1
|
Ni H, Li T, Chen J, Wei Y, Xia M, Wang Q. Store-operated Ca 2+ entry contributes to the ASM phenotype transition in asthma. Exp Lung Res 2025; 51:23-37. [PMID: 40205756 DOI: 10.1080/01902148.2025.2486951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
AIM OF THE STUDY Phenotype modulation of airway smooth muscle cells (ASMC), characterized by a shift toward a more proliferative and synthetic phenotype from contractile cells, plays a crucial role in airway remodeling in asthma. STIM1 and Orai1, key components of store-operated Ca2+ entry (SOCE), have been demonstrated to enhance ASMC proliferation and migration. This study investigated the impact of STIM1/Orai1-mediated SOCE on ASMC phenotype transition and extracellular matrix (ECM) deposition in asthma. MATERIALS AND METHODS The ASMCs were treated with PDGF-BB and SOCE inhibitors. Immunocytochemistry staining, enzyme-linked immunosorbent assay, and western blot assay were employed to detect the ASMC's proliferation as well as the expressions of contractile proteins, inflammatory cytokines and ECM. Moreover, the effect of SOCE repression in ECM deposition were evaluated in an asthmatic mouse model. RESULTS ASMCs from airways of mice were treated with PDGF-BB to induce the 'proliferative/synthetic' phenotype. We observed elevated expressions of STIM1 and Orai1 in phenotype-switched ASMCs, along with enhanced SOCE. SKF-96365 and RO2959, which target of STIM1/Orai1, could significantly inhibit SOCE activation in ASMCs. Moreover, these SOCE inhibitors mitigated the elevated proliferation rate, decreased the secretion of inflammatory cytokines and restored the reduced levels of contractile proteins in phenotype-switched ASMCs induced by PDGF-BB. Furthermore, we observed that PDGF-BB-induced 'proliferative/synthetic' ASMCs exhibited increased production of ECM components, including collagen I and fibronectin, as well as metalloproteinases (MMPs) such as MMP2 and MMP9, all of which were effectively inhibited by SKF-96365 and RO2959. In vivo experiments also demonstrated that SOCE inhibitors decreased ECM deposition and MMPs production in the asthmatic mouse model. CONCLUSIONS These findings underscored the significant role of STIM1/Orai1-mediated SOCE in ASMC phenotype modulation and its impact on the excessive ECM deposition driven by ASMCs. Thus, our findings suggest that STIM1/Orai1-mediated SOCE may contribute to airway remodeling in asthma.
Collapse
Affiliation(s)
- Hangqi Ni
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Junjun Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Yuying Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Mengling Xia
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| | - Qing Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, P.R. China
| |
Collapse
|
2
|
Yu Q, Zhu L, Ding X, Lou Y. Integration of network pharmacology and experimental validation to explore the pharmacological mechanism of andrographolide against asthma. BIORESOUR BIOPROCESS 2025; 12:30. [PMID: 40198539 PMCID: PMC11979015 DOI: 10.1186/s40643-025-00869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Andrographolide (AG), one of the main active components of Andrographis paniculata (Burm.f.) Wall. ex Nees, has been proved to possess the pharmacological function of anti-inflammation in multiple disease including asthma. But the potential mechanism is still not clear. In this study, network pharmacology, molecular docking and experimental validation were utilized to explore the molecular mechanism of AG in the treatment of asthma. AG-related targets and asthma-related targets were screened by Swiss Target Prediction, DrugBank, STITCH, OMIM, Genecards and TTD databases. A protein-protein interaction (PPI) network was obtained through the STRING Database. The plug-in of "Network Analyzer" in Cytoscape 3.7.1 software was used to conduct the topological analysis. GO enrichment and KEGG pathway analysis were achieved by Metascape database and Bioinformatics platform. The target-pathway network was acquired by Cytoscape 3.7.1 software. The binding affinity between AG and the target genes was evaluated by Molecular docking with AutoDockTools 1.5.6. Flow cytometry was also used to verify the mechanism behind the treatment of asthma by AG, which was predicted in network pharmacology. In total, 38 targets were identified as potential targets of AG against asthma. The top 10 targets revealed by PPI are: IL-6, IL-1B, NFKB1, MMP9, CDK2, CREBBP, MAP2K1, JAK1, AR, PRKCA. GO and KEGG analysis showed that AG treatment of asthma mainly involved protein phosphorylation, peptidyl-serine phosphorylation, peptidyl-amino acid modification and other biological processes. The main signaling pathways are Th17 cell differentiation, JAK-STAT signaling pathway and PI3K-Akt signaling pathway. Molecular docking showed that AG has higher affinity with MMP9, PRKCA, JAK2, LTGAL and LRRK2. Flow cytometry showed that Th17 cell differentiation may be the potential target of AG in the treatment of asthma. This study successfully revealed the underlying target genes and mechanism involved in the treatment of asthma for AG, providing a reference and guidance for future mechanism research.
Collapse
Affiliation(s)
- Qian Yu
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - LiHong Zhu
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - XuChun Ding
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - YaFang Lou
- Department of Pulmonary and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Jiang Z, Li Z, Chen Y, Nie N, Liu X, Liu J, Shen Y. MLN4924 alleviates autoimmune myocarditis by promoting Act1 degradation and blocking Act1-mediated mRNA stability. Int Immunopharmacol 2024; 139:112716. [PMID: 39038386 DOI: 10.1016/j.intimp.2024.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Prolonged exposure to interleukin-17A (IL-17A) can induce autoimmune myocarditis, and MLN4924, an inhibitor of NEDD8 activating enzyme (NAE), has been reported to effectively suppress various inflammatory reactions. However, the effects of MLN4924 in IL-17A-mediated inflammation associated with autoimmune myocarditis remain uncertain. METHODS An experimental autoimmune myocarditis (EAM) model was established and treated with MLN4924. The inflammation degree of heart tissues was assessed histopathologically. The expression levels of inflammatory cytokines and chemokines were measured using ELISA and RT-qPCR, respectively. Additionally, the interaction of biomacromolecules was detected through co-immunoprecipitation (Co-IP) and RNA immunoprecipitation (RIP). RESULTS MLN4924 could attenuate IL-17A-induced inflammation. In the in vivo studies, MLN4924 treatment improved inflammatory responses, diminished immune cell infiltration and tissue fibrosis, and reduced the secretion of various inflammatory cytokines in serum, including IL-1β, IL-6, TNF-α, and MCP-1. In vitro experiments further corroborated these findings, showing that MLN4924 treatment reduced the secretion and transcription of pro-inflammatory factors, particularly MCP-1. Mechanistically, we confirmed that MLN4924 promoted Act1 ubiquitination degradation and disrupted Act1's interaction with IL-17R, thereby impeding the formation of the IL-17R/Act1/TRAF6 complex and subsequent activation of TAK1, c-Jun, and p65. Moreover, MLN4924 interfered with Act1's binding to mRNA, resulting in mRNA instability. CONCLUSIONS In conclusion, MLN4924 effectively alleviated inflammatory symptoms in EAM by disrupting the interaction between IL and 17R and Act1, thereby reducing Act1-mediated mRNA stability and resulting in decreased expression of pro-inflammatory factors.
Collapse
Affiliation(s)
- Zuli Jiang
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuolun Li
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Youming Chen
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Na Nie
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiner Liu
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlin Liu
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Shen
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
de Lima LC, Cruz ÁA, Costa RDS, Silva HDS, Coelho RS, Teixeira HM, Oliveira PR, Barnes KC, Figueiredo CA, Carneiro VL. TSLP and IL25 variants are related to asthma and atopy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Chen S, Yu L, Deng Y, Liu Y, Wang L, Li D, Yang K, Liu S, Tao A, Chen R. Early IL-17A Prevention Rather Than Late IL-17A Neutralization Attenuates Toluene Diisocyanate-Induced Mixed Granulocytic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:528-548. [PMID: 36174994 PMCID: PMC9523423 DOI: 10.4168/aair.2022.14.5.528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Interleukin (IL)-17A plays a critical role in the pathogenesis of allergic airway inflammation. Yet, the exact roles of IL-17A in asthma are still controversial. Thus, the aim of this study was to dissect the roles of IL-17A in toluene diisocyanate (TDI)-induced mixed granulocytic asthma and to assess the effects of neutralizing antibody in different effector phases on TDI-induced asthma. METHODS IL-17A functions in allergic airway inflammation were evaluated using mice deficient in IL-17A (Il17a-/-) or IL-17A monoclonal antibody (IL-17A mab, intraperitoneally, 50 μg per mouse, 100 μg per mouse). Moreover, the effects of exogenous recombinant IL (rIL)-17A in vivo (murine rIL-17A, intranasally, 1 μg per mouse) and in vitro (human rIL-17A, 100 ng/mL) were investigated. RESULTS TDI-induced mixed granulocytic airway inflammation was IL-17A-dependent because airway hyperreactivity, neutrophil and eosinophil infiltration, airway smooth muscle thickness, epithelium injury, dysfunctional T helper (Th) 2 and Th17 responses, granulocytic chemokine production and mucus overproduction were more markedly reduced in the Il17a-/- mice or by IL-17A neutralization during the sensitization phase of wild-type (WT) mice. By contrast, IL-17A neutralization during the antigen-challenge phase aggravated TDI-induced eosinophils recruitment, with markedly elevated Th2 response. In line with this, instillation of rIL-17 during antigen sensitization exacerbated airway inflammation by promoting neutrophils aggregation, while rIL-17A during the antigen-challenge phase protected the mice from TDI-induced airway eosinophilia. Moreover, rIL-17A exerted distinct effects on eosinophil- or neutrophil-related signatures in vitro. CONCLUSIONS Our data demonstrated that IL-17A was required for the initiation of TDI-induced asthma, but functioned as a negative regulator of established allergic inflammation, suggesting that early abrogation of IL-17A signaling, but not late IL-17A neutralization, may prevent the progression of TDI-induced asthma and could be used as a therapeutic strategy for severe asthmatics in clinical settings.
