1
|
Hsu CY, Ahmad I, Maya RW, Abass MA, Gupta J, Singh A, Joshi KK, Premkumar J, Sahoo S, Khosravi M. The potential therapeutic approaches targeting gut health in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a narrative review. J Transl Med 2025; 23:530. [PMID: 40350437 PMCID: PMC12066075 DOI: 10.1186/s12967-025-06527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disorder characterized by persistent fatigue and cognitive impairments, with emerging evidence highlighting the role of gut health in its pathophysiology. The main objective of this review was to synthesize qualitative and quantitative data from research examining the gut microbiota composition, inflammatory markers, and therapeutic outcomes of interventions targeting the microbiome in the context of ME/CFS. METHODS The data collection involved a detailed search of peer-reviewed English literature from January 1995 to January 2025, focusing on studies related to the microbiome and ME/CFS. This comprehensive search utilized databases such as PubMed, Scopus, and Web of Science, with keywords including "ME/CFS," "Gut-Brain Axis," "Gut Health," "Intestinal Dysbiosis," "Microbiome Dysbiosis," "Pathophysiology," and "Therapeutic Approaches." Where possible, insights from clinical trials and observational studies were included to enrich the findings. A narrative synthesis method was also employed to effectively organize and present these findings. RESULTS The study found notable changes in the gut microbiota diversity and composition in ME/CFS patients, contributing to systemic inflammation and worsening cognitive and physical impairments. As a result, various microbiome interventions like probiotics, prebiotics, specific diets, supplements, fecal microbiota transplantation, pharmacological interventions, improved sleep, and moderate exercise training are potential therapeutic strategies that merit further exploration. CONCLUSIONS Interventions focusing on the gut-brain axis may help reduce neuropsychiatric symptoms in ME/CFS by utilizing the benefits of the microbiome. Therefore, identifying beneficial microbiome elements and incorporating their assessments into clinical practice can enhance patient care through personalized treatments. Due to the complexity of ME/CFS, which involves genetic, environmental, and microbial factors, a multidisciplinary approach is also necessary. Since current research lacks comprehensive insights into how gut health might aid ME/CFS treatment, standardized diagnostics and longitudinal studies could foster innovative therapies, potentially improving quality of life and symptom management for those affected.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, India
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
El-Sehrawy AAMA, Ayoub II, Uthirapathy S, Ballal S, Gabble BC, Singh A, V K, Panigrahi R, Kamali M, Khosravi M. The microbiota-gut-brain axis in myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review of an emerging field. Eur J Transl Myol 2025; 35:13690. [PMID: 39937103 PMCID: PMC12038572 DOI: 10.4081/ejtm.2025.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The intricate relationship between gut microbiota and the brain has emerged as a pivotal area of research, particularly in understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). This complex condition is characterized by debilitating fatigue, cognitive dysfunction, and a wide array of systemic manifestations, posing significant challenges for diagnosis and treatment. Recent studies highlight the microbiota-gut-brain axis as a crucial pathway in ME/CFS pathophysiology, suggesting that alterations in gut microbial composition may impact immune responses, neurochemical signaling, and neuronal health. This narrative review systematically explores English-language scholarly articles from January 1995 to January 2025, utilizing databases such as PubMed, Scopus, and Web of Science. The findings underscore the potential for targeted therapeutic interventions aimed at correcting gut dysbiosis. As research progresses, a deeper understanding of the microbiota-gut-brain connection could lead to innovative approaches for managing ME/CFS, ultimately enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
| | | | - Subasini Uthirapathy
- Faculty of Pharmacy, Department of Pharmacology, Tishk International University, Erbil, Kurdistan Region.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka.
| | - Baneen C Gabble
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon.
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab.
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu.
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar.
| | - Mostafa Kamali
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan.
