1
|
Xu H, Gao D, Shen Y, Wang J, Wang J, Zhu J, Ren M, Wei L, Hu H, Zhan M, Wang Z, Wang F, Xu B. Targeting RBP4-STRA6 retinol signaling disrupts adipose-prostate crosstalk: A novel strategy to suppress basal cell plasticity in androgen deprivation. Metabolism 2025; 169:156288. [PMID: 40340019 DOI: 10.1016/j.metabol.2025.156288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Metabolic rewiring is a starter for lineage plasticity, which is an important driver of prostate development, tumorigenesis and treatment resistance. Androgen-targeted therapies are central to prostate cancer (PCa) management, yet the mechanisms leading prostate development-particularly the metabolic signaling within basal cells during treatment-remain poorly understood. To fulfill this gap, we used multiple models to reveal the metabolic alterations in prostate basal cells. Our study reveals the role of the RBP4-STRA6 axis in modulating retinol metabolism and transporting retinol from adipocyte into prostate cells, contributing to prostate development and basal cell differentiation during androgen deprivation. Through multi-omics analyses, we demonstrate that RBP4-STRA6 axis dependent retinol metabolism is increased with androgen deprivation. Retinol metabolism rewiring is modulated by the androgen receptor (AR) and can regulate basal cell plasticity under androgen deprivation therapy (ADT). Retinol metabolism maintains prostate basal cell lineage plasticity during hormone therapy through the PPARγ signaling pathway, compensating for the AR signaling pathway inhibition by sustaining energy homeostasis and promoting basal cell differentiation. Notably, we identified a basal cell cluster (BC5) characterized by high Retinol metabolism and activated PPARγ signaling pathway, which plays a crucial role in basal-luminal differentiation and prostate growth. This study underscores the importance of RBP4-STRA6 dependent Retinol metabolism, mediating the crosstalk between adipocytes and prostate basal cells, in maintaining prostate development during hormone therapy and provides a foundation for future clinical interventions and diet strategies aimed at enhancing the sensitivity of androgen deprivation in prostate diseases.
Collapse
Affiliation(s)
- Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanting Shen
- Department of Urology, Pudong New District Gongli Hospital, Shanghai 200135, China
| | - Jianqing Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junduo Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun Zhu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Miao Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lai Wei
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhong Wang
- Department of Urology, Pudong New District Gongli Hospital, Shanghai 200135, China
| | - Fubo Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi 530021, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2
|
Sarmento-Cabral A, Fuentes-Fayos AC, Ordoñez FM, León-González AJ, Martínez-Fuentes AJ, Gahete MD, Luque RM. From pituitary cells to prostate gland in health and disease: direct and indirect endocrine connections. Rev Endocr Metab Disord 2025; 26:187-203. [PMID: 39910005 PMCID: PMC11920336 DOI: 10.1007/s11154-025-09948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The prostate gland is an endocrine-sensitive organ responding to multiple stimuli. Its development and function are regulated by multiple hormones (i.e. steroids such as androgens, estrogens and glucocorticoids) but also by other key hormonal systems such as those comprised by insulin-like growth factor 1 and insulin, which are sourced by different tissues [e.g. testicles/adrenal-gland/adipose-tissue/liver/pancreas, etc.). Particularly important for the endocrine control of prostatic pathophysiology and anatomy are hormones produced and/or secreted by different cell types of the pituitary gland [growth-hormone, luteinizing-hormone, follicle-stimulating hormone, and prolactin, oxytocin, arginine-vasopressin and melanocyte-stimulating hormone], which affect prostate gland function either directly or indirectly under physiological and pathophysiological conditions [e.g. metabolic dysregulation (e.g. obesity), and prostate transformations (e.g. prostate cancer)]. This review summarizes the impact of all pituitary hormone types on prostate gland under these diverse conditions including in vivo and in vitro studies.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Fernando Mata Ordoñez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Faculty of Health Sciences, Alfonso X el Sabio University, Villanueva de la Cañada, 28691, Spain
| | - Antonio J León-González
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain.
| |
Collapse
|
3
|
Gould M, Potapov D, Nicholson H. Location and Movement of the Oxytocin Receptor Differ Between the Normal and Diseased Prostate. Cancers (Basel) 2025; 17:182. [PMID: 39857963 PMCID: PMC11763401 DOI: 10.3390/cancers17020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND In normal prostate cells, receptors for oxytocin (OT), a peptide involved in regulating prostate growth are sequestered within membrane microdomains called caveolae. During cancer progression, polymerase-transcript-release factor (PTRF) is downregulated, caveolae structures are lost and receptors move onto the cell membrane. This study investigated whether proteins responsible for caveolae formation were affected by the OT peptide, also, how OT treatment affected oxytocin receptor (OTR) movement within living cells. METHODS Normal human prostate epithelial cells (PrEC) expressing caveolin and PTRF and androgen-independent (PC3) cancer cells expressing caveolin but not PTRF were used. OTR, caveolin and PTRF expression was determined in human prostate tissue. RESULTS PTRF expression decreased in tissue alongside an increase in malignancy. Caveolin-1 expression was downregulated by OT treatment. Caveolin-2 was decreased by OT in PrEC cells but increased in PC3 cells. PTRF was decreased by OT in PrEC. TIRF microscopy showed OTR translocated from caveolae to caveolae in normal cells, whereas OTR moved without restraint in malignant cells, possibly stimulating signaling pathways. CONCLUSIONS This study provides evidence for the ability of OT to regulate caveolin and PTRF expression. This study elucidates possible mechanisms by which cell receptors and caveolae proteins interact to enhance cell proliferation.
