1
|
Totten V, Teixido-Tura G, Lopez-Grondona F, Fernandez-Alvarez P, Lasa-Aranzasti A, Muñoz-Cabello P, Kosaki R, Tizzano EF, Dewals W, Borràs E, Cañas EG, Almoguera B, Loeys B, Valenzuena I. Arterial aneurysm and dissection: toward the evolving phenotype of Tatton-Brown-Rahman syndrome. J Med Genet 2024; 61:870-877. [PMID: 38960581 DOI: 10.1136/jmg-2024-109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Tatton-Brown-Rahman syndrome (TBRS) is a rare disorder, caused by DNMT3A heterozygous pathogenic variants, and first described in 2014. TBRS is characterised by overgrowth, intellectual disability, facial dysmorphism, hypotonia and musculoskeletal features, as well as neurological and psychiatric features. Cardiac manifestations have also been reported, mainly congenital malformations such as atrial septal defect, ventricular septal defect and cardiac valvular disease. Aortic dilatation has rarely been described. METHODS Here we have undertaken a detailed clinical and molecular description of eight previously unreported individuals, who had TBRS and arterial dilatation and/or dissection, mainly thoracic aortic aneurysm (TAA). We have also reviewed the seven previously published cases of TAA in individuals with TBRS to try to better delineate the vascular phenotype and to determine specific follow-up for this condition. RESULTS We include eight new patients with TBRS who presented with arterial aneurysms mainly involving aorta. Three of these patients presented with dissection that required critical surgery. CONCLUSIONS Arterial aneurysms and dissections are a potentially lethal, age-dependent manifestation. The prevalence of aortic disease in individuals with TBRS is far in excess of that expected in the general population. This cohort, together with individuals previously published, illustrates the importance to consider dilatation/dissection, mainly in aorta but also in other arteries. Arterial vascular weakness may therefore also be a cardinal feature of TBRS and vascular surveillance is recommended.
Collapse
Affiliation(s)
- Vicken Totten
- Kaweah Health System, Visalia, California, USA
- Kayenta Health Center of the Indian Health Service, Kayenta, Arizona, USA
| | - Gisela Teixido-Tura
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics and Genomics, Hospital Universitario Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
| | - Fermina Lopez-Grondona
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Barcelona, Spain
| | - Paula Fernandez-Alvarez
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital. Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA), Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital. Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA), Barcelona, Spain
| | - Patricia Muñoz-Cabello
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital. Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA), Barcelona, Spain
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital. Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA), Barcelona, Spain
| | - Wendy Dewals
- Pediatric Cardiology Department, Antwerp University Hospital, Edegem, Belgium
| | - Emma Borràs
- Molecular Genetics Unit, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Elena Gonzalez Cañas
- Angiology and Vascular Surgery, Hospital Universitari Parc Tauli, Sabadell, Spain
| | - Berta Almoguera
- European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD Rare Disease Working Group, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Bart Loeys
- Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Irene Valenzuena
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital. Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA), Barcelona, Spain
| |
Collapse
|
2
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Liu H, Sun M, Wu N, Liu B, Liu Q, Fan X. TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF: Their mechanisms and roles in vascular remodeling related diseases. Immun Inflamm Dis 2023; 11:e1060. [PMID: 38018603 PMCID: PMC10629241 DOI: 10.1002/iid3.1060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
Vascular remodeling is a basic pathological process in various diseases characterized by abnormal changes in the morphology, structure, and function of vascular cells, such as migration, proliferation, hypertrophy, and apoptosis. Various growth factors and pathways are involved in the process of vascular remodeling. The transforming growth factor-β (TGF-β) signaling pathway, which is mainly mediated by TGF-β1, is an important factor in vascular wall enhancement during vascular development and regulates the vascular response to injury by promoting the accumulation of intimal tissue. Vascular endothelial growth factor (VEGF) has an important effect on initiating the formation of blood vessels. The Hippo-YAP/TAZ signaling pathway also plays an important role in angiogenesis. In addition, studies have shown that there is a certain interaction between the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF. Many studies have shown that in the development of atherosclerosis, hypertension, aneurysm, vertebrobasilar dolichoectasia, pulmonary hypertension, restenosis after percutaneous transluminal angioplasty, and other diseases, various inflammatory reactions lead to changes in vascular structure and vascular microenvironment, which leads to vascular remodeling. The occurrence of vascular remodeling changes the morphology of blood vessels and thus changes the hemodynamics, which is the cause of further development of the disease process. Vascular remodeling can cause vascular smooth muscle cell dysfunction and vascular homeostasis regulation. This review aims to explore the mechanisms of the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and vascular endothelial growth factor in vascular remodeling and related diseases. This paper is expected to provide new ideas for research on the occurrence and development of related diseases and provide a new direction for research on the treatment of related diseases.