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan.
| |
Collapse
|
3
|
Todhunter-Brown A, Campbell P, Broderick C, Cowie J, Davis B, Fenton C, Markham S, Sellers C, Thomson K. Recent research in myalgic encephalomyelitis/chronic fatigue syndrome: an evidence map. Health Technol Assess 2025:1-78. [PMID: 40162526 PMCID: PMC11973615 DOI: 10.3310/btbd8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome is a chronic condition, classified by the World Health Organization as a nervous system disease, impacting around 17 million people worldwide. Presentation involves persistent fatigue and postexertional malaise (a worsening of symptoms after minimal exertion) and a wide range of other symptoms. Case definitions have historically varied; postexertional malaise is a core diagnostic criterion in current definitions. In 2022, a James Lind Alliance Priority Setting Partnership established research priorities relating to myalgic encephalomyelitis/chronic fatigue syndrome. Objective(s) We created a map of myalgic encephalomyelitis/chronic fatigue syndrome evidence (2018-23), showing the volume and key characteristics of recent research in this field. We considered diagnostic criteria and how current research maps against the James Lind Alliance Priority Setting Partnership research priorities. Methods Using a predefined protocol, we conducted a comprehensive search of Cochrane, MEDLINE, EMBASE and Cumulative Index to Nursing and Allied Health Literature. We included all English-language research studies published between January 2018 and May 2023. Two reviewers independently applied inclusion criteria with consensus involving additional reviewers. Studies including people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome using any criteria (including self-report), of any age and in any setting were eligible. Studies with < 10 myalgic encephalomyelitis/chronic fatigue syndrome participants were excluded. Data extraction, coding of topics (involving stakeholder consultation) and methodological quality assessment of systematic reviews (using A MeaSurement Tool to Assess systematic Reviews 2) was conducted independently by two reviewers, with disagreements resolved by a third reviewer. Studies were presented in an evidence map. Results Of the 11,278 identified studies, 742 met the selection criteria, but only 639 provided sufficient data for inclusion in the evidence map. These reported data from approximately 610,000 people with myalgic encephalomyelitis/chronic fatigue syndrome. There were 81 systematic reviews, 72 experimental studies, 423 observational studies and 63 studies with other designs. Most studies (94%) were from high-income countries. Reporting of participant details was poor; 16% did not report gender, 74% did not report ethnicity and 81% did not report the severity of myalgic encephalomyelitis/chronic fatigue syndrome. Forty-four per cent of studies used multiple diagnostic criteria, 16% did not specify criteria, 24% used a single criterion not requiring postexertional malaise and 10% used a single criterion requiring postexertional malaise. Most (89%) systematic reviews had a low methodological quality. Five main topics (37 subtopics) were included in the evidence map. Of the 639 studies; 53% addressed the topic 'what is the cause?'; 38% 'what is the problem?'; 26% 'what can we do about it?'; 15% 'diagnosis and assessment'; and 13% other topics, including 'living with myalgic encephalomyelitis/chronic fatigue syndrome'. Discussion Studies have been presented in an interactive evidence map according to topic, study design, diagnostic criteria and age. This evidence map should inform decisions about future myalgic encephalomyelitis/chronic fatigue syndrome research. Limitations An evidence map does not summarise what the evidence says. Our evidence map only includes studies published in 2018 or later and in English language. Inconsistent reporting and use of diagnostic criteria limit the interpretation of evidence. We assessed the methodological quality of systematic reviews, but not of primary studies. Conclusions We have produced an interactive evidence map, summarising myalgic encephalomyelitis/chronic fatigue syndrome research from 2018 to 2023. This evidence map can inform strategic plans for future research. We found some, often limited, evidence addressing every James Lind Alliance Priority Setting Partnership priority; high-quality systematic reviews should inform future studies. Funding This article presents independent research funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme as award number NIHR159926.