Collapse
Affiliation(s)
- Maree Gould
- Department of Anatomy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand;
| | - Daniil Potapov
- Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand;
| | - Helen Nicholson
- Department of Anatomy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand;
| |
Collapse
|
4
|
Wang X, Chen D, Guo M, Ning Y, Geng M, Guo J, Gao J, Zhao D, Zhang Y, Li Q, Li L, Li S, Li Y, Xie X, Zuo X, Li J. Oxytocin Alleviates Colitis and Colitis-Associated Colorectal Tumorigenesis via Noncanonical Fucosylation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0407. [PMID: 38979515 PMCID: PMC11228076 DOI: 10.34133/research.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Colon cancer is increasing worldwide and is commonly regarded as hormone independent, yet recent reports have implicated sex hormones in its development. Nevertheless, the role of hormones from the hypothalamus-hypophysis axis in colitis-associated colorectal cancer (CAC) remains uncertain. In this study, we observed a significant reduction in the expression of the oxytocin receptor (OXTR) in colon samples from both patient with colitis and patient with CAC. To investigate further, we generated mice with an intestinal-epithelium-cell-specific knockout of OXTR. These mice exhibited markedly increased susceptibility to dextran-sulfate-sodium-induced colitis and dextran sulfate sodium/azoxymethane-induced CAC compared to wild-type mice. Our findings indicate that OXTR depletion impaired the inner mucus of the colon epithelium. Mechanistically, oxytocin was found to regulate Mucin 2 maturation through β1-3-N-acetylglucosaminyltransferase 7 (B3GNT7)-mediated fucosylation. Interestingly, we observed a positive correlation between B3GNT7 expression and OXTR expression in human colitis and CAC colon samples. Moreover, the simultaneous activations of OXTR and fucosylation by l-fucose significantly alleviated tumor burden. Hence, our study unveils oxytocin's promising potential as an affordable and effective therapeutic intervention for individuals affected by colitis and CAC.
Collapse
Affiliation(s)
- Xia Wang
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Dawei Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Mengnan Guo
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Yao Ning
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Mingze Geng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Jing Guo
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Jiahui Gao
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Dong Zhao
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Yupeng Zhang
- Department of Molecular Plant Biology,
Norwegian Institute of Bioeconomy Research, Ås 1430, Norway
| | - Qianpeng Li
- Department of Hematology,
Weifang People’s Hospital, Weifang, Shandong 261000, China
| | - Lixiang Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Shiyang Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
- Advanced Medical Research Institute,
Shandong University, Jinan, Shandong 250012, China
| | - Yanqing Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Xiaoran Xie
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Weaver C, Antony M, Fite J, Murugan P, Nelson AC, Manivel JC. Cocaine and amphetamine regulated transcript (CART): a newly characterized neuropeptide in human prostate. Biotech Histochem 2023; 98:508-522. [PMID: 37615074 DOI: 10.1080/10520295.2023.2245328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Cocaine and amphetamine regulated transcript (CART) is a somatostatin-like polypeptide. CART has been localized in the CNS, hypothalamo-pituitary-adrenocortical (HPA) axis, pancreatic islets and enteric nervous system. We investigated the cellular localization of CART in normal human prostate, benign prostatic hyperplasia, prostatic intraepithelial neoplasia and acinar adenocarcinoma. CART was assessed using immunohistochemistry (IHC) and in situ hybridization (ISH), and its gene expression was identified by RTqPCR. We found cellular expression of CART in both normal prostatic luminal secretory epithelial cells neuroendocrine cells (NEC) of both ducts and acini. The cellular appearance indicated a cycle of neuropeptide synthesis and secretion as validated by ISH/IHC concordance. RTqPCR analysis also validated the immunohistochemical data and gene expression, which both indicated low to moderate expression in prostatic tissues. CART expression also was increased in both neuroendocrine and glandular epithelial cell populations from samples of benign prostatic hyperplasia as validated by IHC, ISH and RTqPCR. CART expression was markedly diminished and, in some cases, entirely absent in tissues of prostatic intraepithelial neoplasia and adenocarcinoma. Owing to loss of CART expression in adenocarcinoma and its increase in benign prostatic hyperplasia, CART may prove to be an important prostate marker.
Collapse
Affiliation(s)
- Cyprian Weaver
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Lillihei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Marie Antony
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Jack Fite
- Lillihei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
6
|
Elbaz EM, Darwish A, Gad AM, Abdel Rahman AAS, Safwat MH. Canagliflozin alleviates experimentally induced benign prostate hyperplasia in a rat model: exploring potential mechanisms involving mir-128b/EGFR/EGF and JAK2/STAT3 signaling pathways through in silico and in vivo investigations. Eur J Pharmacol 2023; 957:175993. [PMID: 37598927 DOI: 10.1016/j.ejphar.2023.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Benign prostatic hyperplasia (BPH) poses a significant health concern amongst elderly males. Canagliflozin (Cana), a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has a powerful anti-inflammatory influence. Nevertheless, its role in treating BPH has not been clarified. Therefore, the study aimed to investigate the potential ameliorative effect of Cana on experimentally induced BPH in rats and explore the underlying mechanisms compared to the standard finasteride (Fin). The study employed histological analysis, biochemical assays using ELISA, and western blotting. Animals were categorized into four groups: Control (2.5 ml/kg CMC, orally + 3 ml/kg olive oil, subcutaneous), BPH (3 mg/kg testosterone, subcutaneous + CMC orally), Fin-treated BPH (5 mg/kg, orally), and Cana-treated BPH (5 mg/kg, orally), for 28 days. The BPH group showed obvious BPH manifestations including an increase in prostate weight (PW), prostate index (PI), dihydrotestosterone (DHT) level, and histological aberrations compared to control. Fin and Cana therapy had a comparable impact. Cana treatment significantly reduced PW and PI, besides it improved prostatic biochemical, and histopathological features compared to BPH, consistent with in silico study findings. Cana was associated with downregulation of the androgen axis, increased miR-128b expression, with a lowered expression of epidermal growth factor (EGF) and its receptor. Phosphorylation of STAT3 and its downstream proliferative markers were significantly reduced suggesting apoptotic activity. Cana markedly rescued the BPH-induced upregulation of IL-1β, and iNOS levels. Altogether, the current study demonstrates that Cana could impede BPH progression, possibly by modulating miR-128b/EGFR/EGF and JAK2/STAT3 pathways and downregulating AR, cyclin D1, and PCNA immunoreactivity.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Alshaymaa Darwish
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) -Formerly NODCAR, Giza 12654, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt.
