1
|
Núñez-Robainas A, Guitart M, López-Postigo A, Sancho-Muñoz A, Barreiro E. Myostatin/Smad2/Smad3 pathway define a differential clinical phenotype in COPD-associated sarcopenia. ERJ Open Res 2025; 11:00772-2024. [PMID: 40264457 PMCID: PMC12012910 DOI: 10.1183/23120541.00772-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/14/2024] [Indexed: 04/24/2025] Open
Abstract
Background Sarcopenia, defined as the loss of muscle mass and function, represents one of the most relevant comorbidities in patients with COPD even at early stages. We hypothesised that sarcopenia defines a specific clinical phenotype in COPD irrespective of respiratory disease severity. Markers of myostatin/Smad2/Smad3 and IGF-1/PI3K/Akt may be differentially expressed in the vastus lateralis (VL) of patients with COPD-associated sarcopenia. Methods In muscle specimens from VL, markers of the myostatin/Smad2/Smad3, Smad4 and IGF-1/PI3K/Akt pathways were evaluated (real-time PCR and immunoblotting) and correlations between clinical and biological variables of patients with sarcopenia (n=23), without sarcopenia (n=18) and healthy controls (n=13) were examined. Results In the VL of sarcopenic COPD patients, expression levels of myostatin, Smad2/Smad3 and Smad4 increased compared with those in nonsarcopenic patients and healthy controls. In sarcopenic limb muscles of patients with COPD, the myostatin Smad2/Smad3 pathway was differentially activated from patients without sarcopenia and healthy controls. Among sarcopenic patients, myostatin and p-Smad3/Smad3 levels negatively correlated with fat-free mass index (r=-0.727, p=0.026 and r=-0.703, p=0.035, respectively), myostatin and Smad4 levels correlated with quadriceps strength (r=-0.886, p=0.003 and r=-0.431, p=0.040, respectively) and myostatin correlated with diffusion capacity (r=-0.781, p=0.022). Remarkable negative correlations were observed between clinical parameters related to body composition and quadriceps muscle strength and levels of the myostatin Smad2/Smad3 pathway, suggesting its implication in the process of muscle atrophy in COPD. IGF1 gene expression was also upregulated in the VL of sarcopenic patients. Conclusion Collectively, these findings offer a potential therapeutic target in COPD-associated sarcopenia.
Collapse
Affiliation(s)
- Adriana Núñez-Robainas
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Barcelona, Spain
| | - Maria Guitart
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Barcelona, Spain
| | - Adrián López-Postigo
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio Sancho-Muñoz
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Barcelona, Spain
- Pulmonology Department, Hospital del Mar, Barcelona, Spain
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Barcelona, Spain
- Pulmonology Department, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
2
|
Alvarado-Miranda M, Solano A, Marsico S, Núñez-Robainas A, Cumpli-Gargallo MC, Sáinz M, Maiques JM, Barreiro E. Clinical Implications of Functional Imaging in the Assessment of Bronchiectasis-Associated Sarcopenia. Arch Bronconeumol 2024:S0300-2896(24)00453-8. [PMID: 39706732 DOI: 10.1016/j.arbres.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Bronchiectasis is a complex lung disease with poorly studied systemic manifestations. Patients with bronchiectasis-associated sarcopenia exhibit a specific differential profile of functional muscle phenotype (vastus lateralis, VL), which may be analyzed using imaging (ultrasound and magnetic resonance imaging, MRI). METHODS Ultrasound and MRI were used to explore functional imaging parameters in quadriceps of 20 patients with stable bronchiectasis and 10 healthy controls. In muscle specimens (open biopsy procedures), muscle phenotype (fiber morphometry and structural abnormalities, immunohistochemistry) was also evaluated. Patients and controls were clinically and functionally evaluated. RESULTS In muscles of patients compared to controls, a significant decline in body composition parameters (BMI and FFMI), muscle function (upper and lower limbs), lung function, and exercise capacity was detected, ultrasonography revealed decreased muscle thickness and area, while MRI demonstrated increased fat infiltration, which positively correlated with the bronchiectasis severity scores. Structural parameters (proportions of hybrid fibers, internal nuclei, abnormal fibers, and apoptotic nuclei) were significantly greater in the VL of patients than in controls and inversely correlated with quadriceps muscle function and exercise capacity in the former. CONCLUSIONS In patients with stable mild-to-moderate bronchiectasis, sarcopenia was clinically evidenced through the significant reduction in muscle mass and upper and lower limb muscle function. Non-invasive ultrasound and MRI techniques showed that features of muscle quality architecture and fat infiltration are hallmarks of bronchiectasis-associated sarcopenia. Functional radiological tools should be implemented in clinical settings to early diagnose and monitor sarcopenia in these patients.
Collapse
Affiliation(s)
- Mariela Alvarado-Miranda
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos, 5, E-28029 Madrid, Spain; Pulmonology Department, Hospital Universitari Mutua Terrassa, Barcelona, Spain
| | - Alberto Solano
- Radiology Department, Imatge Mèdica Intercentres-Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Salvatore Marsico
- Radiology Department, Imatge Mèdica Intercentres-Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Adriana Núñez-Robainas
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos, 5, E-28029 Madrid, Spain
| | - Maria Cinta Cumpli-Gargallo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain
| | - Marina Sáinz
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain
| | - José María Maiques
- Radiology Department, Imatge Mèdica Intercentres-Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos, 5, E-28029 Madrid, Spain.
| |
Collapse
|
3
|
Ren B, Su H, Bao C, Xu H, Xiao Y. Noncoding RNAs in chronic obstructive pulmonary disease: From pathogenesis to therapeutic targets. Noncoding RNA Res 2024; 9:1111-1119. [PMID: 39022682 PMCID: PMC11254503 DOI: 10.1016/j.ncrna.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent chronic respiratory disorder that is becoming the leading cause of morbidity and mortality on a global scale. There is an unmet need to investigate the underlying pathophysiological mechanisms and unlock novel therapeutic avenues for COPD. Recent research has shed light on the significant roles played by diverse noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in orchestrating the development and progression of COPD. This review provides an overview of the regulatory roles of ncRNAs in COPD, elucidating their underlying mechanisms, and illuminating the potential prospects of RNA-based therapeutics in the management of COPD.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Hua Su
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Chang Bao
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hangdi Xu
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| |
Collapse
|
4
|
Chan SMH, Selemidis S, Vlahos R. The Double-Edged Sword of ROS in Muscle Wasting and COPD: Insights from Aging-Related Sarcopenia. Antioxidants (Basel) 2024; 13:882. [PMID: 39061950 PMCID: PMC11274264 DOI: 10.3390/antiox13070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
An elevation in reactive oxygen species (ROS) is widely accepted to be a key mechanism that drives chronic obstructive pulmonary disease (COPD) and its major co-morbidity, skeletal muscle wasting. However, it will be perhaps a surprise to many that an elevation in ROS in skeletal muscle is also a critical process for normal skeletal muscle function and in the adaptations to physical exercise. The key message here is that ROS are not solely detrimental. This duality of ROS suggests that the mere use of a broad-acting antioxidant is destined to fail in alleviating skeletal muscle wasting in COPD because it will also be influencing critical physiological ROS-dependent processes. Here, we take a close look at this duality of ROS in skeletal muscle physiology and pathophysiology pertaining to COPD and will aim to gain critical insights from other skeletal muscle wasting conditions due to aging such as sarcopenia.
Collapse
Affiliation(s)
- S. M. H. Chan
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3001, Australia; (S.S.); (R.V.)
| | | | | |
Collapse
|
5
|
Srivastava S, Mondal S, Rathor R, Srivastava S, Suryakumar G. Increased Expression of MiRNA-1 Contributes to Hypobaric Hypoxia-Induced Skeletal Muscle Loss. Adv Biol (Weinh) 2024; 8:e2300573. [PMID: 38149527 DOI: 10.1002/adbi.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The present study aims to analyze the role of microRNA-1 in the regulation of skeletal muscle loss under hypobaric hypoxia (HH). Male Sprague Dawley rats (n = 10) weighing 230-250 g are divided into two groups, control and HH exposure for 7 days at 25 000 ft. After the hypoxia exposure, the animals are sacrificed and hindlimb skeletal muscles are excised for further analysis. Studies found the potential role of miR-1 (myomiR) as a biomarker under different atrophic conditions. Prolonged exposure to HH leads to enhanced expression of miR-1 in skeletal muscle as compared to unexposed controls. The Bioinformatics approach is used to identify the validated targets and the biological processes of miR-1. The target prediction tools identify PAX3 and HSP70 as major targets for miR-1. Exposure to HH significantly reduces PAX3 and HSP70 expression during 7 days of HH exposure, which further enhances the activity of FOXO3, MSTN, and ATROGIN known for the progression of skeletal muscle atrophy in relation to control rats. This study indicates the increased expressions of miR-1 and reduced expression of PAX3 and HSP70 lead to impaired myogenesis in skeletal muscle under HH. Further, enhanced expression of muscle degradation genes such as FOXO3, MSTN, and ATROGIN under HH exposure causes skeletal muscle protein loss.
Collapse
Affiliation(s)
- Sukanya Srivastava
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Samrita Mondal
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
6
|
Han L, Li P, He Q, Yang C, Jiang M, Wang Y, Cao Y, Han X, Liu X, Wu W. Revisiting Skeletal Muscle Dysfunction and Exercise in Chronic Obstructive Pulmonary Disease: Emerging Significance of Myokines. Aging Dis 2023; 15:2453-2469. [PMID: 38270119 PMCID: PMC11567253 DOI: 10.14336/ad.2023.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 01/26/2024] Open
Abstract
Skeletal muscle dysfunction (SMD) is the most significant extrapulmonary complication and an independent prognostic indicator in patients with chronic obstructive pulmonary disease (COPD). Myokines, such as interleukin (IL)-6, IL-15, myostatin, irisin, and insulin-like growth factor (IGF)-1, play important roles in skeletal muscle mitochondrial function, protein synthesis and breakdown balance, and regeneration of skeletal muscles in COPD. As the main component of pulmonary rehabilitation, exercise can improve muscle strength, muscle endurance, and exercise capacity in patients with COPD, as well as improve the prognosis of SMD and COPD by regulating the expression levels of myokines. The mechanisms by which exercise regulates myokine levels are related to microRNAs. IGF-1 expression is upregulated by decreasing the expression of miR-1 or miR-29b. Myostatin downregulation and irisin upregulation are associated with increased miR-27a expression and decreased miR-696 expression, respectively. These findings suggest that myokines are potential targets for the prevention and treatment of SMD in COPD. A comprehensive analysis of the role and regulatory mechanisms of myokines can facilitate the development of new exercise-based therapeutic approaches for patients with COPD.