Collapse
Affiliation(s)
- Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yuanyuan Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Kai Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China.
| |
Collapse
|
6
|
Zhan M, Wen L, Zhu M, Gong J, Xi C, Wen H, Xu G, Shen H. Integrative Analysis of Transcriptome and Metabolome Reveals Molecular Responses in Eriocheir sinensis with Hepatopancreatic Necrosis Disease. BIOLOGY 2022; 11:1267. [PMID: 36138745 PMCID: PMC9495758 DOI: 10.3390/biology11091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Hepatopancreatic necrosis disease (HPND) is a highly lethal disease that first emerged in 2015 in Jiangsu Province, China. So far, most researchers believe that this disease is caused by abiotic factors. However, its true pathogenic mechanism remains unknown. In this study, the effects of HPND on the metabolism and other biological indicators of the Chinese mitten crab (Eriocheir sinensis) were evaluated by integrating transcriptomics and metabolomics. Our findings demonstrate that the innate immunity, antioxidant activity, detoxification ability, and nervous system of the diseased crabs were affected. Additionally, metabolic pathways such as lipid metabolism, nucleotide metabolism, and protein metabolism were dysregulated, and energy production was slightly increased. Moreover, the IL-17 signaling pathway was activated and high levels of autophagy and apoptosis occurred in diseased crabs, which may be related to hepatopancreas damage. The abnormal mitochondrial function and possible anaerobic metabolism observed in our study suggested that functional hypoxia may be involved in HPND progression. Furthermore, the activities of carboxylesterase and acetylcholinesterase were significantly inhibited, indicating that the diseased crabs were likely stressed by pesticides such as pyrethroids. Collectively, our findings provide new insights into the molecular mechanisms altered in diseased crabs, as well as the etiology and pathogenic mechanisms of HPND.
Collapse
Affiliation(s)
- Ming Zhan
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lujie Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mengru Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jie Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changjun Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
7
|
Wang W, Li Y, Fan J, Qu X, Shang D, Qin Q, Xu T, Hamid Q, Dang X, Chang Y, Xu D. MiR-365-3p is a negative regulator in IL-17-mediated asthmatic inflammation. Front Immunol 2022; 13:953714. [PMID: 35958620 PMCID: PMC9361323 DOI: 10.3389/fimmu.2022.953714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 12/07/2022] Open
Abstract
Background Interleukin-17, the major proinflammatory cytokine secreted by Th17 cells, makes essential contribution to pathogenesis of severe asthma, while the detailed mechanisms, especially the involvement of microRNAs which are also important participants in asthma progression, remains largely unclear. Methods In this study, we established a house dust mite (HDM) extract-induced murine asthmatic models and the miRNA expression in the lung tissues of mice were profiled by miRNA microarray assay. The effect of miR-365-3p on IL-17-mediated inflammation was examined by qRT-PCR and immunoblotting analysis. The involvement of ARRB2 as target gene of miR-365-3p was verified by overexpression or RNA interference. Results HDM extract-induced asthmatic inflammation was proved to be IL17-mediated and miR-365-3p was screened out to be the only miRNA exclusively responsive to IL-17. miR-365-3p, whose expression was significantly downregulated upon IL-17 stimulation, was demonstrated to exert remarkable anti-inflammatory effect to decrease IL-17-provoked inflammatory cytokines (KC/IL-8 and IL-6) in both airway epithelial cells and macrophages of murine and human origins, verifying its universal antagonizing activity against IL-17-initiated inflammation across the two species. ARRB2 was characterized as the key target of miR-365-3p to negate IL-17-induced inflammatory cytokines. Conclusion Taken together, our data supported the notion that miR-365-3p, which was diminished by IL-17 in murine and human asthmatic pathogenesis, functioned as an essential negative mediator in IL-17-stimuated inflammatory response by targeting ARRB2, which would shed new light to the understanding and therapeutics thereof of asthmatic inflammation.
Collapse
Affiliation(s)
- Weijia Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ying Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jiaqi Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Qu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Dong Shang
- Department of Respiration, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Qutayba Hamid
- Meakins-Christie Laboratories and Respiratory Division, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, QC, Canada
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Xiaomin Dang
- Department of Respiration, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ying Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dan Xu, ; Ying Chang,
| | - Dan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dan Xu, ; Ying Chang,
| |
Collapse
|
8
|
Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022; 11:2132. [PMID: 35883573 PMCID: PMC9318387 DOI: 10.3390/cells11142132] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Lars Peter Lunding
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
| |
Collapse
|
9
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
10
|
Th17-Dependent Nasal Hyperresponsiveness Is Mitigated by Steroid Treatment. Biomolecules 2022; 12:biom12050674. [PMID: 35625602 PMCID: PMC9138412 DOI: 10.3390/biom12050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Th17 cells are implicated in allergic inflammatory diseases, including allergic rhinitis (AR), though the effect of steroids on Th17 cell-dependent nasal responses is unclear. Herein, we investigated a nasal inflammation model elicited by allergen provocation in mice infused with Th17 cells and its responsiveness against steroid treatment. We transferred BALB/c mice with Th17 cells, which were differentiated in vitro and showed a specific reaction to ovalbumin (OVA). We challenged the transferred mice by intranasal injection of OVA and to some of them, administered dexamethasone (Dex) subcutaneously in advance. Then, we assessed immediate nasal response (INR), nasal hyperresponsiveness (NHR), and inflammatory cell infiltration into the nasal mucosa. The significant nasal inflammatory responses with massive neutrophil accumulation, INR, and NHR were induced upon allergen challenge. Allergen-induced INR and NHR were significantly suppressed by Dex treatment. This study suggested the effectiveness of steroids on Th17 cell-mediated nasal responses in AR.
Collapse
|
11
|
Herjan T, Xiao J, Dziendziel Kolanek M. RNA-Binding Protein HuR Promotes Airway Inflammation in a House Dust Mite-Induced Allergic Asthma Model. J Interferon Cytokine Res 2022; 42:29-38. [PMID: 35041516 PMCID: PMC8787712 DOI: 10.1089/jir.2021.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence indicates that interleukin 17 (IL-17) is critically involved in the pathogenesis of severe asthma. We have previously reported that upon IL-17 stimulation, Act1, an IL-17-receptor-complex adaptor, directly binds to its target mRNAs and utilizes other proteins, such as HuR, to upregulate mRNA stability and translation. HuR mRNA targets include multiple asthma-related genes. In this study, we have used house dust mite (HDM), a natural allergen, to test the role of HuR in the pathogenesis of allergic asthma. We found that HuR deletion in airway epithelium diminished HDM-induced lung inflammation, including neutrophil and eosinophil infiltration. While Th2 cytokines were not altered, the production of CXCL1, CXCL5 and CCL11 chemokines was significantly diminished. Airway smooth muscle (ASM) cells contribute to the pathogenesis of allergic asthma by orchestrating inflammatory and remodeling responses. We found that IL-17 treatment of ASM cells induced translocation of HuR from nucleus to cytoplasm, where it bound directly to Cxcl1 and Ccl11 mRNA. Deletion of HuR in ASM cells decreased their proliferation as well as CXCL1 and CCL11 production in response to IL-17. Taken together, our findings demonstrate the importance of HuR-mediated regulation of gene expression to the pathogenesis of allergic asthma, in both airway epithelial and ASM cells.