Collapse
Affiliation(s)
| | | | | | - Julie Cowie
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | | - Candida Fenton
- NESSIE, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Markham
- NESSIE Patient and public involvement member, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Ceri Sellers
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | |
Collapse
|
4
|
Liu T, Sun W, Guo S, Chen T, Zhu M, Yuan Z, Li B, Lu J, Shao Y, Qu Y, Sun Z, Feng C, Yang T. Research progress on pathogenesis of chronic fatigue syndrome and treatment of traditional Chinese and Western medicine. Auton Neurosci 2024; 255:103198. [PMID: 39047501 DOI: 10.1016/j.autneu.2024.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Chronic Fatigue Syndrome (CFS) is a complex and perplexing medical disorder primarily characterized by persistent and debilitating fatigue, often accompanied by a constellation of symptoms, including weakness, dyspnea, arthromyalgia, sore throat, and disrupted sleep patterns. CFS is defined by its persistent or recurrent manifestation for a minimum duration of six months, marked by an enduring and unrelenting fatigue that remains refractory to rest. In recent decades, this condition has garnered significant attention within the medical community. While the precise etiology of CFS remains elusive, it is postulated to be multifactorial. CFS is potentially associated with various contributory factors such as infections, chronic stress, genetic predisposition, immune dysregulation, and psychosocial influences. The pathophysiological underpinnings of CFS encompass viral infections, immune system dysregulation, neuroendocrine aberrations, heightened oxidative stress, and perturbations in gut microbiota. Presently, clinical management predominantly relies on pharmaceutical interventions or singular therapeutic modalities, offering alleviation of specific symptoms but exhibiting inherent limitations. Traditional Chinese Medicine (TCM) interventions have emerged as a promising paradigm, demonstrating notable efficacy through their multimodal, multi-target, multi-pathway approach, and holistic regulatory mechanisms. These interventions effectively address the lacunae in contemporary medical interventions. This comprehensive review synthesizes recent advancements in the understanding of the etiological factors, pathophysiological mechanisms, and interventional strategies for CFS, drawing from a corpus of domestic and international literature. Its aim is to furnish valuable insights for clinicians actively involved in diagnosing and treating CFS, as well as for pharmaceutical researchers delving into innovative drug development pathways. Moreover, it seeks to address the intricate challenges confronted by clinical practitioners in managing this incapacitating condition.
Collapse
Affiliation(s)
- Tingting Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weibo Sun
- Harbin Medical University, Harbin, China
| | - Shuhao Guo
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tao Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Minghang Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiying Yuan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Binbin Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Lu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuying Shao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyuan Qu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chuwen Feng
- Heilongjiang University of Chinese Medicine, Harbin, China; Rehabilitation Medicine Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Chinese Medicine Informotics in Heilongjiang Province, 24 Heping Road, Harbin, China
| | - Tiansong Yang
- Heilongjiang University of Chinese Medicine, Harbin, China; Rehabilitation Medicine Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Chinese Medicine Informotics in Heilongjiang Province, 24 Heping Road, Harbin, China.
| |
Collapse
|
5
|
Vroegindeweij A, Wulffraat NM, Van De Putte EM, De Jong HBT, Lucassen DA, Swart JF, Nijhof SL. Targeting persistent fatigue with tailored versus generic self-management strategies in adolescents and young adults with a fatigue syndrome or rheumatic condition: A randomized crossover trial. Br J Health Psychol 2024; 29:516-532. [PMID: 38072649 DOI: 10.1111/bjhp.12711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 08/10/2024]
Abstract
OBJECTIVES To evaluate the use of two self-management intervention strategies for persistent fatigue in adolescents and young adults with a fatigue syndrome or rheumatic condition. DESIGN A randomized crossover trial administering tailored lifestyle advice and generic dietary advice, each 12 weeks, with a four-week washout period between. METHODS Sixty participants (aged 12-29) were included. Tailoring was achieved through the PROfeel method. Dietary guidelines were conceptualized by the Netherlands Nutrition Centre. Questionnaires were used pre-post-interventions to measure primary outcome 'fatigue severity' (Checklist Individual Strength-8) and secondary outcomes 'self-efficacy' (Self-Efficacy Scale-28) and 'quality of life' (QoL) (Paediatric Quality of Life Inventory 4.0). Feasibility and adherence were self-rated on a scale of 1 to 10 (low to high). Linear mixed modelling was used to assess change over time, compare strategy effectiveness and study the impact of intervention order. RESULTS Fatigue severity, self-efficacy and QoL regarding 'physical' and 'emotional' functioning improved significantly over time (all p < .015). The average improvement of the two QoL subscales was clinically relevant, as was the fatigue improvement in 20 out of 46 participants who completed the trial and 5 dropouts. The interventions were equally effective, and intervention order did not impact the improvement level (prange = .242-.984). The self-management strategies received similar feasibility (M = 6.45, SD = 1.91) and adherence (M = 7.67, SD = 1.67) ratings. CONCLUSIONS As small to clinically relevant improvements were observed, self-management strategies might be particularly useful to bridge waiting time for guided treatments such as Cognitive Behavioural Therapy.