Collapse
Affiliation(s)
- Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
7
|
Bai J, Lin Y, Zhang J, Chen Z, Wang Y, Li M, Li J. Profiling of Chromatin Accessibility in Pigs across Multiple Tissues and Developmental Stages. Int J Mol Sci 2023; 24:11076. [PMID: 37446255 DOI: 10.3390/ijms241311076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The study of chromatin accessibility across tissues and developmental stages is essential for elucidating the transcriptional regulation of various phenotypes and biological processes. However, the chromatin accessibility profiles of multiple tissues in newborn pigs and across porcine liver development remain poorly investigated. Here, we used ATAC-seq and rRNA-depleted RNA-seq to profile open chromatin maps and transcriptional features of heart, kidney, liver, lung, skeletal muscle, and spleen in newborn pigs and porcine liver tissue in the suckling and adult stages, respectively. Specifically, by analyzing a union set of protein-coding genes (PCGs) and two types of transcripts (lncRNAs and TUCPs), we obtained a comprehensive annotation of consensus ATAC-seq peaks for each tissue and developmental stage. As expected, the PCGs with tissue-specific accessible promoters had active transcription and were relevant to tissue-specific functions. In addition, other non-coding tissue-specific peaks were involved in both physical activity and the morphogenesis of neonatal tissues. We also characterized stage-specific peaks and observed a close association between dynamic chromatin accessibility and hepatic function transition during liver postnatal development. Overall, this study expands our current understanding of epigenetic regulation in mammalian tissues and organ development, which can benefit both economic trait improvement and improve the biomedical usage of pigs.
Collapse
Affiliation(s)
- Jingyi Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyu Chen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Martin RA, Keeler SP, Wu K, Shearon WJ, Patel D, Li J, Hoang M, Hoffmann CM, Hughes ME, Holtzman MJ. An alternative mechanism for skeletal muscle dysfunction in long-term post-viral lung disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L870-L878. [PMID: 37130808 PMCID: PMC10259859 DOI: 10.1152/ajplung.00338.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023] Open
Abstract
Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled chronic obstructive pulmonary disease (COPD) and relied on cigarette smoke exposure and LPS stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in COVID-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease caused by infection due to the natural pathogen Sendai virus using a mouse model of PVLD. We identify a significant decrease in myofiber size when PVLD is maximal at 49 days after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch-type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insights into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.NEW & NOTEWORTHY Our study used a mouse model of post-viral lung disease to study the impact of chronic lung disease on skeletal muscle. The model reveals a decrease in myofiber size that is selective for specific types of myofibers and an alternative mechanism for muscle atrophy that might be independent of the usual markers of protein synthesis and degradation. The findings provide a basis for new therapeutic strategies to correct skeletal muscle dysfunction in chronic respiratory disease.
Collapse
Affiliation(s)
- Ryan A Martin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - William J Shearon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Devin Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jiajia Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - My Hoang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Christy M Hoffmann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael E Hughes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
9
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
10
|
Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients 2023; 15:nu15061454. [PMID: 36986182 PMCID: PMC10053245 DOI: 10.3390/nu15061454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
We hypothesized that a rise in the levels of oxidative/nitrosative stress markers and a decline in antioxidants might take place in systemic and muscle compartments of chronic obstructive pulmonary disease (COPD) patients with non-anemic iron deficiency. In COPD patients with/without iron depletion (n = 20/group), markers of oxidative/nitrosative stress and antioxidants were determined in blood and vastus lateralis (biopsies, muscle fiber phenotype). Iron metabolism, exercise, and limb muscle strength were assessed in all patients. In iron-deficient COPD compared to non-iron deficient patients, oxidative (lipofuscin) and nitrosative stress levels were greater in muscle and blood compartments and proportions of fast-twitch fibers, whereas levels of mitochondrial superoxide dismutase (SOD) and Trolox equivalent antioxidant capacity (TEAC) decreased. In severe COPD, nitrosative stress and reduced antioxidant capacity were demonstrated in vastus lateralis and systemic compartments of iron-deficient patients. The slow- to fast-twitch muscle fiber switch towards a less resistant phenotype was significantly more prominent in muscles of these patients. Iron deficiency is associated with a specific pattern of nitrosative and oxidative stress and reduced antioxidant capacity in severe COPD irrespective of quadriceps muscle function. In clinical settings, parameters of iron metabolism and content should be routinely quantify given its implications in redox balance and exercise tolerance.
Collapse
|
11
|
Zhao H, Li P, Wang J. The role of muscle-specific MicroRNAs in patients with chronic obstructive pulmonary disease and skeletal muscle dysfunction. Front Physiol 2022; 13:954364. [PMID: 36338492 PMCID: PMC9633658 DOI: 10.3389/fphys.2022.954364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Skeletal muscle dysfunction is a systematic manifestation of chronic obstructive pulmonary disease (COPD), which is manifested through the changes in the respiratory and peripheral muscle fiber types, reducing muscle strength and endurance, and muscle atrophy. Muscle dysfunction limits the daily mobility, negatively affects the quality of life, and may increase the patient’s risk of mortality. MicroRNAs (miRNAs) as the regulators of gene expression, plays an important role in modulating skeletal muscle dysfunction in COPD by regulating skeletal muscle development (proliferation, differentiation), protein synthesis and degradation, inflammatory response, and metabolism. In particular, muscle-specific miRNAs (myomiRs) may play an important role in this process, although the different expression levels of myomiRs in COPD and skeletal muscle dysfunction and the mechanisms underlying their role remain unclear. In this paper, we review the differential expression of the myomiRs in COPD to identify myomiRs that play a role in skeletal muscle dysfunction in COPD. We further explore their possible mechanisms and action in order to provide new ideas for the prevention and treatment of the skeletal muscle dysfunction in COPD.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jihong Wang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jihong Wang,
| |
Collapse
|
12
|
Martin RA, Keeler SP, Wu K, Shearon WJ, Patel D, Hoang M, Hoffmann CM, Hughes ME, Holtzman MJ. An alternative mechanism for skeletal muscle dysfunction in long-term post-viral lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.07.511313. [PMID: 36238722 PMCID: PMC9558431 DOI: 10.1101/2022.10.07.511313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled COPD and relied on cigarette smoke exposure and LPS-stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in Covid-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease using a mouse model of PVLD caused by infection due to the natural pathogen Sendai virus. We identify a significant decrease in myofiber size when PVLD is maximal at 49 d after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insight into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.
Collapse
Affiliation(s)
- Ryan A. Martin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - William J. Shearon
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Devin Patel
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - My Hoang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Christy M. Hoffmann
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael E. Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
13
|
Decrotonylation of AKT1 promotes AKT1 phosphorylation and activation during myogenic differentiation. J Adv Res 2022:S2090-1232(22)00235-1. [PMID: 36265762 PMCID: PMC10403674 DOI: 10.1016/j.jare.2022.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/13/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Myogenic differentiation plays an important role in pathophysiological processes including muscle injury and regeneration, as well as muscle atrophy. A novel type of posttranslational modification, crotonylation, has been reported to play a role in stem cell differentiation and disease. However, the role of crotonylation in myogenic differentiation has not been clarified. OBJECTIVES This study aims to find the role of crotonylation during myogenic differentiation and explore whether it is a potential target in myogenic dysfunction disease. METHODS C2C12 cell line and skeletal muscle mesenchymal progenitors of Mus musculus were used for myogenic process study in vitro, while muscle injury model of mice was used for in vivo muscle regeneration study. Mass spectrometry favored in discovery of potential target protein of crotonylation and its specific sites. RESULTS We confirmed the gradual decrease in total protein crotonylation level during muscle differentiation and found decreased crotonylation of AKT1, which facilitated an increase in AKT1 phosphorylation. Then we verified that crotonylation of AKT1 at specific sites weakened its binding with PDK1 and impaired its phosphorylation. In addition, we found that increased expression of the crotonylation eraser HDAC3 decreased AKT1 crotonylation levels during myogenic differentiation, jointly promoting myogenic differentiation. CONCLUSION Our study highlights the important role of decrotonylation of AKT1 in the process of muscle differentiation, where it aids the phosphorylation and activation of AKT1 and promotes myogenic differentiation. This is of great significance for exploring the pathophysiological process of muscle injury repair and sarcopenia.
Collapse
|
14
|
Iron Depletion in Systemic and Muscle Compartments Defines a Specific Phenotype of Severe COPD in Female and Male Patients: Implications in Exercise Tolerance. Nutrients 2022; 14:nu14193929. [PMID: 36235581 PMCID: PMC9571884 DOI: 10.3390/nu14193929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
We hypothesized that iron content and regulatory factors, which may be involved in exercise tolerance, are differentially expressed in systemic and muscle compartments in iron deficient severe chronic obstructive pulmonary disease (COPD) patients. In the vastus lateralis and blood of severe COPD patients with/without iron depletion, iron content and regulators, exercise capacity, and muscle function were evaluated in 40 severe COPD patients: non-iron deficiency (NID) and iron deficiency (ID) (20 patients/group). In ID compared to NID patients, exercise capacity, muscle iron and ferritin content, serum transferrin saturation, hepcidin-25, and hemojuvelin decreased, while serum transferrin and soluble transferrin receptor and muscle IRP-1 and IRP-2 increased. Among all COPD, a significant positive correlation was detected between FEV1 and serum transferrin saturation. In ID patients, significant positive correlations were detected between serum ferritin, hepcidin, and muscle iron content and exercise tolerance and between muscle IRP-2 and serum ferritin and hepcidin levels. In ID severe COPD patients, iron content and its regulators are differentially expressed. A potential crosstalk between systemic and muscle compartments was observed in the ID patients. Lung function and exercise capacity were associated with several markers of iron metabolism regulation. Iron status should be included in the overall assessment of COPD patients given its implications in their exercise performance.
Collapse
|
15
|
Peñailillo L, Valladares-Ide D, Jannas-Velas S, Flores-Opazo M, Jalón M, Mendoza L, Nuñez I, Diaz-Patiño O. Effects of eccentric, concentric and eccentric/concentric training on muscle function and mass, functional performance, cardiometabolic health, quality of life and molecular adaptations of skeletal muscle in COPD patients: a multicentre randomised trial. BMC Pulm Med 2022; 22:278. [PMID: 35854255 PMCID: PMC9297587 DOI: 10.1186/s12890-022-02061-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is the third cause of death worldwide. COPD is characterised by dyspnoea, limited exercise tolerance, and muscle dysfunction. Muscle dysfunction has been linked to dysregulation between muscle protein synthesis, myogenesis and degradation mechanisms. Conventional concentric cycling has been shown to improve several clinical outcomes and reduce muscle wasting in COPD patients. Eccentric cycling is a less explored exercise modality that allows higher training workloads imposing lower cardio-metabolic demand during exercise, which has shown to induce greater muscle mass and strength gains after training. Interestingly, the combination of eccentric and concentric cycling training has scarcely been explored. The molecular adaptations of skeletal muscle after exercise interventions in COPD have shown equivocal results. The mechanisms of muscle wasting in COPD and whether it can be reversed by exercise training are unclear. Therefore, this study aims two-fold: (1) to compare the effects of 12 weeks of eccentric (ECC), concentric (CONC), and combined eccentric/concentric (ECC/CONC) cycling training on muscle mass and function, cardiometabolic health, physical activity levels and quality of life in severe COPD patients; and (2) to examine the molecular adaptations regulating muscle growth after training, and whether they occur similarly in specific muscle fibres (i.e., I, IIa and IIx). Methods Study 1 will compare the effects of 12 weeks of CONC, ECC, versus ECC/CONC training on muscle mass and function, cardiometabolic health, levels of physical activity and quality of life of severe COPD patients using a multicentre randomised trial. Study 2 will investigate the effects of these training modalities on the molecular adaptations regulating muscle protein synthesis, myogenesis and muscle degradation in a subgroup of patients from Study 1. Changes in muscle fibres morphology, protein content, genes, and microRNA expression involved in skeletal muscle growth will be analysed in specific fibre-type pools. Discussion We aim to demonstrate that a combination of eccentric and concentric exercise could maximise the improvements in clinical outcomes and may be ideal for COPD patients. We also expect to unravel the molecular mechanisms underpinning muscle mass regulation after training in severe COPD patients. Trial Registry: Deutshches Register Klinischer Studien; Trial registration: DRKS00027331; Date of registration: 12 January 2022. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027331.