Collapse
Affiliation(s)
- Hui Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Mingyue Sun
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Nan Wu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric DisordersBinzhou Medical University HospitalBinzhouChina
| | - Qingxin Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Xueli Fan
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
4
|
Wang X, Wang M, Zhou Z, Zou X, Song G, Zhang Q, Zhou H. SMOC2 promoted vascular smooth muscle cell proliferation, migration, and extracellular matrix degradation by activating BMP/TGF-β1 signaling pathway. J Clin Biochem Nutr 2023; 73:116-123. [PMID: 37700850 PMCID: PMC10493216 DOI: 10.3164/jcbn.22-100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/04/2023] [Indexed: 09/14/2023] Open
Abstract
A widespread degenerative condition of the aorta, abdominal aortic aneurysm (AAA), severely endangers the health of middle-aged and elderly people. SPARC related modular calcium binding2 (SMOC2) is upregulated in the carotid arteries of rats with atherosclerotic lesions, but its function in AAA is still unknown. Therefore, the aim of this research was to evaluate the function of SMOC2 in AAA. The results showed that in the AAA tissues, SMOC2 expression was upregulated compared with healthy controls. Overexpression of SMOC2 promoted vascular smooth muscle cells (VSMCs) proliferation, migration, and extracellular matrix (ECM) degradation. In contrast, silence of SMOC2 inhibited VSMCs proliferation, migration, and ECM degradation. Overexpression of SMOC2 promoted BMP and TGF-β1 expression and silence of SMOC2 had an opposite effect. Besides, inhibition of BMP or TGF-β1 suppressed VSMCs cell proliferation, migration, and ECM degradation. Moreover, inhibition BMP or TGF-β1 reversed the promotive effects of SMOC2 overexpression on VSMCs proliferation, migration, and ECM degradation. SMOC2 may affecte the formation of AAA by upregulating BMP and TGF-β1 to regulate the proliferation, migration, and ECM degradation of VSMCs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Meng Wang
- Department of Nephrology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Zhongxiao Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Xin Zou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Guoxin Song
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Qingsong Zhang
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Haimeng Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| |
Collapse
|
5
|
Bararu Bojan (Bararu) I, Pleșoianu CE, Badulescu OV, Vladeanu MC, Badescu MC, Iliescu D, Bojan A, Ciocoiu M. Molecular and Cellular Mechanisms Involved in Aortic Wall Aneurysm Development. Diagnostics (Basel) 2023; 13:diagnostics13020253. [PMID: 36673063 PMCID: PMC9858209 DOI: 10.3390/diagnostics13020253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023] Open
Abstract
Aortic aneurysms represent a very common pathology that can affect any segment of the aorta. These types of aneurysms can be localized on the thoracic segment or on the abdominal portion, with the latter being more frequent. Though there are similarities between thoracic and abdominal aortic aneurysms, these pathologies are distinct entities. In this article, we undertook a review regarding the different mechanisms that can lead to the development of aortic aneurysm, and we tried to identify the different manners of treatment. For a long time, aortic wall aneurysms may evolve in an asymptomatic manner, but this progressive dilatation of the aneurysm can lead to a potentially fatal complication consisting in aortic rupture. Because there are limited therapies that may delay or prevent the development of acute aortic syndromes, surgical management remains the most common manner of treatment. Even though, surgical management has improved much in the last years, thus becoming less invasive and sophisticated, the morbi-mortality linked to these therapies remains increased. The identification of the cellular and molecular networks triggering the formation of aneurysm would permit the discovery of modern therapeutic targets. Molecular and cellular mechanisms are gaining a bigger importance in the complex pathogenesis of aortic aneurysms. Future studies must be developed to compare the findings seen in human tissue and animal models of aortic aneurysm, so that clinically relevant conclusions about the aortic aneurysm formation and the pharmacological possibility of pathogenic pathways blockage can be drawn.
Collapse
Affiliation(s)
- Iris Bararu Bojan (Bararu)
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
| | - Carmen Elena Pleșoianu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Cardiology, ‘Prof. Dr. George I.M. Georgescu’ Institute of Cardiovascular Diseases, 700503 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Oana Viola Badulescu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Maria Cristina Vladeanu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dan Iliescu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Andrei Bojan
- Department of Surgical Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
| |
Collapse
|
6
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
7
|
Pisano C, Terriaca S, Scioli MG, Nardi P, Altieri C, Orlandi A, Ruvolo G, Balistreri CR. The Endothelial Transcription Factor ERG Mediates a Differential Role in the Aneurysmatic Ascending Aorta with Bicuspid or Tricuspid Aorta Valve: A Preliminary Study. Int J Mol Sci 2022; 23:10848. [PMID: 36142762 PMCID: PMC9502538 DOI: 10.3390/ijms231810848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
The pathobiology of ascending aorta aneurysms (AAA) onset and progression is not well understood and only partially characterized. AAA are also complicated in case of bicuspid aorta valve (BAV) anatomy. There is emerging evidence about the crucial role of endothelium-related pathways, which show in AAA an altered expression and function. Here, we examined the involvement of ERG-related pathways in the differential progression of disease in aortic tissues from patients having a BAV or tricuspid aorta valve (TAV) with or without AAA. Our findings identified ERG as a novel endothelial-specific regulator of TGF-β-SMAD, Notch, and NO pathways, by modulating a differential fibrotic or calcified AAA progression in BAV and TAV aortas. We provided evidence that calcification is correlated to different ERG expression (as gene and protein), which appears to be under control of Notch signaling. The latter, when increased, associated with an early calcification in aortas with BAV valve and aneurysmatic, was demonstrated to favor the progression versus severe complications, i.e., dissection or rupture. In TAV aneurysmatic aortas, ERG appeared to modulate fibrosis. Therefore, we proposed that ERG may represent a sensitive tissue biomarker to monitor AAA progression and a target to develop therapeutic strategies and influence surgical procedures.
Collapse
Affiliation(s)
- Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Polyclinic, 00133 Rome, Italy
| | - Sonia Terriaca
- Pathological Anatomy, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Pathological Anatomy, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Paolo Nardi
- Department of Cardiac Surgery, Tor Vergata University Polyclinic, 00133 Rome, Italy
| | - Claudia Altieri
- Department of Cardiac Surgery, Tor Vergata University Polyclinic, 00133 Rome, Italy
| | - Augusto Orlandi
- Pathological Anatomy, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
- Department of Biomedical Sciences, Catholic University of Our Lady of Good Counsel, 1001 Tirana, Albania
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, Tor Vergata University Polyclinic, 00133 Rome, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
8
|
Zhou Z, Yue Y, Ma K, Hua Z, Li Z. Congenital Abdominal Aortic Aneurysm: A Case Report and Literature Review. Front Pediatr 2022; 10:853517. [PMID: 35299672 PMCID: PMC8921522 DOI: 10.3389/fped.2022.853517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Congenital abdominal aortic aneurysm is a rare disease with unknown etiology, and the common symptoms are abdominal pulsatile mass and pain caused by aneurysm rupture. The disease has a high mortality rate and fewer reports of surgical treatment. Here, we present a case of an idiopathic congenital abdominal aortic aneurysm. A 4-year-old boy had an abdominal pulsatile mass, and computed tomography angiography revealed an isolated infrarenal abdominal aortic aneurysm. To prevent rupture of the aneurysm, we repaired the aneurysm with artificial graft transplantation. No genetic mutation of the known congenital aneurysmal diseases was found in the whole-exome sequencing of the patient and his parents. There was no graft obstruction, and the patient grew well 40 months after surgery. Open surgery is the best treatment for idiopathic congenital abdominal aortic aneurysms. Surgical details such as timing and graft selection need to be further explored.
