pPG-pTFF3/27-2, pPG-pEGF/27-2, and pPG-pTE/27-2 were constructed to express porcine TFF3, EGF, and a fusion protein (pTE). Functional assays showed they promoted Immortalized Porcine Enterocyte Cell line J2 (IPEC-J2) proliferation and migration, with pTE having a greater migratory effect. In dextran sulfate sodium (DSS)-induced colitis mice, oral administration of pPG-pTE/27-2 reduced colitis, improved mucosal integrity, increased the expression of tight-junction proteins and the serum level of Interleukin-10 (IL-10), and decreased the levels of pro-inflammatory Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), and Interleukin-1β (IL-1β). These results imply that recombinant L. paracasei 27-2 strains engineered to express pTFF3 and pEGF represent a promising approach for augmenting intestinal epithelial cell function and facilitating mucosal restitution, and they possess significant potential in the treatment of intestinal mucosal injury and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Fangjie Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Huijun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Hongzhe Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xuenan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
| | - Zi Wang
- Tongliao Institute of Animal Husbandry and Veterinary Science, Tongliao 028000, China;
| | - Weijing Meng
- Tongliao Agricultural and Animal Husbandry Development Center, Tongliao 028000, China;
| | - Jie Zhao
- Nanjing Dr. Vet Health Management Co., Ltd., Nanjing 210000, China;
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Y.); (Y.C.); (H.Z.); (H.Z.); (X.L.); (L.T.); (Y.L.)
- Tongliao Agricultural and Animal Husbandry Development Center, Tongliao 028000, China;
| |
Collapse
|
2
|
Tekes E, Ickin Gulen M, Silan C, Guven Bagla A. Humic acid attenuates cisplatin-induced nephrotoxicity in rats. Drug Chem Toxicol 2025:1-9. [PMID: 39871462 DOI: 10.1080/01480545.2025.2453590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
Cisplatin-induced nephrotoxicity, a major limitation of this chemotherapeutic agent, involves oxidative stress, inflammation, and apoptosis. This study investigated the potential renoprotective effects of humic acid in a rat model of cisplatin-induced nephrotoxicity. Forty-two male Wistar rats were assigned to six groups: control, humic acid, cisplatin, cisplatin + humic acid 10 mg/kg, cisplatin + humic acid 20 mg/kg, and cisplatin + humic acid 40 mg/kg. On day 7, the rats were sacrificed, and cardiac blood and kidneys were collected for biochemical and histopathological examinations. Humic acid administration significantly attenuated the cisplatin-induced increases in renal TNF-α and NF-κB levels, indicating a reduction in inflammation. Humic acid also ameliorated histopathological damage, including Bowman's capsule dilatation, tubular cell degeneration, and hemorrhage. However, humic acid did not significantly alter oxidative stress parameters or caspase-3 levels. Humic acid demonstrates a protective effect against cisplatin-induced nephrotoxicity in rats, primarily by mitigating the inflammatory response. While HA's beneficial effects on oxidative stress and apoptosis were limited in this study, its ability to reduce inflammation highlights its potential as a therapeutic strategy to mitigate cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Ender Tekes
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Meltem Ickin Gulen
- Department of Histology & Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Coskun Silan
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Aysel Guven Bagla
- Department of Histology & Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
3
|
Msweli S, Pakala SB, Syed K. NF-κB Transcription Factors: Their Distribution, Family Expansion, Structural Conservation, and Evolution in Animals. Int J Mol Sci 2024; 25:9793. [PMID: 39337282 PMCID: PMC11432056 DOI: 10.3390/ijms25189793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The Nuclear Factor Kappa B (NF-κB) transcription factor family consists of five members: RelA (p65), RelB, c-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). This family is considered a master regulator of classical biochemical pathways such as inflammation, immunity, cell proliferation, and cell death. The proteins in this family have a conserved Rel homology domain (RHD) with the following subdomains: DNA binding domain (RHD-DBD) and dimerization domain (RHD-DD). Despite the importance of the NF-κB family in biology, there is a lack of information with respect to their distribution patterns, evolution, and structural conservation concerning domains and subdomains in animals. This study aims to address this critical gap regarding NF-κB proteins. A comprehensive analysis of NF-κB family proteins revealed their distinct distribution in animals, with differences in protein sizes, conserved domains, and subdomains (RHD-DBD and RHD-DD). For the first time, NF-κB proteins with multiple RHD-DBDs and RHD-DDs have been identified, and in some cases, this is due to subdomain duplication. The presence of RelA/p65 exclusively in vertebrates shows that innate immunity originated in fishes, followed by amphibians, reptiles, aves, and mammals. Phylogenetic analysis showed that NF-κB family proteins grouped according to animal groups, signifying structural conservation after speciation. The evolutionary analysis of RHDs suggests that NF-κB family members p50/p105 and c-Rel may have been the first to emerge in arthropod ancestors, followed by RelB, RelA, and p52/p100.
Collapse
Affiliation(s)
- Siphesihle Msweli
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| | - Suresh B. Pakala
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500-046, India
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| |
Collapse
|
4
|
Zhang P, Xue Y, Cao Z, Guo Y, Pang X, Chen C, Zhang W. Raffinose Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Targeting the Inflammatory TLR4-MyD88-NF-κB Signaling Pathway. Foods 2024; 13:1849. [PMID: 38928791 PMCID: PMC11203344 DOI: 10.3390/foods13121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to explore the protective effects of raffinose (Raf) against inflammatory bowel disease in mice with colitis. Mice were administered 100, 200, or 400 mg/kg Raf for 21 d, followed by drinking-water containing 3% dextran sulfate sodium salt (DSS) for 3 d. Thereafter, the phenotype, pathological lesions in the colon, cytokines levels, and gut microbiota were evaluated. Treatment with Raf reduced the severity of the pathological changes in the colon, mitigating the reduction in colon length. Following Raf intervention, serum levels of inflammatory cytokines (IL-2, IL-6, IL-1β, and TNF-α) tended to return to normal. These results suggest that the anti-inflammatory effects of Raf are associated with a reduction in TLR4-MyD88-NF-κB pathway expression in mouse colonic tissues. Analysis of gut microbiota abundance and its correlation with colitis parameters revealed that DSS-induced dysbiosis was partially mitigated by Raf. In conclusion, Raf exerts a protective effect in colitis by modulating the gut microbiota and TLR4-MyD88-NF-κB pathway.
Collapse
|
5
|
Tang H, Zhou H, Zhang L, Tang T, Li N. Molecular mechanism of MLCK1 inducing 5-Fu resistance in colorectal cancer cells through activation of TNFR2/NF-κB pathway. Discov Oncol 2024; 15:159. [PMID: 38735014 PMCID: PMC11089027 DOI: 10.1007/s12672-024-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND AND AIMS Chemotherapy resistance in colorectal cancer have been faced with significant challenges in recent years. Particular interest is directed to tumor microenvironment function. Recent work has, identified a small molecule named Divertin that prevents myosin light chain kinase 1(MLCK1) recruitment to the perijunctional actomyosin ring(PAMR), restores barrier function after tumor necrosis factor(TNF)-induced barrier loss and prevents disease progression in experimental inflammatory bowel disease. Studies have shown that MLCK is a potential target for affecting intestinal barrier function, as well as for tumor therapy. However, the relative contributions of MLCK expression and chemotherapy resistance in colorectal cancers have not been defined. METHODS Statistical analysis of MYLK gene expression differences in colorectal cancer patients and normal population and prognosis results from The Cancer Genome Atlas(TCGA) data. Cell activity was detected by Cell counting Kit-8. Cell proliferation was detected by monoclonal plate. The apoptosis was detected by flow cytometry and western blot. Determine the role of MLCK1 in inducing 5-Fluorouracil(5-Fu) resistance in colorectal cancer cells was detected by overexpression of MLCK1 and knock-down expression of MLCK1. RESULTS MLCK1 is expressed at different levels in different colorectal cancer cells, high MLCK1 expressing cell lines are less sensitive to 5-Fu, and low MLCK1 expressing cell lines are more sensitive to 5-Fu. MLCK1 high expression enhances resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway. CONCLUSIONS MLCK1 high expression can enhance resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway, which will provide a new method for the treatment of colorectal cancer patients who are resistant to 5-Fu chemotherapy.
Collapse
Affiliation(s)
- Huifen Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Hui Zhou
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Liang Zhang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Tingting Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Ning Li
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Xia S, Yan C, Gu J, Yuan Y, Zou H, Liu Z, Bian J. Resveratrol Alleviates Zearalenone-Induced Intestinal Dysfunction in Mice through the NF-κB/Nrf2/HO-1 Signalling Pathway. Foods 2024; 13:1217. [PMID: 38672890 PMCID: PMC11049466 DOI: 10.3390/foods13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Zearalenone (ZEA), a mycotoxin widely present in crops and food, poses a major threat to animal and human health. The consumption of ZEA-contaminated food or feed causes intestinal damage. Therefore, exploring how to mitigate the intestinal damage caused by its ZEA is becoming increasingly important. Resveratrol (RSV), a polyphenol compound, mainly exists in Vitis vinifera, Polygonum cuspidatum, Arachis hypogaea, and other plants. It has potent anti-inflammatory and antioxidant activity. The primary objective of this study was to assess the defensive effects of RSV and its molecular mechanism on the intestinal mucosal injury induced by ZEA exposure in mice. The results showed that RSV pretreatment significantly reduced serum DAO and that D-lactate levels altered intestinal morphology and markedly restored TJ protein levels, intestinal goblet cell number, and MUC-2 gene expression after ZEA challenge. In addition, RSV significantly reversed serum pro-inflammatory factor levels and abnormal changes in intestinal MDA, CAT, and T-SOD. Additional research demonstrated that RSV decreased inflammation by blocking the translocation of nuclear factor-kappaB (NF-κB) p65 and decreased oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and its associated antioxidant genes, including NQO1, γ-GCS, and GSH-PX. In summary, RSV supplementation attenuates intestinal oxidative stress, inflammation, and intestinal barrier dysfunction induced by ZEA exposure by mediating the NF-κB and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaoyue Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Casati SR, Cervia D, Roux-Biejat P, Moscheni C, Perrotta C, De Palma C. Mitochondria and Reactive Oxygen Species: The Therapeutic Balance of Powers for Duchenne Muscular Dystrophy. Cells 2024; 13:574. [PMID: 38607013 PMCID: PMC11011272 DOI: 10.3390/cells13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.