Collapse
Affiliation(s)
- Luis Peñailillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 700 Fernández Concha, Las Condes, 7591538, Santiago, Chile.
| | - Denisse Valladares-Ide
- Long Active Life Laboratory, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Sebastián Jannas-Velas
- Long Active Life Laboratory, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | | | - Laura Mendoza
- Respiratory Unit, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ingrid Nuñez
- Department of Pulmonary Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile.,Department of Critical Care, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Orlando Diaz-Patiño
- Department of Pulmonary Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile.,Department of Critical Care, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|
16
|
Pérez-Peiró M, Duran X, Yélamos J, Barreiro E. Attenuation of Muscle Damage, Structural Abnormalities, and Physical Activity in Respiratory and Limb Muscles following Treatment with Rucaparib in Lung Cancer Cachexia Mice. Cancers (Basel) 2022; 14:cancers14122894. [PMID: 35740560 PMCID: PMC9221243 DOI: 10.3390/cancers14122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Muscle wasting and cachexia are common in patients with cancer. Several mechanisms underlie muscle physiological and structural alterations in cancer-induced cachexia. Poly (ADPribose) polymerases (PARPs) are involved in muscle metabolism and in cancer. Selective inhibitors of PARP activity improve muscle function and structure. This study sought to investigate whether rucaparib (PARP inhibitor) may attenuate muscle damage in a mouse model of lung-cancer-induced cachexia. Rucaparib was administered to cancer-cachectic mice. Physiological and biological parameters were determined in the respiratory and limb muscles of the animals. In cancer cachexia mice compared to non-cachexia controls, body weight and body weight gain, muscle weight, limb strength, physical activity, and muscle fiber size significantly declined, while levels of PARP activity, plasma troponin I, muscle damage, and proteolytic and autophagy markers increased. Treatment with rucaparib elicited a significant improvement in body weight gain, tumor size and weight, physical activity, muscle damage, troponin I, and proteolytic and autophagy levels. Abstract Overactivation of poly (ADPribose) polymerases (PARPs) is involved in cancer-induced cachexia. We hypothesized that the PARP inhibitor rucaparib may improve muscle mass and reduce damage in cancer cachexia mice. In mouse diaphragm and gastrocnemius (LP07 lung adenocarcinoma) treated with PARP inhibitor (rucaparib,150 mg/kg body weight/24 h for 20 days) and in non-tumor control animals, body, muscle, and tumor weights; tumor area; limb muscle strength; physical activity; muscle structural abnormalities, damage, and phenotype; PARP activity; and proteolytic and autophagy markers were quantified. In cancer cachexia mice compared to non-cachexia controls, body weight and body weight gain, muscle weight, limb strength, physical activity, and muscle fiber size significantly declined, while levels of PARP activity, plasma troponin I, muscle damage, and proteolytic and autophagy markers increased. Treatment with the PARP inhibitor rucaparib elicited a significant improvement in body weight gain, tumor size and weight, physical activity, muscle damage, troponin I, and proteolytic and autophagy levels. PARP pharmacological inhibition did not exert any significant improvements in muscle weight, fiber size, or limb muscle strength. Treatment with rucaparib, however, improved muscle damage and structural abnormalities and physical activity in cancer cachexia mice. These findings suggest that rucaparib exerts its beneficial effects on cancer cachexia performance through the restoration of muscle structure.
Collapse
Affiliation(s)
- Maria Pérez-Peiró
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Department of Medicine and Life Sciences (MELIS), Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific, Statistics and Technical Department, Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, 08003 Barcelona, Spain;
| | - José Yélamos
- Cancer Research Program, Hospital del Mar, Medical Research Institute (IMIM), 08003 Barcelona, Spain;
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Department of Medicine and Life Sciences (MELIS), Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
17
|
Qin L, Gonçalves-Carvalho F, Xia Y, Zha J, Admetlló M, Maiques JM, Esteban-Cucó S, Duran X, Marín A, Barreiro E. Profile of Clinical and Analytical Parameters in Bronchiectasis Patients during the COVID-19 Pandemic: A One-Year Follow-Up Pilot Study. J Clin Med 2022; 11:jcm11061727. [PMID: 35330051 PMCID: PMC8954272 DOI: 10.3390/jcm11061727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Whether the COVID-19 pandemic may have modified the clinical planning and course in bronchiectasis patients remains to be fully elucidated. We hypothesized that the COVID-19 pandemic may have influenced the management and clinical outcomes of bronchiectasis patients who were followed up for 12 months. In bronchiectasis patients (n = 30, 23 females, 66 years), lung function testing, disease severity [FEV1, age, colonization, radiological extension, dyspnea (FACED), exacerbation (EFACED)] and dyspnea scores, exacerbation numbers and hospitalizations, body composition, sputum microbiology, and blood analytical biomarkers were determined at baseline and after a one-year follow-up. Compared to baseline (n = 27, three patients dropped out), in bronchiectasis patients, a significant increase in FACED and EFACED scores, number of exacerbations, and erythrocyte sedimentation rate (ESR) was observed, while FEV1, ceruloplasmin, IgE, IgG, IgG aspergillus, IgM, and IgA significantly decreased. Patients presenting colonization by Pseudomonas aeruginosa (PA) remained unchanged (27%) during follow-up. In bronchiectasis patients, FEV1 declined only after a one-year follow-up along with increased exacerbation numbers and disease severity scores, but not hospitalizations. However, a significant decrease in acute phase-reactants and immunoglobulins was observed at the one-year follow-up compared to baseline. Despite the relatively small cohort, the reported findings suggest that lung function impairment may not rely entirely on the patients’ inflammatory status.
Collapse
Affiliation(s)
- Liyun Qin
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (Y.X.); (J.Z.); (M.A.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Filipe Gonçalves-Carvalho
- Pulmonology Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain; (F.G.-C.); (A.M.)
- Centro de Investigación en Red de Enfermedades Respiratoria (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Yingchen Xia
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (Y.X.); (J.Z.); (M.A.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Jianhua Zha
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (Y.X.); (J.Z.); (M.A.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Mireia Admetlló
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (Y.X.); (J.Z.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratoria (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - José María Maiques
- Radiology Department, Imatge Mèdica Intercentres-Parc de Salut Mar, Hospital del Mar, 08003 Barcelona, Spain;
| | - Sandra Esteban-Cucó
- Laboratori de Referència de Catalunya, Clinical Microbiology and Parasitology Department, 08820 Barcelona, Spain;
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Alicia Marín
- Pulmonology Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain; (F.G.-C.); (A.M.)
- Centro de Investigación en Red de Enfermedades Respiratoria (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (L.Q.); (Y.X.); (J.Z.); (M.A.)
- Centro de Investigación en Red de Enfermedades Respiratoria (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
18
|
Wang X, Balaña-Corberó A, Martínez-Llorens J, Qin L, Xia Y, Zha J, Maiques JM, Barreiro E. Respiratory and Peripheral Muscle Weakness and Body Composition Abnormalities in Non-Cystic Fibrosis Bronchiectasis Patients: Gender Differences. Biomedicines 2022; 10:334. [PMID: 35203543 PMCID: PMC8961780 DOI: 10.3390/biomedicines10020334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
As demonstrated in COPD, bronchiectasis patients may experience respiratory and peripheral muscle dysfunction. We hypothesized that respiratory and peripheral (upper and lower limbs) muscle function and nutritional status may be more significantly altered in female than in males for identical age and disease severity. In mild-to-moderate bronchiectasis patients (n = 150, 114 females) and 37 controls (n = 37, 21 females), radiological extension, maximal inspiratory and expiratory pressures (MIP and MEP), sniff nasal inspiratory pressure (SNIP), hand grip and quadriceps muscle strengths, body composition, and blood analytical biomarkers were explored. Compared to the controls, in all bronchiectasis patients (males and females), BMI, fat-free mass index (FFMI), fat tissue, upper and lower limb muscle strength, and respiratory muscle strength significantly declined, and FFMI, fat tissue, and quadriceps muscle function were significantly lower in female than male patients. In patients with mild-to-moderate bronchiectasis, respiratory and peripheral muscle function is significantly impaired and only partly related to lung disease status. Quadriceps muscle strength was particularly weakened in the female patients and was negatively associated with their exercise tolerance. Muscle weakness should be therapeutically targeted in bronchiectasis patients. Body composition and peripheral muscle function determination should be part of the comprehensive clinical assessment of these patients.
Collapse
Affiliation(s)
- Xuejie Wang
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (X.W.); (A.B.-C.); (J.M.-L.); (L.Q.); (Y.X.); (J.Z.)
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ana Balaña-Corberó
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (X.W.); (A.B.-C.); (J.M.-L.); (L.Q.); (Y.X.); (J.Z.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Juana Martínez-Llorens
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (X.W.); (A.B.-C.); (J.M.-L.); (L.Q.); (Y.X.); (J.Z.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Liyun Qin
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (X.W.); (A.B.-C.); (J.M.-L.); (L.Q.); (Y.X.); (J.Z.)
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Yingchen Xia
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (X.W.); (A.B.-C.); (J.M.-L.); (L.Q.); (Y.X.); (J.Z.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jianhua Zha
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (X.W.); (A.B.-C.); (J.M.-L.); (L.Q.); (Y.X.); (J.Z.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - José María Maiques
- Radiology Department, Imatge Mèdica Intercentres, Parc de Salut Mar, Hospital del Mar, 08003 Barcelona, Spain;
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (X.W.); (A.B.-C.); (J.M.-L.); (L.Q.); (Y.X.); (J.Z.)
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
19
|
Huang WJ, Fan XX, Yang YH, Zeng YM, Ko CY. A review on the Role of Oral Nutritional Supplements in Chronic Obstructive Pulmonary Disease. J Nutr Health Aging 2022; 26:723-731. [PMID: 35842763 DOI: 10.1007/s12603-022-1822-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Due to the high smoking rate in developing countries and the rising aging population in high-income countries, the global prevalence of chronic obstructive pulmonary disease (COPD), estimated to be 11.7%, is increasing and is the third-leading cause of mortality. COPD is likely to be present in elderly individuals with impaired gastro-enteric functions. Gastrointestinal congestion, dyspnea, and anxiety are pathophysiological characteristics of COPD, contributing to poor appetite, reduced dietary intake, and high-energy expenditure. These factors are implicated in the progression of malnutrition in COPD patients. Malnutrition is detrimental to lung functions and is associated with an increased risk of infection, exacerbation and mortality, and a longer duration of hospitalization. Therefore, nutritional support to treat malnutrition in COPD patients is very vital. Oral nutritional supplements (ONS) may hold the key to COPD treatment. To clarify this statement, we review current evidence for ONS in COPD patients to benefit from clinical outcomes.