| | - Amina A S Abdel Rahman
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Maheera H Safwat
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Abstract
Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract. In the cardiovascular system, a local oxytocinergic system appears to play an important cardio-protective role. This role is likely associated with emerging evidence that peripheral oxytocin is an important hormone in the endocrinology of glucose homeostasis due to its actions in adipose, the pancreas, and the largely ignored oxytocinergic systems of the adrenal glands and liver. Gene polymorphisms are shown to be associated with a number of reported traits, not least factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
8
|
Fatty Acid Metabolism Reprogramming in Advanced Prostate Cancer. Metabolites 2021; 11:metabo11110765. [PMID: 34822423 PMCID: PMC8618281 DOI: 10.3390/metabo11110765] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer (PCa) is a carcinoma in which fatty acids are abundant. Fatty acid metabolism is rewired during PCa development. Although PCa can be treated with hormone therapy, after prolonged treatment, castration-resistant prostate cancer can develop and can lead to increased mortality. Changes to fatty acid metabolism occur systemically and locally in prostate cancer patients, and understanding these changes may lead to individualized treatments, especially in advanced, castration-resistant prostate cancers. The fatty acid metabolic changes are not merely reflective of oncogenic activity, but in many cases, these represent a critical factor in cancer initiation and development. In this review, we analyzed the literature regarding systemic changes to fatty acid metabolism in PCa patients and how these changes relate to obesity, diet, circulating metabolites, and peri-prostatic adipose tissue. We also analyzed cellular fatty acid metabolism in prostate cancer, including fatty acid uptake, de novo lipogenesis, fatty acid elongation, and oxidation. This review broadens our view of fatty acid switches in PCa and presents potential candidates for PCa treatment and diagnosis.
Collapse
|
9
|
NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia. Clin Sci (Lond) 2021; 135:1591-1608. [PMID: 34195782 DOI: 10.1042/cs20210476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a quite common illness but its etiology and mechanism remain unclear. Neural epidermal growth factor-like like 2 (NELL2) plays multifunctional roles in neural cell growth and is strongly linked to the urinary tract disease. Current study aims to determine the expression, functional activities and underlying mechanism of NELL2 in BPH. Human prostate cell lines and tissues from normal human and BPH patients were utilized. Immunohistochemical staining, immunofluorescent staining, RT-polymerase chain reaction (PCR) and Western blotting were performed. We further generated cell models with NELL2 silenced or overexpressed. Subsequently, proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry analysis. The epithelial-mesenchymal transition (EMT) and fibrosis process were also analyzed. Our study revealed that NELL2 was up-regulated in BPH samples and localized in the stroma and the epithelium compartments of human prostate tissues. NELL2 deficiency induced a mitochondria-dependent cell apoptosis, and inhibited cell proliferation via phosphorylating extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Additionally, suppression of ERK1/2 with U0126 incubation could significantly reverse NELL2 deficiency triggered cell apoptosis. Consistently, overexpression of NELL2 promoted cell proliferation and inhibited cell apoptosis. However, NELL2 interference was observed no effect on EMT and fibrosis process. Our novel data demonstrated that up-regulation of NELL2 in the enlarged prostate could contribute to the development of BPH through enhancing cell proliferation and inhibited a mitochondria-dependent cell apoptosis via the ERK pathway. The NELL2-ERK system might represent an important target to facilitate the development of future therapeutic approaches in BPH.
Collapse
|
10
|
Gu M, Liu C, Yang T, Zhan M, Cai Z, Chen Y, Chen Q, Wang Z. High-Fat Diet Induced Gut Microbiota Alterations Associating With Ghrelin/Jak2/Stat3 Up-Regulation to Promote Benign Prostatic Hyperplasia Development. Front Cell Dev Biol 2021; 9:615928. [PMID: 34249898 PMCID: PMC8264431 DOI: 10.3389/fcell.2021.615928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The role of high-fat diet (HFD) induced gut microbiota alteration and Ghrelin as well as their correlation in benign prostatic hyperplasia (BPH) were explored in our study. The gut microbiota was analyzed by 16s rRNA sequencing. Ghrelin levels in serum, along with Ghrelin and Ghrelin receptor in prostate tissue of mice and patients with BPH were measured. The effect of Ghrelin on cell proliferation, apoptosis, and induction of BPH in mice was explored. Our results indicated that BPH mice have the highest ratio of Firmicutes and Bacteroidetes induced by HFD, as well as Ghrelin level in serum and prostate tissue was significantly increased compared with control. Elevated Ghrelin content in the serum and prostate tissue of BPH patients was also observed. Ghrelin promotes cell proliferation while inhibiting cell apoptosis of prostate cells. The effect of Ghrelin on enlargement of the prostate was found almost equivalent to that of testosterone propionate (TP) which may be attenuated by Ghrelin receptor antagonist YIL-781. Ghrelin could up-regulate Jak2/pJak2/Stat3/pStat3 expression in vitro and in vivo. Our results suggested that Gut microbiota may associate with Ghrelin which plays an important role in activation of Jak2/Stat3 in BPH development. Gut microbiota and Ghrelin might be pathogenic factors for BPH and could be used as a target for mediation.