Collapse
Affiliation(s)
- Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| |
Collapse
|
8
|
Wei J, Yin J, Cui Y, Wang K, Hong M, Cui J. FERM domain containing kindlin 1 knockdown attenuates inflammation induced by intracerebral hemorrhage in rats via NLR family pyrin domain containing 3/nuclear factor kappa B pathway. Exp Anim 2023; 72:324-335. [PMID: 36740252 PMCID: PMC10435358 DOI: 10.1538/expanim.22-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an incurable neurological disease. Microglia activation and its related inflammation contribute to ICH-associated brain damage. FERM domain containing kindlin 1 (FERMT1) is an integrin-binding protein that participates in microglia-associated inflammation, but its role in ICH is unclear. An ICH model was constructed by injecting 50 µl of autologous blood into the bregma of rats. FERMT1 siRNA was injected into the right ventricle of the rat for knockdown of FERMT1. A significant striatal hematoma was observed in ICH rats. FERMT1 knockdown reduced the water content of brain tissue, alleviated brain hematoma and improved behavioral function in ICH rats. FERMT1 knockdown reduced microglia activity, inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activity and decreased the expression of inflammatory factors including IL-1β and IL-18 in the peri-hematoma tissues. BV2 microglial cells were transfected with FERMT1 siRNA and incubated with 60 µM Hemin for 24 h. Activation of NLRP3 inflammasome induced by hemin were reduced in microglia when FERMT1 was knocked down, leading to decreased production of inflammatory factors IL-1β and IL-18. In addition, knockdown of FERMT1 prevented the activation of nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. Our findings suggested that down-regulation of FERMT1 attenuated microglial inflammation and brain damage induced by ICH via NLRP3/NF-κB pathway. FERMT1 is a key regulator of inflammatory damage in rats after ICH.
Collapse
Affiliation(s)
- Jianqiang Wei
- Department of Surgery, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, Hebei, P.R. China
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jing Yin
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Ying Cui
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Mingyan Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, Hebei, P.R. China
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| |
Collapse
|
9
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
10
|
Kim WK, Min SG, Kwon H, Park S, Jo MJ, Ko G. Lactobacillus rhamnosus KBL2290 Ameliorates Gut Inflammation in a Mouse Model of Dextran Sulfate Sodium-Induced Colitis. J Microbiol 2023; 61:673-682. [PMID: 37314676 DOI: 10.1007/s12275-023-00061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023]
Abstract
Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.
Collapse
Affiliation(s)
- Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Gyu Min
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeun Kwon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - SungJun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
- N-Bio, Seoul National University, Seoul, 08826, Republic of Korea
- KoBioLabs, Inc., Seoul, 13488, Republic of Korea
| | - Min Jung Jo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.
- N-Bio, Seoul National University, Seoul, 08826, Republic of Korea.
- KoBioLabs, Inc., Seoul, 13488, Republic of Korea.
| |
Collapse
|
11
|
Zohar K, Lezmi E, Reichert F, Eliyahu T, Rotshenker S, Weinstock M, Linial M. Coordinated Transcriptional Waves Define the Inflammatory Response of Primary Microglial Culture. Int J Mol Sci 2023; 24:10928. [PMID: 37446105 DOI: 10.3390/ijms241310928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The primary role of microglia is to maintain homeostasis by effectively responding to various disturbances. Activation of transcriptional programs determines the microglia's response to external stimuli. In this study, we stimulated murine neonatal microglial cells with benzoyl ATP (bzATP) and lipopolysaccharide (LPS), and monitored their ability to release pro-inflammatory cytokines. When cells are exposed to bzATP, a purinergic receptor agonist, a short-lived wave of transcriptional changes, occurs. However, only combining bzATP and LPS led to a sustainable and robust response. The transcriptional profile is dominated by induced cytokines (e.g., IL-1α and IL-1β), chemokines, and their membrane receptors. Several abundant long noncoding RNAs (lncRNAs) are induced by bzATP/LPS, including Ptgs2os2, Bc1, and Morrbid, that function in inflammation and cytokine production. Analyzing the observed changes through TNF (Tumor necrosis factor) and NF-κB (nuclear factor kappa light chain enhancer of activated B cells) pathways confirmed that neonatal glial cells exhibit a distinctive expression program in which inflammatory-related genes are upregulated by orders of magnitude. The observed capacity of the microglial culture to activate a robust inflammatory response is useful for studying neurons under stress, brain injury, and aging. We propose the use of a primary neonatal microglia culture as a responsive in vitro model for testing drugs that may interact with inflammatory signaling and the lncRNA regulatory network.
Collapse
Affiliation(s)
- Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elyad Lezmi
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fanny Reichert
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shlomo Rotshenker
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Ruggenenti P. The CARDINAL Trial of Bardoxolone Methyl in Alport Syndrome: When Marketing Interests Prevail over Patients Clinical Needs. Nephron Clin Pract 2023; 147:465-469. [PMID: 36731435 DOI: 10.1159/000529471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
CONTEXT Alport syndrome (AS) is a hereditary chronic kidney disease (CKD) with X-linked, autosomal, and digenic patterns of transmission. Sieving dysfunction of the glomerular basement membrane caused by congenitally defective type IV collagen results in persistent proteinuria, hematuria, and progressive renal dysfunction. There are no disease-specific medications and treatment is based on conservative interventions in particular with renin-angiotensin-aldosterone-system (RAAS) inhibitors. Subject of Review: Evidence that AS is accompanied by glomerular and tubular inflammatory changes and that bardoxolone methyl exerts anti-inflammatory effects through suppression of NF-kB and activation of transcription of antioxidant and anti-inflammatory genes, provided a justification for the CARDINAL study, a prospective, randomized controlled trial testing the potential renoprotective effect of bardoxolone methyl in 157 adolescent or adult patients with AS. The authors concluded that bardoxolone methyl preserved estimated glomerular filtration rate (eGFR) relative to placebo at 48 and 100 weeks after randomization. However, exactly the same number of patients (n = 3) in each group developed kidney failure. Second Opinion: Despite alarming safety signals from previous trials in type 2 diabetics with CKD (increased hospitalizations for heart failure, fatal and nonfatal cardiovascular events, liver toxicity, and increased blood pressure and albuminuria), major marketing interests encouraged the drug manufacturer to pursue this line of research. Finding that type IV collagen gene mutations account for nearly one-third of cases of hereditary glomerulopathies implies that the population of potential target-patients could probably be much larger than estimated. Moreover, any new medication approved for AS might receive orphan drug designation which might be associated with shortened time to approval, monetary benefits, and a period of market exclusivity. In actual facts, CARDINAL failed to demonstrate any nephro-protective effect of bardoxolone methyl and found an increase in liver enzymes in 70 of the 77 (90.9%) bardoxolone-treated patients consistent with chronic liver toxicity. Indeed, in Zucker diabetic fatty rats treated with an analog of bardoxolone methyl, elevations of liver aminotransferases were associated with enhanced liver weight, severe and diffuse hepatocyte vacuolization, swelling, and degeneration. Moreover, bardoxolone-induced increase in eGFR was associated with a concomitant increase in geometric mean urinary albumin/creatinine ratio, a finding consistent with worsening glomerular hyperfiltration. Considering also the consequent increase in the biomechanical strain on the fragile Alport glomerular basement membrane, this hemodynamic effect is expected to translate into accelerated renal disease progression (consistently with evidence that a bardoxolone methyl analog worsened proteinuria, glomerulosclerosis, and tubular damage in Zucker diabetic fatty rats). These concerns induced the Food and Drug Administration to reject the new drug application for bardoxolone methyl submitted by Reata Pharmaceuticals, Inc. with the proposed indication to slow CKD progression in AS patients 12 years of age and older. Thus, bardoxolone methyl is devoid of any nephro-protective effect and is associated with significant heart, liver, and renal toxicity in patients with CKD, including those with AS. Because of these safety signals, it should not be used in this clinical context. Research programs could explore the potential clinical applications, even outside the kidney field, of novel NF erythroid 2-like 2 modulators devoid of bardoxolone methyl toxicity.
Collapse
Affiliation(s)
- Piero Ruggenenti
- Clinical Research Center for Rare Diseases "Aldo e Cele Daccò", Istituto di Ricerche Farmacologiche Mario Negri IRCCS, and Unit of Nephrology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
13
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
14
|
Jakobsen I, Sundkvist M, Björn N, Gréen H, Lotfi K. Early changes in gene expression profiles in AML patients during induction chemotherapy. BMC Genomics 2022; 23:752. [PMCID: PMC9664790 DOI: 10.1186/s12864-022-08960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Elucidation of the genetic mechanisms underlying treatment response to standard induction chemotherapy in AML patients is warranted, in order to aid in risk-adapted treatment decisions as novel treatments are emerging. In this pilot study, we explored the treatment-induced expression patterns in a small cohort of AML patients by analyzing differential gene expression (DGE) over the first 2 days of induction chemotherapy.
Methods
Blood samples were collected from ten AML patients at baseline (before treatment initiation) and during the first 2 days of treatment (Day 1; approximately 24 h, and Day 2; approximately 48 h after treatment initiation, respectively) and RNA was extracted for subsequent RNA sequencing. DGE between time points were assessed by pairwise analysis using the R package edgeR version 3.18.1 in all patients as well as in relation to treatment response (complete remission, CR, vs non-complete remission, nCR). Ingenuity Pathway Analysis (Qiagen) software was used for pathway analysis and visualization.