Collapse
Affiliation(s)
- Tomasz Herjan
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA.,Department of General Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jianxin Xiao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Monika Dziendziel Kolanek
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Feng KN, Meng P, Zhang M, Zou XL, Li S, Huang CQ, Lai KF, Li HT, Zhang TT. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:505-527. [PMID: 36174993 PMCID: PMC9523421 DOI: 10.4168/aair.2022.14.5.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Purpose Neutrophilic asthma is associated with asthma exacerbation, steroid insensitivity, and severe asthma. Interleukin (IL)-24 is overexpressed in asthma and is involved in the pathogenesis of several allergic inflammatory diseases. However, the role and specific mechanism of IL-24 in neutrophilic asthma are unclear. We aimed to elucidate the roles of IL-24 and IL-37 in neutrophilic asthma, the relationships with IL-17A and the mechanisms regulating neutrophilic asthma progression. Methods Purified human neutrophils were isolated from healthy volunteers, and a cell coculture system was used to evaluate the function of IL-24 in epithelium-derived IL-17A-dependent neutrophil migration. IL-37 or a small interfering RNA (siRNA) targeting IL-24 was delivered intranasally to verify the effect in a murine model of house dust mite (HDM)/lipopolysaccharide (LPS)-induced neutrophilic asthma. Results IL-24 enhanced IL-17A production in bronchial epithelial cells via the STAT3 and ERK1/2 signaling pathways; this effect was reversed by exogenous IL-37. Anti-IL-17A monoclonal antibodies reduced neutrophil chemotaxis induced by IL-24-treated epithelial cells in vitro. Increased IL-24 and IL-17A expression in the airway epithelium was observed in HDM/LPS-induced neutrophilic asthma. IL-37 administration or IL-24 silencing attenuated neutrophilic asthma, reducing IL-17A levels and decreasing neutrophil airway infiltration, airway hyperresponsiveness, and goblet cell metaplasia. Silencing IL-24 inhibited T-helper 17 (Th17) immune responses, but not Th1 or Th2 immune responses, in the lungs of a neutrophilic asthma model. Conclusions IL-24 aggravated neutrophilic airway inflammation by increasing epithelium-derived IL-17A production, which could be suppressed by IL-37. Targeting the IL-24/IL-17A signaling axis is a potential strategy, and IL-37 is a potential candidate agent for alleviating neutrophilic airway inflammation in asthma.
Collapse
Affiliation(s)
- Kang-ni Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Ping Meng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Xiao-ling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Shuang Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Chu-qin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke-fang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-tao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| | - Tian-tuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
The Emerging Roles of T Helper Cell Subsets and Cytokines in Severe Neutrophilic Asthma. Inflammation 2021; 45:1007-1022. [PMID: 34825300 DOI: 10.1007/s10753-021-01598-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/01/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022]
Abstract
Neutrophilic asthma (NA) is a severe type of steroid resistant asthma, and so far the immune mechanisms underlying NA are not clear. In this article, we performed a comprehensive assessment of Th-cell subsets and cytokines in severe NA patients. A total of 13 healthy individuals and 31 severe asthma patients were enrolled in this study. Refractory asthma patients were defined as those with eosinophilic asthma (EA, accounted for 32% of asthmatic patients) or NA (68%) according to sputum neutrophil/eosinophil counts or blood eosinophils. Th-cell subsets in peripheral blood mononuclear cells (PBMCs) were analyzed by flow cytometry, and cytokines were detected by cytometric bead array (CBA). The results showed significant differences were observed in Th-cell phenotypes, where the number of Th1 cells were reduced and the numbers of Th2 cells were increased in NA and EA groups, respectively, when compared with healthy controls. Th17 cells were not strongly associated with severe neutrophilic asthma. The frequencies of mucosal-associated invariant T (MAIT) cells were strikingly reduced in severe asthma patients, especially in the NA group. This NA group also showed increased levels of IL-17A, IL-17F, TNF-α, and IL-6 in serum and increased levels of IL-17A, IL-17F, IFN-γ, TNF-α, IL-1β, IL-5, IL-6, and IL-8 in sputum. In addition, sputum IL-6 was positively correlated with TNF-α, IFN-γ, IL-17A, and IL-8. Our results uncovered a controversial role for Th17 cells, which were reduced in severe asthma patients. Severe neutrophilic asthma was associated with a striking deficiency of MAIT cells and high pro-inflammatory cytokine levels.
Collapse
|
14
|
Tremblay É, Ferretti E, Babakissa C, Burghardt KM, Levy E, Beaulieu JF. IL-17-related signature genes linked to human necrotizing enterocolitis. BMC Res Notes 2021; 14:82. [PMID: 33663574 PMCID: PMC7934396 DOI: 10.1186/s13104-021-05489-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Necrotizing enterocolitis (NEC) is the most frequent life-threatening gastrointestinal disease experienced by premature infants in neonatal intensive care units all over the world. The objective of the present study was to take advantage of RNA-Seq data from the analysis of intestinal specimens of preterm infants diagnosed with NEC. Function enrichments with Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyse previous data in order to identify biological and functional processes, which could provide more insight into the pathogenesis of NEC in infants. RESULTS Gene set enrichment analysis indicated that the most significant biological pathways over-represented in NEC neonates were closely associated with innate immune functions. One of the striking observations was the highly modulated expression of inflammatory genes related to the IL-17 pathway including such as pro-inflammatory cytokines (CXCL8), chemokines (CXCL5 and CXCL10) and antimicrobials (DEF5A, DEF6A, LCN2, NOS2) in the intestine of neonates diagnosed with NEC. Interestingly, the increase in IL-17 expression appeared to be under the IL-17F form, as reported in Crohn's disease, another inflammatory bowel disease. Further investigation is thus still needed to determine the precise role of IL-17F and its downstream targets in NEC.
Collapse
Affiliation(s)
- Éric Tremblay
- Laboratory of Intestinal Physiopathology, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Main Building Room 9425, Sherbrooke, QC J1H 5N4 Canada
| | - Emanuela Ferretti
- Division of Neonatology, Department of Pediatrics, CHEO, Ottawa, ON Canada
| | - Corentin Babakissa
- Department of Pediatrics, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, QC Canada
| | | | - Emile Levy
- Department of Nutrition, Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montréal, QC Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Main Building Room 9425, Sherbrooke, QC J1H 5N4 Canada
| |
Collapse
|
15
|
Miao Y, Zheng Y, Geng Y, Yang L, Cao N, Dai Y, Wei Z. The role of GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals in Th17 responses counteracted by PPARγ agonists. Theranostics 2021; 11:4531-4548. [PMID: 33754076 PMCID: PMC7977454 DOI: 10.7150/thno.54803] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Peroxisome proliferator-activated receptor gamma (PPARγ) has the ability to counter Th17 responses, but the full mechanisms remain elusive. Herein, we aimed to elucidate this process in view of cellular metabolism, especially glutaminolysis. Methods: MTT, CCK-8, Annexin V-FITC/PI staining or trypan blue exclusion assays were used to analyze cytotoxicity. Flow cytometry and Q-PCR assays were applied to determine Th17 responses. The detection of metabolite levels using commercial kits and rate-limiting enzyme expression using western blotting assays was performed to illustrate the metabolic activity. ChIP assays were used to examine H3K4me3 modifications. Mouse models of dextran sulfate sodium (DSS)-induced colitis and house dust mite (HDM)/lipopolysaccharide (LPS)-induced asthma were established to confirm the mechanisms studied in vitro. Results: The PPARγ agonists rosiglitazone and pioglitazone blocked glutaminolysis but not glycolysis under Th17-skewing conditions, as indicated by the detection of intracellular lactate and α-KG and the fluorescence ratios of BCECF-AM. The PPARγ agonists prevented the utilization of glutamine and thus directly limited Th17 responses even when Foxp3 was deficient. The mechanisms were ascribed to restricted conversion of glutamine to glutamate by reducing the expression of the rate-limiting enzyme GLS1, which was confirmed by GLS1 overexpression. Replenishment of α-KG and 2-HG but not succinate weakened the effects of PPARγ agonists, and α-KG-promoted Th17 responses were dampened by siIDH1/2. Inhibition of KDM5 but not KDM4/6 restrained the inhibitory effect of PPARγ agonists on IL-17A expression, and the H3K4me3 level in the promoter and CNS2 region of the il-17 gene locus down-regulated by PPARγ agonists was rescued by 2-HG and GLS1 overexpression. However, the limitation of PPARγ agonists on the mRNA expression of RORγt was unable to be stopped by 2-HG but was attributed to GSH/ROS signals subsequent to GLS1. The exact role of PPARγ was proved by GW9662 or PPARγ knockout, and the mechanisms for PPARγ-inhibited Th17 responses were further confirmed by GLS1 overexpression in vivo. Conclusion: PPARγ agonists repressed Th17 responses by counteracting GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals, which is beneficial for Th17 cell-related immune dysregulation.