Collapse
Affiliation(s)
- Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - TianYe Yang
- Department of Emergency, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikang Cai
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Xu H, Chen J, He J, Ji J, Cao Z, Chen X, Xu Y, He X, Xu G, Zhou L, Wei X, Hou J, Wang Z, Yang B, Wang F. Serum Metabolic Profiling Identifies a Biomarker Panel for Improvement of Prostate Cancer Diagnosis. Front Oncol 2021; 11:666320. [PMID: 34026644 PMCID: PMC8138432 DOI: 10.3389/fonc.2021.666320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives To identify and validate a biomarker panel by serum metabolic profiling for improvement of PCa diagnosis. Materials and Methods Totally, 134 individuals were included in this study. Among them, 39 PCa patients and 45 control patients (negative prostate biopsy) were involved in the discovery phase and 50 healthy controls were enrolled for validation phase of metabolomics study. LC-MS Analysis was used for the identification of the serum metabolites of patients. Results Logistics regression analysis shows that 5 metabolites [dMePE(18:0/18:2), PC(16:0/20:2), PS(15:0/18:2), SM(d16:0/24:1], Carnitine C14:0) were significantly changed in PCa patients compared with control patients. A metabolic panel (MET) was calculated, showing a significantly higher diagnostic performance than PSA in differentiating PCa from control patients [AUC (MET vs. PSA): 0.823 ± 0.046 vs. 0.712 ± 0.057, p<0.001]. Moreover, this panel was superior to PSA in distinguishing PCa from negative prostate biopsies when PSA levels were less than 20 ng/ml [AUC (MET vs. PSA]: 0.836 ± 0.050 vs. 0.656 ± 0.067, p<0.001]. In the validation set, the MET panel yielded an AUC of 0.823 in distinguishing PCa patients from healthy controls, showing a significant improvement of PCa detection. Conclusions The metabolite biomarker panel discovered in this study presents a good diagnostic performance for the detection of PCa.
Collapse
Affiliation(s)
- Huan Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Urology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Junyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingyi He
- Department of Urology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jin Ji
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhi Cao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xi Chen
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yalong Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xing He
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guowang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lina Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Bo Yang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fubo Wang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Lee SN, Kraska J, Papargiris M, Teng L, Niranjan B, Hammar J, Ryan A, Frydenberg M, Lawrentschuk N, Middendorff R, Ellem SJ, Whittaker M, Risbridger GP, Exintaris B. Oxytocin receptor antagonists as a novel pharmacological agent for reducing smooth muscle tone in the human prostate. Sci Rep 2021; 11:6352. [PMID: 33737570 PMCID: PMC7973579 DOI: 10.1038/s41598-021-85439-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Pharmacotherapies for the treatment of Benign Prostatic Hyperplasia (BPH) are targeted at reducing cellular proliferation (static component) or reducing smooth muscle tone (dynamic component), but response is unpredictable and many patients fail to respond. An impediment to identifying novel pharmacotherapies is the incomplete understanding of paracrine signalling. Oxytocin has been highlighted as a potential paracrine mediator of BPH. To better understand oxytocin signalling, we investigated the effects of exogenous oxytocin on both stromal cell proliferation, and inherent spontaneous prostate contractions using primary models derived from human prostate tissue. We show that the Oxytocin Receptor (OXTR) is widely expressed in the human prostate, and co-localises to contractile cells within the prostate stroma. Exogenous oxytocin did not modulate prostatic fibroblast proliferation, but did significantly (p < 0.05) upregulate the frequency of spontaneous contractions in prostate tissue, indicating a role in generating smooth muscle tone. Application of atosiban, an OXTR antagonist, significantly (p < 0.05) reduced spontaneous contractions. Individual tissue responsiveness to both exogenous oxytocin (R2 = 0.697, p < 0.01) and atosiban (R2 = 0.472, p < 0.05) was greater in tissue collected from older men. Overall, our data suggest that oxytocin is a key regulator of inherent spontaneous prostate contractions, and targeting of the OXTR and associated downstream signalling is an attractive prospect in the development of novel BPH pharmacotherapies.
Collapse
Affiliation(s)
- Sophie N Lee
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jenna Kraska
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,TissuPath, Melbourne, VIC, Australia
| | - Melissa Papargiris
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,TissuPath, Melbourne, VIC, Australia
| | - Linda Teng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Birunthi Niranjan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Johanna Hammar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | | | - Mark Frydenberg
- Department of Surgery, Monash University, Melbourne, VIC, Australia.,Australian Urology Associates, Melbourne, VIC, Australia
| | - Nathan Lawrentschuk
- Department of Surgery, Austin Health, University of Melbourne, Melbourne, VIC, Australia.,EJ Whitten Prostate Cancer Research Centre at Epworth Heathcare, Melbourne, Australia
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stuart J Ellem
- School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Ipswich, QLD, Australia
| | - Michael Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of Pharmacy and Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
13
|
Stadler B, Whittaker MR, Exintaris B, Middendorff R. Oxytocin in the Male Reproductive Tract; The Therapeutic Potential of Oxytocin-Agonists and-Antagonists. Front Endocrinol (Lausanne) 2020; 11:565731. [PMID: 33193084 PMCID: PMC7642622 DOI: 10.3389/fendo.2020.565731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, the role of oxytocin and oxytocin-like agents (acting via the oxytocin receptor and belonging to the oxytocin-family) in the male reproductive tract is considered. Previous research (dating back over 60 years) is revised and connected with recently found aspects of the role oxytocin plays in male reproductive health. The local expression of oxytocin and its receptor in the male reproductive tract of different species is summarized. Colocalization and possible crosstalk to other agents and receptors and their resulting effects are discussed. The role of the newly reported oxytocin focused signaling pathways in the male reproductive tract, other than mediating contractility, is critically examined. The structure and effect of the most promising oxytocin-agonists and -antagonists are reviewed for their potential in treating male disorders with origins in the male reproductive tract such as prostate diseases and ejaculatory disorders.
