1
|
Xiong W, Li B, Pan J, Li D, Yuan H, Wan X, Zhang Y, Fu L, Zhang J, Lei M, Chang ACY. Mitochondrial Amount Determines Doxorubicin-Induced Cardiotoxicity in Cardiomyocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412017. [PMID: 39921259 PMCID: PMC11948046 DOI: 10.1002/advs.202412017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/30/2024] [Indexed: 02/10/2025]
Abstract
Doxorubicin, an anthracycline commonly used for treating cancer patients, is known for its cardiotoxic side-effects. Although dose-dependent, but susceptibility remains variable among patients, and childhood-exposure-adult-onset remains challenging. Besides topoisomerase toxicity, Doxorubicin is also toxic to the mitochondria yet the underlying late onset mechanism remains elusive. Here, it is observed that the mitochondrial copy number in PBMCs of patients treated with anthracycline chemotherapy is negatively correlated with the change in plasma BNP levels after treatment. Isogenic hiPSC-CMs are generated with high, norm, and low mitochondrial copy numbers using mitochondrial transplantation and the YFP-Parkin system. Remarkably, lower mitochondria copy number translates to lower IC50, suggesting increased susceptibility. Mitochondria supplementation by intramyocardial injection prevents doxorubicin induced heart failure. Mechanistically, doxorubicin treatment leads to mPTP opening and mitochondrial DNA (mtDNA) leakage. This mtDNA leakage event activates the cGAS-STING pathway and drives inflammation and myocardial senescence. Cardiomyocyte-specific knockout of Sting (Myh6-Cre/Stingflox/flox; StingCKO) and over expression of mitochondrial tagged DNase1 in mice partially rescue doxorubicin-induced cardiac dysfunction. In conclusion, the work establishes a negative correlation between cardiomyocyte mitochondrial copy number and doxorubicin toxicity. Molecularly, it is demonstrated that mtDNA leakage activates cGAS-STING pathway and accelerates myocardial dysfunction. These insights offer new co-administration strategies for cancer patients.
Collapse
Affiliation(s)
- Weiyao Xiong
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Bin Li
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Jianan Pan
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Dongjiu Li
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Haihua Yuan
- Department of OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Xin Wan
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yanjie Zhang
- Department of OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Lijun Fu
- Department of CardiologyShanghai Children's Medical CentreShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Junfeng Zhang
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Ming Lei
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Alex Chia Yu Chang
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| |
Collapse
|
2
|
Brownson-Smith R, Orange ST, Cresti N, Hunt K, Saxton J, Temesi J. Effect of exercise before and/or during taxane-containing chemotherapy treatment on chemotherapy-induced peripheral neuropathy symptoms in women with breast cancer: systematic review and meta-analysis. J Cancer Surviv 2025; 19:78-96. [PMID: 37615928 PMCID: PMC11813970 DOI: 10.1007/s11764-023-01450-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE To systematically review and meta-analyse the efficacy of exercise interventions delivered before and/or during taxane-containing chemotherapy regimens on chemotherapy-induced peripheral neuropathy (CIPN), fatigue, and health-related quality of life (HR-QoL), in women with breast cancer. METHODS Seven electronic databases were systematically searched for randomised controlled trials (RCTs) reporting on the effects of exercise interventions in women with breast cancer receiving taxane-containing chemotherapeutic treatment. Meta-analyses evaluated the effects of exercise on CIPN symptoms, fatigue, and HR-QoL. RESULTS Ten trials involving exercise interventions ranging between 2 and 12 months were included. The combined results of four RCTs consisting of 171 participants showed a reduction in CIPN symptoms following exercise compared with usual care (standardised mean difference - 0.71, 95% CI - 1.24 to - 0.17, p = 0.012; moderate-quality evidence, I2 = 76.9%). Pooled results from six RCTs with 609 participants showed that exercise interventions before and/or during taxane-containing chemotherapy regimens improved HR-QoL (SMD 0.42, 95% CI 0.07 to 0.76, p = 0.03; moderate-quality evidence, I2 = 49.6%). There was no evidence of an effect of exercise on fatigue (- 0.39, 95% CI - 0.95 to 0.18, p = 0.15; very low-quality evidence, I2 = 90.1%). CONCLUSIONS This systematic review found reduced levels of CIPN symptoms and an improvement in HR-QoL in women with breast cancer who exercised before and/or during taxane-based chemotherapy versus usual care controls. IMPLICATIONS FOR CANCER SURVIVORS This evidence supports the role of exercise as an adjunctive treatment for attenuating the adverse effects of taxane-containing chemotherapy on CIPN symptoms and HR-QoL.
Collapse
Affiliation(s)
- Rosiered Brownson-Smith
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.
| | - Samuel T Orange
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle uponTyne, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Nicola Cresti
- Northern Centre for Cancer Care, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Katherine Hunt
- Northern Centre for Cancer Care, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - John Saxton
- School of Sport, Exercise & Rehabilitation Sciences, University of Hull, Hull, UK
| | - John Temesi
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Legault EP, Ribeiro PAB, Petrenyov DR, Drumeva GO, Leduc C, Khullar S, DaSilva JN, Comtois AS, Tournoux FB. Effect of acute high-intensity interval exercise on a mouse model of doxorubicin-induced cardiotoxicity: a pilot study. BMC Sports Sci Med Rehabil 2024; 16:95. [PMID: 38671464 PMCID: PMC11046902 DOI: 10.1186/s13102-024-00881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND It is unknown whether high-intensity interval exercise (HIIE) may potentiate or attenuate the cardiotoxic effect of chemotherapy agents such as doxorubicin (DOX) when performed shortly after treatment. The study aimed to investigate the effect of acute HIIE on cardiac function and structure performed either 1, 2 or 3 days after DOX injection in an animal model. METHODS Female C57bl/6 mice (n = 28), 70 days old, received a bolus 20 mg/kg intravenous tail vein DOX injection. Three exercise groups performed 1 HIIE session (16 sets of 1 min at 85-90% of peak running speed) at 1 (n = 7), 2 (n = 7), and 3 days (n = 8) following the DOX injection. A sedentary (SED) group of mice (n = 6) did not exercise. Animals underwent echocardiography under light anesthesia (isoflurane 0.5-1%) before and 7 days after the DOX injection. Animals were sacrificed on day 9 and hearts were collected for morphometric and histological analysis. RESULTS Animals exercising on day 3 had the smallest pre-post reduction in left ventricular fractional shortening (LVFS) (MΔ= -1.7 ± 3.3; p = 0.406) and the SED group had the largest reduction (MΔ=-6.8 ± 7.5; p = 0.009). After reclassification of animals according to their exercise compliance (performing > 8/16 of high-intensity bouts), LVFS in compliant mice was unchanged over time (LVFS MΔ= -1.3 ± 5.6; p = 0.396) while non-compliant animals had a LVFS reduction similar to sedentary animals. There were no significant differences in myocardial histology between groups. CONCLUSIONS In this pilot murine study, one single HIIE session did not exacerbate acute doxorubicin-induced cardiotoxicity. The timing of the HIIE session following DOX injection and the level of compliance to exercise could influence the negative impact of DOX on cardiac function.
Collapse
Affiliation(s)
- Elise P Legault
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada.
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.
| | - Paula A B Ribeiro
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Daniil R Petrenyov
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Gergana O Drumeva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Charles Leduc
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Sharmila Khullar
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Alain Steve Comtois
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François B Tournoux
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Service de Cardiologie du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Belhadjali F, Ghrir S, Ksia F, Limam F, Aouani E, Mokni M. Protective effect of grape seed extract and exercise training on tissues toxicities in doxorubicin-treated healthy rat. Biomarkers 2023; 28:544-554. [PMID: 37555371 DOI: 10.1080/1354750x.2023.2246698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of Grape seed extract (GSE) and exercise training on Doxorubicin (Doxo)-induced cardio, hepato and myo toxicities in healthy rats. METHODS Thirty male Wistar rats were randomly divided into five groups and daily treated by intraperitoneal route during two months either with ethanol 10% (Control); Doxo (1.5 mg/kg); Doxo + exercise (1.5 mg/kg + swimming exercise for 30 min twice a week); Doxo + GSE (1.5 mg/kg + GSE 2.5 g/kg); Doxo + GSE + exercise (1.5 mg/kg + GSE 2.5 g/kg + swimming exercise for 30 min twice a week). At the end of the treatment, tissues were collected and processed for the determination of oxidative stress (OS), intracellular mediators, energy fuelling biomarkers, carbohydrate metabolism parameters and muscle histopathology. RESULTS Doxo provoked OS characterised by an increased lipoperoxidation (LPO) and protein carbonylation and decreased antioxidant enzyme activities. Doxo also affected intracellular mediators, disturbed carbohydrate metabolism and energy fuelling in skeletal muscle as assessed by down-regulated Electron Transport Chain (ETC) complex activities leading in fine to altered skeletal muscle structure and function. CONCLUSION Almost all Doxo-induced disturbances were partially corrected with GSE and exercise on their own and more efficiently with the combined treatment (GSE + exercise).
Collapse
Affiliation(s)
- Feiza Belhadjali
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Sidi Bou Saïd, Carthage, Tunisie
| | - Slim Ghrir
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Féryel Ksia
- Laboratoire Environnement, Inflammation, Signalisation et Pathologies (LR 18ES40), Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisie
| | - Ferid Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Ezzedine Aouani
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| | - Meherzia Mokni
- Laboratoire des Substances Bioactives, Centre de Biotechnologie, Technopole Borj-Cedria, Hammam-Lif, Tunisie
| |
Collapse
|
5
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
6
|
Yu X, Yang Y, Chen T, Wang Y, Guo T, Liu Y, Li H, Yang L. Cell death regulation in myocardial toxicity induced by antineoplastic drugs. Front Cell Dev Biol 2023; 11:1075917. [PMID: 36824370 PMCID: PMC9941345 DOI: 10.3389/fcell.2023.1075917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a critical role in maintaining normal physiological activity of cardiac tissue. Severe cardiotoxicity can lead to heart disease, including but not limited to arrhythmias, myocardial infarction and cardiac hypertrophy. In recent years, significant progress has been made in developing new therapies for cancer that have dramatically changed the treatment of several malignancies and continue to improve patient survival, but can also lead to serious cardiac adverse effects. Mitochondria are key organelles that maintain homeostasis in myocardial tissue and have been extensively involved in various cardiovascular disease episodes, including ischemic cardiomyopathy, heart failure and stroke. Several studies support that mitochondrial targeting is a major determinant of the cardiotoxic effects triggered by chemotherapeutic agents increasingly used in solid and hematologic tumors. This antineoplastic therapy-induced mitochondrial toxicity is due to different mechanisms, usually altering the mitochondrial respiratory chain, energy production and mitochondrial kinetics, or inducing mitochondrial oxidative/nitrosative stress, ultimately leading to cell death. This review focuses on recent advances in forms of cardiac cell death and related mechanisms of antineoplastic drug-induced cardiotoxicity, including autophagy, ferroptosis, apoptosis, pyroptosis, and necroptosis, explores and evaluates key proteins involved in cardiac cell death signaling, and presents recent advances in cardioprotective strategies for this disease. It aims to provide theoretical basis and targets for the prevention and treatment of pharmacological cardiotoxicity in clinical settings.