Results
After initial data quality control, two patients were excluded from further analysis, resulting in a final cohort of eight patients with data from all three timepoints. DGE analysis demonstrated activation of pathways with genes directly or indirectly associated with NF-κB signaling. Significant activation of the NF-κB pathway was seen in 50% of the patients 2 days after treatment start, while iNOS pathway effects could be identified already after 1 day. nCR patients displayed activation of pathways associated with cell cycle progression, oncogenesis and anti-apoptotic behavior, including the STAT3 pathway and Salvage pathways of pyrimidine ribonucleotides. Notably, a significant induction of cytidine deaminase, an enzyme responsible for the deamination of Ara-C, could be observed between baseline and Day 2 in the nCR patients but not in patients achieving CR.
Conclusions
In conclusion, we show that time-course analysis of gene expression represents a feasible approach to identify relevant pathways affected by standard induction chemotherapy in AML patients. This poses as a potential method for elucidating new drug targets and biomarkers for categorizing disease aggressiveness and evaluating treatment response. However, more studies on larger cohorts are warranted to elucidate the transcriptional basis for drug response.
Collapse
|
15
|
Alanazi J, Unnisa A, Alanazi M, Alharby TN, Moin A, Rizvi SMD, Hussain T, Awadelkareem AM, Elkhalifa AO, Faiyaz SSM, Khalid M, Gowda DV. 3-Methoxy Carbazole Impedes the Growth of Human Breast Cancer Cells by Suppressing NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1410. [PMID: 36422540 PMCID: PMC9699412 DOI: 10.3390/ph15111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer represents the most frequently occurring cancer globally among women. As per the recent report of the World Health Organization (WHO), it was documented that by the end of the year 2020, approximately 7.8 million females were positively diagnosed with breast cancer and in 2020 alone, 685,000 casualties were documented due to breast cancer. The use of standard chemotherapeutics includes the frontline treatment option for patients; however, the concomitant side effects represent a major obstacle for their usage. Carbazole alkaloids are one such group of naturally-occurring bioactive compounds belonging to the Rutaceae family. Among the various carbazole alkaloids, 3-Methoxy carbazole or C13H11NO (MHC) is obtained from Clausena heptaphylla as well as from Clausena indica. In this study, MHC was investigated for its anti-breast cancer activity based on molecular interactions with specific proteins related to breast cancer, where the MHC had predicted binding affinities for NF-κB with −8.3 kcal/mol. Furthermore, to evaluate the biological activity of MHC, we studied its in vitro cytotoxic effects on MCF-7 cells. This alkaloid showed significant inhibitory effects and induced apoptosis, as evidenced by enhanced caspase activities and the cellular generation of ROS. It was observed that a treatment with MHC inhibited the gene expression of NF-kB in MCF-7 breast cancer cells. These results suggest that MHC could be a promising medical plant for breast cancer treatment. Further studies are needed to understand the molecular mechanisms behind the anticancer action of MHC.
Collapse
Affiliation(s)
- Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Muteb Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Tareq Nafea Alharby
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Ha’il 81442, Saudi Arabia
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Ha’il 81442, Saudi Arabia
| | | | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdilaziz, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
16
|
Pinilla-Gonzalez A, Lara-Cantón I, Torrejón-Rodríguez L, Parra-Llorca A, Aguar M, Kuligowski J, Piñeiro-Ramos JD, Sánchez-Illana Á, Navarro AG, Vento M, Cernada M. Early molecular markers of ventilator-associated pneumonia in bronchoalveolar lavage in preterm infants. Pediatr Res 2022; 93:1559-1565. [PMID: 36071239 PMCID: PMC9451119 DOI: 10.1038/s41390-022-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) constitutes a serious nosocomial infection. Our aim was to evaluate the reliability of cytokines and oxidative stress/inflammation biomarkers in bronchoalveolar lavage fluid (BALF) and tracheal aspirates (TA) as early biomarkers of VAP in preterm infants. METHODS Two cohorts were enrolled, one to select candidates and the other for validation. In both, we included preterms with suspected VAP, according to BALF culture, they were classified into confirmed VAP and no VAP. Concentration of 16 cytokines and 8 oxidative stress/inflammation biomarkers in BALF and TA was determined in all patients. RESULTS In the first batch, IL-17A and TNF-α in BALF, and in the second one IL-10, IL-6, and TNF-α in BALF were significantly higher in VAP patients. BALF TNF-α AUC in both cohorts was 0.86 (sensitivity 0.83, specificity 0.88). No cytokine was shown to be predictive of VAP in TA. A statistically significant increase in the VAP group was found for glutathione sulfonamide (GSA) in BALF and TA. CONCLUSIONS TNF-α in BALF and GSA in BALF and TA were associated with VAP in preterm newborns; thus, they could be used as early biomarkers of VAP. Further studies with an increased number of patients are needed to confirm these results. IMPACT We found that TNF-α BALF and GSA in both BALF and TA are capable of discriminating preterm infants with VAP from those with pulmonary pathology without infection. This is the first study in preterm infants aiming to evaluate the reliability of cytokines and oxidative stress/inflammation biomarkers in BALF and TA as early diagnostic markers of VAP. We have validated these results in two independent cohorts of patients. Previously studies have focused on full-term neonates and toddlers and determined biomarkers mostly in TA, but none was exclusively conducted in preterm infants.
Collapse
Affiliation(s)
- Alejandro Pinilla-Gonzalez
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Inmaculada Lara-Cantón
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Laura Torrejón-Rodríguez
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Anna Parra-Llorca
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Marta Aguar
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Julia Kuligowski
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - José David Piñeiro-Ramos
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Ángel Sánchez-Illana
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain ,grid.5338.d0000 0001 2173 938XPresent Address: Analytical Chemistry Department, University of Valencia, Burjassot, Spain
| | - Ana Gimeno Navarro
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Máximo Vento
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain ,National Coordinator of the Spanish Maternal and Infant Health and Development Network, Health Research Institute Carlos III, Spanish Ministry of Economy and Competitiveness (RD12/0026), Valencia, Spain
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain. .,Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
| |
Collapse
|
17
|
TNF-α Plus IL-1β Induces Opposite Regulation of Cx43 Hemichannels and Gap Junctions in Mesangial Cells through a RhoA/ROCK-Dependent Pathway. Int J Mol Sci 2022; 23:ijms231710097. [PMID: 36077498 PMCID: PMC9456118 DOI: 10.3390/ijms231710097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Connexin 43 (Cx43) is expressed in kidney tissue where it forms hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analysis of ethidium uptake and thiobarbituric acid reactive species revealed that treatment with TNF-α plus IL-1β increases Cx43 hemichannel activity and oxidative stress in MES-13 cells (a cell line derived from mesangial cells), and in primary mesangial cells. The latter was also accompanied by a reduction in gap junctional communication, whereas Western blotting assays showed a progressive increase in phosphorylated MYPT (a target of RhoA/ROCK) and Cx43 upon TNF-α/IL-1β treatment. Additionally, inhibition of RhoA/ROCK strongly antagonized the TNF-α/IL-1β-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell-cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.
Collapse
|
18
|
Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022; 188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
With the increasing understanding of various biological functions mediated by reactive oxygen species (ROS) in the immune system, a number of studies have been designed to develop ROS-generating/eliminating strategies to selectively modulate immunogenicity for disease treatment. These strategies potentially exploit ROS-modulating inorganic biomaterials to harness host immunity to maximize the therapeutic potency by eliciting a favorable immune response. Inorganic biomaterial-guided in vivo ROS scavenging can exhibit several effects to: i) reduce the secretion of pro-inflammatory factors, ii) induce the phenotypic transition of macrophages from inflammatory M1 to immunosuppressive M2 phase, iii) minimize the recruitment and infiltration of immune cells. and/or iv) suppress the activation of nuclear factor kappa-B (NF-κB) pathway. Inversely, ROS-generating inorganic biomaterials have been found to be capable of: i) inducing immunogenic cell death (ICD), ii) reprograming tumor-associated macrophages from M2 to M1 phenotypes, iii) activating inflammasomes to stimulate tumor immunogenicity, and/or iv) recruiting phagocytes for antimicrobial therapy. This review provides a systematic and up-to-date overview on the progress related to ROS-nanotechnology mediated immunomodulation. We highlight how the ROS-generating/eliminating inorganic biomaterials can converge with immunomodulation and ultimately elicit an effective immune response against inflammation, autoimmune diseases, and/or cancers. We expect that contents presented in this review will be beneficial for the future advancements of ROS-based nanotechnology and its potential applications in this evolving field.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
19
|
Romário-Silva D, Lazarini JG, Franchin M, de Alencar SM, Rosalen PL. Brazilian Organic Honey from Atlantic Rainforest Decreases Inflammatory Process in Mice. Vet Sci 2022; 9:vetsci9060268. [PMID: 35737320 PMCID: PMC9231069 DOI: 10.3390/vetsci9060268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Honey is an ancient food in the human diet, and the chemical composition of some types of honey has been associated with several beneficial biological effects. Among them, honey has been highlighted to improve health and control inflammatory processes. However, there is no study elucidating the mechanism of action of honey produced organically. Here, we separated organic honey (OH) samples from the Brazilian Atlantic Rainforest into eight different profiles (OH-1 to OH-8) and evaluated, in vitro and in vivo, their anti-inflammatory potential. To determine cell viability, RAW 264.7 macrophages were treated with several concentrations of OH-1 up to OH-8, and anti-inflammatory activity was assessed through NF-κB activation and TNF-α levels. All types of the studied honey up to a concentration of 4% (w/v) did not interfere with macrophage viability and decreased NF-kB activation and TNF-α levels in macrophage culture in vitro. OH-7 was selected as the most promising anti-inflammatory and used in subsequent assays. Mice pretreated orally with OH-7 showed a decrease in neutrophil migration and TNF-α level. Thus, these types of Brazilian organic honey show promising anti-inflammatory potential, particularly the OH-7 variety. Brazilian organic honey may lead to the development of new products and/or be incorporated into food for use in veterinary medicine and human health as well.