Collapse
Affiliation(s)
- Beatrix Stadler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Michael R. Whittaker
- Drug Discovery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
14
|
Wang K, Pascal LE, Li F, Chen W, Dhir R, Balasubramani GK, DeFranco DB, Yoshimura N, He D, Wang Z. Tight junction protein claudin-1 is downregulated by TGF-β1 via MEK signaling in benign prostatic epithelial cells. Prostate 2020; 80:1203-1215. [PMID: 32692865 PMCID: PMC7710618 DOI: 10.1002/pros.24046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is arguably the most common disease in aging men. Although the etiology is not well understood, chronic prostatic inflammation is thought to play an important role in BPH initiation and progression. Our recent studies suggest that the prostatic epithelial barrier is compromised in glandular BPH tissues. The proinflammatory cytokine transforming growth factor beta 1 (TGF-β1) impacts tight junction formation, enhances epithelial barrier permeability, and suppresses claudin-1 messenger RNA expression in prostatic epithelial cells. However, the role of claudin-1 in the prostatic epithelial barrier and its regulation by TGF-β1 in prostatic epithelial cells are not clear. METHODS The expression of claudin-1 was analyzed in 22 clinical BPH specimens by immunohistochemistry. Human benign prostate epithelial cell lines BPH-1 and BHPrE1 were treated with TGF-β1 and transfected with small interfering RNAs specific to claudin-1. Epithelial monolayer permeability changes in the treated cells were measured using trans-epithelial electrical resistance (TEER). The expression of claudin-1, E-cadherin, N-cadherin, snail, slug, and activation of mitogen-activated proteins kinases (MAPKs) and AKT was assessed following TGF-β1 treatment using Western blot analysis. RESULTS Claudin-1 expression was decreased in glandular BPH tissue compared with adjacent normal prostatic tissue in patient specimens. TGF-β1 treatment or claudin-1 knockdown in prostatic epithelial cell lines increased monolayer permeability. TGF-β1 decreased levels of claudin-1 and increased levels of snail and slug as well as increased phosphorylation of the MAPK extracellular signal-regulated kinase-1/2 (ERK-1/2) in both BPH-1 and BHPrE1 cells. Overexpression of snail or slug had no effect on claudin-1 expression. In contrast, PD98059 and U0126, inhibitors of the upstream activator of ERK-1/2 (ie, MEK-1/2) restored claudin-1 expression level as well as the epithelial barrier. CONCLUSION Our findings suggest that downregulation of claudin-1 by TGF-β1 acting through the noncanonical MEK-1/2/ERK-1/2 pathway triggers increased prostatic epithelial monolayer permeability in vitro. These findings also suggest that elevated TGF-β1 may contribute to claudin-1 downregulation and compromised epithelial barrier in clinical BPH specimens.
Collapse
Affiliation(s)
- Ke Wang
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feng Li
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Donald B. DeFranco
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dalin He
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Corresponding author: Zhou Wang, Department of Urology, University of Pittsburgh School of Medicine, 5200 Centre Ave, Suite G40, Pittsburgh, PA, 15232., , Dalin He, Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, Shaanxi, 710061, P.R. China.,
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Corresponding author: Zhou Wang, Department of Urology, University of Pittsburgh School of Medicine, 5200 Centre Ave, Suite G40, Pittsburgh, PA, 15232., , Dalin He, Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, Shaanxi, 710061, P.R. China.,
| |
Collapse
|
15
|
Gould ML, Nicholson HD. Changes in receptor location affect the ability of oxytocin to stimulate proliferative growth in prostate epithelial cells. Reprod Fertil Dev 2020; 31:1166-1179. [PMID: 31034785 DOI: 10.1071/rd18362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
In normal prostate cells, cell membrane receptors are located within signalling microdomains called caveolae. During cancer progression, caveolae are lost and sequestered receptors move out onto lipid rafts. The aim of this study was to investigate whether a change in the localisation of receptors out of caveolae and onto the cell membrane increased cell proliferation invitro, and to determine whether this is related to changes in the cell signalling pathways. Normal human prostate epithelial cells (PrEC) and androgen-independent (PC3) cancer cells were cultured with 10nM dihydrotestosterone (DHT). The effects of oxytocin (OT) and gonadal steroids on proliferation were assessed using the MTS assay. Androgen receptor (AR) and oxytocin receptor (OTR) expression was identified by immunofluorescence and quantified by western blot. OTR and lipid raft staining was determined using Pearson's correlation coefficient. Protein-protein interactions were detected and the cell signalling pathways identified. Treatment with OT did not affect the proliferation of PrEC. In PC3 cells, OT or androgen alone increased cell proliferation, but together had no effect. In normal cells, OTR localised to the membrane and AR localised to the nucleus, whereas in malignant cells both OTR and AR were identified in the cell membrane. Colocalisation of OTR and AR increased following treatment with androgens. Significantly fewer OTR/AR protein-protein interactions were seen in PrEC. With OT treatment, several cell signalling pathways were activated. Movement of OTR out of caveolae onto lipid rafts is accompanied by activation of alternative signal transduction pathways involved in stimulating increased cell proliferation.
Collapse
Affiliation(s)
- M L Gould
- Anatomy Department, University of Otago, PO Box 913, Dunedin 9054, New Zealand; and Corresponding author.
| | - H D Nicholson
- Anatomy Department, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
16
|
Elbaz EM, Amin HAA, Kamel AS, Ibrahim SM, Helmy HS. Immunomodulatory effect of diallyl sulfide on experimentally-induced benign prostate hyperplasia via the suppression of CD4+T/IL-17 and TGF-β1/ERK pathways. Inflammopharmacology 2020; 28:1407-1420. [PMID: 32785828 DOI: 10.1007/s10787-020-00743-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a nonmalignant enlargement of the prostate common in older men. Diallyl sulfide (DAS), a major component of garlic, has been reported to possess antioxidant, anti-inflammatory, and antiproliferative effects. However, the underlying protective immunomodulatory mechanism of DAS on BPH remains vague. Herein, experimental BPH was induced in rats by daily subcutaneous injection of testosterone propionate (TP) (3 mg/kg, s.c.) for 4 weeks. In parallel, finasteride (Fin) (5 mg/kg, p.o) or DAS (50 mg/kg, p.o.) was administered orally during BPH induction. TP-induced histological alterations and the immune-inflammatory cascade. On the other hand, DAS or Fin administration alleviated all abnormalities induced testosterone. Fin and DAS administration markedly reduced prostate weight by 53% with Fin, and by 60% with DAS. Moreover, serum testosterone and DHT were reduced by 55% and 52%, respectively, with Fin and by 68% and 75%, respectively, with DAS, in concordance with decreased protein expression of androgen receptor (AR), and prostate-specific antigen (PSA). Furthermore, both regime lessen immune-inflammatory milieu, as evidenced by decrease CD4+ T-cells protein expression and associated inflammatory cytokines. Concomitantly, Fin and DAS exhibited marked mitigation in insulin-like growth factor-1 (IGF-1), transforming growth factor-beta1 (TGF-β1), and phosphorylated extracellular signal-regulated kinase (ERK1/2) signaling. Besides alleviating oxidative stress by 53% and 68% in prostatic MDA and by 27% and 7% in prostatic iNOS with Fin and DAS, respectively. In conclusion, this work highlighted a potential therapeutic approach of DAS as a dietary preventive agent against BPH via its anti-inflammatory and immunomodulatory effect along with suppression of the ERK pathway.