Collapse
Affiliation(s)
- Zhibin Zhou
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Yue
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Hua
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Niaz T, Johnson JN, Cetta F, Poterucha JT, Hagler DJ. Sex Differences in Children and Young Adults With Bicuspid Aortic Valve Disease in First Two Decades of Life. Mayo Clin Proc 2021; 96:1874-1887. [PMID: 34218860 DOI: 10.1016/j.mayocp.2020.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To elucidate sex differences in valve morphology, disease phenotype, progression, and outcomes among children and young adults with bicuspid aortic valve (BAV). PATIENTS AND METHODS This is a retrospective cohort study examining all children and young adults (aged ≤22 years) with isolated BAV diagnosed, by excluding patients with concomitant congenital heart defects or genetic syndromes, from January 1, 1990, through December 1, 2016, at Mayo Clinic in Rochester, Minnesota. RESULTS Of 1010 patients with BAV, 558 had isolated BAV. Distributions of morphology were right-left in 65.8% (n=367), right-noncoronary in 34% (n=190), and left-noncoronary cusp fusion in 0.2% (n=1) of patients; with no sex differences. Male to female ratio was 3:1. At the first echocardiographic evaluation in the study, there were no sex differences in terms of frequency of aortic valve stenosis or regurgitation. However, males had significantly higher grades of aortic valve regurgitation at 17 years of age onward (P<.0001). Males had significantly larger mid-ascending aorta (P=.01) and sinus of Valsalva dimensions (z score; P=.0001) as compared with females, with a novel finding of peak aortic dimensions around 8 years of age. Males also had more than 2-fold higher risk for sinus of Valsalva dilation (z score >2) as compared with females (odds ratio, 2.3; 95% CI, 1.2 to 4.2; P=.01). There were no significant sex differences in the primary cardiac outcomes of interventions on aortic valve and/or aorta, aortic dissection, or death. CONCLUSION In children and young adults with BAV, males have a higher grade of aortic regurgitation in late adolescence, significantly larger aortic dimensions, different patterns of aortic growth, and more frequent sinus of Valsalva dilation as compared with females. Overall, the rate of primary cardiac events is lower in young patients, with no significant sex differences.
Collapse
Affiliation(s)
- Talha Niaz
- Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN.
| | - Jonathan N Johnson
- Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Frank Cetta
- Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Joseph T Poterucha
- Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN
| | - Donald J Hagler
- Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
10
|
Cui J, Xu G, Bian F. H 2S alleviates aortic aneurysm and dissection: Crosstalk between transforming growth factor 1 signaling and NLRP3 inflammasome. Int J Cardiol 2021; 338:215-225. [PMID: 34157359 DOI: 10.1016/j.ijcard.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular remodeling and inflammation are involved in aortic aneurysm (AA) and aortic dissection (AD). TGF-β1 signaling is involved in tissue fibrosis, extracellular matrix remodeling and inflammation, which are linked with AA and AD. The inhibition of NLRP3 inflammasome suppresses AA and AD. Hydrogen sulfide (H2S) exerts anti-vascular remodeling and anti-inflammatory properties, but little is known about its action on AA and AD progression. METHODS The effect of H2S on AA and AD formation was investigated in Sprague-Dawley (SD) rat fed a normal diet supplemented with 0.25% β-aminopropionitrile (BAPN). HE staining, Masson's trichrome staining, Picrosirius red staining and EVG staining were to evaluate vascular remodeling in the aortic wall. Western blotting and IHC were to detect the expression of TGF-β1 and matrix metalloproteinases (MMPs) and NLRP3 inflammasome-associated proteins. The interaction between TGF-β1 signaling and NLRP3 inflammasome was explored in Human aortic vascular smooth muscle cells (HA-VSMCs). RESULTS H2S alleviated AA and AD progression. Specifically, it improved irregular tissue arrangement and vascular fibrosis, increased the expression of elastin fibers, decreased collagen deposition and the expression of TGF-β1 and matrix metalloproteinases (MMP-2/9). In addition, H2S inhibited the expression of proteins involved in NLRP3 inflammasome. Furthermore, H2S down-regulated TGF-β1 signaling and then ameliorated vascular fibrosis by preventing NLRP3 inflammasome activation. Finally, H2S inhibited NLRP3 inflammasome activation and decreased the level of IL-1β by disrupting TGF-β1 signaling. CONCLUSIONS These data support a crosstalk between TGF-β1 signaling and NLRP3 inflammasome. H2S inhibits AA and AD progression via blocking the crosstalk.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China
| | - Gao Xu
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Special Preparation of Vitiligo Xiangyang Key Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China.
| |
Collapse
|
11
|
Junco-Vicente A, del Río-García Á, Martín M, Rodríguez I. Update in Biomolecular and Genetic Bases of Bicuspid Aortopathy. Int J Mol Sci 2021; 22:ijms22115694. [PMID: 34071740 PMCID: PMC8198265 DOI: 10.3390/ijms22115694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) associated with aortopathy is the most common congenital heart disease in the general population. Far from being a simple harmless valve malformation, it can be a complex and heterogeneous disease and a source of chronic and acute pathology (early valvular disease, aneurysm, dissection). In the previous years, intense research has been carried out to find out and understand its mechanisms, but the pathophysiology of the disease is still not fully understood and many questions remain open. Recent studies have discovered several genetic mutations involved in the development of valvular and aortic malformations, but still cannot explain more than 5–10% of cases. Other studies have also focused on molecular alterations and cellular processes (TGF-β pathway, microRNAs, degradation of the extracellular matrix, metalloproteinases, etc.), being a field in constant search and development, looking for a therapeutic target to prevent the development of the disease. Increased knowledge about this multifaceted disorder, derived from both basic and clinical research, may influence the diagnosis, follow-up, prognosis, and therapies of affected patients in the near future. This review focuses on the latest and outstanding developments on the molecular and genetic investigations of the bicuspid aortopathy.