Collapse
|
16
|
Lauhkonen E, Holster A, Teräsjärvi J, Nuolivirta K, He Q, Korppi M. IL17RA variations showed no associations with post-bronchiolitis asthma or lung function. Pediatr Int 2021; 63:196-201. [PMID: 32654355 DOI: 10.1111/ped.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Interleukin-17A (IL-17A) and IL-17F are involved in the pathogenesis of asthma and allergy. Interleukin-17 receptor A (IL-17RA), encoded by the IL17RA gene, is a common receptor for IL-17A and IL-17F. The aim of the present study was to evaluate the association of IL17RA gene variations with asthma, allergy, and lung function at school age in children prospectively followed up after hospitalization for bronchiolitis in early infancy. METHODS Data on IL17RA rs4819553, rs4819554, and rs4819558 polymorphisms and clinical outcomes, including asthma and allergic rhinitis, were available for 145 former bronchiolitis patients at 5-7 years and for 125 at 11-13 years of age. One hundred children underwent impulse oscillometry at 5-7 years and 84 underwent flow-volume spirometry at 11-13 years of age. The IL17RA rs4819553, rs4819554 and rs4819558 were completely co-segregating in Finnish children in our previous studies. RESULTS The distributions of the studied IL17RA wild versus variant genotypes and major versus minor allele frequencies did not differ between bronchiolitis cases and population controls. These variations showed no significant association with asthma or allergic rhinitis nor with lung function reduction at 5-7 or 11-13 years of ages. Only 5.6% to 6.4% of the variations were homozygous. CONCLUSIONS The IL17RA gene variations that were studied showed no association with susceptibility to severe bronchiolitis in infancy, nor with post-bronchiolitis asthma or lung function at school age. Future studies should evaluate other IL17RA polymorphisms and include more cases, and especially cases with homozygous variations.
Collapse
Affiliation(s)
- Eero Lauhkonen
- Center for Child Health Research, Faculty of Medicine and Life Sciences, University of Tampere and University Hospital, Tampere, Finland
| | - Annukka Holster
- Center for Child Health Research, Faculty of Medicine and Life Sciences, University of Tampere and University Hospital, Tampere, Finland
| | | | - Kirsi Nuolivirta
- Department of Pediatrics, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Qiushui He
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Matti Korppi
- Center for Child Health Research, Faculty of Medicine and Life Sciences, University of Tampere and University Hospital, Tampere, Finland
| |
Collapse
|
17
|
Korppi M, Teräsjärvi J, Liehu‐Martiskainen M, Barkoff A, Lauhkonen E, Huhtala H, Pöyhönen L, Nuolivirta K, He Q. Interleukin 17F gene variations showed no association with BCG osteitis risk after newborn vaccination. Acta Paediatr 2021; 110:618-623. [PMID: 32946631 DOI: 10.1111/apa.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/08/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
AIM Interleukin-17 (IL-17) family cytokines promote the host defence against mycobacterial infections. We have previously shown an association between IL17A variations and Bacillus Calmette-Guérin (BCG) osteitis. This paper evaluates the association of three IL17F polymorphisms with BCG osteitis after newborn vaccination. METHODS IL17F rs763780, rs11465553 and rs7741835 single nucleotide polymorphisms (SNPs) were studied in 132 adults, who presented with BCG osteitis in infancy. The genotypes and minor allele frequencies (MAFs) were compared between cases and Finnish population-based controls (N = 99) from the 1000 Genomes Project, and MAFs were compared between cases and allele data of Finnish subjects from the large Genome Aggregation Database. RESULTS There were no significant differences between former BCG osteitis patients and population-based controls in the IL17F rs763780 (wild 84.4% vs 84.8%), rs11465553 (86.4% vs 91.9%) or rs7741835 (65.7% vs 67.7%) genotypes. Homozygous variant genotypes were only present in 1.5%, 0.8% and 3.8% of cases, respectively. Likewise, MAFs of the three IL17F SNPs did not substantially differ from those of 11 252, 11 939 and 1371 Finnish subjects, respectively, from the available Genome Aggregation Database. CONCLUSION IL17F rs763780, rs11465553 and rs7741835 variations showed no association with the risk of BCG osteitis after newborn vaccination.
Collapse
Affiliation(s)
- Matti Korppi
- Center for Child Health Research Faculty of Medicine and Life Sciences University of Tampere and University Hospital Tampere Finland
| | | | - Milla Liehu‐Martiskainen
- Center for Child Health Research Faculty of Medicine and Life Sciences University of Tampere and University Hospital Tampere Finland
| | | | - Eero Lauhkonen
- Center for Child Health Research Faculty of Medicine and Life Sciences University of Tampere and University Hospital Tampere Finland
| | - Heini Huhtala
- Faculty of Social Sciences University of Tampere Tampere Finland
| | - Laura Pöyhönen
- Center for Child Health Research Faculty of Medicine and Life Sciences University of Tampere and University Hospital Tampere Finland
| | - Kirsi Nuolivirta
- Department of Pediatrics Seinäjoki Central Hospital Seinäjoki Finland
| | - Qiushui He
- Institute of Biomedicine University of Turku Turku Finland
- Department of Medical Microbiology Capital Medical University Beijing China
| |
Collapse
|
18
|
Dos Santos TM, Righetti RF, Rezende BG, Campos EC, Camargo LDN, Saraiva-Romanholo BM, Fukuzaki S, Prado CM, Leick EA, Martins MA, Tibério IFLC. Effect of anti-IL17 and/or Rho-kinase inhibitor treatments on vascular remodeling induced by chronic allergic pulmonary inflammation. Ther Adv Respir Dis 2020; 14:1753466620962665. [PMID: 33357114 PMCID: PMC7768836 DOI: 10.1177/1753466620962665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and aims: Expansion and morphological dysregulation of the bronchial vascular network occurs in asthmatic airways. Interleukin (IL) -17 and Rho-kinase (ROCK) are known to act in inflammation control and remodeling. Modulation of Rho-kinase proteins and IL-17 may be a promising approach for the treatment of asthma through the control of angiogenesis. Our objective was to analyze the effects of treatment with anti-IL17 and/or Rho-kinase inhibitor on vascular changes in mice with chronic allergic pulmonary inflammation. Methods: Sixty-four BALB/c mice, with pulmonary inflammation induced by ovalbumin were treated with anti-IL17A (7.5/µg per dose, intraperitoneal) and/or Rho-kinase inhibitor (Y-27632-10 mg/kg, intranasal), 1 h before each ovalbumin challenge (22, 24, 26, and 28/days). Control animals were made to inhale saline. At the end of the protocol, lungs were removed, and morphometric analysis was performed to quantify vascular inflammatory, remodeling, and oxidative stress responses. Results: Anti-IL17 or Rho-kinase inhibitor reduced the number of CD4+, CD8+, dendritic cells, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, Rho-kinase 1 and 2, transforming growth factor (TGF-β), vascular endothelial growth factor (VEGF), nuclear factor (NF)-KappaB, iNOS, metalloproteinase (MMP)-9, MMP-12, metalloproteinase inhibitor-1 (TIMP-1), FOXP-3, signal transducer and activator of transcription 1 (STAT1) and phospho-STAT1-positive cells, and actin, endothelin-1, isoprostane, biglycan, decorin, fibronectin and the collagen fibers volume fraction compared with the ovalbumin group (p < 0.05). The combination treatment, when compared with anti-IL17, resulted in potentiation of decrease in the number of IL1β- and dendritic cells-positive cells. When we compared the OVA-RHO inhibitor-anti-IL17 with OVA-RHO inhibitor we found a reduction in the number of CD8+ and IL-17, TGF-β, and phospho-STAT1-positive cells and endothelin-1 in the vessels (p < 0.05). There was an attenuation in the number of ROCK 2-positive cells in the group with the combined treatment when compared with anti-IL17 or Rho-kinase inhibitor-treated groups (p < 0.05). Conclusion: We observed no difference in angiogenesis after treatment with Rho-kinase inhibitor and anti-IL17. Although the treatments did not show differences in angiogenesis, they showed differences in the markers involved in the angiogenesis process contributing to inflammation control and vascular remodeling. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Tabata M Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Renato F Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Bianca G Rezende
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Elaine C Campos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Leandro do N Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR. Hospital Sirio-Libanes, São Paulo, Brazil
| | - Beatriz M Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Medicine, University City of São Paulo (UNICID), São Paulo, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carla M Prado
- Department of Biosciences, Federal University os Sao Paulo, Santos, SP, Brazil
| | - Edna A Leick
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Milton A Martins
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Iolanda F L C Tibério
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455- Sala 1210, São Paulo, SP 01246-903, Brazil
| |
Collapse
|
19
|
Ajendra J, Chenery AL, Parkinson JE, Chan BHK, Pearson S, Colombo SAP, Boon L, Grencis RK, Sutherland TE, Allen JE. IL-17A both initiates, via IFNγ suppression, and limits the pulmonary type-2 immune response to nematode infection. Mucosal Immunol 2020; 13:958-968. [PMID: 32636457 PMCID: PMC7567645 DOI: 10.1038/s41385-020-0318-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 02/04/2023]
Abstract
Nippostrongylus brasiliensis is a well-defined model of type-2 immunity but the early lung-migrating phase is dominated by innate IL-17A production. In this study, we confirm previous observations that Il17a-KO mice infected with N. brasiliensis exhibit an impaired type-2 immune response. Transcriptional profiling of the lung on day 2 of N. brasiliensis infection revealed an increased Ifng signature in Il17a-KO mice confirmed by enhanced IFNγ protein production in lung lymphocyte populations. Depletion of early IFNγ rescued type-2 immune responses in the Il17a-KO mice demonstrating that IL-17A-mediated suppression of IFNγ promotes type-2 immunity. Notably, later in infection, once the type-2 response was established, IL-17A limited the magnitude of the type-2 response. IL-17A regulation of type-2 immunity was lung-specific and infection with Trichuris muris revealed that IL-17A promotes a type-2 immune response in the lung even when infection is restricted to the intestine. Together our data reveal IL-17A as a major regulator of pulmonary type-2 immunity such that IL-17A supports early development of a protective type-2 response by suppression of IFNγ but subsequently limits excessive type-2 responses. A failure of this feedback loop may contribute to conditions such as severe asthma, characterised by combined elevation of IL-17 and type-2 cytokines.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Alistair L Chenery
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - James E Parkinson
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Brian H K Chan
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Stella Pearson
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Stefano A P Colombo
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Louis Boon
- Bioceros, Member of Polpharma Biologics, Yalelaan 46, 3584, CM, Utrecht, The Netherlands
| | - Richard K Grencis
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Tara E Sutherland
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
20
|
Zhang Q, Liao Y, Liu Z, Dai Y, Li Y, Li Y, Tang Y. Interleukin-17 and ischaemic stroke. Immunology 2020; 162:179-193. [PMID: 32935861 DOI: 10.1111/imm.13265] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Interleukin-17 (IL-17) is a cytokine family that includes 6 members, IL-17A through IL-17F, most of them are reported to have pro-inflammatory role. Through binding to their receptors (IL-17Rs), IL-17 activates the intracellular signalling pathways to play an important role in autoimmune diseases, including rheumatoid arthritis (RA) and multiple sclerosis (MS). Ischaemic stroke is a complex pathophysiological process mainly caused by regional cerebral ischaemia. Inflammatory factors contribute to the physiological process of stroke that leads to poor prognosis. IL-17 plays a crucial role in promoting inflammatory response and inducing secondary injury in post-stroke. Though immune cells and inflammatory factors have been reported to be involved in the damage of stroke, the functions of IL-17 in this process need to be elucidated. This review focuses on the pathological modulation and the mechanism of IL-17 family in ischaemic stroke and seeking to provide new insights for future therapies.