Collapse
Affiliation(s)
- Eman M Elbaz
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Sherehan M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hebatullah S Helmy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
17
|
Yan M, Shen G, Zhou Y, Meng X, Han X. The role of ERK-RSK signaling in the proliferation of intrahepatic biliary epithelial cells exposed to microcystin-leucine arginine. Biochem Biophys Res Commun 2019; 521:492-498. [PMID: 31677783 DOI: 10.1016/j.bbrc.2019.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022]
Abstract
Microcystin-leucine arginine (MC-LR) is a potent specific hepatotoxin produced by cyanobacteria in diverse water systems, and it has been documented to induce liver injury and hepatocarcinogenesis. However, its toxic effects on intrahepatic biliary epithelial cells have not been invested in detail. In this study, we aimed to investigate the effects of MC-LR exposure on the intrahepatic biliary epithelial cells in the liver. MC-LR was orally administered to mice at 1 μg/L, 7.5 μg/L, 15 μg/L, or 30 μg/L for 180 consecutive days for histopathological and immunoblot analysis. We observed that MC-LR can enter intrahepatic bile duct tissue and induce hyperplasia of mice. Human primary intrahepatic biliary epithelial cells (HiBECs) were cultured with various concentrations of MC-LR for 24 h, meanwhile the cell viability and proteins level were detected. Western blotting analysis revealed that MC-LR increased RSK phosphorylation via ERK signaling. RSK participated in cell proliferation and cell cycle progression. Taken together, after chronic exposure, MC-LR-treated mice exhibited abnormal bile duct hyperplasia and thickened bile duct morphology through activating the ERK-RSK signaling. These data support the potential toxic effects of MC-LR on bile duct tissue of the liver.
Collapse
Affiliation(s)
- Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Gu Shen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
18
|
Ortega MA, Asúnsolo Á, Romero B, Álvarez-Rocha MJ, Sainz F, Leal J, Álvarez-Mon M, Buján J, García-Honduvilla N. Unravelling the Role of MAPKs (ERK1/2) in Venous Reflux in Patients with Chronic Venous Disorder. Cells Tissues Organs 2019; 206:272-282. [PMID: 31203288 DOI: 10.1159/000500449] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Chronic venous disorder (CVeD), is a disorder in which there is a modification in the conditions of blood return to the heart. The disorder may arise from incompetent valves and the resultant venous reflux (chronic venous insufficiency, CVI). The economic burden of CVeD on health systems is high, and research efforts have sought to elucidate the mechanisms involved as possible therapeutic targets. The mitogen-activated protein kinase (MAPK) enzymes mediate a wide array of physiopathological processes in human tissues. In this family of proteins, extracellular signal-regulated kinase (ERK)1/2 plays a direct role in the cell homeostasis that determines the viability of mammalian tissues. This study sought to examine whether ERK1/2 plays a role in venous reflux. This was a prospective study performed on 56 participants including 11 healthy controls. Of the CVeD patients, 23 had venous reflux with CVI (CVI-R) and 22 had no reflux (NR). Distribution by age was: controls <50 years (n = 4) and ≥50 years (n = 7); NR <50 years (n = 9) and ≥50 years (n = 13); CVI-R <50 years (n = 11) and ≥50 years (n = 12). Great saphenous vein specimens were subjected to gene (real-time polymerase chain reaction, RT-qPCR) and protein (immunohistochemistry, IHC) expression techniques to identify ERK1/2. Data was compared between groups using the Mann Whitney U test. Patients with CVI showed significant gene activation of ERK1/2 protein, and, in those with venous reflux, the expression of this gene was significantly greater. The CVI-R group <50 years showed significantly greater ERK1/2 gene expression than their age-matched controls. Expression patterns were consistent with IHC findings. Our studies suggest that ERK1/2 expression is involved in venous vascular disease.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Beatriz Romero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - María J Álvarez-Rocha
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain
| | - Felipe Sainz
- Angiology and Vascular Surgery Service, Central University Hospital of Defence-UAH Madrid, Madrid, Spain
| | - Javier Leal
- Angiology and Vascular Surgery Service, Ruber International Hospital, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain, .,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain,
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,University Center of Defense of Madrid (CUD-ACD), Madrid, Spain
| |
Collapse
|
19
|
Osterloh IH, Muirhead GJ, Sultana S, Whaley S, van den Berg F, Atiee G. Pharmacokinetics, Safety, and Tolerability of Single Oral Doses of a Novel Oxytocin Receptor Antagonist—Cligosiban—in Development for Premature Ejaculation: Three Randomized Clinical Trials in Healthy Subjects. J Sex Med 2018; 15:1547-1557. [DOI: 10.1016/j.jsxm.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
20
|
Lerman B, Harricharran T, Ogunwobi OO. Oxytocin and cancer: An emerging link. World J Clin Oncol 2018; 9:74-82. [PMID: 30254962 PMCID: PMC6153127 DOI: 10.5306/wjco.v9.i5.74] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
The neuropeptide hormone oxytocin, which is released from the posterior pituitary gland, is involved in a number of physiological processes. Understanding of its effects is gradually increasing due to new research in this area. While mostly recognized as a reproductive system hormone, oxytocin also regulates other organ systems such as the brain and cardiovascular system. Recently, research has focused on unraveling its involvement in cancer, and emerging evidence suggests a potential role for oxytocin as a cancer biomarker. This review summarizes observations linking oxytocin and cancer, with a special emphasis on prostate cancer, where it may promote cell proliferation. Research suggests that oxytocin effects may depend on cell type, concentration of the hormone, its interactions with other hormones in the microenvironment, and the precise localization of its receptor on the cell membrane. Future research is needed to further elucidate the involvement of oxytocin in cancer, and whether it could be a clinical cancer biomarker or therapeutic target.