Collapse
Affiliation(s)
- Diego Romário-Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (D.R.-S.); (J.G.L.); (M.F.)
- Graduate Program in Integrated Dental Sciences, School of Dentistry of the University of Cuiabá, Cuiabá 78065-900, MT, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (D.R.-S.); (J.G.L.); (M.F.)
| | - Marcelo Franchin
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (D.R.-S.); (J.G.L.); (M.F.)
- Faculty of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba 13418-900, SP, Brazil;
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (D.R.-S.); (J.G.L.); (M.F.)
- Biological Sciences Graduate Program, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
- Correspondence: ; Tel.: +55-(19)-982083427
| |
Collapse
|
20
|
Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome. Front Med (Lausanne) 2022; 9:848389. [PMID: 35547199 PMCID: PMC9081811 DOI: 10.3389/fmed.2022.848389] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease associated with proteinuria, hematuria and progressive kidney failure. It is characterized by a defective glomerular basement membrane caused by mutations in type IV collagen genes COL4A3/A4/A5 which result in defective type IV collagen α3, α4, or α5 chains, respectively. Alport syndrome has three different patterns of inheritance: X-linked, autosomal and digenic. In a study of CKD of unknown etiology type IV collagen gene mutations accounted for the majority of the cases of hereditary glomerulopathies which suggests that AS is often underrecognized. The natural history and prognosis in patients with AS is variable and is determined by genetics and environmental factors. At present, no preventive or curative therapies exist for AS. Current treatment includes the use of renin-angiotensin-aldosterone system inhibitors which slow progression of kidney disease and prolong life expectancy. Ramipril was found in retrospective studies to delay the onset of ESKD and was recently demonstrated to be safe and effective in children and adolescents, supporting that early initiation of Renin Angiotensin Aldosterone System (RAAS) blockade is very important. Mineralocorticoid receptor blockers might be favorable for patients who develop "aldosterone breakthrough." While the DAPA-CKD trial suggests a beneficial effect of SGLT2 inhibitors in CKD of non-metabolic origin, only a handful of patients had Alport in this cohort, and therefore conclusions can't be extrapolated for the treatment of AS with SGLT2 inhibitors. Advances in our understanding on the pathogenesis of Alport syndrome has culminated in the development of innovative therapeutic approaches that are currently under investigation. We will provide a brief overview of novel therapeutic targets to prevent progression of kidney disease in AS. Our review will include bardoxolone methyl, an oral NRf2 activator; lademirsen, an anti-miRNA-21 molecule; sparsentan, dual endothelin type A receptor (ETAR) and angiotensin 1 receptor inhibitor; atrasentan, oral selective ETAR inhibitor; lipid-modifying agents, including cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) inducers, discoidin domain receptor 1 (DDR1) inhibitors and osteopontin blocking agents; the antimalarial drug hydroxychloroquine; the antiglycemic drug metformin and the active vitamin D analog paricalcitol. Future genomic therapeutic strategies such as chaperone therapy, genome editing and stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanly Rodriguez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Fan W, Liu X, Zhang J, Qin L, Du J, Li X, Qian S, Chen H, Qian P. TRIM67 Suppresses TNFalpha-Triggered NF-kB Activation by Competitively Binding Beta-TrCP to IkBa. Front Immunol 2022; 13:793147. [PMID: 35273593 PMCID: PMC8901487 DOI: 10.3389/fimmu.2022.793147] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB plays an important role in modulation of inflammatory pathways, which are associated with inflammatory diseases, neurodegeneration, apoptosis, immune responses, and cancer. Increasing evidence indicates that TRIM proteins are crucial role in the regulation of NF-κB signaling pathways. In this study, we identified TRIM67 as a negative regulator of TNFα-triggered NF-κB activation. Ectopic expression of TRIM67 significantly represses TNFα-induced NF-κB activation and the expression of pro-inflammatory cytokines TNFα and IL-6. In contrast, Trim67 depletion promotes TNFα-induced expression of TNFα, IL-6, and Mcp-1 in primary mouse embryonic fibroblasts. Mechanistically, we found that TRIM67 competitively binding β-transducin repeat-containing protein (β-TrCP) to IκBα results inhibition of β-TrCP-mediated degradation of IκBα, which finally caused inhibition of TNFα-triggered NF-κB activation. In summary, our findings revealed that TRIM67 function as a novel negative regulator of NF-κB signaling pathway, implying TRIM67 might exert an important role in regulation of inflammation disease and pathogen infection caused inflammation.
Collapse
Affiliation(s)
- Wenchun Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinyan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuxing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Suhong Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Zuzarte M, Francisco V, Neves B, Liberal J, Cavaleiro C, Canhoto J, Salgueiro L, Cruz MT. Lavandula viridis L´Hér. Essential Oil Inhibits the Inflammatory Response in Macrophages Through Blockade of NF-KB Signaling Cascade. Front Pharmacol 2022; 12:695911. [PMID: 35145398 PMCID: PMC8821966 DOI: 10.3389/fphar.2021.695911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Lavandulaviridis L´Hér. is an endemic Iberian species with a high essential oil yield and a pleasant lemon scent. Despite these interesting features, this species remains unrecognized and poorly explored by the food and pharmaceutical industries. Nevertheless, it has been valued in traditional medicine being used against flu, circulatory problems and to relieve headaches. Since these disorders trigger inflammatory responses, it is relevant to determine the anti-inflammatory potential of L. viridis L´Hér. essential oil in an attempt to validate its traditional use and concomitantly to increment its industrial exploitation. Therefore, in the present study the chemical composition of this volatile extract as well as the effect on ROS production, inflammatory response and proteasome activity on LPS-stimulated macrophages were disclosed. Also, its safety profile on keratinocytes, hepatocytes and alveolar epithelial cells was depicted, envisioning a future human administration. The essential oil was characterized by high quantities of 1,8-cineole, camphor and α-pinene. From a pharmacological point of view, the essential oil showed a potent antioxidant effect and inhibited nitric oxide production through down-modulation of nuclear factor kappa B-dependent Nos2 transcription and consequently iNOS protein expression as well as a decrease in proteasomal activity. The anti-inflammatory activity was also evidenced by a strong inhibition of LPS-induced Il1b and Il6 transcriptions and downregulation of COX-2 levels. Overall, bioactive safe concentrations of L. viridis L´Hér. essential oil were disclosed, thus corroborating the traditional usage of this species and paving the way for the development of plant-based therapies.
Collapse
Affiliation(s)
- Monica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- *Correspondence: Monica Zuzarte,
| | - Vera Francisco
- Endocrinology and Nutrition Service and Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Joana Liberal
- Polytechnic Institute of Castelo Branco, Quality of Life in the Rural World Research Unit (QRural), Castelo Branco, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Chemical Engineering, Faculty of Sciences and Technology, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Coimbra, Portugal
| | - Jorge Canhoto
- Department of Life Sciences, Faculty of Sciences and Technology, Centre for Functional Ecology (CEF), University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Chemical Engineering, Faculty of Sciences and Technology, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
| |
Collapse
|
24
|
Wang Y, Ye H, Qiao L, Du C, Wei Z, Wang T, Wang J, Liu R, Wang P. Intestinal Anti-Inflammatory Effects of Selenized Ulva pertusa Polysaccharides in a Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease Model. J Med Food 2021; 24:236-247. [PMID: 33739884 DOI: 10.1089/jmf.2020.4787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study was to examine the alleviative effects of selenized polysaccharides from Ulva pertusa (ulvan-Se) on inflammatory bowel disease (IBD) in mice. The dextran sulfate sodium (DSS)-induced IBD mouse model was used to explore the protective effects of ulvan-Se on the intestinal mechanical and immune barrier. At doses less than 1208 mg/kg·bw ulvan-Se showed no significant damage to Institute of Cancer Research (ICR) mice in an acute toxicity test. The results showed that DSS destroyed the mechanical barrier, which includes epithelial cells, while ulvan-Se promoted mRNA expression of tight junction proteins (zonula occludens protein 1, occludin, and claudin-1) and inhibited the infiltration of white blood cells into the intestines. At 100 mg/kg·bw, ulvan-Se enhanced the antioxidant capacity of mice more effectively than the 50 mg/kg·bw ulvan-Se. Furthermore, ulvan-Se improved the intestinal immune barrier by increasing immunoglobulin A and immunoglobulin M, while regulating the levels of interleukin (IL)-1β, interferon-γ, and IL-4. Oral administration of ulvan-Se also suppressed tumor necrosis factor-α, IL-1β, IL-6, and cyclooxygenase-2 mRNA expression mediated by the nuclear factor kappa B pathway. Taken together, our findings reveal that ulvan-Se could be used as a potential alternative supplement for reducing intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, China
| | - Han Ye
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Leke Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Ting Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ruizhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
25
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
26
|
Identification of differentially expressed genes and the role of PDK4 in CD14+ monocytes of coronary artery disease. Biosci Rep 2021; 41:228119. [PMID: 33739370 PMCID: PMC8024870 DOI: 10.1042/bsr20204124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background. Coronary artery disease (CAD) is a chronic inflammatory disease caused by development of atherosclerosis (AS), which is the leading cause of mortality and disability. Our study aimed to identify the differentially expressed genes (DEGs) in CD14+ monocytes from CAD patients compared with those from non-CAD controls, which might pave the way to diagnosis and treatment for CAD. Methods. The RNA-sequencing (RNA-seq) was performed by BGISEQ-500, followed by analyzing with R package to screening DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by R package. In addition, we validated the results of RNA-seq using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, we explored the function of selected ten genes in LDL-treated CD14+ monocytes by RT-qPCR. Results. a total of 2897 DEGs were identified, including 753 up- and 2144 down-regulated genes in CD14+ monocytes from CAD patients. These DEGs were mainly enriched in plasma membrane and cell periphery of cell component, immune system process of biological process, NF-κB signaling pathway, cell adhesion molecules signaling pathway and cytokine–cytokine receptor interaction signaling pathway. In LDL-treated CD14+ monocytes, the mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) was significantly up-regulated. Conclusion. In the present study, we suggested that PDK4 might play a role in progression of CAD. The study will provide some pieces of evidence to investigate the role and mechanism of key genes in the pathogenesis of CAD.