Collapse
Affiliation(s)
- Anouk Vroegindeweij
- Department of Paediatric Rheumatology/Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nico M Wulffraat
- Department of Paediatric Rheumatology/Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Elise M Van De Putte
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hanne B T De Jong
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Desiree A Lucassen
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Joost F Swart
- Department of Paediatric Rheumatology/Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sanne L Nijhof
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Zhang Y, He Y, Yuan L, Shi J, Zhao J, Tan C, Liu Y, Xu YJ. Multi-omics revealed anti-fatigue property of polyphenol from areca nut. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155838. [PMID: 38964153 DOI: 10.1016/j.phymed.2024.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Areca nut polyphenols (AP) that extracted from areca nut, have been demonstrated for their potential of anti-fatigue effects. However, the underlying mechanisms for the anti-fatigue properties of AP has not been fully elucidated to date. Previous studies have predominantly concentrated on single aspects, such as antioxidation and anti-inflammation, yet have lacked comprehensive multi-dimensional analyses. PURPOSE To explore the underlying mechanism of AP in exerting anti-fatigue effects. METHODS In this study, we developed a chronic sleep deprivation-induced fatigue model and used physiological, hematological, and biochemical indicators to evaluate the anti- fatigue efficacy of AP. Additionally, a multi-omics approach was employed to reveal the anti-fatigue mechanisms of AP from the perspective of microbiome, metabolome, and proteome. RESULTS The detection of physiology, hematology and biochemistry index indicated that AP markedly alleviate mice fatigue state induced by sleep deprivation. The 16S rRNA sequencing showed the AP promoted the abundance of probiotics (Odoribacter, Dubosiella, Marvinbryantia, and Eubacterium) and suppressed harmful bacteria (Ruminococcus). On the other hand, AP was found to regulate the expression of colonic proteins, such as increases of adenosine triphosphate (ATP) synthesis and mitochondrial function related proteins, including ATP5A1, ATP5O, ATP5L, ATP5H, NDUFA, NDUFB, NDUFS, and NDUFV. Serum metabolomic analysis revealed AP upregulated the levels of anti-fatigue amino acids, such as taurine, leucine, arginine, glutamine, lysine, and l-proline. Hepatic proteins express levels, especially tricarboxylic acid (TCA) cycle (CS, SDHB, MDH2, and DLST) and redox-related proteins (SOD1, SOD2, GPX4, and PRDX3), were significantly recovered by AP administration. Spearman correlation analysis uncovered the strong correlation between microbiome, metabolome and proteome, suggesting the anti-fatigue effects of AP is attribute to the energy homeostasis and redox balance through gut-liver axis. CONCLUSION AP increased colonic ATP production and improve mitochondrial function by regulating gut microbiota, and further upregulated anti-fatigue amino acid levels in the blood. Based on the gut-liver axis, AP upregulated the hepatic tricarboxylic acid cycle and oxidoreductase-related protein expression, regulating energy homeostasis and redox balance, and ultimately exerting anti-fatigue effects. This study provides insights into the anti-fatigue mechanisms of AP, highlighting its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yuan He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Liyang Yuan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jialiang Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Raj ST, Bruce AW, Anbalagan M, Srinivasan H, Chinnappan S, Rajagopal M, Khanna K, Chandramoorthy HC, Mani RR. COVID-19 influenced gut dysbiosis, post-acute sequelae, immune regulation, and therapeutic regimens. Front Cell Infect Microbiol 2024; 14:1384939. [PMID: 38863829 PMCID: PMC11165100 DOI: 10.3389/fcimb.2024.1384939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Sterlin T. Raj