Collapse
Affiliation(s)
- Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianzuo Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianwei Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yujun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Liming Yang, ; Hong Li,
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China,*Correspondence: Liming Yang, ; Hong Li,
| |
Collapse
|
7
|
Qian H, Qian Y, Liu Y, Cao J, Wang Y, Yang A, Zhao W, Lu Y, Liu H, Zhu W. Identification of novel biomarkers involved in doxorubicin-induced acute and chronic cardiotoxicity, respectively, by integrated bioinformatics. Front Cardiovasc Med 2023; 9:996809. [PMID: 36712272 PMCID: PMC9874088 DOI: 10.3389/fcvm.2022.996809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background The mechanisms of doxorubicin (DOX) cardiotoxicity were complex and controversial, with various contradictions between experimental and clinical data. Understanding the differences in the molecular mechanism between DOX-induced acute and chronic cardiotoxicity may be an ideal entry point to solve this dilemma. Methods Mice were injected intraperitoneally with DOX [(20 mg/kg, once) or (5 mg/kg/week, three times)] to construct acute and chronic cardiotoxicity models, respectively. Survival record and ultrasound monitored the cardiac function. The corresponding left ventricular (LV) myocardium tissues were analyzed by RNA-seq to identify differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) found the key biological processes and signaling pathways. DOX cardiotoxicity datasets from the Gene expression omnibus (GEO) database were combined with RNA-seq to identify the common genes. Cytoscape analyzed the hub genes, which were validated by quantitative real-time PCR. ImmuCo and ImmGen databases analyzed the correlations between hub genes and immunity-relative markers in immune cells. Cibersort analyzed the immune infiltration and correlations between the hub genes and the immune cells. Logistic regression, receiver operator characteristic curve, and artificial neural network analysis evaluated the diagnosis ability of hub genes for clinical data in the GEO dataset. Results The survival curves and ultrasound monitoring demonstrated that cardiotoxicity models were constructed successfully. In the acute model, 788 DEGs were enriched in the activated metabolism and the suppressed immunity-associated signaling pathways. Three hub genes (Alas1, Atp5g1, and Ptgds) were upregulated and were negatively correlated with a colony of immune-activating cells. However, in the chronic model, 281 DEGs showed that G protein-coupled receptor (GPCR)-related signaling pathways were the critical events. Three hub genes (Hsph1, Abcb1a, and Vegfa) were increased in the chronic model. Furthermore, Hsph1 combined with Vegfa was positively correlated with dilated cardiomyopathy (DCM)-induced heart failure (HF) and had high accuracy in the diagnosis of DCM-induced HF (AUC = 0.898, P = 0.000). Conclusion Alas1, Atp5g1, and Ptgds were ideal biomarkers in DOX acute cardiotoxicity. However, Hsph1 and Vegfa were potential biomarkers in the myocardium in the chronic model. Our research, first, provided bioinformatics and clinical evidence for the discovery of the differences in mechanism and potential biomarkers of DOX-induced acute and chronic cardiotoxicity to find a therapeutic strategy precisely.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Jiaxin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yuhang Wang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Aihua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Wenjing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Huanxin Liu
- Shanghai Labway Medical Laboratory, Shanghai, China
| | - Weizhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,*Correspondence: Weizhong Zhu, ; orcid.org/0000-0002-8740-3210
| |
Collapse
|
8
|
Poudel S, Izquierdo M, Cancela ML, Gavaia PJ. Reversal of Doxorubicin-Induced Bone Loss and Mineralization by Supplementation of Resveratrol and MitoTEMPO in the Early Development of Sparus aurata. Nutrients 2022; 14:nu14061154. [PMID: 35334811 PMCID: PMC8950850 DOI: 10.3390/nu14061154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin is a widely used chemotherapeutic drug known to induce bone loss. The mechanism behind doxorubicin-mediated bone loss is unclear, but oxidative stress has been suggested as a potential cause. Antioxidants that can counteract the toxic effect of doxorubicin on the bone would be helpful for the prevention of secondary osteoporosis. We used resveratrol, a natural antioxidant, and MitoTEMPO, a mitochondria-targeted antioxidant, to counteract doxorubicin-induced bone loss and mineralization on Sparus aurata larvae. Doxorubicin supplemented Microdiets increased bone deformities, decreased mineralization, and lipid peroxidation, whereas Resveratrol and MitoTEMPO supplemented microdiets improved mineralization, decreased bone deformities, and reversed the effects of doxorubicin in vivo and in vitro, using osteoblastic VSa13 cells. Partial Least-Squares Discriminant Analysis highlighted differences between groups on the distribution of skeletal anomalies and mineralization of skeleton elements. Calcium and Phosphorus content was negatively affected in the doxorubicin supplemented group. Doxorubicin reduced the mRNA expression of antioxidant genes, including catalase, glutathione peroxidase 1, superoxide dismutase 1, and hsp90 suggesting that ROS are central for Doxorubicin-induced bone loss. The mRNA expression of antioxidant genes was significantly increased on resveratrol alone or combined treatment. The length of intestinal villi was increased in response to antioxidants and reduced on doxorubicin. Antioxidant supplements effectively prevent bone deformities and mineralization defects, increase antioxidant response and reverse doxorubicin-induced effects on bone anomalies, mineralization, and oxidative stress. A combined treatment of doxorubicin and antioxidants was beneficial in fish larvae and showed the potential for use in preventing Doxorubicin-induced bone impairment.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, FMCB, University of Algarve, 8005-139 Faro, Portugal
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain;
| | - Maria Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800057 or +351-289-800900 (ext. 7057); Fax: +351-289-800069
| |
Collapse
|
9
|
Kitakata H, Endo J, Ikura H, Moriyama H, Shirakawa K, Katsumata Y, Sano M. Therapeutic Targets for DOX-Induced Cardiomyopathy: Role of Apoptosis vs. Ferroptosis. Int J Mol Sci 2022; 23:1414. [PMID: 35163335 PMCID: PMC8835899 DOI: 10.3390/ijms23031414] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Doxorubicin (DOX) is the most widely used anthracycline anticancer agent; however, its cardiotoxicity limits its clinical efficacy. Numerous studies have elucidated the mechanisms underlying DOX-induced cardiotoxicity, wherein apoptosis has been reported as the most common final step leading to cardiomyocyte death. However, in the past two years, the involvement of ferroptosis, a novel programmed cell death, has been proposed. The purpose of this review is to summarize the historical background that led to each form of cell death, focusing on DOX-induced cardiotoxicity and the molecular mechanisms that trigger each form of cell death. Furthermore, based on this understanding, possible therapeutic strategies to prevent DOX cardiotoxicity are outlined. DNA damage, oxidative stress, intracellular signaling, transcription factors, epigenetic regulators, autophagy, and metabolic inflammation are important factors in the molecular mechanisms of DOX-induced cardiomyocyte apoptosis. Conversely, the accumulation of lipid peroxides, iron ion accumulation, and decreased expression of glutathione and glutathione peroxidase 4 are important in ferroptosis. In both cascades, the mitochondria are an important site of DOX cardiotoxicity. The last part of this review focuses on the significance of the disruption of mitochondrial homeostasis in DOX cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (H.K.); (J.E.); (H.I.); (H.M.); (K.S.); (Y.K.)
| |
Collapse
|
10
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Renoprotection Induced by Aerobic Training Is Dependent on Nitric Oxide Bioavailability in Obese Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3683796. [PMID: 34621463 PMCID: PMC8492245 DOI: 10.1155/2021/3683796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Aerobic training (AT) promotes several health benefits that may attenuate the progression of obesity associated diabetes. Since AT is an important nitric oxide (NO−) inducer mediating kidney-healthy phenotype, the present study is aimed at investigating the effects of AT on metabolic parameters, morphological, redox balance, inflammatory profile, and vasoactive peptides in the kidney of obese-diabetic Zucker rats receiving L-NAME (N(omega)-nitro-L-arginine methyl ester). Forty male Zucker rats (6 wk old) were assigned into four groups (n = 10, each): sedentary lean rats (CTL-Lean), sedentary obese rats (CTL-Obese), AT trained obese rats without blocking nitric oxide synthase (NOS) (Obese+AT), and obese-trained with NOS block (Obese+AT+L-NAME). AT groups ran 60 min in the maximal lactate steady state (MLSS), five days/wk/8 wk. Obese+AT rats improved glycemic homeostasis, SBP, aerobic capacity, renal mitochondria integrity, redox balance, inflammatory profile (e.g., TNF-α, CRP, IL-10, IL-4, and IL-17a), and molecules related to renal NO− metabolism (klotho/FGF23 axis, vasoactive peptides, renal histology, and reduced proteinuria). However, none of these positive outcomes were observed in CTL-Obese and Obese+AT+L-NAME (p < 0.0001) groups. Although Obese+AT+L-NAME lowered BP (compared with CTL-Obese; p < 0.0001), renal damage was observed after AT intervention. Furthermore, AT training under conditions of low NO− concentration increased signaling pathways associated with ACE-2/ANG1-7/MASr. We conclude that AT represents an important nonpharmacological intervention to improve kidney function in obese Zucker rats. However, these renal and metabolic benefits promoted by AT are dependent on NO− bioavailability and its underlying regulatory mechanisms.