Collapse
Affiliation(s)
- Alejandro Junco-Vicente
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
| | - Álvaro del Río-García
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - María Martín
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| |
Collapse
|
12
|
Huo R, Tian X, Chang Q, Liu D, Wang C, Bai J, Wang R, Zheng G, Tian X. Targeted inhibition of β-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-β 1. Ther Adv Respir Dis 2021; 15:1753466620981858. [PMID: 33530899 PMCID: PMC7970683 DOI: 10.1177/1753466620981858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND TGF-β1 is a key cytokine involved in both airway inflammation and airway remodeling in asthma because of its anti-inflammatory and profibrotic effect. In our previous study, we found that knockdown of cytosolic β-catenin alleviated the profibrogenic effect of TGF-β1 without influencing its anti-inflammatory effect. However, the exact role of targeting β-catenin in asthma is not yet fully demonstrated. In the present study, we investigated the effect and mechanism of targeting β-catenin in OVA-challenged asthmatic rats with airway inflammation and remodeling features. METHODS We integrated experimental asthma model and asthma related cell model to explore the effect of targeting β-catenin on airway inflammation and remodeling of asthma. RESULTS Blocking β-catenin with ICG001, a small molecule inhibitor of β-catenin/TCF via binding to cAMP-response elementbinding protein, attenuated airway inflammation by increasing levels of anti-inflammation cytokines IL-10, IL-35 and decreasing levels of T helper (Th)2 cells and Th17 cytokine. Suppressing β-catenin by ICG001 inhibited airway remodeling via reducing the level of TGF-β1 and the expressions of Snail, MMP-7, MMP-9 and, up-regulating expression of E-cadherin, down-regulating expressions of α-SMA and Fn. Inhibition of β-catenin with ICG001 suppressed TGF-β1 induced proliferation and activation of CCC-REPF-1, blocked TGF-β1 induced epithelial-mesenchymal transition (EMT) of RLE-6TN. CONCLUSION Blockade of β-catenin/TCF not only prevents TGF-β1 induced EMT and profibrogenic effects involved in pathological remodeling of airway, but also alleviates airway inflammation in asthma by balancing pro-inflammatory and anti-inflammatory cytokine. In conclusion, targeting β-catenin specifically via inhibition of β-catenin/TCF might be a new therapeutic strategy for asthma.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Rujie Huo
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinli Tian
- Cardiopulmonary Center, General Hospital of PLA Army, Beijing, China
| | - Qin Chang
- Department of Respiratory Medicine, Linfen Central Hospital, Linfen, China
| | - Dai Liu
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chen Wang
- Pathology Department, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingcui Bai
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Runjuan Wang
- Emergency Department, Central Hospital of China Railway No.3 Engineering Group, Taiyuan, China
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Xinrui Tian
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing Area, Taiyuan, China
| |
Collapse
|
13
|
Zhang H, Huang W, Liu H, Zheng Y, Liao L. Mechanical stretching of pulmonary vein stimulates matrix metalloproteinase-9 and transforming growth factor-β1 through stretch-activated channel/MAPK pathways in pulmonary hypertension due to left heart disease model rats. PLoS One 2020; 15:e0235824. [PMID: 32881898 PMCID: PMC7470280 DOI: 10.1371/journal.pone.0235824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD) is a momentous pulmonary hypertension disease, and left heart disease is the most familiar cause. Mechanical stretching may be a crucial cause of vascular remodeling. While, the underlining mechanism of mechanical stretching-induced in remodeling of pulmonary vein in the early stage of PH-LHD has not been completely elucidated. In our study, the PH-LHD model rats were successfully constructed. After 25 days, doppler echocardiography and hemodynamic examination were performed. In addition, after treatment, the levels of matrix metalloproteinase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) were determined by ELISA, immunohistochemistry and western blot assays in the pulmonary veins. Moreover, the pathological change of pulmonary tissues was evaluated by H&E staining. Our results uncovered that left ventricular insufficiency and interventricular septal shift could be observed in PH-LHD model rats, and the right ventricular systolic pressure (RVSP) and mean left atrial pressure (mLAP) were also elevated in PH-LHD model rats. Meanwhile, we found that MMP-9 and TGF-β1 could be highly expressed in PH-LHD model rats. Besides, we revealed that stretch-activated channel (SAC)/mitogen-activated protein kinases (MAPKs) signaling pathway could be involved in the upregulations of MMP-9 and TGF-β1 mediated by mechanical stretching in pulmonary vein. Therefore, current research revealed that mechanical stretching induced the increasing expressions of MMP-9 and TGF-β1 in pulmonary vein, which could be mediated by activation of SAC/MAPKs signaling pathway in the early stage of PH-LHD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Wenhui Huang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Hongjin Liu
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Yihan Zheng
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Lianming Liao
- Department of Medical Laboratory, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| |
Collapse
|
14
|
Scola L, Giarratana RM, Pisano C, Ruvolo G, Marinello V, Lio D, Balistreri CR. Genotyping strategy of SMAD-3 rs3825977 gene variant for a differential management of ascending aorta aneurysm in women people: Gender oriented diagnostic tools. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
15
|
Pulignani S, Borghini A, Foffa I, Vecoli C, Ait-Alì L, Andreassi MG. Functional characterization and circulating expression profile of dysregulated microRNAs in BAV-associated aortopathy. Heart Vessels 2020; 35:432-440. [PMID: 31562552 DOI: 10.1007/s00380-019-01509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
Compelling evidence has shown that microRNAs (miRs) are involved in the pathophysiology of BAV-associated aortopathy. The purpose of this study was to assess the biological role as well as the circulating expression of two miRs (miR-424-3p and miR-3688-3p) that have been previously identified as significantly dysregulated in thoracic aortic aneurysm specimens of BAV patients. Bioinformatic tools were used to predict miR gene targets followed by functional validation transfecting synthetic miR mimics and negative controls into human aortic smooth muscle cells (HASMCs). Levels of miRs and target genes were evaluated by qRT-PCR. The circulating miR expression profile analysis was assessed on plasma samples collected from a cohort of 72 patients with aortopathy including 39 BAV (33 males; 58 ± 13 years) and 33 TAV patients (26 males; 67 ± 9 years). Computational analysis revealed that SMAD7 and YAP1 were potential targets of miR-424-3p and miR-3688-3p, respectively. Transfection with mimics confirmed a significantly decreased gene expression of SMAD7 and YAP1 compared to mimic negative control (p = 0.04 and p = 0.0005, respectively) or blank control (p = 0.01 and p = 0.0007, respectively). Overexpression of miR-3688-3p also significantly upregulated pro-apoptotic caspase-3 gene expression compared to mimic negative control (p = 0.02) or blank control (p = 0.01). Furthermore, a significant down-regulation of the circulating miR-424-3p was observed in BAV compared to TAV patients (p = 0.001). In multiple linear regression analysis, the aortic valve morphology (β = - 0.29, p = 0.04) and the presence of aortic stenosis (β = - 0.28, p = 0.03) had a significant effect on the miR-424-3p expression. In conclusion, our study demonstrated that miR-424-3p and miR-3688-3p directly targeted SMAD7 and YAP1 in HASMCs, pivotal genes of the TGF-β and Hippo-signaling pathways. Circulating miR-424-3p was also found to be significantly decreased in BAV patients when compared to TAV patients, especially in patients with aortic stenosis. Further large studies of well-characterized BAV patient cohorts are needed to define the clinical significance of the miR-424-3p.