Collapse
Affiliation(s)
- W-J Huang
- Chih-Yuan Ko, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Rd, Licheng District, Quanzhou, Fujian Province, China, 362000. Tel.: +86 0595-26655200. E-mail address:
| | | | | | | | | |
Collapse
|
20
|
Liu Q, Deng J, Qiu Y, Gao J, Li J, Guan L, Lee H, Zhou Q, Xiao J. Non-coding RNA basis of muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1066-1078. [PMID: 34786211 PMCID: PMC8569427 DOI: 10.1016/j.omtn.2021.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy is a common complication of many chronic diseases including heart failure, cancer cachexia, aging, etc. Unhealthy habits and usage of hormones such as dexamethasone can also lead to muscle atrophy. However, the underlying mechanisms of muscle atrophy are not completely understood. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in muscle atrophy. This review mainly discusses the regulation of ncRNAs in muscle atrophy induced by various factors such as heart failure, cancer cachexia, aging, chronic obstructive pulmonary disease (COPD), peripheral nerve injury (PNI), chronic kidney disease (CKD), unhealthy habits, and usage of hormones; highlights the findings of ncRNAs as common regulators in multiple types of muscle atrophy; and summarizes current therapies and underlying mechanisms for muscle atrophy. This review will deepen the understanding of skeletal muscle biology and provide new strategies and insights into gene therapy for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jiali Deng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
21
|
Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. J Clin Med 2021; 10:jcm10194534. [PMID: 34640555 PMCID: PMC8509750 DOI: 10.3390/jcm10194534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
We hypothesized that in mild bronchiectasis patients, increased systemic inflammation and redox imbalance may take place and correlate with clinical parameters. In plasma samples from patients with very mild bronchiectasis, inflammatory cells and molecules and redox balance parameters were analyzed. In the patients, lung function and exercise capacity, nutritional status, bacterial colonization, and radiological extension were assessed. Correlations between biological and clinical variables were determined. Compared to healthy controls, levels of acute phase reactants, neutrophils, IgG, IgA, myeloperoxidase, protein oxidation, and GSH increased and lung function and exercise capacity were mildly reduced. GSH levels were even greater in ex-smoker and Pseudomona-colonized patients. Furthermore, radiological extension inversely correlated with airway obstruction and, disease severity, and positively correlated with neutrophil numbers in mild bronchiectasis patients with no nutritional abnormalities. In stable patients with mild bronchiectasis, several important inflammatory and oxidative stress events take place in plasma. These findings suggest that the extension of bronchiectasis probably plays a role in the development of redox imbalance and systemic inflammation in patients with mild bronchiectasis. These results have therapeutic implications in the management of bronchiectasis patients.
Collapse
|
22
|
Pérez-Peiró M, Martín-Ontiyuelo C, Rodó-Pi A, Piccari L, Admetlló M, Durán X, Rodríguez-Chiaradía DA, Barreiro E. Iron Replacement and Redox Balance in Non-Anemic and Mildly Anemic Iron Deficiency COPD Patients: Insights from a Clinical Trial. Biomedicines 2021; 9:1191. [PMID: 34572377 PMCID: PMC8470868 DOI: 10.3390/biomedicines9091191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
In COPD patients, non-anemic iron deficiency (NAID) is a common systemic manifestation. We hypothesized that in COPD patients with NAID, iron therapy may improve systemic oxidative stress. The FACE (Ferinject assessment in patients with COPD and iron deficiency to improve exercise tolerance) study was a single-blind, unicentric, parallel-group, placebo-controlled clinical trial (trial registry: 2016-001238-89). Sixty-six patients were enrolled (randomization 2:1): iron arm, n = 44 and placebo arm, n = 22, with similar clinical characteristics. Serum levels of 3-nitrotyrosine, MDA-protein adducts, and reactive carbonyls, catalase, superoxide dismutase (SOD), glutathione, Trolox equivalent antioxidant capacity (TEAC), and iron metabolism biomarkers were quantified in both groups. In the iron-treated patients compared to placebo, MDA-protein adducts and 3-nitrotyrosine serum levels significantly declined, while those of GSH increased and iron metabolism parameters significantly improved. Hepcidin was associated with iron status parameters. This randomized clinical trial evidenced that iron replacement elicited a decline in serum oxidative stress markers along with an improvement in GSH levels in patients with stable severe COPD. Hepcidin may be a surrogate biomarker of iron status and metabolism in patients with chronic respiratory diseases. These findings have potential clinical implications in the management of patients with severe COPD.
Collapse
Affiliation(s)
- Maria Pérez-Peiró
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Clara Martín-Ontiyuelo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Anna Rodó-Pi
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Lucilla Piccari
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Mireia Admetlló
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Xavier Durán
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Diego A. Rodríguez-Chiaradía
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
23
|
Dong W, Zhu X, Liu X, Zhao X, Lei X, Kang L, Liu L. Role of the SENP1-SIRT1 pathway in hyperoxia-induced alveolar epithelial cell injury. Free Radic Biol Med 2021; 173:142-150. [PMID: 34311030 DOI: 10.1016/j.freeradbiomed.2021.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication in preterm infants, and its main pathogenesis partly involves oxidative stress. A large number of studies have shown that silent information regulator 1 (SIRT1) plays a protective role in oxidative stress. SUMO-specific protease 1 (SENP1) is vital in the nucleoplasmic distribution of SIRT1 under stress. However, whether the SENP1-SIRT1 pathway is involved in the hyperoxic lung injury is unknown. Therefore, this study aimed to explore the role and related mechanisms of the SENP1-SIRT1 pathway in hyperoxic lung injury. Peripheral blood mononuclear cells (PBMCs) from infants with BPD and SENP1-silenced alveolar epithelial cells were used as research models. PBMCs were isolated from the peripheral blood of premature infants. Next, the SENP1-silenced human alveolar epithelial cells were used to verify the role of the SENP1-SIRT1 pathway in vitro. The results indicated that the ROS level and the mRNA and protein expression of SENP1 increased in PBMCs of infants with BPD, but the expression of SIRT1 decreased in the nucleus and increased in the cytoplasm, and then the expression of acetyl-p53 (Ac-p53) increased. In the hyperoxic alveolar epithelial cell injury model, it seemed that hyperoxia could induce the same variation trend in the SENP1-SIRT1 pathway as in infants with BPD and then increased the expression of Ac-p53 and BAX, and cell apoptosis. Furthermore, silencing SENP1 could alleviate these hyperoxia-induced changes. These results suggested that SENP1 played an important role in hyperoxia-induced lung injury. It could regulate the expression and nucleoplasmic distribution of SIRT1 to inhibit its deacetylase activity, and then promoted cell apoptosis. Hence, SENP1 may become a potential intervention target of BPD in the future.
Collapse
Affiliation(s)
- Wenbin Dong
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xingling Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lan Kang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Liu
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
24
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 11:608666. [PMID: 33488613 PMCID: PMC7819856 DOI: 10.3389/fimmu.2020.608666] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality, accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma and chronic obstructive pulmonary disease (COPD). These complex diseases have different triggers including allergens, pollutants, tobacco smoke, and other risk factors. It is important to highlight that although CRDs are incurable, various forms of treatment improve shortness of breath and quality of life. The search for tools that can ensure accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding RNAs and have been described as promising diagnostic and therapeutic biomarkers for CRDs. They are implicated in multiple processes of asthma and COPD, regulating pathways associated with inflammation, thereby showing that miRNAs are critical regulators of the immune response. Indeed, miRNAs have been found to be deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in both structural lung and immune cells of patients in comparison to healthy subjects, showing their potential role as biomarkers. Also, miRNAs play a part in the development or termination of histopathological changes and comorbidities, revealing the complexity of miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been proposed as prognostic tools in response to both conventional and biologic treatments for asthma or COPD, and miRNA-based treatment has emerged as a potential approach for clinical intervention in these respiratory diseases; however, this field is still in development. The present review applies a systems biology approach to the understanding of miRNA regulatory networks in asthma and COPD, summarizing their roles in pathophysiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martinez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Natalia Redondo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
25
|
Sancho-Muñoz A, Guitart M, Rodríguez DA, Gea J, Martínez-Llorens J, Barreiro E. Deficient muscle regeneration potential in sarcopenic COPD patients: Role of satellite cells. J Cell Physiol 2020; 236:3083-3098. [PMID: 32989805 DOI: 10.1002/jcp.30073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a major comorbidity in chronic obstructive pulmonary (COPD). Whether deficient muscle repair mechanisms and regeneration exist in the vastus lateralis (VL) of sarcopenic COPD remains debatable. In the VL of control subjects and severe COPD patients with/without sarcopenia, satellite cells (SCs) were identified (immunofluorescence, specific antibodies, anti-Pax-7, and anti-Myf-5): activated (Pax-7+/Myf-5+), quiescent/regenerative potential (Pax-7+/Myf-5-), and total SCs, nuclear activation (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling [TUNEL]), and muscle fiber type (morphometry and slow- and fast-twitch, and hybrid fibers), muscle damage (hematoxylin-eosin staining), muscle regeneration markers (Pax-7, Myf-5, myogenin, and MyoD), and myostatin levels were identified. Compared to controls, in VL of sarcopenic COPD patients, myostatin content, activated SCs, hybrid fiber proportions, TUNEL-positive cells, internal nuclei, and muscle damage significantly increased, while quadriceps muscle strength, numbers of Pax-7+/Myf-5- and slow- and fast-twitch, and hybrid myofiber areas decreased. In the VL of sarcopenic and nonsarcopenic patients, TUNEL-positive cells were greater, whereas muscle regeneration marker expression was lower than in controls. In VL of severe COPD patients regardless of the sarcopenia level, the muscle regeneration process is triggered as identified by SC activation and increased internal nuclei. Nonetheless, a lower regenerative potential along with significant alterations in muscle phenotype and damage, and increased myostatin were prominently seen in sarcopenic COPD.