Collapse
|
27
|
Chertow GM, Appel GB, Andreoli S, Bangalore S, Block GA, Chapman AB, Chin MP, Gibson KL, Goldsberry A, Iijima K, Inker LA, Knebelmann B, Mariani LH, Meyer CJ, Nozu K, O'Grady M, Silva AL, Stenvinkel P, Torra R, Warady BA, Pergola PE. Study Design and Baseline Characteristics of the CARDINAL Trial: A Phase 3 Study of Bardoxolone Methyl in Patients with Alport Syndrome. Am J Nephrol 2021; 52:180-189. [PMID: 33789284 DOI: 10.1159/000513777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Alport syndrome is a rare genetic disorder that affects as many as 60,000 persons in the USA and a total of 103,000 persons (<5 per 10,000) in the European Union [1, 2]. It is the second most common inherited cause of kidney failure and is characterized by progressive loss of kidney function that often leads to end-stage kidney disease. Currently, there are no approved disease-specific agents for therapeutic use. We designed a phase 3 study (CARDINAL; NCT03019185) to evaluate the safety, tolerability, and efficacy of bardoxolone methyl in patients with Alport syndrome. METHODS The CARDINAL phase 3 study is an international, multicenter, double-blind, placebo-controlled, randomized registrational trial. Eligible patients were of ages 12-70 years with confirmed genetic or histologic diagnosis of Alport syndrome, eGFR 30-90 mL/min/1.73 m2, and urinary albumin to creatinine ratio (UACR) ≤3,500 mg/g. Patients with B-type natriuretic peptide values >200 pg/mL at baseline or with significant cardiovascular histories were excluded. Patients were randomized 1:1 to bardoxolone methyl or placebo, with stratification by baseline UACR. RESULTS A total of 371 patients were screened, and 157 patients were randomly assigned to receive bardoxolone methyl (n = 77) or placebo (n = 80). The average age at screening was 39.2 years, and 23 (15%) were <18 years of age. Of the randomized population, 146 (93%) had confirmed genetic diagnosis of Alport syndrome, and 62% of patients had X-linked mode of inheritance. Mean baseline eGFR was 62.7 mL/min/1.73 m2, and the geometric mean UACR was 141.0 mg/g. The average annual rate of eGFR decline prior to enrollment in the study was -4.9 mL/min/1.73 m2 despite 78% of the patient population receiving ACE inhibitor (ACEi) or ARB therapy. DISCUSSION/CONCLUSION CARDINAL is one of the largest interventional, randomized controlled trials in Alport syndrome conducted to date. Despite the use of ACEi or ARB, patients were experiencing significant loss of kidney function prior to study entry.
Collapse
Affiliation(s)
- Glenn M Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Sharon Andreoli
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sripal Bangalore
- Cardiovascular Clinical Research Center, New York University School of Medicine, New York, New York, USA
| | - Geoffrey A Block
- Department of Clinical Research and Medical Affairs, US Renal Care, Inc., Plano, Texas, USA
| | - Arlene B Chapman
- Section of Nephrology, University of Chicago, Chicago, Illinois, USA
| | - Melanie P Chin
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Keisha L Gibson
- University of North Carolina Kidney Center at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Angie Goldsberry
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Bertrand Knebelmann
- Department of Nephrology, Necker Hospital, AP-HP, Université de Paris, Paris, France
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Colin J Meyer
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Megan O'Grady
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Arnold L Silva
- Boise Kidney and Hypertension Institute, Meridian, Idaho, USA
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | | |
Collapse
|
28
|
Zhou M, Tang Y, Liao L, Liu M, Deng Y, Zhao X, Li Y. Phillygenin inhibited LPS-induced RAW 264.7 cell inflammation by NF-κB pathway. Eur J Pharmacol 2021; 899:174043. [PMID: 33745957 DOI: 10.1016/j.ejphar.2021.174043] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Inflammation is a common pathological phenomenon when homeostasis is seriously disturbed. Phillygenin (PHI), a lignin component isolated from Forsythiae Fructus, has shown a good anti-inflammatory effect. However, the mechanisms of PHI on anti-inflammation have not yet been systematically elucidated. In this study, the lipopolysaccharide (LPS) - induced RAW264.7 cell inflammation model was established to investigate mechanisms of PHI on inflammation. The effect of PHI on the release of IL-1β and PGE2 inflammatory factors induced by LPS was detected by ELISA, and the mRNA expressions of IL-1β, IL-6 and TNF-α were detected by RT-qPCR. Proteomics studied the signaling pathways that might be affected by PHI and molecular docking technology was subsequently used to study the possible targets on proteomic screened pathways. Western blot was performed ultimately to detect progressive changes in protein expression on the related pathway. Our research showed that PHI significantly inhibited the robust increase of IL-1β and PGE2 and lowered the transcriptional level of inflammatory genes including IL-6, IL-1β and PGE2 in LPS-stimulated RAW264.7 cells. Proteomics results indicated that PHI was involved in the regulation of multiple signaling pathways. Molecular docking results indicated that PHI had an affinity for most proteins in NF-κB pathway. Western blot analysis proved that PHI inhibited LPS-induced NF-κB pathway activation. On the whole, PHI inhibited the activation of NF-κB pathway, thereby inhibiting the expression of related inflammatory genes and the release of cytokines, and showed a remarkable anti-inflammatory effect.
Collapse
Affiliation(s)
- Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunqiu Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meichen Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
29
|
Chen G, Liu Y, Xu Y, Zhang M, Guo S, Zhang G. Isoimperatorin exerts anti-inflammatory activity by targeting the LPS-TLR4/MD-2-NF-κB pathway. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Isoimperatorin (QHS) is a phytoconstituent found in the methanolic extracts obtained from the roots of Angelica dahurica, which contains anti-inflammatory, anti-bacterial, analgesic, anti-tumor, and vasodilatory activities. QHS possesses potent antagonistic activity against lipopolysaccharide (LPS)-induced inflammation; however, the mechanism of action remains unclear. In this study, we investigated the anti-inflammatory effect of QHS and explored the underlying mechanisms. The QHS was purchased from Jiangsu Yongjian Pharmaceutical Co., Ltd. (Jiangsu, China). We performed MTT assay, real-time PCR, ELISA, and western blotting experiments to assess the anti-inflammatory activity and the possible mechanism of QHS in vitro. Molecular docking was performed to study the binding of QHS and myeloid differentiation protein-2 (MD-2) and elucidate the possible anti-inflammatory mechanism. QHS had no significant effect on cell viability. Moreover, pre-treatment with QHS significantly decreased the release of inflammatory cytokines and mediators including NO, TNF-α, IL-6, and IL-1β. In addition, real-time PCR showed that QHS decreased the mRNA expressions of iNOS, COX-2 TNF-α, IL-6, and IL-1β. Western blotting indicated that QHS could inhibit the expression of the proteins associated with the LPS-TLR4/MD-2-NF-κB signaling pathway. Lastly, molecular docking revealed a possible binding mechanism between QHS and MD-2. QHS exhibited anti-inflammatory activity when combined with MD-2, regulating the LPS-TLR4/MD-2-NF-κB signaling pathway, and inhibiting the release and expression of inflammatory cytokines and mediators. Furthermore, QHS can be used as a potential TLR4 antagonist, which blocks MD-2 binding, for treating inflammatory responses induced by LPS.
Collapse
Affiliation(s)
- Guirong Chen
- 967th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, Liaoning, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yunong Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Mingbo Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Song Guo
- Department of Computer Application, Shenyang Sport University, Shenyang, Liaoning, China
| | - Gang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Li W, Yu J, Zhao J, Xiao X, Li W, Zang L, Yu J, Liu H, Niu X. Poria cocos
polysaccharides reduces high‐fat diet‐induced arteriosclerosis in
ApoE
−/−
mice by inhibiting inflammation. Phytother Res 2020; 35:2220-2229. [DOI: 10.1002/ptr.6980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Weifeng Li
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jinjin Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jinmeng Zhao
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Xin Xiao
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Wenqi Li
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Lulu Zang
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jiabao Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Haijing Liu
- Quality Inspection Department Shaanxi Institute for Food and Drug Control Xi'an China
| | - Xiaofeng Niu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| |
Collapse
|
31
|
Kim WK, Han DH, Jang YJ, Park S, Jang SJ, Lee G, Han HS, Ko G. Alleviation of DSS-induced colitis via Lactobacillus acidophilus treatment in mice. Food Funct 2020; 12:340-350. [PMID: 33325946 DOI: 10.1039/d0fo01724h] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut microbiota play a major role in host physiology and immunity. Inflammatory bowel diseases (IBDs), the important immune-related diseases, can occur through immune system malfunction originating due to dysregulation of the gut microbiota. The aim of this study was to investigate the capabilities and mechanisms of Lactobacillus acidophilus (L. acidophilus) KBL402 and KBL409 treatment in the alleviation of colitis using the in vivo dextran sodium sulfate (DSS)-induced colitis mice model. Various colitis symptoms of mice, including disease activity index score [4.55 ± 0.99 (P < 0.001) and 5.12 ± 0.94 (P < 0.001), respectively], colon length [6.18 ± 0.43 mm (P < 0.001) and 6.62 ± 0.47 mm (P < 0.001), respectively], and colon histological score [(5.33 ± 1.03 (P < 0.001) and 4.00 ± 0.89 (P < 0.01), respectively)], were significantly restored with L. acidophilus KBL402 or KBL409 administration (1 × 109 colony-forming units) for 8 days. Moreover, inflammatory cytokines, chemokines, and myeloperoxidase were downregulated in mice with L. acidophilus treatment. Upregulation of anti-inflammatory cytokine IL-10 or regulatory T cells were discovered with L. acidophilus KBL402 (12.90 ± 7.87 pg mL-1) (P < 0.05) or L. acidophilus KBL409 treatment (10.63 ± 2.70%) (P < 0.05), respectively. Expressions of inflammation-related micro-RNAs (miRs) were also significantly altered in mice with L. acidophilus. Finally, L. acidophilus treatment could restore the diversity of the gut microbiota. Mice with L. acidophilus KBL402 treatment showed a high relative abundance of the genus Akkermansia (0.022 ± 0.017) and Prevotella (0.010 ± 0.006) (P < 0.01). Butyrate and propionate, the major short-chain fatty acids, in the ceca of DSS + KBL402-treated mice were significantly higher than in that of the mice with DSS-induced colitis (0.03 ± 0.02 ng mg-1 and 0.03 ± 0.01 ng mg-1, respectively) (P < 0.05). Our study suggests that L. acidophilus KBL402 and KBL409 could be useful for the prevention or treatment of IBDs in various ways including the modulation of immune responses and miR expression, restoration of the gut microbiota, and production of metabolites.