Collapse
Affiliation(s)
- Silvia Pulignani
- Institute of Clinical Physiology (IFC), Via Moruzzi 1, 56124, Pisa, Italy
| | - Andrea Borghini
- Institute of Clinical Physiology (IFC), Via Moruzzi 1, 56124, Pisa, Italy
| | - Ilenia Foffa
- Institute of Clinical Physiology (IFC), Via Moruzzi 1, 56124, Pisa, Italy
| | - Cecilia Vecoli
- Institute of Clinical Physiology (IFC), Via Moruzzi 1, 56124, Pisa, Italy
| | - Lamia Ait-Alì
- Institute of Clinical Physiology (IFC), Via Moruzzi 1, 56124, Pisa, Italy
| | | |
Collapse
|
16
|
Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2019; 501:222-228. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Aortic dissection and aortic aneurysms are currently among the most high-risk cardiovascular diseases due to their rapid onset and high mortality. Although aneurysm research has been extensive, the pathogenesis remains unknown. Studies have found that the TGF-β/Smad pathway and aneurysm formation appear linked. For example, the TGF-β signaling pathway was significantly activated in aneurysm development and aortic dissection. Aneurysms are not, however, mitigated following knockdown of TGF-β signaling pathway-related genes. Incidence and mortality rate of ruptured thoracic aneurysms increase with the down-regulation of the classical TGF-β signaling pathway. In this review, we summarize recent findings and evaluate the differential role of classical and non-classical TGF-β pathways on aortic aneurysm. It is postulated that the TGF-β signaling pathway is necessary to maintain vascular function, but over-activation will promote aneurysms whereas over-inhibition will lead to bypass pathway over-activation and promote aneurysm occurrence.
Collapse
Affiliation(s)
- Tang Tingting
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Fan Wenjing
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zeng Qian
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan Hengquan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhao Simin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jiang Zhisheng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qu Shunlin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
17
|
Messner B, Bernhard D. Bicuspid aortic valve-associated aortopathy: Where do we stand? J Mol Cell Cardiol 2019; 133:76-85. [PMID: 31152748 DOI: 10.1016/j.yjmcc.2019.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/30/2023]
Abstract
Herein we summarize the current knowledge on the bicuspid aortic valve (BAV)-associated aortopathy regarding clinical presentation and disease sub-classification, genetic background, hemodynamics, histopathology, cells and signaling, animal models, and biomarkers. Despite enormous efforts in research in all of the above areas, important issues remain unknown: (i) what is the ontogenetic basis of BAV development? (ii) how can we explain the diversity of BAV and associated aortopathy phenotypes? (iii) what are the signaling processes in aortopathy pathogenesis and how can we interfere with these processes? Despite undoubtedly great progress that has been made in the understanding of BAV-associated aortopathy, so far researchers have put together a heap of Lego bricks, but at present it is unclear if the bricks are compatible, how they fit together, and which parts are missing to build the true model of the BAV aorta. A joint approach is needed to accelerate research progress.
Collapse
Affiliation(s)
- Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - David Bernhard
- Center for Medical Research, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
18
|
Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve? Clin Sci (Lond) 2019; 133:805-819. [PMID: 30991346 DOI: 10.1042/cs20181092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy.
Collapse
|
19
|
Association of aortic root dilatation with left ventricular function in patients with postoperative ventricular septal defect. Heart Vessels 2019; 34:1491-1498. [PMID: 30859378 DOI: 10.1007/s00380-019-01372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Proximal aortic enlargement is associated with an increased risk of heart failure and all-cause mortality. Recently, aortic root dilatation (ARD) was reported in postoperative patients with ventricular septal defects (VSDs). However, the impact of ARD on left ventricular (LV) function in postoperative VSD patients remains unclear. Thus, the aim of this study was to investigate the effect of ARD on LV function in patients with postoperative VSD. One hundred and thirty-five patients (> 15 years of age) with surgically repaired isolated ventricular defects and who underwent transthoracic echocardiography in our institution between 2009 and 2013 were identified. ARD was defined as an observed aortic root diameter/body surface area > 2.1 cm/m2. The propensity score estimating the probability of having ARD adjusted for anatomical and clinical characteristics was calculated. Forty-four patients (32.6%) had ARD. In unadjusted analyses, right ventricular systolic pressure, Tei index, and E/e' were significantly (p < 0.05) higher in patients with ARD than in those without ARD (31.3 ± 7.5 vs. 35.4 ± 13.7 mmHg, 0.32 ± 0.10 vs. 0.44 ± 0.15, and 7.1 ± 1.7 vs. 9.5 ± 2.9, respectively). In the propensity score-adjusted analysis, significant differences in the Tei index and E/e' were confirmed between the two groups (Tei index difference: 0.11, 95% confidence interval 0.05-0.17; E/e' difference: 2.4, 95% confidence interval 1.3-3.5). However, there were no differences in the other echocardiographic measurements. The presence of ARD in patients with postoperative VSD was significantly associated with LV diastolic dysfunction. Thus, surgically repaired VSD patients require careful screening for aortic enlargement and LV function.