Collapse
Affiliation(s)
- Antonio Sancho-Muñoz
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Maria Guitart
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Diego A Rodríguez
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquim Gea
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juana Martínez-Llorens
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Esther Barreiro
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
26
|
Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol 2020; 137:110964. [PMID: 32407865 DOI: 10.1016/j.exger.2020.110964] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Muscle loss is an important feature that occurs in multiple pathologies including osteoarthritis (OA), chronic obstructive pulmonary disease (COPD) and type II diabetes (T2D). Despite differences in pathogenesis and disease-related complications, there are reasons to believe that some fundamental underlying mechanisms are inherent to the muscle wasting process, irrespective of the pathology. Recent evidence shows that inflammation, either local or systemic, contributes to the modulation of muscle mass and/or muscle strength, via an altered molecular profile in muscle tissue. However, it remains ambiguous to which extent and via which mechanisms inflammatory signaling affects muscle mass in disease. Therefore, the objective of the present review is to discuss the role of inflammation on skeletal muscle anabolism, catabolism and functionality in three pathologies that are characterized by an eventual loss in muscle mass (and muscle strength), i.e. OA, COPD and T2D. In OA and COPD, most rodent models confirmed that systemic (COPD) or muscle (OA) inflammation directly induces muscle loss or muscle dysfunctionality. However, in a patient population, the association between inflammation and muscular maladaptations are more ambiguous. For example, in T2D patients, systemic inflammation is associated with muscle loss whereas in OA patients this link has not consistently been established. T2D rodent models revealed that increased levels of advanced glycation end-products (AGEs) and a decreased mTORC1 activation play a key role in muscle atrophy, but it remains to be elucidated whether AGEs and mTORC1 are interconnected and contribute to muscle loss in T2D patients. Generally, if any, associations between inflammation and muscle are mainly based on observational and cross-sectional data. There is definitely a need for longitudinal evidence through well-powered randomized control trials that take into account confounders such as age, disease-phenotypes, comorbidities, physical (in) activity etc. This will allow to improve our understanding of the complex interaction between inflammatory signaling and muscle mass loss and hence contribute to the development of therapeutic strategies to combat muscle wasting in these diseases.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
27
|
Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius. Nutrients 2020; 12:nu12020388. [PMID: 32024036 PMCID: PMC7071295 DOI: 10.3390/nu12020388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that curcumin may mitigate muscle protein degradation and loss through attenuation of proteolytic activity in limb muscles of mice exposed to reloading (7dR) following immobilization (7dI). In gastrocnemius of mice (female C57BL/6J, 10 weeks) exposed to recovery following a seven-day period of hindlimb immobilization with/without curcumin treatment, markers of muscle proteolysis (systemic troponin-I), atrophy signaling pathways and histone deacetylases, protein synthesis, and muscle phenotypic characteristics and function were analyzed. In gastrocnemius of reloading mice compared to unloaded, muscle function, structure, sirtuin-1, and protein synthesis improved, while proteolytic and signaling markers (FoxO1/3) declined. In gastrocnemius of unloaded and reloaded mice treated with curcumin, proteolytic and signaling markers (NF-kB p50) decreased and sirtuin-1 activity and hybrid fibers size increased (reloaded muscle), while no significant improvement was seen in muscle function. Treatment with curcumin elicited a rise in sirtuin-1 activity, while attenuating proteolysis in gastrocnemius of mice during reloading following a period of unloading. Curcumin attenuated muscle proteolysis probably via activation of histone deacetylase sirtuin-1, which also led to decreased levels of atrophy signaling pathways. These findings offer an avenue of research in the design of therapeutic strategies in clinical settings of patients exposed to periods of disuse muscle atrophy.
Collapse
|
28
|
Marillier M, Bernard AC, Vergès S, Neder JA. Locomotor Muscles in COPD: The Rationale for Rehabilitative Exercise Training. Front Physiol 2020; 10:1590. [PMID: 31992992 PMCID: PMC6971045 DOI: 10.3389/fphys.2019.01590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Exercise training as part of pulmonary rehabilitation is arguably the most effective intervention to improve tolerance to physical exertion in patients with chronic obstructive pulmonary disease (COPD). Owing to the fact that exercise training has modest effects on exertional ventilation, operating lung volumes and respiratory muscle performance, improving locomotor muscle structure and function are key targets for pulmonary rehabilitation in COPD. In the current concise review, we initially discuss whether patients’ muscles are exposed to deleterious factors. After presenting corroboratory evidence on this regard (e.g., oxidative stress, inflammation, hypoxemia, inactivity, and medications), we outline their effects on muscle macro- and micro-structure and related functional properties. We then finalize by addressing the potential beneficial consequences of different training strategies on these muscle-centered outcomes. This review provides, therefore, an up-to-date outline of the rationale for rehabilitative exercise training approaches focusing on the locomotor muscles in this patient population.
Collapse
Affiliation(s)
- Mathieu Marillier
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Anne-Catherine Bernard
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Samuel Vergès
- HP2 Laboratory, INSERM, CHU Grenoble Alpes, Grenoble Alpes University, Grenoble, France
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
29
|
Barreiro E. Impact of Physical Activity and Exercise on Chronic Obstructive Pulmonary Disease Phenotypes: The Relevance of Muscle Adaptation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.arbr.2019.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Byrne CA, McNeil AT, Koh TJ, Brunskill AF, Fantuzzi G. Expression of genes in the skeletal muscle of individuals with cachexia/sarcopenia: A systematic review. PLoS One 2019; 14:e0222345. [PMID: 31498843 PMCID: PMC6733509 DOI: 10.1371/journal.pone.0222345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cachexia occurs in individuals affected by chronic diseases in which systemic inflammation leads to fatigue, debilitation, decreased physical activity and sarcopenia. The pathogenesis of cachexia-associated sarcopenia is not fully understood. Objectives The aim of this systematic review is to summarize the current evidence on genes expressed in the skeletal muscles of humans with chronic disease-associated cachexia and/or sarcopenia (cases) compared to controls and to assess the strength of such evidence. Methods We searched PubMed, EMBASE and CINAHL using three concepts: cachexia/sarcopenia and associated symptoms, gene expression, and skeletal muscle. Results Eighteen genes were studied in at least three research articles, for a total of 27 articles analyzed in this review. Participants were approximately 60 years of age and majority male; sample size was highly variable. Use of comparison groups, matching criteria, muscle biopsy location, and definitions of cachexia and sarcopenia were not homogenous. None of the studies fulfilled all four criteria used to assess the quality of molecular analysis, with only one study powered on the outcome of gene expression. FOXO1 was the only gene significantly increased in cases versus healthy controls. No study found a significant decrease in expression of genes involved in autophagy, apoptosis or inflammation in cases versus controls. Inconsistent or non-significant findings were reported for genes involved in protein degradation, muscle differentiation/growth, insulin/insulin growth factor-1 or mitochondrial transcription. Conclusion Currently available evidence on gene expression in the skeletal muscles of humans with chronic disease-associated cachexia and/or sarcopenia is not powered appropriately and is not homogenous; therefore, it is difficult to compare results across studies and diseases.
Collapse
Affiliation(s)
- Cecily A. Byrne
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
| | - Amy T. McNeil
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
| | - Timothy J. Koh
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
| | - Amelia F. Brunskill
- University of Illinois at Chicago, Library of the Health Sciences, Chicago, IL, United States of America
| | - Giamila Fantuzzi
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
31
|
Busquets S, Pérez-Peiró M, Salazar-Degracia A, Argilés JM, Serpe R, Rojano-Toimil A, López-Soriano FJ, Barreiro E. Differential structural features in soleus and gastrocnemius of carnitine-treated cancer cachectic rats. J Cell Physiol 2019; 235:526-537. [PMID: 31241186 DOI: 10.1002/jcp.28992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Muscle wasting is associated with chronic diseases and cancer. Elucidation of the biological mechanism involved in the process of muscle mass loss and cachexia may help identify therapeutic targets. We hypothesized that l-carnitine treatment may differentially revert muscle fiber atrophy and other structural alterations in slow- and fast-twitch limb muscles of rats bearing the Yoshida ascites hepatoma. In soleus and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with l-carnitine (1 g/kg body weight for 7 days, intragastric), food intake, body and muscle weights, fiber typing and morphometry, morphological features, redox balance, autophagy and proteolytic, and signaling markers were explored. Levels of carnitine palmitoyl transferase were also measured in all the study muscles. l-Carnitine treatment ameliorated the atrophy of both slow- and fast-twitch fibers (gastrocnemius particularly), muscle structural alterations (both muscles), and attenuated oxidative stress, proteolytic and signaling markers (gastrocnemius). Despite that carnitine palmitoyl transferase-1 levels increased in both muscle types in a similar fashion, l-carnitine ameliorated muscle atrophy and proteolysis in a muscle-specific manner in cancer-induced cachexia. These data reveal the need to study muscles of different fiber type composition and function to better understand whereby l-carnitine exerts its beneficial effects on the myofibers in muscle wasting processes. These findings also have potential clinical implications, since combinations of various exercise and muscle training modalities with l-carnitine should be specifically targeted for the muscle groups to be trained.
Collapse
Affiliation(s)
- Sílvia Busquets
- Departament de Bioquímica i Biomedicina Molecular, Cancer Research Group, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Maria Pérez-Peiró
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Josep M Argilés
- Departament de Bioquímica i Biomedicina Molecular, Cancer Research Group, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Roberto Serpe
- Department of Medical Sciences and Public Health "M. Aresu,", University of Cagliari, Cagliari, Italy
| | - Alba Rojano-Toimil
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Francisco J López-Soriano
- Departament de Bioquímica i Biomedicina Molecular, Cancer Research Group, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
32
|
Barreiro E. Impact of Physical Activity and Exercise on Chronic Obstructive Pulmonary Disease Phenotypes: The Relevance of Muscle Adaptation. Arch Bronconeumol 2019; 55:613-614. [PMID: 31182237 DOI: 10.1016/j.arbres.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
| |
Collapse
|
33
|
Barreiro E, Salazar-Degracia A, Sancho-Muñoz A, Aguiló R, Rodríguez-Fuster A, Gea J. Endoplasmic reticulum stress and unfolded protein response in diaphragm muscle dysfunction of patients with stable chronic obstructive pulmonary disease. J Appl Physiol (1985) 2019; 126:1572-1586. [DOI: 10.1152/japplphysiol.00670.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Respiratory muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD). Chronic contractile activity induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in animals (animals and humans). We hypothesized that the respiratory muscle dysfunction associated with COPD may upregulate ER stress and UPR expression in diaphragm of stable patients with different degrees of airway obstruction and normal body composition. In diaphragm muscle specimens of patients with mild and moderate-to-severe COPD with preserved body composition and non-COPD controls (thoracotomy because of lung localized neoplasms), expression of protein misfolding (ER stress) and UPR markers, proteolysis and apoptosis (qRT-PCR and immunoblotting), and protein aggregates (lipofuscin, histology) were quantified. All patients and non-COPD controls were also clinically evaluated: lung and muscle functions and exercise capacity. Compared with non-COPD controls, patients exhibited mild and moderate-to-severe airflow limitation and diffusion capacity and impaired exercise tolerance and diaphragm strength. Moreover, compared with the controls, in the diaphragm of the COPD patients, slow-twitch fiber proportions increased, gene expression but not protein levels of protein disulfide isomerase family A member 3 and phosphatidylinositol 3-kinase catalytic subunit type 3 were upregulated, and no significant differences were found in markers of UPR transmembrane receptor pathways (activating transcription factor-6, inositol-requiring enzyme-1α, and protein kinase-like ER kinase), lipofuscin aggregates, proteolysis, or apoptosis. In stable COPD patients with a wide range of disease severity, reduced diaphragm force of contraction, and normal body composition, ER stress and UPR signaling were not induced in the main respiratory muscle. These findings imply that ER stress and UPR are probably not involved in the documented diaphragm muscle dysfunction (reduced strength) observed in all the study patients, even in those with severe airflow limitation. Hence, in stable COPD patients with normal body composition, therapeutic strategies targeted to treat diaphragm muscle dysfunction should not include UPR modulators, even in those with a more advanced disease. NEW & NOTEWORTHY In stable chronic obstructive pulmonary disease patients with a wide range of disease severity, diaphragm muscle weakness, and normal body composition, endoplasmic reticulum stress and unfolded protein response (UPR) signaling were not induced in the main respiratory muscle. These findings imply that endoplasmic reticulum stress and UPR are not involved in the documented diaphragm muscle dysfunction observed in the study patients, even in those with severe airflow limitation. In stable chronic obstructive pulmonary disease patients with normal body composition, therapeutic strategies should not include UPR modulators.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department-Muscle and Respiratory System Research Unit, Institut Hospital del Mar d’Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Salazar-Degracia