Collapse
Affiliation(s)
- Qiaohui Zhang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yunxin Li
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Li
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Faustino LD, Griffith JW, Rahimi RA, Nepal K, Hamilos DL, Cho JL, Medoff BD, Moon JJ, Vignali DAA, Luster AD. Interleukin-33 activates regulatory T cells to suppress innate γδ T cell responses in the lung. Nat Immunol 2020; 21:1371-1383. [PMID: 32989331 PMCID: PMC7578082 DOI: 10.1038/s41590-020-0785-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Foxp3+ regulatory T (Treg) cells expressing the interleukin (IL)-33 receptor ST2 mediate tissue repair in response to IL-33. Whether Treg cells also respond to the alarmin IL-33 to regulate specific aspects of the immune response is not known. Here we describe an unexpected function of ST2+ Treg cells in suppressing the innate immune response in the lung to environmental allergens without altering the adaptive immune response. Following allergen exposure, ST2+ Treg cells were activated by IL-33 to suppress IL-17-producing γδ T cells. ST2 signaling in Treg cells induced Ebi3, a component of the heterodimeric cytokine IL-35 that was required for Treg cell-mediated suppression of γδ T cells. This response resulted in fewer eosinophil-attracting chemokines and reduced eosinophil recruitment into the lung, which was beneficial to the host in reducing allergen-induced inflammation. Thus, we define a fundamental role for ST2+ Treg cells in the lung as a negative regulator of the early innate γδ T cell response to mucosal injury.
Collapse
Affiliation(s)
- Lucas D Faustino
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason W Griffith
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keshav Nepal
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel L Hamilos
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Josalyn L Cho
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine and Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Vella G, Lunding L, Ritzmann F, Honecker A, Herr C, Wegmann M, Bals R, Beisswenger C. The IL-17 receptor IL-17RE mediates polyIC-induced exacerbation of experimental allergic asthma. Respir Res 2020; 21:176. [PMID: 32641167 PMCID: PMC7346407 DOI: 10.1186/s12931-020-01434-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The interleukin 17 receptor E (IL-17RE) is specific for the epithelial cytokine interleukin-17C (IL-17C). Asthma exacerbations are frequently caused by viral infections. Polyinosinic:polycytidylic acid (pIC) mimics viral infections through binding to pattern recognition receptors (e.g. TLR-3). We and others have shown that pIC induces the expression of IL-17C in airway epithelial cells. Using different mouse models, we aimed to investigate the function of IL-17RE in the development of experimental allergic asthma and acute exacerbation thereof. METHODS Wild-type (WT) and IL-17RE deficient (Il-17re-/-) mice were sensitized and challenged with OVA to induce allergic airway inflammation. pIC or PBS were applied intranasally when allergic airway inflammation had been established. Pulmonary expression of inflammatory mediators, numbers of inflammatory cells, and airway hyperresponsiveness (AHR) were analyzed. RESULTS Ablation of IL-17RE did not affect the development of OVA-induced allergic airway inflammation and AHR. pIC induced inflammation independent of IL-17RE in the absence of allergic airway inflammation. Treatment of mice with pIC exacerbated pulmonary inflammation in sensitized and OVA-challenged mice in an IL-17RE-dependent manner. The pIC-induced expression of cytokines (e.g. keratinocyte-derived chemokine (KC), granulocyte-colony stimulating factor (G-CSF)) and recruitment of neutrophils were decreased in Il-17re-/- mice. pIC-exacerbated AHR was partially decreased in Il-17re-/- mice. CONCLUSIONS Our results indicate that IL-17RE mediates virus-triggered exacerbations but does not have a function in the development of allergic lung disease.
Collapse
Affiliation(s)
- Giovanna Vella
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Lars Lunding
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma and Allergy, Leibniz Lung Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Anja Honecker
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma and Allergy, Leibniz Lung Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| |
Collapse
|
23
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
24
|
Jokinen M, Edelman S, Krohn K, Kankainen M, Ranki A. Neutralizing natural anti-IL-17F autoantibodies protect Autoimmune Polyendocrine Syndrome Type 1 (APS-1) patients from asthma. Clin Immunol 2020; 219:108512. [PMID: 32544610 DOI: 10.1016/j.clim.2020.108512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Martta Jokinen
- Department of Dermatology and Allergology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 160, 00029 HUS Helsinki, Finland.