Collapse
|
12
|
Naaktgeboren WR, Binyam D, Stuiver MM, Aaronson NK, Teske AJ, van Harten WH, Groen WG, May AM. Efficacy of Physical Exercise to Offset Anthracycline-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. J Am Heart Assoc 2021; 10:e021580. [PMID: 34472371 PMCID: PMC8649276 DOI: 10.1161/jaha.121.021580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background Physical exercise is an intervention that might protect against doxorubicin‐induced cardiotoxicity. In this meta‐analysis and systematic review, we aimed to estimate the effect of exercise on doxorubicin‐induced cardiotoxicity and to evaluate mechanisms underlying exercise‐mediated cardioprotection using (pre)clinical evidence. Methods and Results We conducted a systematic search in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Cochrane's and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk‐of‐bias tools were used to assess the validity of human and animal studies, respectively. Cardiotoxicity outcomes reported by ≥3 studies were pooled and structured around the type of exercise intervention. Forty articles were included, of which 3 were clinical studies. Overall, in humans (sample sizes ranging from 24 to 61), results were indicative of exercise‐mediated cardioprotection, yet they were not sufficient to establish whether physical exercise protects against doxorubicin‐induced cardiotoxicity. In animal studies (n=37), a pooled analysis demonstrated that forced exercise interventions significantly mitigated in vivo and ex vivo doxorubicin‐induced cardiotoxicity compared with nonexercised controls. Similar yet slightly smaller effects were found for voluntary exercise interventions. We identified oxidative stress and related pathways, and less doxorubicin accumulation as mechanisms underlying exercise‐induced cardioprotection, of which the latter could act as an overarching mechanism. Conclusions Animal studies indicate that various exercise interventions can protect against doxorubicin‐induced cardiotoxicity in rodents. Less doxorubicin accumulation in cardiac tissue could be a key underlying mechanism. Given the preclinical evidence and limited availability of clinical data, larger and methodologically rigorous clinical studies are needed to clarify the role of physical exercise in preventing cardiotoxicity in patients with cancer. Registration URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42019118218.
Collapse
Affiliation(s)
- Willeke R Naaktgeboren
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - David Binyam
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Center for Quality of Life The Netherlands Cancer Institute Amsterdam The Netherlands.,Centre of Expertise Urban Vitality Faculty of Health Amsterdam University of Applied Sciences Amsterdam The Netherlands
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Arco J Teske
- Department of Cardiology University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Wim H van Harten
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Department of Health Technology and Services Research University of Twente Enschede The Netherlands
| | - Wim G Groen
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
13
|
Zimmerman A, Planek MIC, Chu C, Oyenusi O, Paner A, Reding K, Skeete J, Clark B, Okwuosa TM. Exercise, cancer and cardiovascular disease: what should clinicians advise? Cardiovasc Endocrinol Metab 2021; 10:62-71. [PMID: 34113793 PMCID: PMC8186519 DOI: 10.1097/xce.0000000000000228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality in persons with cancer. The elevated risk is thought to derive from the combination of cardiovascular risk factors and direct cardiotoxicity from cancer therapies. Exercise may be a potential strategy to counteract these toxicities and maintain cardiovascular reserve. In this article, we review the evidence for the potential cardioprotective effects of exercise training in cancer patients before, during, and following treatment. We also propose a patient-tailored approach for the development of targeted prescriptions based on individual exercise capacity and cardiovascular reserve.
Collapse
Affiliation(s)
| | | | - Catherine Chu
- Rush Medical College, Rush University Medical Center
| | | | - Agne Paner
- Division of Hematology/Oncology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Kerryn Reding
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jamario Skeete
- Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian Clark
- Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Tochi M. Okwuosa
- Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
14
|
Montalvo RN, Doerr V, Nguyen BL, Kelley RC, Smuder AJ. Consideration of Sex as a Biological Variable in the Development of Doxorubicin Myotoxicity and the Efficacy of Exercise as a Therapeutic Intervention. Antioxidants (Basel) 2021; 10:antiox10030343. [PMID: 33669040 PMCID: PMC7996538 DOI: 10.3390/antiox10030343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used to treat a wide variety of hematological and solid tumor cancers. While DOX is highly effective at reducing tumor burden, its clinical use is limited by the development of adverse effects to both cardiac and skeletal muscle. The detrimental effects of DOX to muscle tissue are associated with the increased incidence of heart failure, dyspnea, exercise intolerance, and reduced quality of life, which have been reported in both patients actively receiving chemotherapy and cancer survivors. A variety of factors elevate the probability of DOX-related morbidity in patients; however, the role of sex as a biological variable to calculate patient risk remains unclear. Uncertainty regarding sexual dimorphism in the presentation of DOX myotoxicity stems from inadequate study design to address this issue. Currently, the majority of clinical data on DOX myotoxicity come from studies where the ratio of males to females is unbalanced, one sex is omitted, and/or the patient cohort include a broad age range. Furthermore, lack of consensus on standard outcome measures, difficulties in long-term evaluation of patient outcomes, and other confounding factors (i.e., cancer type, drug combinations, adjuvant therapies, etc.) preclude a definitive answer as to whether differences exist in the incidence of DOX myotoxicity between sexes. This review summarizes the current clinical and preclinical literature relevant to sex differences in the incidence and severity of DOX myotoxicity, the proposed mechanisms for DOX sexual dimorphism, and the potential for exercise training to serve as an effective therapeutic countermeasure to preserve muscle strength and function in males and females.
Collapse
|
15
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
16
|
Heinze-Milne SD, Keats MR, Blanchard C, Giacomantonio N, MacDonald D, Rajda M, Younis T, Grandy SA. Exercise to Prevent Anthracycline-Based Cardiotoxicity (EXACT): A Feasibility Study. TRANSLATIONAL JOURNAL OF THE AMERICAN COLLEGE OF SPORTS MEDICINE 2021. [DOI: 10.1249/tjx.0000000000000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Li A, Yi J, Li X, Zhou J. Physiological Ca 2+ Transients Versus Pathological Steady-State Ca 2+ Elevation, Who Flips the ROS Coin in Skeletal Muscle Mitochondria. Front Physiol 2020; 11:595800. [PMID: 33192612 PMCID: PMC7642813 DOI: 10.3389/fphys.2020.595800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are both the primary provider of ATP and the pivotal regulator of cell death, which are essential for physiological muscle activities. Ca2+ plays a multifaceted role in mitochondrial function. During muscle contraction, Ca2+ influx into mitochondria activates multiple enzymes related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation, resulting in increased ATP synthesis to meet the energy demand. Pathophysiological conditions such as skeletal muscle denervation or unloading also lead to elevated Ca2+ levels inside mitochondria. However, the outcomes of this steady-state elevation of mitochondrial Ca2+ level include exacerbated reactive oxygen species (ROS) generation, sensitized opening of mitochondrial permeability transition pore (mPTP), induction of programmed cell death, and ultimately muscle atrophy. Previously, both acute and long-term endurance exercises have been reported to activate certain signaling pathways to counteract ROS production. Meanwhile, electrical stimulation is known to help prevent apoptosis and alleviate muscle atrophy in denervated animal models and patients with motor impairment. There are various mechanistic studies that focus on the excitation-transcription coupling framework to understand the beneficial role of exercise and electrical stimulation. Interestingly, a recent study has revealed an unexpected role of rapid mitochondrial Ca2+ transients in keeping mPTP at a closed state with reduced mitochondrial ROS production. This discovery motivated us to contribute this review article to inspire further discussion about the potential mechanisms underlying differential outcomes of physiological mitochondrial Ca2+ transients and pathological mitochondrial Ca2+ elevation in skeletal muscle ROS production.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
18
|
Seyedan AA, Dezfoulian O, Alirezaei M. Satureja khuzistanica Jamzad essential oil prevents doxorubicin-induced apoptosis via extrinsic and intrinsic mitochondrial pathways. Res Pharm Sci 2020; 15:481-490. [PMID: 33628290 PMCID: PMC7879789 DOI: 10.4103/1735-5362.297851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/10/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
Background and purpose: In addition to hepato-cardiotoxicity, doxorubicin (DOX) also induces nephrotoxicity which is considered as the limiting factor for this drug in cancer therapy. The effect of carvacrol, the main active ingredient of Satureja khuzistanica Jamzad essential oil (SKEO), in the amelioration of DOX- induced cardiotoxicity is well established. The aim of the present study was to evaluate the possible protective effects of SKEO against DOX-induced nephrotoxicity. Experimental approach: SKEO was intraperitoneally administered at 50, 100, and 200 mg/kg to male Wistar rats for 12 consecutive days. Five groups of animals including negative control (saline), vehicle (Tween® 20), SKEO50, DOX (at 8th day of treatment), and SKEO50 + DOX were assessed. Findings/Results: Creatinine, urea concentrations, and caspase-3 activity significantly elevated in the serum of DOX treated group in contrast to other groups after injection of a single dose of DOX (20 mg/kg i.p.), however, SKEO reduced glutathione peroxidase and caspase-3 activity against other groups while SKEO + DOX was also significantly reduced caspase-3 activity against DOX group. Other biochemical markers changes were not significant. Immunohistochemical assessment unveiled that SKEO + DOX improved the activity of Bcl-2 family proteins (Bax and Bcl-2) and caspase-8 protein to the advantage of cell survival in both intrinsic mitochondrial and extrinsic pathway down streamed to the terminal caspase-3 apoptotic molecule., Conclusion and implications: It was concluded that SKEO could have influential effects against apoptosis induced by DOX, but not improperly ameliorate oxidative stress.