Collapse
Affiliation(s)
- Ben Lerman
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, United States
| | - Trisheena Harricharran
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, United States
- the Graduate Center Departments of Biology and Biochemistry, the City University of New York, New York, NY 10016, United States
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, United States
- the Graduate Center Departments of Biology and Biochemistry, the City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
| |
Collapse
|
21
|
Youn DH, Park J, Kim HL, Jung Y, Kang J, Lim S, Song G, Kwak HJ, Um JY. Berberine Improves Benign Prostatic Hyperplasia via Suppression of 5 Alpha Reductase and Extracellular Signal-Regulated Kinase in Vivo and in Vitro. Front Pharmacol 2018; 9:773. [PMID: 30061836 PMCID: PMC6054997 DOI: 10.3389/fphar.2018.00773] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is a common disease in elderly men, characterized by proliferated prostate and urinary tract symptoms. The hormonal cascade starting by the action of 5-alpha-reductase (5AR) is known to be one of the pathways responsible for the pathogenesis of BPH. Present investigation evaluated the capacity of berberine (BBR), a nature-derived compound abundant in Coptis japonica, in testosterone-induced BPH rats. Experimental BPH was induced by inguinal injection with testosterone propionate (TP) for 4 weeks. BBR or finasteride, a 5AR inhibitor as positive control, was treated for 4 weeks during BPH. BPH induced by TP evoked weight gaining and histological changes of prostate and BBR treatment improved all the detrimental effects not only weight reduction and histological changes but also suppression of prostate-specific antigen (PSA), which is elevated during BPH. Additionally, BBR suppressed TP-associated increase of 5AR, androgen receptor (AR) and steroid coactivator-1 (SRC-1), the key factors in the pathogenesis of BPH. To evaluate the underlying molecular mechanisms responsible for beneficial effects of BBR, we investigated whether these effects were associated with the mitogen-activated protein kinase pathway. BPH induced by TP showed increased phosphorylation of extracellular signal-regulated kinase (ERK), whereas this was suppressed by BBR treatment. On the other hand, c-jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase was not changed in BPH rats. In in vitro study using RWPE-1 cells, a human prostate epithelial cell line. TP increased cell proliferation and BPH-related key factors such as PSA, AR, and 5AR in RWPE-1 cells, and those factors were significantly decreased in the presence of BBR. Furthermore, these proliferative effects in RWPE-1cells were attenuated by treatment with U0126, an ERK inhibitor, confirming BBR can relieve overgrowth of prostate via ERK-dependent signaling. The cotreatment of U0126 and BBR did not affect the change of 5AR nor proliferation compared with U0126 alone, suggesting that the effect of BBR was dependent on the action of ERK. In conclusion, this study shows that BBR can be used as a therapeutic agent for BPH by controlling hyperplasia of prostate through suppression of ERK mechanism.
Collapse
Affiliation(s)
- Dong-Hyun Youn
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hye-Lin Kim
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yunu Jung
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seona Lim
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Gahee Song
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyun Jeong Kwak
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
22
|
Xu H, Fu S, Chen Q, Gu M, Zhou J, Liu C, Chen Y, Wang Z. The function of oxytocin: a potential biomarker for prostate cancer diagnosis and promoter of prostate cancer. Oncotarget 2018; 8:31215-31226. [PMID: 28415720 PMCID: PMC5458202 DOI: 10.18632/oncotarget.16107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To measure the level of oxytocin in serum and prostate cancer (PCa) tissue and study its effect on the proliferation of PCa cells. RESULTS Oxytocin level in serum was significantly increased in PCa patients compared with the no-carcinoma individuals. Additionally, the levels of oxytocin and its receptor were also elevated in the PCa tissue. However, no significant difference existed among the PCa of various Gleason grades. Western blot analysis confirmed the previous results and revealed an increased expression level of APPL1. MATERIALS AND METHODS The level of oxytocin in serum was measured by ELISA analysis. The expression of oxytocin and its receptor in prostate was analyzed by immunohistochemistry. The proliferation and apoptosis of PCa cells were assessed by the Cell Counting Kit 8 (CCK8) assay, cell cycle analysis and caspase3 activity analysis, respectively. Western blot analysis was used for the detection of PCNA, Caspase3 and APPL1 protein levels. CONCLUSIONS Serum and prostatic oxytocin levels are increased in the PCa subjects. Serum oxytocin level may be a biomarker for PCa in the future. Oxytocin increases PCa growth and APPL1 expression.
Collapse
Affiliation(s)
- Huan Xu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Shi Fu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Qi Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Meng Gu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Juan Zhou
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Chong Liu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yanbo Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
23
|
Xu H, Cai Z, Chen Y, Gu M, Chen Q, Wang Z. Benign prostatic hyperplasia surgical scoring (BPHSS): an novel scoring system for the perioperative outcomes of holmium laser enucleation of the prostate. Lasers Med Sci 2018; 33:589-595. [PMID: 29313161 DOI: 10.1007/s10103-017-2425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
To develop a standardized scoring system, the BPH surgical scoring (BPHSS) system, to quantify the ability to predict the perioperative outcomes resulting from an enlarged prostate. There are two parts included in this study: the retrospective observational study (875 patients treated with holmium laser enucleation of the prostate, HoLEP) and the prospective observational study (111 patient underwent HoLEP). All the outcome data included the following: the basic patient preoperative characteristics, operation time (OT), pre- and post- surgery hemoglobin decrease, Na+ variation, hospital stay duration, duration of bladder irrigation, catheterization time, and hospitalization time. The BPHSS, consisting of prostatic volume (PV), prostate-specific antigen (PSA), bladder stones, intravesical prostatic protrusion (IPP), and metabolic syndrome (MetS), was observed regarding the perioperative outcomes. In the retrospective study, patients in high BPHSS group (6-8 points) showed significant increase in the OT (74.61, 95%CI = 16.98-327.84, P < 0.001), hemochrome reduction (416.50, 95%CI = 35.48-4889.88, P < 0.001), hospital stay (1.80, 95%CI = 1.35-2.41, P < 0.001), and bladder irrigation duration (4.04, 95%CI = 1.35-12.10, P = 0.013) compared with the low BPHSS group (0-2 points). In the prospective study, there also existed significant differences between the three scoring grades (P < 0.01) in OT, hemochrome decrease, and the hospital stay. The BPHSS is suitable to predict the perioperative outcomes in patients undergoing HoLEP. It may help urologist to prepare more before surgery to treat the enlarged prostates. Further studies are needed to validate this scoring system in BPH patients in multiple centers.