Collapse
Affiliation(s)
- Woon-Ki Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Dae Hee Han
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - You Jin Jang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - SungJun Park
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and N-Bio, Seoul National University, Seoul, Republic of Korea and KoBioLabs, Inc., Seoul, Republic of Korea
| | - Sung Jae Jang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and KoBioLabs, Inc., Seoul, Republic of Korea
| | - Giljae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk Seung Han
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - GwangPyo Ko
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea and N-Bio, Seoul National University, Seoul, Republic of Korea and KoBioLabs, Inc., Seoul, Republic of Korea and Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Luo C, Huang C, Zhu L, Kong L, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Ameliorates the T-2 Toxin-Triggered Intestinal Impairment in Mice by Inhibiting Inflammation and Mucosal Barrier Dysfunction through the NF-κB Signaling Pathway. Toxins (Basel) 2020; 12:toxins12120794. [PMID: 33322178 PMCID: PMC7763746 DOI: 10.3390/toxins12120794] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
T-2 toxin, a trichothecene mycotoxin produced by Fusarium, is widely distributed in crops and animal feed and frequently induces intestinal damage. Betulinic acid (BA), a plant-derived pentacyclic lupane-type triterpene, possesses potential immunomodulatory, antioxidant and anti-inflammatory biological properties. The current study aimed to explore the protective effect and molecular mechanisms of BA on intestinal mucosal impairment provoked by acute exposure to T-2 toxin. Mice were intragastrically administered BA (0.25, 0.5, or 1 mg/kg) daily for 2 weeks and then injected intraperitoneally with T-2 toxin (4 mg/kg) once to induce an intestinal impairment. BA pretreatment inhibited the loss of antioxidant capacity in the intestine of T-2 toxin-treated mice by elevating the levels of CAT, GSH-PX and GSH and reducing the accumulation of MDA. In addition, BA pretreatment alleviated the T-2 toxin-triggered intestinal immune barrier dysregulation by increasing the SIgA level in the intestine at dosages of 0.5 and 1 mg/kg, increasing IgG and IgM levels in serum at dosages of 0.5 and 1 mg/kg and restoring the intestinal C3 and C4 levels at a dosage of 1 mg/kg. BA administration at a dosage of 1 mg/kg also improved the intestinal chemical barrier by decreasing the serum level of DAO. Moreover, BA pretreatment improved the intestinal physical barrier via boosting the expression of ZO-1 and Occludin mRNAs and restoring the morphology of intestinal villi that was altered by T-2 toxin. Furthermore, treatment with 1 mg/kg BA downregulated the expression of p-NF-κB and p-IκB-α proteins in the intestine, while all doses of BA suppressed the pro-inflammatory cytokines expression of IL-1β, IL-6 and TNF-α mRNAs and increased the anti-inflammatory cytokine expression of IL-10 mRNA in the intestine of T-2 toxin-exposed mice. BA was proposed to exert a protective effect on intestinal mucosal disruption in T-2 toxin-stimulated mice by enhancing the intestinal antioxidant capacity, inhibiting the secretion of inflammatory cytokines and repairing intestinal mucosal barrier functions, which may be associated with BA-mediated inhibition of the NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Chenglong Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
33
|
Qiao G, Lv T, Zhang M, Chen P, Sun Q, Zhang J, Li Q. β-hydroxybutyrate (β-HB) exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated macrophages in Liza haematocheila. FISH & SHELLFISH IMMUNOLOGY 2020; 107:444-451. [PMID: 33160021 DOI: 10.1016/j.fsi.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Poly-β-hydroxybutyrate (PHB) can be hydrolyzed to β-hydroxybutyrate (β-HB) in the intestinal tract of animals, and dietary PHB supplementation could enhance the immunity and disease resistance of aquatic animals. Antioxidant system is responsive to PHB stimuli via MAPK/PI3K-Akt/TNF/NF-κB/TCR/TLR signaling pathways. However, the precise immunopotentiation mechanism needs further study. In this study, macrophages from spleen in Liza haematocheila was used to study the effect of β-HB on cell viability and antioxidant function to illustrate the immunopotentiation mechanism of PHB. The results showed that β-HB (100 μg/mL) promoted the viability of macrophages and balanced the production of reactive oxygen species, but inhibited the excessive production of intracellular nitric oxide. In order to further explore the immunopotentiation mechanism of β-HB, LPS (100 μg/mL) was used to induce the inflammation and investigated the inhibitory effect of β-HB on inflammation. The results showed that LPS could induce inflammation successfully, and β-HB exerted anti-inflammatory and antioxidant effects in LPS-stimulated macrophages. Compared with LPS stimuli alone, the expression of anti-inflammatory genes NF-κBIA, MAP3K8 and TLR5 in β-HB pretreatment group was up-regulated, and the expression of pro-inflammatory genes TNFSF6, TNF-α, PI3K, NF-κB and TLR1 down-regulated. It suggested that β-HB inhibited the inflammatory response by up-regulation of anti-inflammatory genes such as NF-κBIA, thereby enhancing the immunity of the body.
Collapse
Affiliation(s)
- Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Tingli Lv
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Province Liaoning, China
| | - Mingming Zhang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Peng Chen
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Province Liaoning, China
| | - Qirui Sun
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Province Liaoning, China
| | - Jialin Zhang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiang Li
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| |
Collapse
|
34
|
Battagello D, Dragunas G, Klein M, Ayub AL, Velloso F, Correa R. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2137-2160. [PMID: 32820801 PMCID: PMC7443512 DOI: 10.1042/cs20200904] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic features underlying the COVID-19 progression have not been fully clarified, current evidence have suggested that SARS-CoV-2 may primarily behave as other β-coronavirus members. To better understand the development and transmission of COVID-19, unveiling the signaling pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular levels, is of crucial importance. In this review, we present the main aspects related to the origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marianne O. Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana L.P. Ayub
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando J. Velloso
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ, U.S.A
| | - Ricardo G. Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, U.S.A
| |
Collapse
|
35
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
36
|
Shin MY, Yong CC, Oh S. Regulatory Effect of Lactobacillus brevis Bmb6 on Gut Barrier Functions in Experimental Colitis. Foods 2020; 9:foods9070864. [PMID: 32630643 PMCID: PMC7404641 DOI: 10.3390/foods9070864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
The integrity of gut barrier functions is closely associated with the pathogenesis of colitis. It is speculated that Lactobacillus brevis Bmb6 alleviates colitis by improving the tight junction (TJ) of the inflamed intestinal epithelial layer. In the present study, the regulatory effects of L. brevis Bmb6 on the TJ barrier to ameliorate colitis-symptoms were investigated. Preliminary screening showed that L. brevis Bmb6 exhibited strong acid and bile acid tolerance, along with antioxidants and β-galactosidase activities. In a 14-day dextran sulfate sodium (DSS)-induced colitis mouse model, treatment with L. brevis Bmb6 significantly decreased in the disease activity index score. In addition, histological analyses showed that treatment with L. brevis Bmb6 protected the structural integrity of the intestinal epithelial layer and mucin-secreting goblet cells from DSS-induced damage, with only slight infiltration of immune cells. Interestingly, western blotting analyses showed that the expression of the TJ protein, zona occluden-1, was restored in Bmb6-treated mice, but not in DSS-induced mice. Consistently, the gene expression of inflammatory cytokines (tumor necrosis factor-α and interferon-γ) was also suppressed in the Bmb6-treated mice. Hence, our findings suggest that suppression of inflammatory conditions enhanced expression of TJ protein, ZO-1, or vice versa, contributing to a colitis-ameliorating effect in L. brevis Bmb6.
Collapse
Affiliation(s)
- Mi-Young Shin
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea;
- Division of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Cheng-Chung Yong
- Division of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-62-530-2116
| |
Collapse
|
37
|
Zeng A, Liang X, Zhu S, Liu C, Luo X, Zhang Q, Song L. Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In Vivo. Front Pharmacol 2020; 11:879. [PMID: 32625089 PMCID: PMC7311669 DOI: 10.3389/fphar.2020.00879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Objective The aim of this study is to investigate the anti-cancer activity and sensibilization of baicalin (BA) against breast cancer (BC) cells. Methods The anti-proliferation of BA in BC cell lines was evaluated by MTT and colony formation assays. Apoptotic induction of BA was measured by flow cytometry. Wound-healing and transwell assays were exploited to assess migrated and invasive inhibition of BA. Western-blot and immunofluorescence were used to study mechanisms of anti-migration and sensibilization of BA. Anti-tumor and anti-metastasis effects of BA were evaluated in subcutaneous and pulmonary metastasis mouse model of BC cells. Results BA significantly suppressed proliferation and induced apoptosis of BC cells in a concentration- and time-dependent manner. Additionally, BA induced cell apoptosis via the mitochondria-mediated pathway, as evidenced by cellular induction of reactive oxygen species and upregulated expression of the Bax/Bcl-2 ratio. The overall expression and nuclear translocation of NF-κB signaling pathway in BC cells were dramatically inhibited by treatment with BA. BA significantly suppressed abilities of migration and invasion in BC cells. Notably, BA sensitized BC cells to docetaxel (DXL) by suppressing the expression of survivin/Bcl-2. BA also retarded tumor growth and triggered apoptosis of tumor cells in a tumor mouse model of 4T1 cells. Furthermore, pulmonary metastasis of BC cells was distinctly suppressed by BA in a tumor mouse model of 4T1 cells. Conclusion BA effectively triggered apoptosis, inhibited metastasis, and enhanced chemosensitivity of BC, implying that BA might serve as a promising agent for the treatment of BC.