Collapse
Affiliation(s)
- Ali Al Seyedan
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, I.R. Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, I.R. Iran
| | - Masoud Alirezaei
- Department of Biochemistry, School of Veterinary Medicine, Lorestan University, Khorramabad, I.R. Iran
| |
Collapse
|
19
|
Hu C, Zhang X, Song P, Yuan YP, Kong CY, Wu HM, Xu SC, Ma ZG, Tang QZ. Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biol 2020; 37:101747. [PMID: 33045622 PMCID: PMC7558217 DOI: 10.1016/j.redox.2020.101747] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Meteorin-like (METRNL) protein is a newly identified myokine that functions to modulate energy expenditure and inflammation in adipose tissue. Herein, we aim to investigate the potential role and molecular basis of METRNL in doxorubicin (DOX)-induced cardiotoxicity. METRNL was found to be abundantly expressed in cardiac muscle under physiological conditions that was decreased upon DOX exposure. Cardiac-specific overexpression of METRNL by adeno-associated virus serotype 9 markedly improved oxidative stress, apoptosis, cardiac dysfunction and survival status in DOX-treated mice. Conversely, knocking down endogenous METRNL by an intramyocardial injection of adenovirus exacerbated DOX-induced cardiotoxicity and death. Meanwhile, METRNL overexpression attenuated, while METRNL silence promoted oxidative damage and apoptosis in DOX-treated H9C2 cells. Systemic METRNL depletion by a neutralizing antibody aggravated DOX-related cardiac injury and dysfunction in vivo, which were notably alleviated by METRNL overexpression within the cardiomyocytes. Besides, we detected robust METRNL secretion from isolated rodent hearts and cardiomyocytes, but to a less extent in those with DOX treatment. And the beneficial effects of METRNL in H9C2 cells disappeared after the incubation with a METRNL neutralizing antibody. Mechanistically, METRNL activated SIRT1 via the cAMP/PKA pathway, and its antioxidant and antiapoptotic capacities were blocked by SIRT1 deficiency. More importantly, METRNL did not affect the tumor-killing action of DOX in 4T1 breast cancer cells and tumor-bearing mice. Collectively, cardiac-derived METRNL activates SIRT1 via cAMP/PKA signaling axis in an autocrine manner, which ultimately improves DOX-elicited oxidative stress, apoptosis and cardiac dysfunction. Targeting METRNL may provide a novel therapeutic strategy for the prevention of DOX-associated cardiotoxicity. METRNL is abundant in the heart, yet decreased upon DOX treatment. METRNL overexpression improves, while METRNL deficiency exacerbates DOX-induced cardiotoxicity in vivo and in vitro. METRNL activates SIRT1 via cAMP/PKA signaling axis in an autocrine manner. METRNL does not affect the tumor-killing action of DOX in cancer cells.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| |
Collapse
|
20
|
Lee Y, Kwon I, Jang Y, Cosio-Lima L, Barrington P. Endurance Exercise Attenuates Doxorubicin-induced Cardiotoxicity. Med Sci Sports Exerc 2020; 52:25-36. [PMID: 31318716 DOI: 10.1249/mss.0000000000002094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Endurance exercise (EXE) preconditioning before DOX treatment confers cardioprotection; however, whether EXE postconditioning (i.e., EXE intervention after the completion of DOX treatment) is cardioprotective remains unknown. Thus, the aim of the present study was to investigate if EXE postconditioning provides cardioprotection by testing the hypothesis that EXE-autophagy upregulation and NADPH oxidase 2 (NOX2) downregulation would be linked to cardioprotection against DOX-induced cardiotoxicity. METHODS C57BL/6 male mice were assigned into three groups: control (CON, n = 10), doxorubicin (DOX, n = 10), and doxorubicin + endurance exercise (DOX + EXE, n = 10). Animals assigned to DOX and DOX + EXE groups were intraperitoneally injected with DOX (5 mg·kg each week for 4 wk). Forty-eight hours after the last DOX treatment, the mice assigned to DOX + EXE performed EXE on a motorized treadmill at a speed of 13-15 m·min for 60 min·d for 4 wk. RESULTS EXE prevented DOX-induced apoptosis and mitigated tissue damages. Although DOX did not modulate auto/mitophagy, EXE significantly enhanced its flux (increased LC3-II levels, reduced p62 levels, and increased autophagosomes with mitochondria) along with increased mitochondrial fission (DRP1) and reduced fusion markers (OPA1 and MFN2). Interestingly, EXE-induced autophagy against DOX occurred in the absence of alterations of autophagy inducer AMPK or autophagy inhibitor mTOR signaling. EXE prohibited DOX-induced oxidative damages by suppressing NOX2 levels but without modulating other key antioxidant enzymes including MnSOD, CuZnSOD, catalase, and GPX1/2. CONCLUSION Our data provide novel findings that EXE-induced auto/mitophagy promotion and NOX2 downregulation are linked to cardioprotection against DOX-induced cardiotoxicity. Importantly, our study shows that EXE postconditioning intervention is effective and efficacious to prevent DOX-induced cardiac injuries.
Collapse
Affiliation(s)
- Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florid, Pensacola, FL
| | | | | | | | | |
Collapse
|
21
|
Abstract
OPINION STATEMENT Cardiovascular diseases are a common cause of morbidity and mortality in cancer survivors. Furthermore, some cancer therapies are now being increasingly recognized to have negative cardiovascular effects, or cardiotoxicity. Exercise therapy has been found to improve cardiorespiratory fitness in patients with cancer as well as attenuate the cardiotoxic effects of cancer therapy. It is the centerpiece for cardiac and pulmonary rehabilitation programs. It is also an important component in cardio-oncology rehabilitation. Exercise is generally safe, and its benefit is observed when started as soon as the diagnosis of cancer and throughout cancer survivorship.
Collapse
Affiliation(s)
- Calvin K W Tong
- Division of Cardiology, University of British Columbia, 2775 Laurel St., 9th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Benny Lau
- Division of Cardiology, University of British Columbia, 2775 Laurel St., 9th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Margot K Davis
- Division of Cardiology, University of British Columbia, 2775 Laurel St., 9th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
22
|
Nijholt KT, Westenbrink BD, de Boer RA. Mitochondrial therapy for doxorubicin cardiomyopathy: nuclear factor-κB to the rescue? Cardiovasc Res 2020; 116:1092-1094. [PMID: 31868877 PMCID: PMC7177477 DOI: 10.1093/cvr/cvz344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Kirsten Theresa Nijholt
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB 31, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Berend Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB 31, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Rudolf Allert de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB 31, PO Box 30.001, Groningen 9700 RB, The Netherlands
| |
Collapse
|
23
|
Pereira GC, Pereira SP, Pereira FB, Lourenço N, Lumini JA, Pereira CV, Bjork JA, Magalhães J, Ascensão A, Wieckowski MR, Moreno AJ, Wallace KB, Oliveira PJ. Early Cardiac Mitochondrial Molecular and Functional Responses to Acute Anthracycline Treatment in Wistar Rats. Toxicol Sci 2020; 169:137-150. [PMID: 30698778 DOI: 10.1093/toxsci/kfz026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer drug widely used to treat human and nonhuman tumors but the late and persistent cardio-toxicity reduces the therapeutic utility of the drug. The full mechanism(s) of DOX-induced acute, subchronic and delayed toxicity, which has a preponderant mitochondrial component, remains unclear; therefore, it is clinically relevant to identify early markers to identify patients who are predisposed to DOX-related cardiovascular toxicity. To address this, Wistar rats (16 weeks old) were treated with a single DOX dose (20 mg/kg, i.p.); then, mRNA, protein levels and functional analysis of mitochondrial endpoints were assessed 24 h later in the heart, liver, and kidney. Using an exploratory data analysis, we observed cardiac-specific alterations after DOX treatment for mitochondrial complexes III, IV, and preferentially for complex I. Conversely, the same analysis revealed complex II alterations are associated with DOX response in the liver and kidney. Interestingly, H2O2 production by the mitochondrial respiratory chain as well as loss of calcium-loading capacity, markers of subchronic toxicity, were not reliable indicators of acute DOX cardiotoxicity in this animal model. By using sequential principal component analysis and feature correlation analysis, we demonstrated for the first time alterations in sets of transcripts and proteins, but not functional measurements, that might serve as potential early acute markers of cardiac-specific mitochondrial toxicity, contributing to explain the trajectory of DOX cardiac toxicity and to develop novel interventions to minimize DOX cardiac liabilities.
Collapse
Affiliation(s)
- Gonçalo C Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal
| | - Francisco B Pereira
- Centre for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, Portugal.,Coimbra Polytechnic - ISEC, Coimbra, Portugal
| | - Nuno Lourenço
- Centre for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, Portugal
| | - José A Lumini
- Health and Leisure, Faculty of Sport Sciences, University of Porto, Research Centre in Physical Activity, Porto, Portugal.,Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.,LABIOMEP - Porto Biomechanics Laboratory, Porto University, Porto, Portugal
| | - Claudia V Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,University of Miami Miller School of Medicine, Neurological Research Building, Miami, Florida
| | - James A Bjork
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| | - José Magalhães
- Health and Leisure, Faculty of Sport Sciences, University of Porto, Research Centre in Physical Activity, Porto, Portugal
| | - António Ascensão
- Health and Leisure, Faculty of Sport Sciences, University of Porto, Research Centre in Physical Activity, Porto, Portugal
| | | | - António J Moreno
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal
| |
Collapse
|
24
|
Abstract
Anthracycline-based chemotherapy can result in the development of a cumulative and progressively developing cardiomyopathy. Doxorubicin is one of the most highly prescribed anthracyclines in the United States due to its broad spectrum of therapeutic efficacy. Interference with different mitochondrial processes is chief among the molecular and cellular determinants of doxorubicin cardiotoxicity, contributing to the development of cardiomyopathy. The present review provides the basis for the involvement of mitochondrial toxicity in the different functional hallmarks of anthracycline toxicity. Our objective is to understand the molecular determinants of a progressive deterioration of functional integrity of mitochondria that establishes a historic record of past drug treatments (mitochondrial memory) and renders the cancer patient susceptible to subsequent regimens of drug therapy. We focus on the involvement of doxorubicin-induced mitochondrial oxidative stress, disruption of mitochondrial oxidative phosphorylation, and permeability transition, contributing to altered metabolic and redox circuits in cardiac cells, ultimately culminating in disturbances of autophagy/mitophagy fluxes and increased apoptosis. We also suggest some possible pharmacological and nonpharmacological interventions that can reduce mitochondrial damage. Understanding the key role of mitochondria in doxorubicin-induced cardiomyopathy is essential to reduce the barriers that so dramatically limit the clinical success of this essential anticancer chemotherapy.
Collapse
Affiliation(s)
- Kendall B Wallace
- From the Department of Biomedical Sciences, University of Minnesota Medical School, Duluth (K.B.W.)