Collapse
|
20
|
Forte A, Balistreri CR, De Feo M, Della Corte A, Hellstrand P, Persson L, Nilsson BO. Polyamines and microbiota in bicuspid and tricuspid aortic valve aortopathy. J Mol Cell Cardiol 2019; 129:179-187. [PMID: 30825483 DOI: 10.1016/j.yjmcc.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Polyamines are small aliphatic cationic molecules synthesized via a highly regulated pathway and involved in general molecular and cellular phenomena. Both mammalian cells and microorganisms synthesize polyamines, and both sources may contribute to the presence of polyamines in the circulation. The dominant location for microorganisms within the body is the gut. Accordingly, the gut microbiota probably synthesizes most of the polyamines in the circulation in addition to those produced by the mammalian host cells. Polyamines are mandatory for cellular growth and proliferation. Established evidence suggests that the polyamine spermidine prolongs lifespan and improves cardiovascular health in animal models and humans through both local mechanisms, involving improved cardiomyocyte function, and systemic mechanisms, including increased NO bioavailability and reduced systemic inflammation. Higher levels of polyamines have been detected in non-dilated aorta of patients affected by bicuspid aortic valve congenital malformation, an aortopathy associated with an increased risk for thoracic ascending aorta aneurysm. In this review, we discuss metabolism of polyamines and their potential effects on vascular smooth muscle and endothelial cell function in vascular pathology of the thoracic ascending aorta associated with bicuspid or tricuspid aortic valve.
Collapse
Affiliation(s)
- Amalia Forte
- Department of Translational Medical Sciences, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Marisa De Feo
- Department of Translational Medical Sciences, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Portelli SS, Robertson EN, Malecki C, Liddy KA, Hambly BD, Jeremy RW. Epigenetic influences on genetically triggered thoracic aortic aneurysm. Biophys Rev 2018; 10:1241-1256. [PMID: 30267337 PMCID: PMC6233334 DOI: 10.1007/s12551-018-0460-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Genetically triggered thoracic aortic aneurysms (TAAs) account for 30% of all TAAs and can result in early morbidity and mortality in affected individuals. Epigenetic factors are now recognised to influence the phenotype of many genetically triggered conditions and have become an area of interest because of the potential for therapeutic manipulation. Major epigenetic modulators include DNA methylation, histone modification and non-coding RNA. This review examines epigenetic modulators that have been significantly associated with genetically triggered TAAs and their potential utility for translation to clinical practice.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kiersten A Liddy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The incidence of aortic dilation and acute complications (rupture and dissection) is higher in patients with a bicuspid aortic valve (BAV), the most frequent congenital heart defect.The present review focuses on the current knowledge in the genetics of BAV, emphasizing the clinical implications for early detection and personalized care. RECENT FINDINGS BAV is a highly heritable trait, but the genetic causes remain largely elusive. NOTCH1 is the only proven candidate gene to be associated with both familial and sporadic BAV. Other genes have been reported to be associated with BAV, but some of these associations may result from coexisting disease.The application of modern high-throughput technologies (next generation sequencing, genome-wide copy number and genome-wide methylation arrays) have begun to dissect the genetic heterogeneity underlying BAV as well as the diverse molecular pathways involved in the progression of BAV aortopathy. SUMMARY The clinical variability seen in BAV aortopathy, in terms of phenotype and natural/clinical history, suggests complex interactions between primary genetic defects, other modifier genes, epigenetic factors (DNA methylation or histone modifications, microRNA) and environmental factors (disturbed flow). Integrated, more comprehensive studies are needed for elucidating these connections to develop more individualized and accurate risk assessment methods.
Collapse
|
23
|
Maredia AK, Greenway SC, Verma S, Fedak PWM. Bicuspid aortic valve-associated aortopathy: update on biomarkers. Curr Opin Cardiol 2018; 33:134-139. [PMID: 29095713 DOI: 10.1097/hco.0000000000000481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Bicuspid aortic valve (BAV)-associated aortopathy is common and its progression for individual patients is difficult to predict. The present review aims to identify recent developments using biomarkers for the determination of risk and progression of disease in patients with BAV aortopathy. RECENT FINDINGS Novel rare genetic variants and epigenetic methylation signatures affecting non-cytosine phosphate guanine (non-CpG) and CpG sites, nicotinamide phosphoribosyltransferase and Sod expression may lead to improved prediction of the aortopathy phenotype. Circulating transforming growth factor β-1/endoglin and miRNA signatures are found to be indicative of aortic dilation. Aortic miRNA, sphingomyelin and oxidative stress levels are linked to aortopathy progression and aortic dilation. Further evidence is shown that the pattern of cusp fusion in BAV may influence the location and extent of aortopathy. SUMMARY The clinical phenotypic variability seen in BAV patients suggests complex interactions between genetic variants, epigenetic regulation modifications and the variable effect of valve-mediated hemodynamic flow disturbances on the aorta and its secreted markers. Emerging biomarkers may serve along with advanced noninvasive imaging modalities to precisely identify risk of aortic complications and identify those patients who are in need of surgical intervention.