- Department of Molecular Biology, Ekka Diagnostics, Chennai, Tamil Nadu, India
| | - Alexander W. Bruce
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
10
|
Xie F, You Y, Gu Y, Xu J, Yao F. Effects of the Prolong Life With Nine Turn-Method Qigong on Fatigue, Insomnia, Anxiety, and Gastrointestinal Disorders in Patients With Chronic Fatigue Syndrome: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e53347. [PMID: 38407950 DOI: 10.2196/53347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Chronic fatigue syndrome (CFS) is a debilitating multisystem disorder that can lead to various pathophysiological abnormalities and symptoms, including insomnia, gastrointestinal disorders, and anxiety. Due to the side effects of currently available drugs, there is a growing need for safe and effective nondrug therapies. The Prolong Life With Nine Turn (PLWNT) Qigong method is a system of mind-body exercise with restorative benefits that can alleviate the clinical symptoms of CFS and impart a significant inhibitory effect. Various studies have proven the treatment efficacy of PLWNT; however, the impact on insomnia, gastrointestinal disorders, and anxiety in patients with CFS has not yet been investigated. OBJECTIVE This study aims to evaluate the efficacy and safety of the PLWNT method in terms of its effects on fatigue, insomnia, anxiety, and gastrointestinal symptoms in patients with CFS. METHODS We will conduct a randomized, analyst-blinded, parallel-controlled trial with a 12-week intervention and 8-week follow-up. A total of 208 patients of age 20-60 years will be recruited. The patients will be randomly divided into a PLWNT Qigong exercise group (PLWNT Group) and a control group treated with cognitive behavioral therapy at a ratio of 1:1. Participants from the treatment groups will be taught by a highly qualified professor at the Shanghai University of Traditional Chinese Medicine once a week and will be supervised via web during the remaining 6 days at home, over 12 consecutive weeks. The primary outcome will be the Multidimensional Fatigue Inventory 20, while the secondary outcomes include the Pittsburgh Sleep Quality Index, Gastrointestinal Symptom Rating Scale, Hospital Anxiety and Depression Scale, functional magnetic resonance imaging, gut microbiota, and peripheral blood. RESULTS The study was approved by the ethics committee of Shanghai Municipal Hospital of Traditional Chinese Medicine in March 2022 (Ethics Approval Number 2022SHL-KY-05). Recruitment started in July 2022. The intervention is scheduled to be completed in December 2024, and data collection will be completed by the end of January 2025. Over the 3-year recruitment period, 208 participants will be recruited. Data management is still in progress; therefore, data analysis has yet to be performed. CONCLUSIONS This randomized trial will evaluate the effectiveness of the PLWNT method in relieving fatigue, insomnia, anxiety, and gastrointestinal symptoms in patients with CFS. If proven effective, it will provide a promising alternative intervention for patients with CFS. TRIAL REGISTRATION China Clinical Trials Registry ChiCTR2200061229; https://www.chictr.org.cn/showproj.html?proj=162803. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/53347.