- Pulmonology Department-Muscle and Respiratory System Research Unit, Institut Hospital del Mar d’Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Sancho-Muñoz
- Pulmonology Department-Muscle and Respiratory System Research Unit, Institut Hospital del Mar d’Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Aguiló
- Thoracic Surgery Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | | | - Joaquim Gea
- Pulmonology Department-Muscle and Respiratory System Research Unit, Institut Hospital del Mar d’Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Salazar-Degracia A, Granado-Martínez P, Millán-Sánchez A, Tang J, Pons-Carreto A, Barreiro E. Reduced lung cancer burden by selective immunomodulators elicits improvements in muscle proteolysis and strength in cachectic mice. J Cell Physiol 2019; 234:18041-18052. [PMID: 30851071 DOI: 10.1002/jcp.28437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Identification of to what extent tumor burden influences muscle mass independently of specific treatments for cancer-cachexia remains to be elucidated. We hypothesized that reduced tumor burden by selective treatment of tumor with immunomodulators may exert beneficial effects on muscle wasting and function in mice. Body and muscle weight, grip strength, physical activity, muscle morphometry, apoptotic nuclei, troponin-I systemic levels, interleukin-6, proteolytic markers, and tyrosine release, and apoptosis markers were determined in diaphragm and gastrocnemius muscles of lung cancer (LP07 adenocarcinoma cells) mice (BALB/c) treated with monoclonal antibodies (mAbs), against immune check-points and pathways (CD-137, cytotoxic T-lymphocyte associated protein-4, programed cell death-1, and CD-19; N = 10/group). Nontreated lung cancer cachectic mice were the controls. T and B cell numbers and macrophages were counted in tumors of both mouse groups. Compared to nontreated cachectic mice, in the mAbs-treated animals, T cells increased, no differences in B cells or macrophages, the variables final body weight, body weight and grip strength gains significantly improved. In diaphragm and gastrocnemius of mAbs-treated cachectic mice, number of apoptotic nuclei, tyrosine release, proteolysis, and apoptosis markers significantly decreased compared to nontreated cachectic mice. Systemic levels of troponin-I significantly decreased in treated cachectic mice compared to nontreated animals. We conclude that reduced tumor burden as a result of selective treatment of the lung cancer cells with immunomodulators elicits per se beneficial effects on muscle mass loss through attenuation of several biological mechanisms that lead to increased protein breakdown and apoptosis, which translated into significant improvements in limb muscle strength but not in physical activity parameters.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Granado-Martínez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aïna Millán-Sánchez
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jun Tang
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pons-Carreto
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, Health and Experimental Sciences Department (CEXS), MIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Bin Y, Xiao Y, Huang D, Ma Z, Liang Y, Bai J, Zhang W, Liang Q, Zhang J, Zhong X, He Z. Theophylline inhibits cigarette smoke-induced inflammation in skeletal muscle by upregulating HDAC2 expression and decreasing NF-κB activation. Am J Physiol Lung Cell Mol Physiol 2019; 316:L197-L205. [PMID: 30358442 DOI: 10.1152/ajplung.00005.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammation is associated with skeletal muscle dysfunction and atrophy in patients with chronic obstructive pulmonary disease (COPD). Theophylline has an anti-inflammatory role in COPD. However, the effects of theophylline on inflammation in skeletal muscle in COPD have rarely been reported. The aims of this study were to explore whether theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema and to investigate the molecular mechanism underlying this effect. In mice, cigarette smoke (CS) exposure for 28 wk resulted in atrophy of the gastrocnemius muscle. Histone deacetylase 2 (HDAC2) and nuclear factor-κBp65 (NF-κBp65) mRNA and protein levels were significantly decreased and increased, respectively, in gastrocnemius muscle. This effect was revered by aminophylline. The exposure of murine skeletal muscle C2C12 cells to CS extract (CSE) significantly increased IL-8 and TNF-α levels as well as NF-κBp65 mRNA and protein levels and NF-κBp65 activity. This effect was reversed by theophylline. HDAC2 knockdown enhanced the activity of NF-κBp65 and increased IL-8 and TNF-α levels in C2C12 cells. CSE significantly increased the interaction of HDAC2 with NF-κBp65 in C2C12 cells. These data suggest that theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema by upregulating HDAC2 expression and decreasing NF-κBp65 activation.
Collapse
Affiliation(s)
- Yanfei Bin
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Xiao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongmei Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiying Ma
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenlu Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuli Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Kemp PR, Griffiths M, Polkey MI. Muscle wasting in the presence of disease, why is it so variable? Biol Rev Camb Philos Soc 2018; 94:1038-1055. [PMID: 30588725 DOI: 10.1111/brv.12489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Skeletal muscle wasting is a common clinical feature of many chronic diseases and also occurs in response to single acute events. The accompanying loss of strength can lead to significant disability, increased care needs and have profound negative effects on quality of life. As muscle is the most abundant source of amino acids in the body, it appears to function as a buffer for fuel and substrates that can be used to repair damage elsewhere and to feed the immune system. In essence, the fundamentals of muscle wasting are simple: less muscle is made than is broken down. However, although well-described mechanisms modulate muscle protein turnover, significant individual differences in the amount of muscle lost in the presence of a given severity of disease complicate the understanding of underlying mechanisms and suggest that individuals have different sensitivities to signals for muscle loss. Furthermore, the rate at which muscle protein is turned over under normal conditions means that clinically significant muscle loss can occur with changes in the rate of protein synthesis and/or breakdown that are too small to be measurable. Consequently, the changes in expression of factors regulating muscle turnover required to cause a decline in muscle mass are small and, except in cases of rapid wasting, there is no consistent pattern of change in the expression of factors that regulate muscle mass. MicroRNAs are fine tuners of cell phenotype and are therefore ideally suited to cause the subtle changes in proteome required to tilt the balance between synthesis and degradation in a way that causes clinically significant wasting. Herein we present a model in which muscle loss as a consequence of disease in non-muscle tissue is modulated by a set of microRNAs, the muscle expression of which is associated with severity of disease in the non-muscle tissue. These microRNAs alter fundamental biological processes including the synthesis of ribosomes and mitochondria leading to reduced protein synthesis and increased protein breakdown, thereby freeing amino acids from the muscle. We argue that the variability in muscle loss observed in the human population arises from at least two sources. The first is from pre-existing or disease-induced variation in the expression of microRNAs controlling the sensitivity of muscle to the atrophic signal and the second is from the expression of microRNAs from imprinted loci (i.e. only expressed from the maternally or paternally inherited allele) and may control the rate of myonuclear recruitment. In the absence of disease, these factors do not correlate with muscle mass, since there is no challenge to the established balance. However, in the presence of such a challenge, these microRNAs determine the rate of decline for a given disease severity. Together these mechanisms provide novel insight into the loss of muscle mass and its variation in the human population. The involvement of imprinted loci also suggests that genes that regulate early development also contribute to the ability of individuals to resist muscle loss in response to disease.
Collapse
Affiliation(s)
- Paul R Kemp
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Mark Griffiths
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Michael I Polkey
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, U.K
| |
Collapse
|
37
|
Barreiro E, Sancho-Muñoz A, Puig-Vilanova E, Salazar-Degracia A, Pascual-Guardia S, Casadevall C, Gea J. Differences in micro-RNA expression profile between vastus lateralis samples and myotubes in COPD cachexia. J Appl Physiol (1985) 2018; 126:403-412. [PMID: 30543501 DOI: 10.1152/japplphysiol.00611.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Quadriceps muscle weakness and wasting are common comorbidities in chronic obstructive pulmonary disease (COPD). Micro-RNA expression upregulation may favor muscle mass growth and differentiation. We hypothesized that the profile of muscle-enriched micro-RNAs in cultured myotubes differs between patients with COPD of a wide range of body composition and healthy controls and that expression levels of those micro-RNAs from patients with COPD and controls differ between in vivo and in vitro conditions. Twenty-nine patients with COPD [ n = 15 with muscle wasting and fat-free mass index (FFMI) 15 kg/m2 and n = 14 with normal body composition and FFMI 18 kg/m2] and 10 healthy controls (FFMI 19 kg/m2) were consecutively recruited. Biopsies from the vastus lateralis muscle were obtained in all study subjects. A fragment of each biopsy was used to obtain primary cultures, in which muscle cells were first proliferated to be then differentiated into actual myotubes. In both sets of experiments (in vivo biopsies and in vitro myotubes) the following muscle-enriched micro-RNAs from all the study subjects were analyzed using quantitative real-time PCR amplification: micro-RNA (miR)-1, miR-133a, miR-206, miR-486, miR-29b, miR-27a, and miR-181a. Whereas the expression of miR-1, miR-206, miR-486, and miR-29b was upregulated in the muscle biopsies of patients with COPD compared with those of healthy controls, levels of none of the studied micro-RNAs in the myotubes (primary cultured cells) significantly differed between patients with COPD and the controls. We conclude from these findings that environmental factors (blood flow, muscle metabolism, and inflammation) taking place in vivo (biopsies) in muscles may account for the differences observed in micro-RNA expression between patients with COPD and controls. In the myotubes, however, the expression of the same micro-RNAs did not differ between the study subjects as such environmental factors were not present. These findings suggest that therapeutic strategies should rather target environmental factors in COPD muscle wasting as the profile of micro-RNA expression in myotubes was similar in patients to that observed in the healthy controls. NEW & NOTEWORTHY Environmental factors taking place in vivo (biopsies) in the muscles may explain differences observed in micro-RNA expression between patients with chronic obstructive pulmonary disease (COPD) and controls. In the myotubes, however, the expression of the same micro-RNAs did not differ between the study subjects as such environmental factors were not present. These findings suggest that therapeutic strategies should rather target environmental factors in COPD muscle wasting and cachexia as micro-RNA expression profile in myotubes was similar between patients and controls.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| | - Antonio Sancho-Muñoz
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain
| | - Ester Puig-Vilanova
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain
| | - Anna Salazar-Degracia
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain
| | - Sergi Pascual-Guardia
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain
| | - Carme Casadevall
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| | - Joaquim Gea
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
38
|
Barreiro E, Salazar‐Degracia A, Sancho‐Muñoz A, Gea J. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J Cell Physiol 2018; 234:11315-11329. [DOI: 10.1002/jcp.27789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Esther Barreiro
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII) Monforte de Lemos Madrid Spain
| | - Anna Salazar‐Degracia
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Antonio Sancho‐Muñoz
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Joaquim Gea
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII) Monforte de Lemos Madrid Spain
| |
Collapse
|
39
|
Lopez Lopez L, Granados Santiago M, Donaire Galindo M, Torres Sanchez I, Ortiz Rubio A, Valenza MC. Efficacy of combined electrostimulation in patients with acute exacerbation of COPD: randomised clinical trial. Med Clin (Barc) 2018; 151:323-328. [PMID: 29705158 DOI: 10.1016/j.medcli.2018.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
INTRODUCTION AND OBJECTIVE Muscle dysfunction is very common in patients with chronic obstructive pulmonary disease (COPD). Muscular strength depletion is a result of numerous hospitalisations and this causes an increase in the symptomatology. Numerous interventions have been used in these patients, but there is no consensus on the best. The main objective of this study is to compare the effectiveness of two physiotherapy interventions during hospitalisation in COPD patients. PATIENTS AND METHODS In this clinical trial, we included 39 patients who were randomised into three groups. A control group received standard medical treatment (oxygen therapy and pharmacotherapy), and two groups received, in addition to standard medical treatment, a physiotherapy intervention, one with functional electrostimulation and one with calisthenic exercises. The main variables were the ability to exercise using the Five-time sit-to-stand test as well as the functionality associated with symptomatology, as measured by the London Chest Activity of Daily Living Scale. RESULTS After comparing the results, there was a significant improvement in dyspnea on discharge versus admission in all three groups. In addition, we found significant differences in functionality, exercise capacity, and fatigue in both intervention groups, being better in the electrostimulation with calisthenic exercises group than in the functional group. CONCLUSION An electrostimulation treatment improves the exercise capacity, functionality and fatigue in hospitalised AECOPD patients.