Collapse
Affiliation(s)
- Ashna K Maredia
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Steven C Greenway
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital
- Departments of Surgery, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Forte A, Della Corte A. Editorial: The Pathogenetic Mechanisms at the Basis of Aortopathy Associated with Bicuspid Aortic Valve: Insights from "Omics", Models of Disease and Emergent Technologies. Front Physiol 2017; 8:1002. [PMID: 29255425 PMCID: PMC5723015 DOI: 10.3389/fphys.2017.01002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Amalia Forte
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Alessandro Della Corte
- Department of Cardiothoracic and Respiratory Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve. Heart Vessels 2017; 33:327-339. [DOI: 10.1007/s00380-017-1087-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022]
|
26
|
Yassine NM, Shahram JT, Body SC. Pathogenic Mechanisms of Bicuspid Aortic Valve Aortopathy. Front Physiol 2017; 8:687. [PMID: 28993736 PMCID: PMC5622294 DOI: 10.3389/fphys.2017.00687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital valvular defect and is associated with ascending aortic dilation (AAD) in a quarter of patients. AAD has been ascribed both to the hemodynamic consequences of normally functioning and abnormal BAV morphology, and to the effect of rare and common genetic variation upon function of the ascending aortic media. AAD manifests in two overall and sometimes overlapping phenotypes: that of aortic root aneurysm, similar to the AAD of Marfan syndrome; and that of tubular AAD, similar to the AAD seen with tricuspid aortic valves (TAVs). These aortic phenotypes appear to be independent of BAV phenotype, have different embryologic origins and have unique etiologic factors, notably, regarding the role of hemodynamic changes inherent to the BAV phenotype. Further, in contrast to Marfan syndrome, the AAD seen with BAV is infrequently present as a strongly inherited syndromic phenotype; rather, it appears to be a less-penetrant, milder phenotype. Both reduced levels of normally functioning transcriptional proteins and structurally abnormal proteins have been observed in aneurysmal aortic media. We provide evidence that aortic root AAD has a stronger genetic etiology, sometimes related to identified common non-coding fibrillin-1 (FBN1) variants and other aortic wall protein variants in patients with BAV. In patients with BAV having tubular AAD, we propose a stronger hemodynamic influence, but with pathology still based on a functional deficit of the aortic media, of genetic or epigenetic etiology. Although it is an attractive hypothesis to ascribe common mechanisms to BAV and AAD, thus far the genetic etiologies of AAD have not been associated to the genetic etiologies of BAV, notably, not including BAV variants in NOTCH1 and GATA4.
Collapse
Affiliation(s)
- Noor M Yassine
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Jasmine T Shahram
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| |
Collapse
|
27
|
Martínez-Micaelo N, Beltrán-Debón R, Aragonés G, Faiges M, Alegret JM. MicroRNAs Clustered within the 14q32 Locus Are Associated with Endothelial Damage and Microparticle Secretion in Bicuspid Aortic Valve Disease. Front Physiol 2017; 8:648. [PMID: 28928672 PMCID: PMC5591958 DOI: 10.3389/fphys.2017.00648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/16/2017] [Indexed: 01/03/2023] Open
Abstract
Background: We previously described that PECAM+ circulating endothelial microparticles (EMPs) are elevated in bicuspid aortic valve (BAV) disease as a manifestation of endothelial damage. In this study, we hypothesized that this endothelial damage, is functionally related to the secretion of a specific pattern of EMP-associated miRNAs. Methods: We used a bioinformatics approach to correlate the PECAM+ EMP levels with the miRNA expression profile in plasma in healthy individuals and BAV patients (n = 36). In addition, using the miRNAs that were significantly associated with PECAM+ EMP levels, we inferred a miRNA co-expression network using a Gaussian graphical modeling approach to identify highly co-expressed miRNAs or miRNA clusters whose expression could functionally regulate endothelial damage. Results: We identified a co-expression network composed of 131 miRNAs whose circulating expression was significantly associated with PECAM+ EMP levels. Using a topological analysis, we found that miR-494 was the most important hub within the co-expression network. Furthermore, through positional gene enrichment analysis, we identified a cluster of 19 highly co-expressed miRNAs, including miR-494, that was located in the 14q32 locus on chromosome 14 (p = 1.9 × 10−7). We evaluated the putative biological role of this miRNA cluster by determining the biological significance of the genes targeted by the cluster using functional enrichment analysis. We found that this cluster was involved in the regulation of genes with various functions, specifically the “cellular nitrogen compound metabolic process” (p = 2.34 × 10−145), “immune system process” (p = 2.57 × 10−6), and “extracellular matrix organization” (p = 8.14 × 10−5) gene ontology terms and the “TGF-β signaling pathway” KEGG term (p = 2.59 × 10−8). Conclusions: Using an integrative bioinformatics approach, we identified the circulating miRNA expression profile associated with secreted PECAM+ EMPs in BAV disease. Additionally, we identified a highly co-expressed miRNA cluster that could mediate crucial biological processes in BAV disease, including the nitrogen signaling pathway, cellular activation, and the transforming growth factor beta signaling pathway. In conclusion, EMP-associated and co-expressed miRNAs could act as molecular effectors of the intercellular communication carried out by EMPs in response to endothelial damage.
Collapse
Affiliation(s)
- Neus Martínez-Micaelo
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Raúl Beltrán-Debón
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Gerard Aragonés
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Marta Faiges
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Josep M Alegret
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain.,Servei de Cardiologia, Hospital Universitari de Sant Joan, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
28
|
Burris NS, Hoff BA, Kazerooni EA, Ross BD. Vascular Deformation Mapping (VDM) of Thoracic Aortic Enlargement in Aneurysmal Disease and Dissection. ACTA ACUST UNITED AC 2017; 3:163-173. [PMID: 29124128 PMCID: PMC5675573 DOI: 10.18383/j.tom.2017.00015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thoracic aortic aneurysm is a common and lethal disease that requires regular imaging surveillance to determine timing of surgical repair and prevent major complications such as rupture. Current cross-sectional imaging surveillance techniques, largely based on computed tomography angiography, are focused on measurement of maximal aortic diameter, although this approach is limited to fixed anatomic positions and is prone to significant measurement error. Here we present preliminary results showing the feasibility of a novel technique for assessing change in aortic dimensions, termed vascular deformation mapping (VDM). This technique allows quantification of 3-dimensional changes in the aortic wall geometry through nonrigid coregistration of computed tomography angiography images and spatial Jacobian analysis of aortic deformation. Through several illustrative cases we demonstrate that this method can be used to measure changes in the aortic wall geometry among patients with stable and enlarging thoracic aortic aneurysm and dissection. Furthermore, VDM results yield observations about the presence, distribution, and rate of aortic wall deformation that are not apparent by routine clinical evaluation. Finally, we show the feasibility of superposing patient-specific VDM results on a 3-dimensional aortic model using color 3D printing and discuss future directions and potential applications for the VDM technique.