Collapse
Affiliation(s)
- Anqi Zeng
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Translational Pharmacology and Clinical Application of Sichuan Academy of Chinese Medical Science, Chengdu, China
| | - Xin Liang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Luo
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Xia Y, Chen Y, Wang G, Yang Y, Song X, Xiong Z, Zhang H, Lai P, Wang S, Ai L. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103854] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Behdani E, Ghaderi-Zefrehei M, Rafeie F, Bakhtiarizadeh MR, Roshanfeker H, Fayazi J. RNA-Seq Bayesian Network Exploration of Immune System in Bovine. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 17:e1748. [PMID: 32195281 PMCID: PMC7080973 DOI: 10.29252/ijb.1748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory
genes was applied to RNA-Seq data from a bovine leukocyte model system. Material and Methods: The transcriptome dataset GSE37447 was used from GEO and a Bayesian network on differentially expressed genes was learned to investigate the gene regulatory network. Results: Applying the method produced a strongly interconnected network with four genes (TERF2IP, PDCD10, DDX10 and CENPE) acting as nodes,
suggesting these genes may be important in the transcriptome regulation program of stress response. Of these genes TERF2IP has been
shown previously to regulate gene expression, act as a regulator of the nuclear factor-kappa B (NF-κB) signalling, and to activate
expression of NF-κB target genes; PDCD10 encodes a conserved protein associated with cell apoptosis; DDX10 encodes a DEAD box protein
and is believed to be associated with cellular growth and division; and CENPE involves unstable spindle microtubule capture at kinetochores.
Together these genes are involved in DNA damage of apoptosis, RNA splicing, DNA repairing, and regulating cell division in the bovine genome.
The topology of the learned Bayesian gene network indicated that the genes had a minimal interrelationship with each other.
This type of structure, using the publically available computational tool, was also observed on human orthologous genes of the differentially expressed genes. Conclusions: Overall, the results might be used in transcriptomic-assisted selection and design of new drug targets to treat stress-related problems in bovines.
Collapse
Affiliation(s)
- Elham Behdani
- Department of Animal Science, Faculty of Animal and Food Science, Khuzestan Agricultural Sciences and Natural Resources University, Mollasani, Khuzestan, Iran
| | | | - Farjad Rafeie
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Hedayatollah Roshanfeker
- Department of Animal Science, Faculty of Animal and Food Science, Khuzestan Agricultural Sciences and Natural Resources University, Mollasani, Khuzestan, Iran
| | - Jamal Fayazi
- Department of Animal Science, Faculty of Animal and Food Science, Khuzestan Agricultural Sciences and Natural Resources University, Mollasani, Khuzestan, Iran
| |
Collapse
|
40
|
Du L, Du DH, Chen B, Ding Y, Zhang T, Xiao W. Anti-Inflammatory Activity of Sanjie Zhentong Capsule Assessed By Network Pharmacology Analysis of Adenomyosis Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:697-713. [PMID: 32109994 PMCID: PMC7039068 DOI: 10.2147/dddt.s228721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/08/2020] [Indexed: 12/23/2022]
Abstract
Background Sanjie Zhentong capsule (SZC) offers excellent effect in treating adenomyosis (AM), which is a common and difficult gynecological disease in the clinic. However, the systematic analysis of its mechanism has not been carried out yet and further studies are needed to reveal the role of SZC. Methods A systematic network pharmacology analysis was conducted by integrating construction of SZC compound database and AM target database, prediction of potential active compounds and targets by molecular docking combined with compound-target prediction graph (CTPG), protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then, the anti-inflammation experiments in vitro were performed by investigating SZC and the representative compounds regulating nitric oxide (NO), interleukin-6 (IL-6), and interleukin-10 (IL-10). Results Our findings show that SZC mainly treated AM by stimulating 28 core targets through 30 key potential active compounds, and affecting 4 crucial pathways. The treatment was associated with inflammation reaction, hormone regulation, cell adhesion, proliferation, and angiogenesis. Additionally, SZC achieved the anti-inflammatory activity by the cooperation of the compounds through inhibiting NO and IL-6, both promoting and inhibiting IL-10. Conclusion This study investigated the anti-inflammatory activity of SZC based on a systematic analysis of SZC remedying AM, which was revealed to be one of the essential mechanisms. These findings will provide valuable guidance for further research of the SZC treatment of AM, and help improve the comprehension of SZC pharmacological basis as well as AM pathogenesis.
Collapse
Affiliation(s)
- Li Du
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - De-Hui Du
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Biao Chen
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Xiao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangsu, People's Republic of China
| |
Collapse
|
41
|
Din AU, Hassan A, Zhu Y, Zhang K, Wang Y, Li T, Wang Y, Wang G. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. J Nutr Biochem 2020; 79:108353. [PMID: 32145470 DOI: 10.1016/j.jnutbio.2020.108353] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are known to be beneficial in preventing different diseases in model animals, including inflammatory bowel disease. However, there are few studies on probiotics related to miRNA regulation and disease status. In this article, the beneficial role and mechanisms of the probiotic strain Bifidobacterium bifidum ATCC 29521 have been studied in ulcerative colitis using dextran sodium sulphate (DSS) model. Male C57JBL/6 mice were randomly divided into three groups (n=7): Normal group, dextran sulphate sodium (DSS) group, and Bifido group gavage with Bifidobacterium bifidum ATCC 29521 (2×108 CFU/day). Our strain restored the DSS-caused damage by regulating the expression of immune markers and tight junction proteins (TJP) in the colon; briefly by up-regulating ROS-scavenging enzymes (SOD1, SOD2, CAT, and GPX2), anti-inflammatory cytokines (IL-10, PPARγ, IL-6), TJP's (ZO-1, MUC-2, Claudin-3, and E Cadherin-1) and downregulating inflammatory genes (TNF-α, IL-1β) in Bifido group mice. Inflammatory markers appeared to be regulated by NF-κB nuclear P65 subunit, and its translocation was inhibited in Bifido group mice colon. In addition, the expression of inflammatory genes and colonic TJP were also associated with the restoration of miRNAs (miR-150, miR-155, miR-223) in B. bifidum ATCC 29521 treated Bifido group. The dysbiosis executed by DSS was restored in the Bifido group, demonstrating that B. bifidum ATCC 29521 possessed a probiotic role in our DSS colitis mouse model. B. bifidum ATCC 29521 exhibited its probiotic role through its anti-inflammatory role by modulating miRNA-associated TJP and NF-κB regulation and by partially restoring dysbiosis.
Collapse
Affiliation(s)
- Ahmad Ud Din
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China; Drug Discovery Research Center, Southwest Medical University Luzhou, China
| | - Adil Hassan
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuan Zhu
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Zhang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tianhan Li
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yang Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
42
|
Teng H, Xue L, Wang Y, Ding X, Li J. Nuclear factor κB -inducing kinase is a diagnostic marker of gastric cancer. Medicine (Baltimore) 2020; 99:e18864. [PMID: 32000390 PMCID: PMC7004655 DOI: 10.1097/md.0000000000018864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor-κB-inducing kinase (NIK) is a new regulator of nuclear factor-κB signaling, which plays an important role in tumorigenesis. This study aimed to examine the expression of NIK in gastric cancer and investigate its clinical significance.Tumor issues were collected from 80 gastric cancer patients who received surgery and the diagnosis was confirmed by postoperative pathological analysis. The expression of NIK in gastric cancer tissues and adjacent normal mucosa was detected by immunohistochemical analysis. The associations between NIK expression and clinicopathological features of the patients were further analyzed.NIK expression was significantly higher in gastric cancer tissues than in adjacent normal tissues (P < .05). Furthermore, NIK expression showed significant association with UICC stage, T status, and differentiation, but not with age and gender of gastric cancer patients.NIK is overexpressed in gastric cancer and is a potential diagnostic marker of gastric cancer.