| | - Sanna Edelman
- Department of Dermatology and Allergology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 160, 00029 HUS Helsinki, Finland
| | - Kai Krohn
- Clinical Research Institute - HUCH, P.O. Box 700, 00029 HUS Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland, 00250 Helsinki, Finland; Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 160, 00029 HUS Helsinki, Finland
| |
Collapse
|
25
|
Shaikh SB, Prabhu A, Bhandary YP. Interleukin-17A: A Potential Therapeutic Target in Chronic Lung Diseases. Endocr Metab Immune Disord Drug Targets 2020; 19:921-928. [PMID: 30652654 DOI: 10.2174/1871530319666190116115226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/03/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that has gained a lot of attention because of its involvement in respiratory diseases. Interleukin-17 cytokine family includes six members, out of which, IL-17A participates towards the immune responses in allergy and inflammation. It also modulates the progression of respiratory disorders. OBJECTIVE The present review is an insight into the involvement and contributions of the proinflammatory cytokine IL-17A in chronic respiratory diseases like Idiopathic Pulmonary Fibrosis (IPF), Chronic Obstructive Pulmonary Distress (COPD), asthma, pneumonia, obliterative bronchiolitis, lung cancer and many others. CONCLUSION IL-17A is a major regulator of inflammatory responses. In all the mentioned diseases, IL- 17A plays a prime role in inducing the diseases, whereas the lack of this pro-inflammatory cytokine reduces the severity of respective respiratory diseases. Thereby, this review suggests IL-17A as an instrumental target in chronic respiratory diseases.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Cell and Molecular Biology Department, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore -575018, Karnataka, India
| | - Ashwini Prabhu
- Cell and Molecular Biology Department, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore -575018, Karnataka, India
| | - Yashodhar Prabhakar Bhandary
- Cell and Molecular Biology Department, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore -575018, Karnataka, India
| |
Collapse
|
26
|
Wu J, Zhong W, Zhang H, Yin Y. Mammalian Target of Rapamycin Signaling Enhances Ovalbumin-Induced Neutrophilic Airway Inflammation by Promoting Th17 Cell Polarization in Murine Noneosinophilic Asthma Model. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2020; 33:25-32. [PMID: 33406024 DOI: 10.1089/ped.2019.1088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: T helper 17 (Th17) is regarded as key immune cell in the pathogenesis of noneosinophilic asthma (NEA) due to the recruitment of neutrophils into the airways. The mammalian target of rapamycin (mTOR) is an important signaling molecule that plays a critical role in immune regulation. This study focused on mTOR signaling pathway in the regulation of Th17-mediated neutrophilic airway inflammation. Methods: Ovalbumin (OVA) T cell receptor transgenic DO11.10 mice (DO11.10 mice) were used to establish NEA model, and few mice received specific mTORC1 inhibitor rapamycin (RAPA) before intranasal administration of OVA. The severity of airway inflammation was determined by differential cell counts in bronchoalveolar lavage (BAL) fluids and histopathologic lung analysis. The levels of various cytokines in BAL fluids and lung tissues were measured. To determine the role of mTORC1 signaling in Th17 differentiation, naive T cells from wild-type (WT) and TSC1 knockout (KO) mice were cultured in Th17 skewing condition with or without RAPA in vitro and the production of IL-17A was compared. Results: Treatment with RAPA markedly attenuated OVA-induced neutrophilic airway inflammation in DO11.10 mice. Also the production of IL-17A was inhibited without affecting the production of interferon-γ (IFN-γ) and IL-4 in lungs. Furthermore, RAPA suppressed differentiation of Th17 cells in vitro, whereas enhanced activity of mTORC1 promoted Th17 cell differentiation and increased the expression of Th17-related transcription factors RORγt and RORα. Conclusion: These results suggested that mTOR promoted Th17 cell polarization and enhanced OVA-induced neutrophilic airway inflammation in experimental NEA.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenwei Zhong
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Yin
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Boldrini-Leite LM, Michelotto PV, de Moura SAB, Capriglione LGA, Barussi FCM, Fragoso FYI, Senegaglia AC, Brofman PRS. Lung Tissue Damage Associated with Allergic Asthma in BALB/c Mice Could Be Controlled with a Single Injection of Mesenchymal Stem Cells from Human Bone Marrow up to 14 d After Transplantation. Cell Transplant 2020; 29:963689720913254. [PMID: 32216447 PMCID: PMC7444219 DOI: 10.1177/0963689720913254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cell (MSC) research has demonstrated the potential of these cells to modulate lung inflammatory processes and tissue repair; however, the underlying mechanisms and treatment durability remain unknown. Here, we investigated the therapeutic potential of human bone marrow-derived MSCs in the inflammatory process and pulmonary remodeling of asthmatic BALB/c mice up to 14 d after transplantation. Our study used ovalbumin to induce allergic asthma in male BALB/c mice. MSCs were injected intratracheally in the asthma groups. Bronchoalveolar lavage fluid (BALF) was collected, and cytology was performed to measure the total protein, hydrogen peroxide (H2O2), and proinflammatory (IL-5, IL-13, and IL-17A) and anti-inflammatory (IL-10) interleukin (IL) levels. The lungs were removed for the histopathological evaluation. On day zero, the eosinophil and lymphochte percentages, total protein concentrations, and IL-13 and IL-17A levels in the BALF were significantly increased in the asthma group, proving the efficacy of the experimental model of allergic asthma. On day 7, the MSC-treated group exhibited significant reductions in the eosinophil, lymphocyte, total protein, H2O2, IL-5, IL-13, and IL-17A levels in the BALF, while the IL-10 levels were significantly increased. On day 14, the total cell numbers and lymphocyte, total protein, IL-13, and IL-17A levels in the BALF in the MSC-treated group were significantly decreased. A significant decrease in airway remodeling was observed on days 7 and 14 in almost all bronchioles, which showed reduced inflammatory infiltration, collagen deposition, muscle and epithelial thickening, and mucus production. These results demonstrate that treatment with a single injection of MSCs reduces the pathophysiological events occurring in an experimental model of allergic asthma by controlling the inflammatory process up to 14 d after transplantation.
Collapse
Affiliation(s)
| | - Pedro Vicente Michelotto
- Department of Animal Science, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Sérgio Adriane Bezerra de Moura
- Department of Morphology, Campus Universitário Lagoa Nova,
Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte,
Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Feng Y, Zheng C, Zhou Z, Xiong H, Feng F, Xie F, Wu ZD. IL-17A neutralizing antibody attenuates eosinophilic meningitis caused by Angiostrongylus cantonensis by involving IL-17RA/Traf6/NF-κB signaling. Exp Cell Res 2019; 384:111554. [DOI: 10.1016/j.yexcr.2019.111554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023]
|
29
|
Yun C, Chang M, Hou G, Lan T, Yuan H, Su Z, Zhu D, Liang W, Li Q, Zhu H, Zhang J, Lu Y, Deng J, Guo H. Mangiferin suppresses allergic asthma symptoms by decreased Th9 and Th17 responses and increased Treg response. Mol Immunol 2019; 114:233-242. [PMID: 31386980 DOI: 10.1016/j.molimm.2019.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023]
Abstract
Mangiferin is the major bioactive ingredient in the leaves of Mangifera indica L., Aqueous extract of such leaves have been traditionally used as an indigenous remedy for respiratory diseases including cough and asthma in Traditional Chinese Medicine. Mangiferin was shown to exert its anti-asthmatic effect by modulating Th1/Th2 cytokines imbalance via STAT6 signaling pathway. However, compelling evidence indicated that subtypes of T helpers and regulatory T cells other than Th1/Th2 were also involved in the pathogenesis of asthma. In current study, we investigated the effects of mangiferin on the differentiation and function of Th9, Th17 and Treg cells in a chicken egg ovalbumin (OVA)-induced asthmatic mouse model. Mangiferin significantly attenuated the symptoms of asthma attacks, reduced the total number of leukocytes, EOS and goblet cells infiltration in lung. Simultaneously, treatment with mangiferin remarkably decreased the proportion of Th9 and Th17 cells; reduced the levels of IL-9, IL-17A; inhibited the expression of PU.1 and RORγt in lung. However, the proportion of Treg cells, the expression of IL-10, TGF-β1 and Foxp3 were increased by mangiferin. Our data suggest that mangiferin exerted anti-asthmatic effect through decreasing Th9 and Th17 responses and increasing Treg response in OVA-induced asthmatic mouse model.
Collapse
Affiliation(s)
- Chenxia Yun
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Road, Nanning, 30200, China; School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Ming Chang
- School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Guanghan Hou
- The Fourth Hospital of Changsha, 70 Lushan Road, Changsha 410006, China
| | - Taijin Lan
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Road, Nanning, 30200, China
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Weiping Liang
- School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qiaofeng Li
- School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongyan Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Lu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Jiagang Deng
- Guangxi Key Laboratory of Pharmacodynamic Studies of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Road, Nanning 530200, China.
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
30
|
Creyns B, Cremer J, Hoshino T, Geboes K, de Hertogh G, Ferrante M, Vermeire S, Ceuppens JL, Van Assche G, Breynaert C. Fibrogenesis in Chronic DSS Colitis is Not Influenced by Neutralisation of Regulatory T Cells, of Major T Helper Cytokines or Absence of IL-13. Sci Rep 2019; 9:10064. [PMID: 31296924 PMCID: PMC6624199 DOI: 10.1038/s41598-019-46472-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanisms underlying fibrogenesis in chronic colitis are largely unknown. There is an urgent need for clinical markers and identification of targets to prevent, treat and limit intestinal fibrosis. This study investigated the contribution of major T cell cytokines and T regulatory cells (Tregs) to inflammation and fibrosis induced in a model of experimental colitis by oral intake of dextran sodium sulphate (DSS) in wild type and IL-13 knock-out C57Bl/6 mice. Inflammation and fibrosis were scored by macroscopic and histological examination and fibrosis was quantified by hydroxyproline. Numbers of Tregs and IFN-γ+, IL-13+ and IL-17A+ CD4+ T helper (Th) cells in mesenteric lymph nodes increased during chronic DSS administration and mRNA for IFN-γ and IL-17 in the inflamed colon tissue was upregulated. However, antibody-mediated neutralisation of IFN-γ or IL-17A/F in a therapeutic setting had no effect on chronic intestinal inflammation and fibrosis. Antibody-mediated depletion of Tregs did not enhance fibrosis, nor did IL-13 deficiency have an effect on the fibrotic disease. These data argue against an important contribution of Tregs and of the cytokines IFN-γ, IL-13, IL-17A, IL-17F in the induction and/or control of fibrosis in this Crohn's disease like murine model.