Collapse
Affiliation(s)
- Laura Lopez Lopez
- Facultad de Ciencias de la Salud, Departamento de Fisioterapia, Universidad de Granada, Granada, España
| | - Maria Granados Santiago
- Facultad de Ciencias de la Salud, Departamento de Fisioterapia, Universidad de Granada, Granada, España
| | - Maria Donaire Galindo
- Facultad de Ciencias de la Salud, Departamento de Fisioterapia, Universidad de Granada, Granada, España
| | - Irene Torres Sanchez
- Facultad de Ciencias de la Salud, Departamento de Fisioterapia, Universidad de Granada, Granada, España
| | - Araceli Ortiz Rubio
- Facultad de Ciencias de la Salud, Departamento de Fisioterapia, Universidad de Granada, Granada, España
| | - Marie Carmen Valenza
- Facultad de Ciencias de la Salud, Departamento de Fisioterapia, Universidad de Granada, Granada, España.
| |
Collapse
|
40
|
Role of altered proteostasis network in chronic hypobaric hypoxia induced skeletal muscle atrophy. PLoS One 2018; 13:e0204283. [PMID: 30240405 PMCID: PMC6150520 DOI: 10.1371/journal.pone.0204283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Background High altitude associated hypobaric hypoxia is one of the cellular and environmental perturbation that alters proteostasis network and push the healthy cell towards loss of muscle mass. The present study has elucidated the robust proteostasis network and signaling mechanism for skeletal muscle atrophy under chronic hypobaric hypoxia (CHH). Methods Male Sprague Dawley rats were exposed to simulated hypoxia equivalent to a pressure of 282 torr for different durations (1, 3, 7 and 14 days). After CHH exposure, skeletal muscle tissue was excised from the hind limb of rats for biochemical analysis. Results Chronic hypobaric hypoxia caused a substantial increase in protein oxidation and exhibited a greater activation of ER chaperones, glucose-regulated protein-78 (GRP-78) and protein disulphide isomerase (PDI) till 14d of CHH. Presence of oxidized proteins triggered the proteolytic systems, 20S proteasome and calpain pathway which were accompanied by a marked increase in [Ca2+]. Upregulated Akt pathway was observed upto 07d of CHH which was also linked with enhanced glycogen synthase kinase-3β (GSk-3β) expression, a negative regulator of Akt. Muscle-derived cytokines, tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-©) and interleukin-1β (IL-1β) levels significantly increased from 07d onwards. CHH exposure also upregulated the expression of nuclear factor kappa-B (NF-κB) and E3 ligase, muscle atrophy F-box-1 (Mafbx-1/Atrogin-1) and MuRF-1 (muscle ring finger-1) on 07d and 14d. Further, severe hypoxia also lead to increase expression of ER-associated degradation (ERAD) CHOP/ GADD153, Ub-proteasome and apoptosis pathway. Conclusions The disrupted proteostasis network was tightly coupled to degradative pathways, altered anabolic signaling, inflammation, and apoptosis under chronic hypoxia. Severe and prolonged hypoxia exposure affected the protein homeostasis which overwhelms the muscular system and tends towards skeletal muscle atrophy.
Collapse
|
41
|
Greising SM, Ottenheijm CAC, O'Halloran KD, Barreiro E. Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. J Appl Physiol (1985) 2018; 125:243-253. [PMID: 29672230 PMCID: PMC6139508 DOI: 10.1152/japplphysiol.01059.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
The diaphragm is the main inspiratory muscle and is required to be highly active throughout the life span. The diaphragm muscle must be able to produce and sustain various behaviors that range from ventilatory to nonventilatory such as those required for airway maintenance and clearance. Throughout the life span various circumstances and conditions may affect the ability of the diaphragm muscle to generate requisite forces, and in turn the diaphragm muscle may undergo significant weakness and dysfunction. For example, hypoxic stress, critical illness, cancer cachexia, chronic obstructive pulmonary disorder, and age-related sarcopenia all represent conditions in which significant diaphragm muscle dysfunction exits. This perspective review article presents several interesting topics involving diaphragm plasticity in aging and disease that were presented at the International Union of Physiological Sciences Conference in 2017. This review seeks to maximize the broad and collective research impact on diaphragm muscle dysfunction in the search for transformative treatment approaches to improve the diaphragm muscle health during aging and disease.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Kinesiology, University of Minnesota , Minneapolis, Minnesota
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center , Amsterdam , The Netherlands
- Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona
| | - Ken D O'Halloran
- Department of Physiology, University College Cork , Cork , Ireland
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Barcelona , Spain
| |
Collapse
|
42
|
Chabert C, Khochbin S, Rousseaux S, Veyrenc S, Furze R, Smithers N, Prinjha RK, Schlattner U, Pison C, Dubouchaud H. Inhibition of BET Proteins Reduces Right Ventricle Hypertrophy and Pulmonary Hypertension Resulting from Combined Hypoxia and Pulmonary Inflammation. Int J Mol Sci 2018; 19:ijms19082224. [PMID: 30061518 PMCID: PMC6121304 DOI: 10.3390/ijms19082224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/22/2018] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension is a co-morbidity, which strongly participates in morbi-mortality in patients with chronic obstructive pulmonary disease (COPD). Recent findings showed that bromodomain-containing proteins, in charge of reading histone acetylation, could be involved in pulmonary arterial hypertension. Our aim was to study the effect of I-BET151, an inhibitor of bromodomain and extra-terminal domain (BET), on the right ventricle hypertrophy and pulmonary hypertension, induced by a combination of chronic hypoxia and pulmonary inflammation, as the two main stimuli encountered in COPD. Adult Wistar male rats, exposed to chronic hypoxia plus pulmonary inflammation (CHPI), showed a significant right ventricle hypertrophy (+57%, p < 0.001), an increase in systolic pressure (+46%, p < 0.001) and in contraction speed (+36%, p < 0.001), when compared to control animals. I-BET151 treated animals (CHPI-iB) showed restored hemodynamic parameters to levels similar to control animals, despite chronic hypoxia plus exposure to pulmonary inflammation. They displayed lower right ventricle hypertrophy and hematocrit compared to the CHPI group (respectively -16%, p < 0.001; and -9%, p < 0.05). Our descriptive study shows a valuable effect of the inhibition of bromodomain and extra-terminal domain proteins on hemodynamic parameters, despite the presence of chronic hypoxia and pulmonary inflammation. This suggests that such inhibition could be of potential interest for COPD patients with pulmonary hypertension. Further studies are needed to unravel the underlying mechanisms involved and the net benefits of inhibiting adaptations to chronic hypoxia.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Pneumonia/complications
- Pneumonia/pathology
- Pneumonia/physiopathology
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Rats, Wistar
- Transcription Factors/antagonists & inhibitors
Collapse
Affiliation(s)
- Clovis Chabert
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38700 Grenoble, France.
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38700 Grenoble, France.
| | - Sylvie Veyrenc
- Université Grenoble Alpes, CNRS UMR 5553, Laboratoire d'Ecologie Alpine, 38058 Grenoble, France.
| | - Rebecca Furze
- Epigenetics DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Stevenage SG1 2NY, UK.
| | - Nicholas Smithers
- Epigenetics DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Stevenage SG1 2NY, UK.
| | - Rab K Prinjha
- Epigenetics DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Stevenage SG1 2NY, UK.
| | - Uwe Schlattner
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
| | - Christophe Pison
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
- Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, 38700 Grenoble, France.
| | - Hervé Dubouchaud
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, 38058 Grenoble, France.
| |
Collapse
|
43
|
Barreiro E, Jaitovich A. Muscle atrophy in chronic obstructive pulmonary disease: molecular basis and potential therapeutic targets. J Thorac Dis 2018; 10:S1415-S1424. [PMID: 29928523 DOI: 10.21037/jtd.2018.04.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) experience several systemic manifestations such skeletal muscle dysfunction with and without muscle mass loss. Moreover, frequent comorbidities such as nutritional abnormalities, heart failure, and pulmonary hypertension, which are frequently associated with COPD may further contribute to skeletal muscle mass loss and dysfunction. Muscle dysfunction impairs the patients' exercise capacity and quality of life as daily life activities may be hampered by this problem. Importantly, impaired muscle function and mass loss have been shown to impact negatively on the patients' prognosis and survival in several studies. Thus, this is a major clinical problem that deserves special attention in clinical settings. During the course of exacerbations muscle mass loss takes place, hence aggravating muscle status and performance even after hospital discharge, especially in the frequently exacerbator patients. Several factors and biological mechanisms are involved in the etiology of COPD muscle dysfunction. The biological mechanisms identified so far offer a niche for therapeutic interventions in the patients. In the current review, a general overview of the most relevant etiologic factors and their target biological mechanisms through which muscle mass loss and dysfunction take place in both the respiratory and lower limb muscles in COPD patients is provided. We conclude that more clinical research is still needed targeted to test several therapeutic interventions. Given its prognostic value, the assessment of skeletal muscle dysfunction should be included in the routine evaluation of patients with chronic respiratory disorders and in critical care settings.
Collapse
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
44
|
Dubé BP, Laveneziana P. Effects of aging and comorbidities on nutritional status and muscle dysfunction in patients with COPD. J Thorac Dis 2018; 10:S1355-S1366. [PMID: 29928518 DOI: 10.21037/jtd.2018.02.20] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent, complex and debilitating disease which imposes a formidable burden on patients and the healthcare system. The recognition that COPD is a multifaceted disease is not new, and increasing evidence have outlined the importance of its extra-pulmonary manifestations and its relation to other comorbid conditions in the clinical course of the disease and its societal cost. The relationship between aging, COPD and its comorbidities on skeletal muscle function and nutritional status is complex, multidirectional and incompletely understood. Despite this, the current body of knowledge allows the identification of various, seemingly partially independent factors related both to the normal aging process and to the independent deleterious effects of chronic diseases on muscle function and body composition. There is a dire need of studies evaluating the relative contribution of each of these factors, and their potential synergistic effects in patients with COPD and advanced age/comorbid conditions, in order to delineate the best course of therapeutic action in this increasingly prevalent population.