Collapse
Affiliation(s)
- Hairong Teng
- Department of Radiotherapy, The Affiliated Huai’an No.1 People's Hospital of Nanjing Medical University
| | - Liang Xue
- Department of Pediatrics, The Affiliated Huai’an Hospital of Xuzhou Medical University
| | - Yuexia Wang
- Department of Radiotherapy, The Affiliated Huai’an No.1 People's Hospital of Nanjing Medical University
| | - Xian Ding
- Department of Pediatrics, The Affiliated Huai’an Hospital of Xuzhou Medical University
| | - Jiaxin Li
- Department of Pediatrics, The Affiliated Huai’an No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
43
|
Bayazid AB, Park SH, Kim JG, Lim BO. Green chicory leaf extract exerts anti-inflammatory effects through suppressing LPS-induced MAPK/NF-κB activation and hepatoprotective activity in vitro. FOOD AGR IMMUNOL 2020; 31:513-532. [DOI: 10.1080/09540105.2020.1742667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/26/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Al Borhan Bayazid
- Department of Integrated Biosciences, Graduate School of Konkuk University, Chungju, Korea
| | - Seo Hyun Park
- Department of Integrated Biosciences, Graduate School of Konkuk University, Chungju, Korea
| | - Jae Gon Kim
- Ahn-Gook Health, LTD., Seoul, Republic of Korea
| | - Beong Ou Lim
- Department of Integrated Biosciences, Graduate School of Konkuk University, Chungju, Korea
| |
Collapse
|
44
|
Li W, Li W, Yu J, Liu F, Zang L, Xiao X, Zhao J, Yao Q, Niu X. Fraxin inhibits lipopolysaccharide-induced inflammatory cytokines and protects against endotoxic shock in mice. Fundam Clin Pharmacol 2019; 34:91-101. [PMID: 31325387 DOI: 10.1111/fcp.12500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
Fraxin, the effective component isolated from Cortex Fraxini, has been reported to have anti-inflammation effects. The aim of this study was to explore the effect of fraxin on lipopolysaccharide (LPS)-induced endotoxic shock in mice. We used Kunming male mice to establish the model, and we found that fraxin could improve the survival rate of the LPS-induced mice. Histopathological study showed that fraxin could mitigate the injuries in LPS-induced lung and liver tissues. The levels of tumour necrosis factor-α and interleukin-6 both in serum and lung, liver tissues, and the productions of nitric oxide (NO), aspartate transaminase and alanine transaminase in serum were decreased by fraxin. Western blot assay demonstrated that the pretreatment with fraxin could downregulate LPS-induced protein expressions of nuclear factor-kappa B (NF-κB) and NLRP3 inflammatory corpuscle signalling pathways. Overall, fraxin had protective effects on LPS-induced endotoxic shock mice and the possible mechanisms might activate through NF-κB and NLRP3 inflammatory corpuscle signalling pathways.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Wenqi Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - JinJin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Jinmeng Zhao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Qing Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| |
Collapse
|
45
|
Piechowski J. Plausibility of trophoblastic-like regulation of cancer tissue. Cancer Manag Res 2019; 11:5033-5046. [PMID: 31213916 PMCID: PMC6549421 DOI: 10.2147/cmar.s190932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Thus far, a well-established logical pattern of malignancy does not exist. The current approach to cancer properties is primarily descriptive with usually, for each of them, extensive analyses of the underlying associated biomolecular mechanisms. However, this remains a catalog and it would be valuable to determine the organizational chart that could account for their implementation, hierarchical links and input into tumor regulation. Hypothesis: Striking phenotypic similarities exist between trophoblast (invasive and expanding early placenta) and cancer regarding cell functions, logistics of development, means of protection and capacity to hold sway over the host organism. The concept of cancer cell trophoblastic-like transdifferentiation appears to be a rational proposal in an attempt to explain this analogy and provide a consistent insight into how cancer cells are functioning. Should this concept be validated, it could pave the way to promising research and therapeutic perspectives given that the trophoblastic properties are vital for the tumor while they are permanently epigenetically turned off in normal cells. Specifically targeting expression of the trophoblastic master genes could thereby be envisaged to jeopardize the tumor and its metastases without, in principle, inducing adverse side effects in the healthy tissues. Conclusion: A wide set of functional features of cancer tissue regulation, including some apparently paradoxical facts, was reviewed. Cancer cell misuse of physiological trophoblastic functions can clearly account for them, which identifies trophoblastic-like transdifferentiation as a likely key component of malignancy and makes it a potential relevant anticancer target.
Collapse
|
46
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
47
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
48
|
Chen C, Yao W, Wu S, Zhou S, Ge M, Gu Y, Li X, Chen G, Bellanti JA, Zheng SG, Yuan D, Hei Z. Crosstalk Between Connexin32 and Mitochondrial Apoptotic Signaling Pathway Plays a Pivotal Role in Renal Ischemia Reperfusion-Induced Acute Kidney Injury. Antioxid Redox Signal 2019; 30:1521-1538. [PMID: 29790387 PMCID: PMC7364332 DOI: 10.1089/ars.2017.7375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022]
Abstract
Aims: Perioperative acute kidney injury (AKI) resulting from renal ischemia reperfusion (IR) is not conducive to the postoperative surgical recovery. Our previous study demonstrated that reactive oxygen species (ROS) transmitted by gap junction (GJ) composed of connexin32 (Cx32) contributed to AKI. However, the precise underlying pathophysiologic mechanisms were largely unknown. This study focuses on the underlying mechanisms related to ROS transmitted by Cx32 responsible for AKI aggravation. Results: In a set of in vivo studies, renal IR was found to cause severe impairment in renal tissues with massive ROS generation, which occurred contemporaneously with activation of NF-κB/p53/p53 upregulated modulator of apoptosis (PUMA)-mediated mitochondrial apoptosis pathways. Cx32 deficiency alleviated renal IR-induced AKI, and simultaneously attenuated ROS generation and distribution in renal tissues, which further inhibited NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathways. Correspondingly, in a set of in vitro studies, hypoxia reoxygenation (HR)-induced cellular injury, and cell apoptosis in both human kidney tubular epithelial cells (HK-2s) and rat kidney tubular epithelial cells (NRK52Es) were significantly attenuated by Cx32 inhibitors or Cx32 gene knockdown. More importantly, Cx32 inhibition not only decreased ROS generation and distribution in human or rat kidney tubular epithelial cells but also inhibited its downstream NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathway activation. Innovation and Conclusion: This is the first identification of the underlying mechanisms of IR-induced renal injury integrally which demonstrates the critical role played by Cx32 in IR-induced AKI. Moreover, GJ composed of Cx32 manipulates ROS generation and distribution between neighboring cells, and alters activation of NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathways. Both inhibiting Cx32 function and scavenging ROS effectively reduce mitochondrial apoptosis and subsequently attenuate AKI, providing effective strategies for kidney protection.
Collapse
Affiliation(s)
- Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Joseph A. Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia
| | - Song Guo Zheng
- Department of Medicine, Milton S Hershey Medical Center, Penn State University, State College, Pennsylvania
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Anesthesiology, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, People's Republic of China
| |
Collapse
|
49
|
Jang YJ, Kim WK, Han DH, Lee K, Ko G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes 2019; 10:696-711. [PMID: 30939976 PMCID: PMC6866707 DOI: 10.1080/19490976.2019.1589281] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We evaluated immunometabolic functions of novel Lactobacillus fermentum strains (KBL374 and KBL375) isolated from feces of healthy Koreans. The levels of inflammatory cytokines, such as interleukin (IL)-2, interferon-γ, IL-4, IL-13, and IL-17A, were decreased, and that of the anti-inflammatory cytokine IL-10 was increased, in human peripheral blood mononuclear cells (PBMCs) treated with the L. fermentum KBL374 or KBL375 strain. When these strains were orally administered to mice with dextran sulfate sodium (DSS)-induced colitis, both L. fermentum KBL374 and KBL375 showed beneficial effects on body weight, disease activity index score, colon length, cecal weight, and histological scores. Furthermore, both L. fermentum KBL374 and KBL375 modulated the innate immune response by improving gut barrier function and reducing leukocyte infiltration. Consistent with the PBMC data, both L. fermentum KBL374- and KBL375-treated DSS mice demonstrated decreased Th1-, Th2-, and Th17-related cytokine levels and increased IL-10 in the colon compared with the DSS control mice. Administration of L. fermentum KBL374 or KBL375 to mice increased the CD4+CD25+Foxp3+Treg cell population in mesenteric lymph nodes. Additionally, L. fermentum KBL374 or KBL375 administration reshaped and increased the diversity of the gut microbiota. In particular, L. fermentum KBL375 increased the abundance of beneficial microorganisms, such as Lactobacillus spp. and Akkermansia spp. Both L. fermentum KBL374 and KBL375 may alleviate inflammatory diseases, such as inflammatory bowel disease, in the gut by regulating immune responses and altering the composition of gut microbiota.
Collapse
Affiliation(s)
- You Jin Jang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Woon-Ki Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Dae Hee Han
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kiuk Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gwangpyo Ko
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea,N-Bio, Seoul National University, Seoul, Republic of Korea,KoBioLabs, Inc., Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea,Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea,CONTACT GwangPyo Ko Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
50
|
Lai XL, Deng ZF, Zhu XG, Chen ZH. Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-κB signaling pathway mediated inflammatory response. Biosci Rep 2019; 39:BSR20181909. [PMID: 30808715 PMCID: PMC6434386 DOI: 10.1042/bsr20181909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Intracranial aneurysm (IA) is a critical acquired cerebrovascular disease that may cause subarachnoid hemorrhage, and nuclear factor-κB (NF-κB)-mediated inflammation is involved in the pathogenesis of IA. Adenomatous polyposis coli (Apc) gene is a tumor suppressor gene associated with both familial and sporadic cancer. Herein, the purpose of our study is to validate effect of Apc gene on IA formation and rupture by regulating the NF-κB signaling pathway mediated inflammatory response. Methods: We collected IA specimens (from incarceration of IA) and normal cerebral arteries (from surgery of traumatic brain injury) to examine expression of Apc and the NF-κB signaling pathway related factors (NF-κB p65 and IκBα). ELISA was used to determine levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β (IL-1β), and IL-6. IA model was established in rats, and Apc-siRNA was treated to verify effect of Apc on IA formation and rupture. Next, regulation of Apc on the NF-κB signaling pathway was investigated. Results: Reduced expression of Apc and IκBα, and increased expression of NF-κB p65 were found in IA tissues. MCP-1, TNF-α, IL-1β, and IL-6 exhibited higher levels in unruptured and ruptured IA, which suggested facilitated inflammatory responses. In addition, the IA rats injected with Apc-siRNA showed further enhanced activation of NF-κB signaling pathway, and up-regulated levels of MCP-1, TNF-α, IL-1β, IL-6, MMP-2, and MMP-9 as well as extent of p65 phosphorylation in IA. Conclusion: Above all, Apc has the potential role to attenuate IA formation and rupture by inhibiting inflammatory response through repressing the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xian-Liang Lai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhi-Feng Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xin-Gen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhi-Hua Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|