Collapse
Affiliation(s)
- Brecht Creyns
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium.,KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium.,KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Karel Geboes
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Gert de Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Jan L Ceuppens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Gert Van Assche
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium. .,University Hospitals Leuven, Department of General Internal Medicine, Leuven, Belgium.
| |
Collapse
|
31
|
Chen R, Zhang Q, Chen S, Tang H, Huang P, Wei S, Liang Z, Chen X, Tao A, Yao L. IL-17F, rather than IL-17A, underlies airway inflammation in a steroid-insensitive toluene diisocyanate-induced asthma model. Eur Respir J 2019; 53:13993003.01510-2018. [PMID: 30655284 DOI: 10.1183/13993003.01510-2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
Steroid insensitivity constitutes a major problem for asthma management. Toluene diisocyanate (TDI) is one of the leading allergens of asthma that induces both T-helper Th2 and Th17 responses, and is often associated with poor responsiveness to steroid treatment in the clinic.We sought to evaluate the effects of inhaled and systemic steroids on a TDI-induced asthma model and to find how interleukin (IL)-17A and IL-17F function in this model. BALB/c mice were exposed to TDI for generating an asthma model and were treated with inhaled fluticasone propionate, systemic prednisone, anti-IL-17A, anti-IL-17F, recombinant IL-17A or IL-17F.Both fluticasone propionate and prednisone showed no effects on TDI-induced airway hyperresponsiveness (AHR), bronchial neutrophilia and eosinophilia, and epithelial goblet cell metaplasia. TDI-induced Th2 and Th17 signatures were not suppressed by fluticasone propionate or prednisone. Treatment with anti-IL-17A after TDI exposure led to increased AHR, aggravated mucus production and airway eosinophil recruitment, accompanied by amplified Th2 responses, whereas anti-IL-17F ameliorated TDI-induced AHR and airway neutrophilia, with decreased Th17 responses. Recombinant IL-17A and IL-17F showed opposite effects to the monoclonal antibodies.IL-17A and IL-17F exert distinct biological effects during airway inflammation of a TDI-induced asthma model, which is unresponsive to both inhaled and systemic steroids.
Collapse
Affiliation(s)
- Rongchang Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,These authors contributed equally to this work
| | - Qingling Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,These authors contributed equally to this work
| | - Shuyu Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,These authors contributed equally to this work
| | - Haixiong Tang
- Dept of Respiratory Medicine, Minzu Hospital of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China.,These authors contributed equally to this work
| | - Peikai Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shushan Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Dept of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Lihong Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Hao R, Song Y, Li R, Wu Y, Yang X, Li X, Qian F, Ye RD, Sun L. MLN4924 protects against interleukin-17A-induced pulmonary inflammation by disrupting ACT1-mediated signaling. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1070-L1080. [PMID: 30892082 DOI: 10.1152/ajplung.00349.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An excessive inflammatory response in terminal airways, alveoli, and the lung interstitium eventually leads to pulmonary hypertension and chronic obstructive pulmonary disease. Proinflammatory cytokine interleukin-17A (IL-17A) has been implicated in the pathogenesis of pulmonary inflammatory diseases. MLN4924, an inhibitor of NEDD8-activating enzyme (NAE), is associated with the treatment of various types of cancers, but its role in the IL-17A-mediated inflammatory response has not been identified. Here, we report that MLN4924 can markedly reduce the expression of proinflammatory cytokines and chemokines such as IL-1β, IL-6, and CXCL-1 and neutrophilia in a mouse model of IL-17A adenovirus-induced pulmonary inflammation. MLN4924 significantly inhibited IL-17A-induced stabilization of mRNA of proinflammatory cytokines and chemokines in vitro. Mechanistically, MLN4924 significantly blocked the activation of MAPK and NF-κB pathways and interfered with the interaction between ACT1 and tumor necrosis factor receptor-associated factor proteins (TRAFs), thereby inhibiting TRAF6 ubiquitination. Taken together, our data uncover a previously uncharacterized inhibitory effect of MLN4924 on the IL-17A-mediated inflammatory response; this phenomenon may facilitate the development of MLN4924 into an effective small-molecule drug for the treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Rui Hao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Yunduan Song
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University , Shanghai , People's Republic of China
| | - Runsheng Li
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Yaxian Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xinyi Yang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xiaozong Li
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University , Shanghai , People's Republic of China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China
| | - Richard D Ye
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Institute of Chinese Medical Sciences, University of Macau, Macau Special Administration Region , China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
33
|
Nadeem A, Al-Harbi NO, Ahmad SF, Ibrahim KE, Alotaibi MR, Siddiqui N, Alsharari SD, Attia SM, Al-Harbi MM. Protease activated receptor-2 mediated upregulation of IL-17 receptor signaling on airway epithelial cells is responsible for neutrophilic infiltration during acute exposure of house dust mite allergens in mice. Chem Biol Interact 2019; 304:52-60. [PMID: 30853428 DOI: 10.1016/j.cbi.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Asthma, a chronic inflammatory disease affecting the airways is primarily caused due to immune system dysfunction. Different inhaled allergens such as house dust mites (HDM), fungi, cockroach allergens are the main contributors to allergic asthma. Protease activated receptor-2 (PAR-2) signaling plays an important role in allergic asthma through modulation of immune mediators in airway epithelial cells (AECs). Interleukin-17A (IL-17A) signals via subunits of IL-17 receptor (IL-17R), i.e. interleukin-17 receptor A (IL-17RA) and interleukin-17 receptor C (IL-17RC), and plays a necessary role in neutrophilic infiltration in response to infectious/allergenic stimuli, however it is not known if PAR-2 activation affects IL-17A/IL-17R signaling during acute exposure to house dust mite (HDM) allergens. Therefore, our study exposed mice to HDM allergens for five days and evaluated its effect on IL-17A/IL-17R signaling, chemokine/cytokines and neutrophilic inflammation in mice. Our study shows that HDM allergens upregulate IL-17A levels in the lung and IL-17RA/IL-17RC expression in AECs. PAR-2 activation by trypsin also upregulates neutrophilic influx and IL-17A/IL-17R signaling in the lung. Upregulated IL-17A/IL-17R signaling was associated with increased BAL neutrophils, pulmonary MPO activity and proinflammatory chemokines and cytokines (IL-23, IL-6, and MCP-1 in AECs/lung) in HDM exposed mice. Further, HDM-induced IL-17A, IL-17R and chemokines/cytokines were attenuated by PAR-2 antagonist, ENMD-1068. Furthermore, HDM-primed mice treated with IL-17A had greater neutrophilic inflammation and higher levels of inflammatory cytokines/chemokines than PBS-exposed mice treated with IL-17A. This proposes that acute exposure to HDM allergens activate AECs at a very early stage where PAR-2/IL-17R signaling serves a crucial role in neutrophilic inflammation.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shakir D Alsharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Kim D, McAlees JW, Bischoff LJ, Kaur D, Houshel LK, Gray J, Hargis J, Davis X, Dudas PL, Deshmukh H, Lewkowich IP. Combined administration of anti-IL-13 and anti-IL-17A at individually sub-therapeutic doses limits asthma-like symptoms in a mouse model of Th2/Th17 high asthma. Clin Exp Allergy 2018; 49:317-330. [PMID: 30353972 DOI: 10.1111/cea.13301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent studies have demonstrated that Th2 responses have the ability to antagonize Th17 responses. In mouse models of allergic asthma, blockade of Th2-effector cytokines results in elaboration of Th17 responses and associated increases in pulmonary neutrophilia. While these can be controlled by simultaneous blockade of Th17-associated effector cytokines, clinical trials of anti-IL-17/IL-17RA blocking therapies have demonstrated increased of risk of bacterial and fungal infections. Identification of minimally effective doses of cytokine-blocking therapies with the goal of reducing the potential emergence of infection-related complications is a translationally relevant goal. OBJECTIVE In the current report, we examine whether combined blockade of IL-13 and IL-17A, at individually sub-therapeutic levels, can limit the development of allergic asthma while sparing expression of IL-17A-associated anti-microbial effectors. METHODS House dust mite was given intratracheally to A/J mice. Anti-IL-13 and anti-IL-17A antibodies were administered individually, or concomitantly at sub-therapeutic doses. Airway hyper-reactivity, lung inflammation, magnitude of Th2- and Th17-associated cytokine production and expression of IL-13- and IL-17A-induced genes in the lungs was assessed. RESULTS Initial dosing studies identified sub-therapeutic levels of IL-13 and IL-17A blocking mAbs that have a limited effect on asthma parameters and do not impair responses to microbial products or infection. Subsequent studies demonstrated that combined sub-therapeutic dosing with IL-13 and IL-17A blocking mAbs resulted in significant improvement in airway hyperresponsiveness (AHR) and expression of IL-13-induced gene expression. Importantly, these doses neither exacerbated nor inhibited production of Th17-associated cytokines, or IL-17A-associated gene expression. CONCLUSION This study suggests that combining blockade of individual Th2 and Th17 effector cytokines, even at individually sub-therapeutic levels, may be sufficient to limit disease development while preserving important anti-microbial pathways. Such a strategy may therefore have reduced potential for adverse events associated with blockade of these pathways.