Collapse
Affiliation(s)
- Bruno-Pierre Dubé
- Département de Médecine, Service de Pneumologie, Centre Hospitalier de l'Université de Montréal (CHUM) Montréal, Québec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) - Carrefour de l'Innovation et de l'Évaluation en Santé, Montréal, Québec, Canada
| | - Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée du Département R3S, Paris, France
| |
Collapse
|
45
|
Salazar-Degracia A, Busquets S, Argilés JM, Bargalló-Gispert N, López-Soriano FJ, Barreiro E. Effects of the beta 2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. Biochimie 2018; 149:79-91. [PMID: 29654866 DOI: 10.1016/j.biochi.2018.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 108 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta2 agonist formoterol in the cachectic muscles through several key biological pathways.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Núria Bargalló-Gispert
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
| |
Collapse
|
46
|
Barreiro E, Puig-Vilanova E, Salazar-Degracia A, Pascual-Guardia S, Casadevall C, Gea J. The phosphodiesterase-4 inhibitor roflumilast reverts proteolysis in skeletal muscle cells of patients with COPD cachexia. J Appl Physiol (1985) 2018; 125:287-303. [PMID: 29648516 DOI: 10.1152/japplphysiol.00798.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peripheral muscle weakness and mass loss are characteristic features in severe chronic obstructive pulmonary disease (COPD). We hypothesized that the phosphodiesterase (PDE)-4 inhibitor roflumilast-induced cAMP may ameliorate proteolysis and metabolism in skeletal muscles of COPD patients with severe muscle wasting. In myogenic precursor cells (isolated from muscle biopsies and cultured up to obtain differentiated myotubes) from 10 severe COPD patients and 10 healthy controls, which were treated with 1 μM roflumilast N-oxide (RNO) for three time cohorts (1, 6, and 24 h), genes of antioxidant defense and oxidative stress marker, myogenesis and muscle metabolism, proteolysis (tyrosine release assay) and ubiquitin-proteasome system markers, autophagy, and myosin isoforms were analyzed using RT-PCR and immunoblotting. In COPD patients at 6 h RNO treatment, myotube tyrosine release, total protein ubiquitination, and tripartite motif-containing protein 32 levels were significantly lower than healthy controls, whereas at 24 h RNO treatment, myotube myosin heavy chain ( MyHC) -I and MyHC-IIx expression levels were upregulated in both patients and controls. In the 6-h RNO cohort, in patients and controls, myotube expression of nuclear factor (erythroid-derived 2)-like 2 ( NRF2) and its downstream antioxidants sirtuin-1, FGF-inducible 14, and insulin-like growth factor-1 was upregulated, whereas that of myocyte-specific enhancer factor 2C, myogenic differentiation, myogenin, myostatin, atrogin-1, and muscle RING-finger protein-1 was downregulated. In myotubes of severe COPD patients with cachexia, roflumilast-induced cAMP signaling exerts beneficial effects by targeting muscle protein breakdown (tyrosine release), along with reduced expression of proteolytic markers of the ubiquitin-proteasome system and that of myostatin. In both patients and controls, roflumilast also favored antioxidant defense through upregulation of the NRF2 pathway and that of the histone deacetylase sirtuin-1, whereas it improved the expression of slow- and fast-twitch myosin isoforms. These findings show that muscle dysfunction and wasting may be targeted by roflumilast-induced cAMP signaling in COPD. These results have potential therapeutic implications, as this PDE-4 inhibitor is currently available for the treatment of systemic inflammation and exacerbations in patients with severe COPD. NEW & NOTEWORTHY In myotubes of cachectic chronic obstructive pulmonary disease (COPD) patients, cAMP signaling exerted beneficial effects by targeting muscle proteolysis and reducing gene expression of proteolytic markers of the ubiquitin-proteasome system and that of myostatin. In myotubes of patients and controls, roflumilast also favored antioxidant defense through upregulation of the nuclear factor (erythroid-derived 2)-like 2 pathway, of sirtuin-1, and of gene expression of slow- and fast-twitch isoforms. These findings have potential clinical implications for the treatment of muscle wasting in patients with COPD and cachexia.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| | - Ester Puig-Vilanova
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain
| | - Anna Salazar-Degracia
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain
| | - Sergi Pascual-Guardia
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain
| | - Carme Casadevall
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| | - Joaquim Gea
- Pulmonology Department, Muscle and Respiratory System Research Unit, Hospital del Mar Medical Research Institute, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra , Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
47
|
Mateu-Jimenez M, Curull V, Rodríguez-Fuster A, Aguiló R, Sánchez-Font A, Pijuan L, Gea J, Barreiro E. Profile of epigenetic mechanisms in lung tumors of patients with underlying chronic respiratory conditions. Clin Epigenetics 2018; 10:7. [PMID: 29371906 PMCID: PMC5771157 DOI: 10.1186/s13148-017-0437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background Chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and epigenetic events underlie lung cancer (LC) development. The study objective was that lung tumor expression levels of specific microRNAs and their downstream biomarkers may be differentially regulated in patients with and without COPD. Methods In lung specimens (tumor and non-tumor), microRNAs known to be involved in lung tumorigenesis (miR-21, miR-200b, miR-126, miR-451, miR-210, miR-let7c, miR-30a-30p, miR-155 and miR-let7a, qRT-PCR), DNA methylation, and downstream biomarkers were determined (qRT-PCR and immunoblotting) in 40 patients with LC (prospective study, subdivided into LC-COPD and LC, N = 20/group). Results Expression of miR-21, miR-200b, miR-210, and miR-let7c and DNA methylation were greater in lung tumor specimens of LC-COPD than of LC patients. Expression of downstream markers PTEN, MARCKs, TPM-1, PDCD4, SPRY-2, ETS-1, ZEB-2, FGFRL-1, EFNA-3, and k-RAS together with P53 were selectively downregulated in tumor samples of LC-COPD patients. In these patients, tumor expression of miR-126 and miR-451 and that of the biomarkers PTEN, MARCKs, FGFRL-1, SNAIL-1, P63, and k-RAS were reduced. Conclusions Biomarkers of mechanisms involved in tumor growth, angiogenesis, migration, and apoptosis were differentially expressed in tumors of patients with underlying respiratory disease. These findings shed light into the underlying biology of the reported greater risk to develop LC seen in patients with chronic respiratory conditions. The presence of an underlying respiratory disease should be identified in all patients with LC as the differential biological profile may help determine tumor progression and the therapeutic response. Additionally, epigenetic events offer a niche for pharmacological therapeutic targets.
Collapse
Affiliation(s)
- Mercè Mateu-Jimenez
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | | | - Rafael Aguiló
- Thoracic Surgery Department, Hospital del Mar-IMIM, Parc de Salut Mar, Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
48
|
Guitart M, Lloreta J, Mañas‐Garcia L, Barreiro E. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice. J Cell Physiol 2018; 233:4360-4372. [DOI: 10.1002/jcp.26282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Guitart
- Department of Pulmonology‐Muscle Wasting Cachexia in Chronic Respiratory Diseases Lung Cancer Research GroupIMIM‐Hospital del Mar Parc de Salut Mar, Health and Sciences Experimental Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES)Instituto de Salud Carlos III (ISCIII)BarcelonaSpain
| | - Josep Lloreta
- Department of PathologyHospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
| | - Laura Mañas‐Garcia
- Department of Pulmonology‐Muscle Wasting Cachexia in Chronic Respiratory Diseases Lung Cancer Research GroupIMIM‐Hospital del Mar Parc de Salut Mar, Health and Sciences Experimental Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
| | - Esther Barreiro
- Department of Pulmonology‐Muscle Wasting Cachexia in Chronic Respiratory Diseases Lung Cancer Research GroupIMIM‐Hospital del Mar Parc de Salut Mar, Health and Sciences Experimental Department (CEXS)Universitat Pompeu Fabra (UPF)Barcelona Biomedical Research Park (PRBB)BarcelonaSpain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES)Instituto de Salud Carlos III (ISCIII)BarcelonaSpain
| |
Collapse
|
49
|
Salazar-Degracia A, Busquets S, Argilés JM, López-Soriano FJ, Barreiro E. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats. PeerJ 2017; 5:e4109. [PMID: 29255650 PMCID: PMC5732544 DOI: 10.7717/peerj.4109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection), redox balance (protein oxidation and nitration and antioxidants) and muscle proteins (1-dimensional immunoblots), carbonylated proteins (2-dimensional immunoblots), inflammatory cells (immunohistochemistry), and mitochondrial respiratory chain (MRC) complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV). Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius.
Collapse
Affiliation(s)
- Anna Salazar-Degracia
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Health and Experimental Sciences Department (CEXS), IMIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Health and Experimental Sciences Department (CEXS), IMIM-Hospital del Mar, Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
50
|
Garros RF, Paul R, Connolly M, Lewis A, Garfield BE, Natanek SA, Bloch S, Mouly V, Griffiths MJ, Polkey MI, Kemp PR. MicroRNA-542 Promotes Mitochondrial Dysfunction and SMAD Activity and Is Elevated in Intensive Care Unit-acquired Weakness. Am J Respir Crit Care Med 2017; 196:1422-1433. [PMID: 28809518 DOI: 10.1164/rccm.201701-0101oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Loss of skeletal muscle mass and function is a common consequence of critical illness and a range of chronic diseases, but the mechanisms by which this occurs are unclear. OBJECTIVES To identify microRNAs (miRNAs) that were increased in the quadriceps of patients with muscle wasting and to determine the molecular pathways by which they contributed to muscle dysfunction. METHODS miRNA-542-3p/5p (miR-542-3p/5p) were quantified in the quadriceps of patients with chronic obstructive pulmonary disease and intensive care unit-acquired weakness (ICUAW). The effect of miR-542-3p/5p was determined on mitochondrial function and transforming growth factor-β signaling in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS miR-542-3p/5p were elevated in patients with chronic obstructive pulmonary disease but more markedly in patients with ICUAW. In vitro, miR-542-3p suppressed the expression of the mitochondrial ribosomal protein MRPS10 and reduced 12S ribosomal RNA (rRNA) expression, suggesting mitochondrial ribosomal stress. miR-542-5p increased nuclear phospho-SMAD2/3 and suppressed expression of SMAD7, SMURF1, and PPP2CA, proteins that inhibit or reduce SMAD2/3 phosphorylation, suggesting that miR-542-5p increased transforming growth factor-β signaling. In mice, miR-542 overexpression caused muscle wasting, and reduced mitochondrial function, 12S rRNA expression, and SMAD7 expression, consistent with the effects of the miRNAs in vitro. Similarly, in patients with ICUAW, the expression of 12S rRNA and of the inhibitors of SMAD2/3 phosphorylation were reduced, indicative of mitochondrial ribosomal stress and increased transforming growth factor-β signaling. In patients undergoing aortic surgery, preoperative levels of miR-542-3p/5p were positively correlated with muscle loss after surgery. CONCLUSIONS Elevated miR-542-3p/5p may cause muscle atrophy in intensive care unit patients through the promotion of mitochondrial dysfunction and activation of SMAD2/3 phosphorylation.
Collapse
Affiliation(s)
| | - Richard Paul
- 1 Molecular Medicine Section and.,2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | | | | | | | | | - Susannah Bloch
- 1 Molecular Medicine Section and.,2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | - Vincent Mouly
- 3 Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Mark J Griffiths
- 4 Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College, South Kensington Campus, London, United Kingdom
| | - Michael I Polkey
- 2 National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom; and
| | | |
Collapse
|