Collapse
Affiliation(s)
- Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhikang Cai
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
24
|
Li Z, Xiao H, Wang K, Zheng Y, Chen P, Wang X, DiSanto ME, Zhang X. Upregulation of Oxytocin Receptor in the Hyperplastic Prostate. Front Endocrinol (Lausanne) 2018; 9:403. [PMID: 30123183 PMCID: PMC6085439 DOI: 10.3389/fendo.2018.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background: The etiology of benign prostatic hyperplasia (BPH) is complex, both age and androgen are thought to be important. However, the failure of androgen blockade treatments suggests other paracrine/autocrine factors involved in BPH. Oxytocin was found to have a paracrine/autocrine role in prostate in recent years. The influence of BPH on prostatic oxytocin receptor (OTR) expression has never been studied. Material and methods: A testosterone-estradiol induced rat model of BPH was employed and human hyperplastic prostate specimens were harvested. Expressions of OTR, α1-adrenoreceptor subtypes and nitric oxide synthase isoforms were determined via real-time RT-PCR. OTR was further analyzed with Western-Blotting and histological examination. Subsequently, rat epithelial cells, human stromal cells and epithelial cells were cultured in vitro and treated with gradient concentrations of OT from 1 to 5 days. Cell proliferation was tested by Cell Counting Kit-8 and Flow Cytometry. Results: The rat BPH model was validated with significant increased prostate weight. H-E stain revealed a different histopathology between human and rat BPH. Masson's trichrome staining demonstrated that smooth muscle (SM) cells, epithelium cells and collagen fibers were simultaneously augmented in this rat BPH model and human BPH samples. OTR mainly localized in epithelium in rat prostate whereas it mainly localized in stroma in human prostate. OTR gene was upregulated 3.3-fold in rat BPH and 3.0-fold in human BPH, along with increased expression of 2.0-fold α1aARs and 3.0-fold eNOS for rat BPH and 5.0-fold α1aARs for human BPH. The expression of OTR protein was upregulated 1.4-fold in rat BPH and 3.9-fold in human BPH, respectively. Increased concentrations of exogenous OT can accelerate proliferation of rat epithelial cells and human stromal cells but has no impact on human epithelial cells in vitro. Flow Cytometry showed oxytocin could significantly increase G2/M period cell number. Conclusions: Our novel data demonstrates a significant and previously undocumented upregulation of OTR in both rat and human BPH. Moreover, exogenous OT accelerates proliferation of rat prostate epithelial cells and human prostate stromal cells. It is suggested OTR is involved in the development of BPH and OT regulatory system could be a potential new target for the BPH treatment.
Collapse
Affiliation(s)
- Zhuo Li
- Zhongnan Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory for Endogenous Infection, Department of Urology, Shenzhen Sixth People's Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - He Xiao
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kebing Wang
- Shenzhen Key Laboratory for Endogenous Infection, Department of Urology, Shenzhen Sixth People's Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Yuelan Zheng
- Department of General Surgery, Children's Hospital of Shenzhen, Shenzhen, China
| | - Ping Chen
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Michael E. DiSanto
- Departments of Biomedical Sciences, Surgery of Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Xinhua Zhang
- Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xinhua Zhang
| |
Collapse
|
25
|
Zhang F, Liu Q, Wang Z, Xie W, Sheng X, Zhang H, Yuan Z, Han Y, Weng Q. Seasonal Expression of Oxytocin and Oxytocin Receptor in the Scented Gland of Male Muskrat (Ondatra zibethicus). Sci Rep 2017; 7:16627. [PMID: 29192229 PMCID: PMC5709462 DOI: 10.1038/s41598-017-16973-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/20/2017] [Indexed: 11/08/2022] Open
Abstract
Oxytocin (OT) can modulate multiple physiological functions via binding to the widely distributed oxytocin receptor (OTR). In this study, we investigated the seasonal expressions of OT, OTR and extracellular signal regulated kinase (ERK1/2) signaling pathway components in the scented gland of muskrat during the breeding and non-breeding seasons. Histologically, glandular cells, interstitial cells and excretory tubules were identified in the breeding season scented glands, whereas epithelial cells were sparse in the non-breeding season. Immunohistochemical results showed that OTR was present in epithelial cells and interstitial cells while OT, pERK1/2, ERK1/2 and c-fos were expressed in epithelial cells and glandular cells. The protein and mRNA expressions of OTR, OT and c-fos were significantly higher in the scented gland in the breeding season than in the non-breeding season. Importantly, the levels of OT in scented glands and serum were measured by hormone assays, and their concentrations were both significantly higher in the breeding season than in the non-breeding season. Moreover, bioinformatics analysis showed that the predicted targets of the differentially expressed microRNAs might include the genes encoding OTR, ERK1/2 and c-fos. These findings suggested that OT may regulate the function of muskrat scented glands by the locally expressed receptors.
Collapse
Affiliation(s)
- Fengwei Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Qian Liu
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Ziyi Wang
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Xia Sheng
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|