Collapse
Affiliation(s)
- Dasom Kim
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaclyn W McAlees
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsay J Bischoff
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Davinder Kaur
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren K Houshel
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jerilyn Gray
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie Hargis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xenia Davis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul L Dudas
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Hitesh Deshmukh
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ian P Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
35
|
Fluoride induces apoptosis and autophagy through the IL-17 signaling pathway in mice hepatocytes. Arch Toxicol 2018; 92:3277-3289. [PMID: 30225638 DOI: 10.1007/s00204-018-2305-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
|
36
|
Dos Santos TM, Righetti RF, Camargo LDN, Saraiva-Romanholo BM, Aristoteles LRCRB, de Souza FCR, Fukuzaki S, Alonso-Vale MIC, Cruz MM, Prado CM, Leick EA, Martins MA, Tibério IFLC. Effect of Anti-IL17 Antibody Treatment Alone and in Combination With Rho-Kinase Inhibitor in a Murine Model of Asthma. Front Physiol 2018; 9:1183. [PMID: 30233389 PMCID: PMC6134017 DOI: 10.3389/fphys.2018.01183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Interleukin-17 (IL-17) and Rho-kinase (ROCK) play an important role in regulating the expression of inflammatory mediators, immune cell recruitment, hyper-responsiveness, tissue remodeling, and oxidative stress. Modulation of IL-17 and ROCK proteins may represent a promising approach for the treatment of this disease. Objective: To study the effects of an anti-IL17 neutralizing antibody and ROCK inhibitor treatments, separately and in combination, in a murine model of chronic allergy-induced lung inflammation. Methods: Sixty-four BALBc mice, were divided into eight groups (n = 8): SAL (saline-instilled); OVA (exposed-ovalbumin); SAL-RHOi (saline and ROCK inhibitor), OVA-RHOi (exposed-ovalbumin and ROCK inhibitor); SAL-anti-IL17 (saline and anti-IL17); OVA-anti-IL17 (exposed-ovalbumin and anti-IL17); SAL-RHOi-anti-IL17 (saline, ROCK inhibitor and anti-IL17); and OVA-RHOi-anti-IL17 (exposed-ovalbumin, anti-IL17, and ROCK inhibitor). A 28-day protocol of albumin treatment was used for sensitization and induction of pulmonary inflammation. The anti-IL17A neutralizing antibody (7.5 μg per treatment) was administered by intraperitoneal injection and ROCK inhibitor (Y-27632) intranasally (10 mg/kg), 1 h prior to each ovalbumin challenge (days 22, 24, 26, and 28). Results: Treatment with the anti-IL17 neutralizing antibody and ROCK inhibitor attenuated the percentage of maximal increase of respiratory system resistance and respiratory system elastance after challenge with methacholine and the inflammatory response markers evaluated (CD4+, CD8+, ROCK1, ROCK2, IL-4, IL-5, IL-6, IL-10 IL-13, IL-17, TNF-α, TGF-β, NF-κB, dendritic cells, iNOS, MMP-9, MMP-12, TIMP-1, FOXP3, isoprostane, biglycan, decorin, fibronectin, collagen fibers content and gene expression of IL-17, VAChT, and arginase) compared to the OVA group (p < 0.05). Treatment with anti-IL17 and the ROCK inhibitor together resulted in potentiation in decreasing the percentage of resistance increase after challenge with methacholine, decreased the number of IL-5 positive cells in the airway, and reduced, IL-5, TGF-β, FOXP3, ROCK1 and ROCK2 positive cells in the alveolar septa compared to the OVA-RHOi and OVA-anti-IL17 groups (p < 0.05). Conclusion: Anti-IL17 treatment alone or in conjunction with the ROCK inhibitor, modulates airway responsiveness, inflammation, tissue remodeling, and oxidative stress in mice with chronic allergic lung inflammation.
Collapse
Affiliation(s)
- Tabata M Dos Santos
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Renato F Righetti
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Leandro do N Camargo
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz M Saraiva-Romanholo
- Department of Medicine, Laboratory of Experimental Therapeutics, LIM-20, School of Medicine, University of São Paulo, São Paulo, Brazil.,Department of Medicine, University City of São Paulo (UNICID), São Paulo, Brazil
| | | | - Flávia C R de Souza
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Fukuzaki
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | | | - Maysa M Cruz
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Carla M Prado
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil.,Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Edna A Leick
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Raftis EJ, Delday MI, Cowie P, McCluskey SM, Singh MD, Ettorre A, Mulder IE. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration. Sci Rep 2018; 8:12024. [PMID: 30104645 PMCID: PMC6089914 DOI: 10.1038/s41598-018-30448-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Asthma is a phenotypically heterogeneous disease. In severe asthma, airway inflammation can be predominantly eosinophilic, neutrophilic, or mixed. Only a limited number of drug candidates are in development to address this unmet clinical need. Live biotherapeutics derived from the gut microbiota are a promising new therapeutic area. MRx0004 is a commensal Bifidobacterium breve strain isolated from the microbiota of a healthy human. The strain was tested prophylactically and therapeutically by oral gavage in a house dust mite mouse model of severe asthma. A strong reduction of neutrophil and eosinophil infiltration was observed in lung bronchoalveolar lavage fluid following MRx0004 treatment. Peribronchiolar and perivascular immunopathology was also reduced. MRx0004 increased lung CD4+CD44+ cells and CD4+FoxP3+ cells and decreased activated CD11b+ dendritic cells. Cytokine analysis of lung tissue revealed reductions of pro-inflammatory cytokines and chemokines involved in neutrophil migration. In comparison, anti-IL-17 antibody treatment effectively reduced neutrophilic infiltration and increased CD4+FoxP3+ cells, but it induced lung eosinophilia and did not decrease histopathology scores. We have demonstrated that MRx0004, a microbiota-derived bacterial strain, can reduce both neutrophilic and eosinophilic infiltration in a mouse model of severe asthma. This novel therapeutic is a promising next-generation drug for management of severe asthma.
Collapse
Affiliation(s)
- Emma J Raftis
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Margaret I Delday
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Philip Cowie
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Seánín M McCluskey
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Mark D Singh
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Anna Ettorre
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Imke E Mulder
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom.
| |
Collapse
|
38
|
Krishnamoorthy N, Douda DN, Brüggemann TR, Ricklefs I, Duvall MG, Abdulnour REE, Martinod K, Tavares L, Wang X, Cernadas M, Israel E, Mauger DT, Bleecker ER, Castro M, Erzurum SC, Gaston BM, Jarjour NN, Wenzel S, Dunican E, Fahy JV, Irimia D, Wagner DD, Levy BD. Neutrophil cytoplasts induce T H17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol 2018; 3:eaao4747. [PMID: 30076281 PMCID: PMC6320225 DOI: 10.1126/sciimmunol.aao4747] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/09/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Severe asthma is a debilitating and treatment refractory disease. As many as half of these patients have complex neutrophil-predominant lung inflammation that is distinct from milder asthma with type 2 eosinophilic inflammation. New insights into severe asthma pathogenesis are needed. Concomitant exposure of mice to an aeroallergen and endotoxin during sensitization resulted in complex neutrophilic immune responses to allergen alone during later airway challenge. Unlike allergen alone, sensitization with allergen and endotoxin led to NETosis. In addition to neutrophil extracellular traps (NETs), enucleated neutrophil cytoplasts were evident in the lungs. Surprisingly, allergen-driven airway neutrophilia was decreased in peptidyl arginine deiminase 4-deficient mice with defective NETosis but not by deoxyribonuclease treatment, implicating the cytoplasts for the non-type 2 immune responses to allergen. Neutrophil cytoplasts were also present in mediastinal lymph nodes, and the cytoplasts activated lung dendritic cells in vitro to trigger antigen-specific interleukin-17 (IL-17) production from naïve CD4+ T cells. Bronchoalveolar lavage fluid from patients with severe asthma and high neutrophil counts had detectable NETs and cytoplasts that were positively correlated with IL-17 levels. Together, these translational findings have identified neutrophil cytoplast formation in asthmatic lung inflammation and linked the cytoplasts to T helper 17-mediated neutrophilic inflammation in severe asthma.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David N Douda
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thayse R Brüggemann
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Isabell Ricklefs
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Melody G Duvall
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Luciana Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiao Wang
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, MA 02129, USA
| | - Manuela Cernadas
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elliot Israel
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David T Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, PA 17033, USA
| | - Eugene R Bleecker
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Serpil C Erzurum
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin M Gaston
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nizar N Jarjour
- Section of Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine, Madison, WI 53792, USA
| | - Sally Wenzel
- Pulmonary, Allergy, and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Eleanor Dunican
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, MA 02129, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|