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| |
Collapse
|
25
|
Phungphong S, Kijtawornrat A, Kampaengsri T, Wattanapermpool J, Bupha-Intr T. Comparison of exercise training and estrogen supplementation on mast cell-mediated doxorubicin-induced cardiotoxicity. Am J Physiol Regul Integr Comp Physiol 2020; 318:R829-R842. [PMID: 32159365 DOI: 10.1152/ajpregu.00224.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac inflammation has been proposed as one of the primary mechanisms of anthracycline-induced acute cardiotoxicity. A reduction in cardiac inflammation might also reduce cardiotoxicity. This study aimed to evaluate the potential of estrogen therapy and regular exercise on attenuating cardiac inflammation in the context of doxorubicin-induced cardiomyopathy. Ovariectomized rats were randomly allocated into estrogen supplementation, exercise training, and mast cell stabilizer treatment groups. Eight weeks after ovariectomy, rats received six cumulative doses of doxorubicin for two weeks. Echocardiography demonstrated a progressive decrease in ejection fraction in doxorubicin-treated rats without hypertrophic effect. This systolic defect was completely prevented by either estrogen supplementation or mast cell stabilizer treatment but not by regular exercise. As a heart disease indicator, increased β-myosin heavy chain expression induced by doxorubicin could only be prevented by estrogen supplementation. Decrease in shortening and intracellular Ca2+ transients of cardiomyocytes were due to absence of female sex hormones without further effects of doxorubicin. Again, estrogen supplementation and mast cell stabilizer treatment prevented these changes but exercise training did not. Histological analysis indicated that the hyperactivation of cardiac mast cells in ovariectomized rats was augmented by doxorubicin. Estrogen supplementation and mast cell stabilizer treatment completely prevented both increases in mast cell density and degranulation, whereas exercise training partially attenuated the hyperactivation. Our results, therefore, suggest that estrogen supplementation acts similarly to mast cell stabilizers in attenuating the effects of doxorubicin. Ineffectiveness of regular exercise in preventing the acute cardiotoxicity of doxorubicin might be due to a lesser effect on preventing cardiac inflammation.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
Naderi-Boldaji V, Joukar S, Noorafshan A, Bahreinipour MA. Limb Blood Flow Restriction Plus Mild Aerobic Exercise Training Protects the Heart Against Isoproterenol-Induced Cardiac Injury in Old Rats: Role of GSK-3β. Cardiovasc Toxicol 2020; 19:210-219. [PMID: 30406466 DOI: 10.1007/s12012-018-9490-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study was conducted to evaluate the effect of blood flow restriction (BFR) training on cardiac resistance to isoproterenol (ISO) induced heart injury in old rats and examined the hypothesis that BFR training may interfere with age-associated impairment of mitochondria by the inhibitory phosphorylation of GSK-3β at Ser9. Old male Wistar rats were divided into the following six groups: CTL (control), ISO (isoproterenol-treated), Sh + ISO (sham-operated plus ISO), BFR + ISO (blood flow restriction plus ISO), Sh-Ex + ISO (sham-operated subjected to exercise and ISO), and BFR-Ex + ISO (blood flow restriction along with exercise and ISO). 10 weeks of exercise training was considered. Then, cardiac injury was induced and physiological, histological, and biochemical parameters were recorded and assessed. Compared to CTL group, isoproterenol administration significantly reduced the systolic arterial pressure (SAP), left-ventricular systolic pressure (LVSP), and ± dp/dt max (P < 0.05). BFR training improved these parameters in the way that BFR-Ex + ISO group had higher SAP, LVSP and ± dp/dt max (P < 0.05) and lower LVEDP (left-ventricular end diastolic pressure) (P < 0.01) than untrained and Sh-Ex + ISO groups. The pS9-GSK-3β and pS9-GSK-3β/GSK-3β ratio were increased in the BFR-Ex + ISO group compared to CTL, ISO, Sh + ISO, and BFR + ISO groups (P < 0.05). The level of plasma cardiac Troponin-I and the severity of the injuries were significantly reduced in BFR-Ex + ISO group versus other cardiac damaged groups. In conclusion, our findings clearly confirmed the cardio-protective effect of BFR training against ISO-induced myocardial injury. Increased phosphorylated GSK-3β and angiogenesis in this model of exercise justify the resistance of old hearts facing stressful situations.
Collapse
Affiliation(s)
- Vida Naderi-Boldaji
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, P. O. Box 7616914115, Kerman, Iran. .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Ali Bahreinipour
- Department of Physical Education, Faculty of Shahid Chamran, Kerman Branch, Technical and Vocational University (YVU), Tehran, Iran
| |
Collapse
|
27
|
Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease. Mol Metab 2019; 32:1-14. [PMID: 32029220 PMCID: PMC6931125 DOI: 10.1016/j.molmet.2019.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Modern lifestyles, especially high-caloric intake and physical inactivity, contribute to the increased prevalence of non-alcoholic fatty liver disease (NAFLD), which becomes a significant health problem worldwide. Lifestyle changes, however, affect not only parental generation, but also their offspring, reinforcing the need for efficient preventive approaches to deal with this disease. This transgenerational influence of phenotypes dependent on parents (particularly maternal) behaviours may open additional research avenues. Despite persistent attempts to design an effective pharmacological therapy against NAFLD, physical activity, as a non-pharmacological approach, emerges as an exciting strategy. SCOPE OF REVIEW Here we briefly review the effect of physical exercise on liver mitochondria adaptations in NAFLD, highlighting the importance of mitochondrial metabolism and transgenerational and epigenetic mechanisms in liver diseases. MAJOR CONCLUSIONS A deeper look into cellular mechanisms sheds a light on possible effects of physical activity in the prevention and treatment of NAFLD through modulation of function and structure of particular organelles, namely mitochondria. Additionally, despite of increasing evidence regarding the contribution of epigenetic mechanisms in the pathogenesis of different diseases, the role of microRNAs, DNA methylation, and histone modification in NAFLD pathogenesis still needs to be elucidated.
Collapse
|
28
|
Physical exercise positively modulates DOX-induced hepatic oxidative stress, mitochondrial dysfunction and quality control signaling. Mitochondrion 2019; 47:103-113. [DOI: 10.1016/j.mito.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/31/2019] [Accepted: 05/30/2019] [Indexed: 01/28/2023]
|
29
|
Treadmill Exercise Ameliorates Chemotherapy-Induced Muscle Weakness and Central Fatigue by Enhancing Mitochondrial Function and Inhibiting Apoptosis. Int Neurourol J 2019; 23:S32-39. [PMID: 30832465 PMCID: PMC6433210 DOI: 10.5213/inj.1938046.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/16/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose Chemotherapy is associated with the side effects including damage to the mitochondrial DNA. Doxorubicin (DOX) serves as a chemotherapeutic agent for the patients with breast cancer or prostate cancer. DOX causes muscle weakness and fatigue. We investigated the effects of treadmill exercise on DOX-induced apoptosis and mitochondrial dysfunction in relation to central fatigue. For this study, we used the rat model of DOX-induced muscle damage. Methods DOX (2 mg/kg) was intraperitoneally injected 1 time per week for 4 weeks. Treadmill running continued 5 days per week for 4 weeks. Muscle strength and fatigue index in the gastrocnemius were measured. Immunohistochemistry for the expressions of tryptophan hydroxylase (TPH) and 5-hydroxytryptamine (5-HT) in the dorsal raphe was conducted. We used western blot analysis for the expressions of Bax, Bcl-2, and caspases-3 in the gastrocnemius. Mitochondrial function in the gastrocnemius was also evaluated. Results DOX treatment decreased muscle strength with increase of fatigue index in the gastrocnemius. Mitochondria function was deteriorated and apoptosis in the gastrocnemius was enhanced by DOX treatment. Expressions of TPH and 5-HT in the dorsal raphe were increased by DOX treatment. Treadmill exercise attenuated DOX-induced muscle fatigue and impairment of mitochondria function. Apoptosis in the gastrocnemius was inhibited and over-expression of TPH and 5-HT was suppressed by treadmill exercise. Conclusions Apoptosis was enhanced and mitochondria function was deteriorated by DOX treatment, resulting in muscle weakness and central fatigue. Treadmill exercise suppressed apoptosis and prevented deterioration of mitochondria function in muscle, resulting in alleviation of muscle weakness and central fatigue during DOX therapy.
Collapse
|
30
|
Effects of Acute Exercise on Mitochondrial Function, Dynamics, and Mitophagy in Rat Cardiac and Skeletal Muscles. Int Neurourol J 2019; 23:S22-31. [PMID: 30832464 PMCID: PMC6433208 DOI: 10.5213/inj.1938038.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose This study aimed to investigate the effects of single-bout exercise on mitochondrial function, dynamics (fusion, fission), and mitophagy in cardiac and skeletal muscles. Methods Fischer 344 rats (4 months old) were randomly divided into the control (CON) or acute exercise (EX) group (n=10 each). The rats performed a single bout of treadmill exercise for 60 minutes. Mitochondrial function (e.g., O2 respiration, H2O2 emission, Ca2+ retention capacity), mitochondrial fusion (e.g., Mfn1, Mfn2, Opa1), mitochondrial fission (e.g., Drp1, Fis1), and mitophagy (e.g., Parkin, Pink1, LC3II, Bnip3) were measured in permeabilized cardiac (e.g., left ventricle) and skeletal (e.g., soleus, white gastrocnemius) muscles. Results Mitochondrial O2 respiration and Ca2+ retention capacity were significantly increased in all tissues of the EX group compared with the CON group. Mitochondrial H2O2 emissions showed tissue-specific results; the emissions showed no significant differences in the left ventricle or soleus (type I fibers) but was significantly increased in the white gastrocnemius (type II fibers) after acute exercise. Mitochondrial fusion and fission were not altered in any tissues of the EX group. Mitophagy showed tissue-specific differences: It was not changed in the left ventricle or white gastrocnemius, whereas Parkin and LC3II were significantly elevated in the soleus muscle. Conclusions A single bout of aerobic exercise may improve mitochondrial function (e.g., O2 respiration and Ca2+ retention capacity) in the heart and skeletal muscles without changes in mitochondrial dynamics or mitophagy.