Collapse
Affiliation(s)
| | - Benjamin A Hoff
- Department of Radiology, University of Michigan, Ann Arbor, MI.,Center for Molecular Imaging, University of Michigan, Ann Arbor, MI
| | | | - Brian D Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI.,Center for Molecular Imaging, University of Michigan, Ann Arbor, MI.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Ignatieva E, Kostina D, Irtyuga O, Uspensky V, Golovkin A, Gavriliuk N, Moiseeva O, Kostareva A, Malashicheva A. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol 2017; 8:536. [PMID: 28790933 PMCID: PMC5524772 DOI: 10.3389/fphys.2017.00536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.
Collapse
Affiliation(s)
- Elena Ignatieva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Daria Kostina
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Department of Medical Physics, Peter the Great Saint-Petersburg Polytechnic UniversitySaint Petersburg, Russia
| | - Olga Irtyuga
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Vladimir Uspensky
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Alexey Golovkin
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Natalia Gavriliuk
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Olga Moiseeva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Anna Kostareva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia.,Faculty of Biology, Saint-Petersburg State UniversitySaint Petersburg, Russia
| |
Collapse
|
30
|
Albinsson S, Della Corte A, Alajbegovic A, Krawczyk KK, Bancone C, Galderisi U, Cipollaro M, De Feo M, Forte A. Patients with bicuspid and tricuspid aortic valve exhibit distinct regional microrna signatures in mildly dilated ascending aorta. Heart Vessels 2017; 32:750-767. [PMID: 28102444 DOI: 10.1007/s00380-016-0942-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/26/2016] [Indexed: 01/25/2023]
Abstract
MicroRNAs are able to modulate gene expression in a range of diseases. We focused on microRNAs as potential contributors to the pathogenesis of ascending aorta (AA) dilatation in patients with stenotic tricuspid (TAV) or bicuspid aortic valve (BAV). Aortic specimens were collected from the 'concavity' and the 'convexity' of mildly dilated AAs and of normal AAs from heart transplant donors. Aortic RNA was analyzed through PCR arrays, profiling the expression of 84 microRNAs involved in cardiovascular disease. An in silico analysis identified the potential microRNA-mRNA interactions and the enriched KEGG pathways potentially affected by microRNA changes in dilated AAs. Distinct signatures of differentially expressed microRNAs are evident in TAV and BAV patients vs. donors, as well as differences between aortic concavity and convexity in patients only. MicroRNA changes suggest a switch of SMC phenotype, with particular reference to TAV concavity. MicroRNA changes potentially affecting mechanotransduction pathways exhibit a higher prevalence in BAV convexity and in TAV concavity, with particular reference to TGF-β1, Hippo, and PI3K/Akt/FoxO pathways. Actin cytoskeleton emerges as potentially affected by microRNA changes in BAV convexity only. MicroRNAs could play distinct roles in BAV and TAV aortopathy, with possible implications in diagnosis and therapy.
Collapse
Affiliation(s)
| | | | - Azra Alajbegovic
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ciro Bancone
- Department of Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Via L De Crecchio, 7, 80138, Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Via L De Crecchio, 7, 80138, Naples, Italy
| | - Marisa De Feo
- Department of Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | - Amalia Forte
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Via L De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
31
|
Martínez-Micaelo N, Beltrán-Debón R, Baiges I, Faiges M, Alegret JM. Specific circulating microRNA signature of bicuspid aortic valve disease. J Transl Med 2017; 15:76. [PMID: 28399937 PMCID: PMC5387230 DOI: 10.1186/s12967-017-1176-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We aimed to determine the circulating miRNA expression profile associated with BAV and aortic dilation to provide diagnostic and prognostic biomarkers for BAV and/or aortic dilation. METHODS AND RESULTS We applied a miRNome-wide microarray approach using plasma samples (n = 24) from healthy tricuspid aortic valve individuals, BAV patients and BAV patients with aortic dilation to compare and identify the specific miRNAs associated with BAV and aortic dilation. In a second stage, the expression patterns of the miRNA candidates were validated by RT-qPCR in an independent cohort (n = 43). The miRNA microarray data and RT-qPCR analyses revealed that the expression levels of circulating miR-122, miR-130a and miR-486 are significantly influenced by the morphology of the aortic valve (bicuspid/tricuspid) and could be functionally involved in the regulation of TGF-β1 signalling. Furthermore, the expression pattern of miR-718 in the plasma was strongly influenced by dilation of the ascending aorta. miR-718 expression was inversely correlated with the aortic diameter (R = -0.63, p = 3.1 × 10-5) and was an independent predictor of aortic dilation (β = -0.41, p = 0.022). The genes targeted by miR-718 are involved in the regulation of vascular remodelling. CONCLUSIONS We propose that miR-122, miR-130a, miR-486 and miR-718 are new molecular features associated with BAV and aortic dilation principally by the activation of TGF-β1 pathway and vascular remodelling mediated by VEGF signalling pathways.
Collapse
Affiliation(s)
- Neus Martínez-Micaelo
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Raúl Beltrán-Debón
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Isabel Baiges
- Centre for Omic Sciences (COS), Universitat Rovira i Virgili, Reus, Spain
| | - Marta Faiges
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Josep M Alegret
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain. .,Servei de Cardiologia, Hospital Universitari de Sant Joan, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, c/Dr Josep Laporte, 1, 43204, Reus, Spain.
| |
Collapse
|
32
|
Andreas M, Panzenboeck A, Shabanian S, Kocher A, Mannhalter C, Petzl A, Hueblauer J, Wolzt M, Ehrlich M, Lang I. The VKORC1 polymorphism rs9923231 is associated with aneurysms of the ascending aorta in an Austrian population. Thromb Res 2017; 152:41-43. [DOI: 10.1016/j.thromres.2017.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|