Collapse
|
31
|
Marques-Aleixo I, Santos-Alves E, Torrella JR, Oliveira PJ, Magalhães J, Ascensão A. Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling. Cardiovasc Toxicol 2019; 18:43-55. [PMID: 28536949 DOI: 10.1007/s12012-017-9412-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cross-tolerance effect of exercise against heart mitochondrial-mediated quality control, remodeling and death-related mechanisms associated with sub-chronic Doxorubicin (DOX) treatment is yet unknown. We therefore analyzed the effects of two distinct chronic exercise models (endurance treadmill training-TM and voluntary free wheel activity-FW) performed during the course of the sub-chronic DOX treatment on mitochondrial susceptibility to permeability transition pore (mPTP), apoptotic and autophagic signaling and mitochondrial dynamics. Male Sprague-Dawley rats were divided into six groups (n = 6 per group): saline sedentary (SAL + SED), SAL + TM (12-weeks treadmill), SAL + FW (12-weeks voluntary free-wheel), DOX + SED [7-weeks sub-chronic DOX treatment (2 mg kg-1 week-1)], DOX + TM and DOX + FW. Apoptotic signaling and mPTP regulation were followed by measuring caspase 3, 8 and 9 activities, Bax, Bcl2, CypD, ANT, and cophilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3, Beclin1, Pink1, Parkin and p62)-related proteins were semi-quantified. DOX treatment results in augmented mPTP susceptibility and apoptotic signaling (caspases 3, 8 and 9 and Bax/Bcl2 ratio). Moreover, DOX decreased the expression of fusion-related proteins (Mfn1, Mfn2, OPA1), increased DRP1 and the activation of auto(mito)phagy signaling. TM and FW prevented DOX-increased mPTP susceptibility and apoptotic signaling, alterations in mitochondrial dynamics and inhibits DOX-induced increases in auto(mito)phagy signaling. Collectively, our results suggest that both used chronic exercise models performed before and during the course of sub-chronic DOX treatment limit cardiac mitochondrial-driven apoptotic signaling and regulate alterations in mitochondrial dynamics and auto(mito)phagy in DOX-treated animals.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.,Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J R Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - P J Oliveira
- CNC - Centre for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
| |
Collapse
|
32
|
Veloso CD, Belew GD, Ferreira LL, Grilo LF, Jones JG, Portincasa P, Sardão VA, Oliveira PJ. A Mitochondrial Approach to Cardiovascular Risk and Disease. Curr Pharm Des 2019; 25:3175-3194. [PMID: 31470786 DOI: 10.2174/1389203720666190830163735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a leading risk factor for mortality worldwide and the number of CVDs victims is predicted to rise through 2030. While several external parameters (genetic, behavioral, environmental and physiological) contribute to cardiovascular morbidity and mortality; intrinsic metabolic and functional determinants such as insulin resistance, hyperglycemia, inflammation, high blood pressure and dyslipidemia are considered to be dominant factors. METHODS Pubmed searches were performed using different keywords related with mitochondria and cardiovascular disease and risk. In vitro, animal and human results were extracted from the hits obtained. RESULTS High cardiac energy demand is sustained by mitochondrial ATP production, and abnormal mitochondrial function has been associated with several lifestyle- and aging-related pathologies in the developed world such as diabetes, non-alcoholic fatty liver disease (NAFLD) and kidney diseases, that in turn can lead to cardiac injury. In order to delay cardiac mitochondrial dysfunction in the context of cardiovascular risk, regular physical activity has been shown to improve mitochondrial parameters and myocardial tolerance to ischemia-reperfusion (IR). Furthermore, pharmacological interventions can prevent the risk of CVDs. Therapeutic agents that can target mitochondria, decreasing ROS production and improve its function have been intensively researched. One example is the mitochondria-targeted antioxidant MitoQ10, which already showed beneficial effects in hypertensive rat models. Carvedilol or antidiabetic drugs also showed protective effects by preventing cardiac mitochondrial oxidative damage. CONCLUSION This review highlights the role of mitochondrial dysfunction in CVDs, also show-casing several approaches that act by improving mitochondrial function in the heart, contributing to decrease some of the risk factors associated with CVDs.
Collapse
Affiliation(s)
- Caroline D Veloso
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Getachew D Belew
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luciana L Ferreira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| |
Collapse
|
33
|
Ferreira LL, Cunha-Oliveira T, Veloso CD, Costa CF, Wallace KB, Oliveira PJ. Single nanomolar doxorubicin exposure triggers compensatory mitochondrial responses in H9c2 cardiomyoblasts. Food Chem Toxicol 2018; 124:450-461. [PMID: 30557669 DOI: 10.1016/j.fct.2018.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Dose-dependent and cumulative cardiotoxicity associated with doxorubicin (DOX) is the main limitation of anticancer therapy. Pediatric cancer survivors are particularly vulnerable, and no effective prevention measures are available. The aim of the present study was to investigate the persistent effects of nanomolar DOX concentrations and determine whether a pretreatment would induce mitochondrial adaptations in H9c2 cardiomyoblasts. H9c2 cells were incubated with DOX (10 and 25 nM) for 24 h, followed by 9 days of recovery in drug-free medium. We found that the sub-therapeutic DOX treatment induced persistent hypertrophy and dose-dependent cell cycle arrest in G2/M. Glycolytic activity, indirectly based on extracellular acidification rate, and basal respiration were significantly decreased in DOX-treated cells compared to controls, although both groups showed similar maximal respiration. Additionally, nanomolar DOX pretreatment resulted in upregulation of mitochondrial DNA transcripts accompanied by a decrease in DNA methyltransferase 1 (DNMT1) and global methylation levels. Finally, the pretreatment with DOX ameliorated H9c2 cells resistance against a subsequent exposure to DOX. These results suggest that nanomolar DOX pretreatment induced a beneficial and possibly epigenetic-based mitochondrial adaptation, raising the possibility that an early sub-therapeutic DOX treatment can be used as a preconditioning and protective approach during anticancer therapies.
Collapse
Affiliation(s)
- Luciana L Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Caroline D Veloso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Cláudio F Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| |
Collapse
|
34
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
35
|
Kirkham AA, Paterson DI, Prado CM, Mackey JR, Courneya KS, Pituskin E, Thompson RB. Rationale and design of the Caloric Restriction and Exercise protection from Anthracycline Toxic Effects (CREATE) study: a 3-arm parallel group phase II randomized controlled trial in early breast cancer. BMC Cancer 2018; 18:864. [PMID: 30176834 PMCID: PMC6122558 DOI: 10.1186/s12885-018-4778-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 02/08/2023] Open
Abstract
Background Anthracycline chemotherapy agents are commonly used to treat breast cancer, but also result in cardiac injury, and potentially detrimental effects to vascular and skeletal muscle. Preclinical evidence demonstrates that exercise and caloric restriction can independently reduce anthracycline-related injury to the heart as well as cancer progression, and may be promising short-term strategies prior to treatment administration. For women with breast cancer, a short-term strategy may be more feasible and appealing, as maintaining regular exercise training or a diet throughout chemotherapy can be challenging due to treatment symptoms and psychosocial distress. Methods The Caloric Restriction and Exercise protection from Anthracycline Toxic Effects (CREATE) study will determine whether acute application of these interventions shortly prior to receipt of each treatment can reduce anthracycline-related toxicity to the heart, aorta, and skeletal muscle. Fifty-six women with early stage breast cancer scheduled to receive anthracycline treatment will be randomly assigned to one of three groups who will: 1) perform a single, 30-min, vigorous-intensity, aerobic exercise session 24 h prior to each anthracycline treatment; 2) consume a prepared diet reduced to 50% of caloric needs for 48 h prior to each anthracycline treatment; or 3) receive usual cancer care. The primary outcome is magnetic resonance imaging (MRI) derived left ventricular ejection fraction reserve (peak exercise LVEF – resting LVEF) at the end of anthracycline treatment. Secondary outcomes include MRI-derived measures of cardiac, aortic and skeletal muscle structure and function, circulating NT-proBNP, cardiorespiratory fitness and treatment symptoms. Exploratory outcomes include quality of life, fatigue, tumor size (only in neoadjuvant patients), oxidative stress and antioxidants, as well as clinical cardiac or cancer outcomes. MRI, exercise tests, and questionnaires will be administered before, 2–3 weeks after the last anthracycline treatment, and one-year follow-up. Discussion The proposed lifestyle interventions are accessible, low cost, drug-free potential methods for mitigating anthracycline-related toxicity. Reduced toxic effects on the heart, aorta and muscle are very likely to translate to short and long-term cardiovascular health benefits, including enhanced resilience to the effects of subsequent cancer treatment (e.g., radiation, trastuzumab) aging, and infection. Trial registration ClinicalTrials.gov NCT03131024; 4/21/18.
Collapse
Affiliation(s)
- Amy A Kirkham
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 Street, Edmonton, AB, T6G 2V2, Canada.
| | - D Ian Paterson
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Canada
| | - Carla M Prado
- Department of Agricultural, Food & Nutrition Science, University of Alberta, Edmonton, Canada
| | | | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Edith Pituskin
- Faculty of Nursing, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 Street, Edmonton, AB, T6G 2V2, Canada
| |
Collapse
|
36
|
Cunha-Oliveira T, Ferreira LL, Coelho AR, Deus CM, Oliveira PJ. Doxorubicin triggers bioenergetic failure and p53 activation in mouse stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2018; 348:1-13. [PMID: 29653124 DOI: 10.1016/j.taap.2018.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 01/28/2023]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug that could be even more effective if its clinical dosage was not limited because of delayed cardiotoxicity. Beating stem cell-derived cardiomyocytes are a preferred in vitro model to further uncover the mechanisms of DOX-induced cardiotoxicity. Our objective was to use cultured induced-pluripotent stem cell(iPSC)-derived mouse cardiomyocytes (Cor.At) to investigate the effects of DOX on cell and mitochondrial metabolism, as well as on stress responses. Non-proliferating and beating Cor.At cells were treated with 0.5 or 1 μM DOX for 24 h, and morphological, functional and biochemical changes associated with mitochondrial bioenergetics, DNA-damage response and apoptosis were measured. Both DOX concentrations decreased ATP levels and SOD2 protein levels and induced p53-dependent caspase activation. However, differential effects were observed for the two DOX concentrations. The highest concentration induced a high degree of apoptosis, with increased nuclear apoptotic morphology, PARP-1 cleavage and decrease of some OXPHOS protein subunits. At the lowest concentration, DOX increased the expression of p53 target transcripts associated with mitochondria-dependent apoptosis and decreased transcripts related with DNA-damage response and glycolysis. Interestingly, cells treated with 0.5 μM DOX presented an increase in PDK4 transcript levels, accompanied by an increase in phospho-PDH and decreased PDH activity. This was accompanied by an apparent decrease in basal and maximal oxygen consumption rates (OCR) and in basal extracellular acidification rate (ECAR). Cells pre-treated with the PDK inhibitor dichloroacetate (DCA), with the aim of restoring PDH activity, partially recovered OCR and ECAR. The results suggest that the higher DOX concentration mainly induces p53-dependent apoptosis, whereas for the lower DOX concentration the cardiotoxic effects involve bioenergetic failure, unveiling PDH as a possible therapeutic target to decrease DOX cardiotoxicity.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal.
| | - Luciana L Ferreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Ana Raquel Coelho
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Cláudia M Deus
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
37
|
Squires RW, Shultz AM, Herrmann J. Exercise Training and Cardiovascular Health in Cancer Patients. Curr Oncol Rep 2018. [DOI: 10.1007/s11912-018-0681-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Morton AB, Mor Huertas A, Hinkley JM, Ichinoseki-Sekine N, Christou DD, Smuder AJ. Mitochondrial accumulation of doxorubicin in cardiac and diaphragm muscle following exercise preconditioning. Mitochondrion 2018; 45:52-62. [PMID: 29474837 DOI: 10.1016/j.mito.2018.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/22/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a highly effective anthracycline antibiotic. Unfortunately, the clinical use of DOX is limited by the risk of deleterious effects to cardiac and respiratory (i.e. diaphragm) muscle, resulting from mitochondrial reactive oxygen species (ROS) production. In this regard, exercise is demonstrated to protect against DOX-induced myotoxicity and prevent mitochondrial dysfunction. However, the protective mechanisms are currently unclear. We hypothesized that exercise may induce protection by increasing the expression of mitochondria-specific ATP-binding cassette (ABC) transporters and reducing mitochondrial DOX accumulation. Our results confirm this finding and demonstrate that two weeks of exercise preconditioning is sufficient to prevent cardiorespiratory dysfunction.
Collapse
Affiliation(s)
- Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Andres Mor Huertas
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - J Matthew Hinkley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | | | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ashley J Smuder
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
39
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
40
|
Kirkham A, Shave R, Bland K, Bovard J, Eves N, Gelmon K, McKenzie D, Virani S, Stöhr E, Warburton D, Campbell K. Protective effects of acute exercise prior to doxorubicin on cardiac function of breast cancer patients: A proof-of-concept RCT. Int J Cardiol 2017; 245:263-270. [DOI: 10.1016/j.ijcard.2017.07.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 01/16/2023]
|
41
|
Pinto AP, da Rocha AL, Oliveira LDC, Morais GP, de Vicente LG, Cintra DE, Pauli JR, Moura LP, Ropelle ER, da Silva ASR. Levels of Hepatic Activating Transcription Factor 6 and Caspase-3 Are Downregulated in Mice after Excessive Training. Front Endocrinol (Lausanne) 2017; 8:247. [PMID: 29018408 PMCID: PMC5622940 DOI: 10.3389/fendo.2017.00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Recently, we demonstrated that different running overtraining (OT) protocols with the same external load, but performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR), led to hepatic fat accumulation. As the disruption of endoplasmic reticulum (ER) homeostasis is linked to animal models of fatty liver disease, we investigated the effects of these OT models on the proteins related to ER stress (i.e., BiP, inositol-requiring enzyme 1, protein kinase RNA-like endoplasmic reticulum kinase, eIF2alpha, ATF6beta, and glucose-regulated protein 94) and apoptosis (C/EBP-homologous protein, Caspase-3, 4, and 12, Bax, and tumor necrosis factor receptor-associated factor 2) in livers of C57BL/6 mice. Also, aerobic training can attenuate cardiac ER stress and improve exercise capacity. Therefore, we investigated whether the decrease in performance induced by our OT protocols is linked to ER stress and apoptosis in mouse hearts. The rodents were divided into six groups: naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance evaluations), trained (TR), OTR/down, OTR/up, and OTR groups. Rotarod, incremental load, exhaustive, and grip force tests were used to evaluate performance. After the grip force test, the livers and cardiac muscles (i.e., left ventricle) were removed and used for immunoblotting. All of the OT protocols led to similar responses in the performance parameters and displayed significantly lower hepatic ATF6beta values compared to the N group. The OTR/down group exhibited lower liver cleaved caspase-3 values compared to the CT group. However, the other proteins related to ER stress and apoptosis were not modulated. Also, the cardiac proteins related to ER stress and apoptosis were not modulated in the experimental groups. In conclusion, the OT protocols decreased the levels of hepatic ATF6beta, and the OTR/down group decreased the levels of hepatic cleaved caspase-3. Also, the decrease in performance induced by our OT models is not associated with ER stress and apoptosis in mice hearts.
Collapse
Affiliation(s)
- Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Luciana da C. Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Gustavo P. Morais
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Larissa G. de Vicente
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys E. Cintra
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - José R. Pauli
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Leandro P. Moura
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Eduardo R. Ropelle
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- *Correspondence: Adelino S. R. da Silva,
| |
Collapse
|
42
|
Exercise during pregnancy decreases doxorubicin-induced cardiotoxic effects on neonatal hearts. Toxicology 2016; 368-369:46-57. [PMID: 27565713 DOI: 10.1016/j.tox.2016.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Cancer treatment with Doxorubicin (DOX) is limited due its dose-dependent cardiotoxicity, mainly related to the oxidative stress production. In experimental models of DOX treatment exercise can be used as a beneficial adjuvant therapy. This work aimed to investigate the effects of exercise during pregnancy on DOX-induced cardiotoxicity in cardiomyocytes of progeny, examining the possible intergenerational cardioprotective effects of maternal exercise. For this purpose pregnant rats were divided in control and exercise groups and pre-treated during gestational days. Hearts of newborns were used to obtain a culture of cardiomyocytes to be treated with DOX for analyses of cell viability, apoptosis and necrosis; ROS production; DNA damage; SOD and CAT activities; and Sirt6 protein expression. The results showed that exercise during pregnancy induced an increase in the viability of neonatal cardiomyocytes and a decrease in DOX-induced apoptotic and necrotic death which were correlated to the decrease in ROS production and an increase in antioxidant defenses. Exercise also protected neonatal cardiomyocytes from DOX-induced DNA damage, demonstrating a reduction in the oxidative DNA breaks. Likewise, exercise induced an increase in expression of Sirt6 in neonatal cardiomyocytes. Therefore, these results demonstrate for the first time that exercise performed by mothers protects the neonatal heart against DOX-induced toxicity. Our data demonstrate the intergenerational effect of exercise in cardiomyocytes of progeny, where the modulation of oxidative stress through antioxidant enzymes, and DNA integrity via Sirt6, were induced due to exercise in mothers, increasing the resistance of the neonatal heart against DOX toxicity.
Collapse
|
43
|
Nair N, Gongora E. Heart failure in chemotherapy-related cardiomyopathy: Can exercise make a difference? BBA CLINICAL 2016; 6:69-75. [PMID: 27413695 PMCID: PMC4925806 DOI: 10.1016/j.bbacli.2016.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Medical therapies in oncology have resulted in better survival resulting in a large population who are at risk of early and late cardiac complications of chemotherapy. Cardiotoxicity related to chemotherapy can manifest decades after treatment with a threefold higher mortality rate as compared to idiopathic dilated cardiomyopathy. The leading cause of death in cancer survivors seems to be cardiac. Early detection and intervention could prevent progression of heart failure to end stage disease requiring advanced therapies such as implantation of ventricular assist devices or cardiac transplantation. This review focuses on the role of exercise in cardioprotection in this population. The current practice of depending on ejection fraction for diagnosis of heart failure is suboptimal to detect subclinical disease. It is also important to diagnose and treat early diastolic dysfunction as this tends to lead to heart failure with preserved ejection fraction. Hence we suggest an algorithm here that is based on using strain rate and tissue Doppler imaging modalities to detect subclinical systolic and diastolic dysfunction. Further research is warranted in terms of defining exercise prescriptions in this population. Human studies with multicenter participation in randomized controlled trials should be done to elucidate the intricacies of aerobic exercise intervention in cardiotoxicity dependent heart failure. It is also necessary to assess the utility of exercise interventions in the different chemotherapeutic regimens as they impact the outcomes. The need for exercise prescription to prevent cardiotoxicity in chemotherapy patients The molecular basis of exercise as an intervention Summary of existing evidence Need for further studies on the role of exercise in different chemotherapeutic regimens
Collapse
Affiliation(s)
- Nandini Nair
- Division of Cardiology, Texas Tech Health Sciences Center, Lubbock, TX 79382, United States
| | - Enrique Gongora
- Memorial Cardiac and Vascular Institute, Hollywood, FL 33021, United States
| |
Collapse
|
44
|
Gonçalves IO, Passos E, Diogo CV, Rocha-Rodrigues S, Santos-Alves E, Oliveira PJ, Ascensão A, Magalhães J. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Appl Physiol Nutr Metab 2016; 41:298-306. [DOI: 10.1139/apnm-2015-0470] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondrial quality control and apoptosis have been described as key components in the pathogenesis of nonalcoholic steatohepatitis (NASH); exercise is recognized as a nonpharmacological strategy to counteract NASH-associated consequences. We aimed to analyze the effect of voluntary physical activity (VPA) and endurance training (ET) against NASH-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial and cellular quality control deleterious alterations. Forty-eight male Sprague–Dawley rats were divided into standard-diet sedentary (SS, n = 16), standard-diet VPA (n = 8), high-fat diet sedentary (HS, n = 16), and high-fat diet VPA (n = 8). After 9 weeks of diet treatment, half of the SS and HS groups were engaged in an ET program for 8 weeks, 5 days/week, 1 h/day. Liver mPTP susceptibility through osmotic swelling, mPTP-related proteins (cyclophilin D, Sirtuin3, Cofilin-1), markers of mitochondrial biogenesis ((mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor gamma co-activator protein (PGC-1α)), dynamics (Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Dynamin related protein 1, and Optic atrophy 1)), auto/mitophagy (Beclin-1, microtubule-associated protein 1 light chain 3, p62, PINK1, and Parkin), and apoptotic signaling (Bax, Bcl-2) and caspases-like activities were assessed. HS animals showed an increased susceptibility to mPTP, compromised expression of Tfam, Mfn1, PINK1, and Parkin and an increase in Bax content (HS vs. SS). ET and VPA improved biogenesis-related proteins (PGC-1α) and autophagy signaling (Beclin-1 and Beclin-1/Bcl-2 ratio) and decreased apoptotic signaling (caspases 8 activity, Bax content, and Bax/Bcl-2 ratio). However, only ET decreased mPTP susceptibility and positively modulated Bcl-2, Tfam, Mfn1, Mfn2, PINK1, and Parkin content. In conclusion, exercise reduces the increased susceptibility to mPTP induced by NASH and promotes the increase of auto/mitophagy and mitochondrial fusion towards a protective phenotype.
Collapse
Affiliation(s)
- Inês O. Gonçalves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - Emanuel Passos
- Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Cátia V. Diogo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal
| | - Sílvia Rocha-Rodrigues
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - Estela Santos-Alves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal
| | - António Ascensão
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - José Magalhães
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| |
Collapse
|
45
|
Yu AF, Jones LW. Breast cancer treatment-associated cardiovascular toxicity and effects of exercise countermeasures. CARDIO-ONCOLOGY 2016; 2:1. [PMID: 28133540 PMCID: PMC5268817 DOI: 10.1186/s40959-016-0011-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in breast cancer treatment have improved disease-free survival and overall survival in women with early-stage breast cancer. However, these improvements may be attenuated by the adverse cardiovascular effects associated with breast cancer adjuvant therapy. Exercise may be a potential strategy to counteract these toxicities. The purpose of this paper is to provide an overview on the adverse cardiovascular effects of breast cancer therapy as well as the evidence supporting the potential cardioprotective effects of exercise training in breast cancer patients during and after treatment. We will also discuss research gaps and avenues for future research.
Collapse
Affiliation(s)
- Anthony F Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Cardiology Service, 1275 York Avenue, New York, NY, 10065, USA
| | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Cardiology Service, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
46
|
Marques-Aleixo I, Santos-Alves E, Balça MM, Moreira PI, Oliveira PJ, Magalhães J, Ascensão A. Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling. Mitochondrion 2015; 26:43-57. [PMID: 26678157 DOI: 10.1016/j.mito.2015.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
Abstract
Doxorubicin (DOX) is a highly effective anti-neoplastic agent, whose clinical use is limited by a dose-dependent mitochondrial toxicity in non-target tissues, including the brain. Here we analyzed the effects of distinct exercise modalities (12-week endurance treadmill-TM or voluntary free-wheel activity-FW) performed before and during sub-chronic DOX treatment on brain cortex and cerebellum mitochondrial bioenergetics, oxidative stress, permeability transition pore (mPTP), and proteins involved in mitochondrial biogenesis, apoptosis and auto(mito)phagy. Male Sprague-Dawley rats were divided into saline-sedentary (SAL+SED), DOX-sedentary (DOX+SED; 7-week DOX (2 mg · kg(-1)per week)), DOX+TM and DOX+FW. Animal behavior and post-sacrifice mitochondrial function were assessed. Oxidative phosphorylation (OXPHOS) subunits, oxidative stress markers or related proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α and TFAM) were evaluated. Apoptotic signaling was followed through caspases 3, 8 and 9-like activities, Bax, Bcl2, CypD, ANT and cofilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin and p62)-related proteins were measured by semi-quantitative Western blotting. DOX impaired behavioral performance, mitochondrial function, including lower resistance to mPTP and increased apoptotic signaling, decreased the content in OXPHOS complex subunits and increased oxidative stress in brain cortex and cerebellum. Molecular markers of mitochondrial biogenesis, dynamics and autophagy were also altered by DOX treatment in both brain subareas. Generally, TM and FW were able to mitigate DOX-related impairments in brain cortex and cerebellum mitochondrial activity, mPTP and apoptotic signaling. We conclude that the alterations in mitochondrial biogenesis, dynamics and autophagy markers induced by exercise performed before and during treatment may contribute to the observed protective brain cortex and cerebellum mitochondrial phenotype, which is more resistant to oxidative damage and apoptotic signaling in sub-chronically DOX treated animals.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - M M Balça
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - P J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
47
|
Lien CY, Jensen BT, Hydock DS, Hayward R. Short-term exercise training attenuates acute doxorubicin cardiotoxicity. J Physiol Biochem 2015; 71:669-78. [DOI: 10.1007/s13105-015-0432-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022]
|
48
|
Singh P, Sharma R, McElhanon K, Allen CD, Megyesi JK, Beneš H, Singh SP. Sulforaphane protects the heart from doxorubicin-induced toxicity. Free Radic Biol Med 2015; 86:90-101. [PMID: 26025579 PMCID: PMC4554811 DOI: 10.1016/j.freeradbiomed.2015.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023]
Abstract
Cardiotoxicity is one of the major side effects encountered during cancer chemotherapy with doxorubicin (DOX) and other anthracyclines. Previous studies have shown that oxidative stress caused by DOX is one of the primary mechanisms for its toxic effects on the heart. Since the redox-sensitive transcription factor, Nrf2, plays a major role in protecting cells from the toxic metabolites generated during oxidative stress, we examined the effects of the phytochemical sulforaphane (SFN), a potent Nrf2-activating agent, on DOX-induced cardiotoxicity. These studies were carried out both in vitro and in vivo using rat H9c2 cardiomyoblast cells and wild type 129/sv mice, and involved SFN pretreatment followed by SFN administration during DOX exposure. SFN treatment protected H9c2 cells from DOX cytotoxicity and also resulted in restored cardiac function and a significant reduction in DOX-induced cardiomyopathy and mortality in mice. Specificity of SFN induction of Nrf2 and protection of H9c2 cells was demonstrated in Nrf2 knockdown experiments. Cardiac accumulation of 4-hydroxynonenal (4-HNE) protein adducts, due to lipid peroxidation following DOX-induced oxidative stress, was significantly attenuated by SFN treatment. The respiratory function of cardiac mitochondria isolated from mice exposed to DOX alone was repressed, while SFN treatment with DOX significantly elevated mitochondrial respiratory complex activities. Co-administration of SFN reversed the DOX-associated reduction in nuclear Nrf2 binding activity and restored cardiac expression of Nrf2-regulated genes at both the RNA and protein levels. Together, our results demonstrate for the first time that the Nrf2 inducer, SFN, has the potential to provide protection against DOX-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Rajendra Sharma
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin McElhanon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Charles D Allen
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Judit K Megyesi
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA; Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Helen Beneš
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sharda P Singh
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
49
|
Parry TL, Hayward R. Exercise training does not affect anthracycline antitumor efficacy while attenuating cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 2015; 309:R675-83. [PMID: 26246505 DOI: 10.1152/ajpregu.00185.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 11/22/2022]
Abstract
Highly effective anthracyclines, like doxorubicin (DOX), have limited clinical use due to protracted cardiotoxic effects. While exercise is known to be cardioprotective, it is unclear whether exercise compromises chemotherapy treatment efficacy. To determine the effect of exercise training on DOX antitumor efficacy as well as DOX-induced cardiotoxicity, female Fisher 344 rats were randomly assigned to sedentary + saline (SED+SAL), SED+DOX, wheel run exercise training + SAL (WR+SAL), or WR+DOX. On week 11, animals were inoculated with 1×10(6) MatBIII tumor cells. Once tumors reached ∼1 cm in diameter, animals were treated with 12 mg/kg of DOX or SAL. Animals were killed 1, 3, or 5 days following treatment. Tumor growth and cardiac function were measured at each interval. DOX accumulation and multidrug resistance protein (MRP) expression were quantified in tumor and heart tissue. No significant difference (P > 0.05) existed between DOX-treated SED and WR groups for tumor measurements. Exercise preserved cardiac function up to 5 days following DOX treatment. Exercise reduced ventricular DOX accumulation and upregulated ventricular MPR1 and MPR2. In contrast, no differences were observed in DOX accumulation or MRP expression in tumors of SED and WR animals. Endurance exercise had no effect on DOX antitumor efficacy as evidenced by a definitive DOX-induced reduction in tumor growth in both the SED and WR groups. Although exercise did not affect the antitumor efficacy of DOX, it still provided protection against cardiac dysfunction. These effects may be mediated by the degree of DOX tissue accumulation secondary to the regulation of MRP expression.
Collapse
Affiliation(s)
- Traci L Parry
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado; and Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, Colorado
| | - Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado; and Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, Colorado
| |
Collapse
|
50
|
Exercise Prevention of Cardiovascular Disease in Breast Cancer Survivors. JOURNAL OF ONCOLOGY 2015; 2015:917606. [PMID: 26339243 PMCID: PMC4539168 DOI: 10.1155/2015/917606] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
Thanks to increasingly effective treatment, breast cancer mortality rates have significantly declined over the past few decades. Following the increase in life expectancy of women diagnosed with breast cancer, it has been recognized that these women are at an elevated risk for cardiovascular disease due in part to the cardiotoxic side effects of treatment. This paper reviews evidence for the role of exercise in prevention of cardiovascular toxicity associated with chemotherapy used in breast cancer, and in modifying cardiovascular risk factors in breast cancer survivors. There is growing evidence indicating that the primary mechanism for this protective effect appears to be improved antioxidant capacity in the heart and vasculature and subsequent reduction of treatment-related oxidative stress in these structures. Further clinical research is needed to determine whether exercise is a feasible and effective nonpharmacological treatment to reduce cardiovascular morbidity and mortality in breast cancer survivors, to identify the cancer therapies for which it is effective, and to determine the optimal exercise dose. Safe and noninvasive measures that are sensitive to changes in cardiovascular function are required to answer these questions in patient populations. Cardiac strain, endothelial function, and cardiac biomarkers are suggested outcome measures for clinical research in this field.
Collapse
|