Collapse
Affiliation(s)
- Fangfang Xie
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, 201203, 1200 Cailun Road, Pudong New District, Shanghai 201203, China, Shanghai, China
| | - Yanli You
- ChangHai Hospital, Naval Medical University, 200071, Shanghai, China
| | - Yuanjia Gu
- Shanghai University of Traditional Chinese Medicine, 201203, 1200 Cailun Road, Pudong New District, Shanghai 201203, China, Shanghai, China
| | - Jiatuo Xu
- Shanghai University of Traditional Chinese Medicine, 201203, 1200 Cailun Road, Pudong New District, Shanghai 201203, China, Shanghai, China
| | - Fei Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, 201203, 1200 Cailun Road, Pudong New District, Shanghai 201203, China, Shanghai, China
| |
Collapse
|
11
|
Włodarczyk M, Makaro A, Prusisz M, Włodarczyk J, Nowocień M, Maryńczak K, Fichna J, Dziki Ł. The Role of Chronic Fatigue in Patients with Crohn's Disease. Life (Basel) 2023; 13:1692. [PMID: 37629549 PMCID: PMC10455565 DOI: 10.3390/life13081692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Crohn's disease (CD) is a chronic, relapsing disorder belonging to inflammatory bowel diseases (IBD). It is manifested by relapsing transmural inflammation found in any segment of the gastrointestinal tract. Chronic fatigue is a common and underrecognized symptom of CD for which the prevalence is much higher in the population of CD patients compared to the healthy population. It stems from an intricate web of interactions between various risk factors, and its pathophysiology is still not fully understood. The implementation of routine screening and a holistic, multidisciplinary approach involving psychological support may be crucial in the management of CD patients with chronic fatigue. There is currently no single intervention aimed at decreasing fatigue alone, and its treatment is especially difficult in patients with fatigue persisting despite clinical and endoscopic remission. Extensive research is still needed in order to be able to predict, prevent, identify, and ultimately treat fatigue associated with CD. The aim of this review is to summarize the knowledge on the etiology, diagnosis, and treatment of chronic fatigue in CD patients.
Collapse
Affiliation(s)
- Marcin Włodarczyk
- Department of General and Oncological, Medical University of Lodz, Pomorska 251, PL 90-213 Lodz, Poland
| | - Adam Makaro
- Department of General and Oncological, Medical University of Lodz, Pomorska 251, PL 90-213 Lodz, Poland
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, PL 92-215 Lodz, Poland
| | - Mateusz Prusisz
- Department of General and Oncological, Medical University of Lodz, Pomorska 251, PL 90-213 Lodz, Poland
| | - Jakub Włodarczyk
- Department of General and Oncological, Medical University of Lodz, Pomorska 251, PL 90-213 Lodz, Poland
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, PL 92-215 Lodz, Poland
| | - Marta Nowocień
- Department of General and Oncological, Medical University of Lodz, Pomorska 251, PL 90-213 Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological, Medical University of Lodz, Pomorska 251, PL 90-213 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, PL 92-215 Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological, Medical University of Lodz, Pomorska 251, PL 90-213 Lodz, Poland
| |
Collapse
|
12
|
He G, Cao Y, Ma H, Guo S, Xu W, Wang D, Chen Y, Wang H. Causal Effects between Gut Microbiome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Two-Sample Mendelian Randomization Study. Front Microbiol 2023; 14:1190894. [PMID: 37485509 PMCID: PMC10359717 DOI: 10.3389/fmicb.2023.1190894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Evidence from previous studies have implicated an important association between gut microbiota (GM) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), but whether there is a definite causal relationship between GM and ME/CFS has not been elucidated. Method This study obtained instrumental variables of 211 GM taxa from the Genome Wide Association Study (GWAS), and mendelian randomization (MR) study was carried out to assess the effect of gut microbiota on ME/CFS risk from UK Biobank GWAS (2076 ME/CFS cases and 460,857 controls). Inverse variance weighted (IVW) was the primary method to analyze causality in this study, and a series of sensitivity analyses was performed to validate the robustness of the results. Results The inverse variance weighted (IVW) method indicated that genus Paraprevotella (OR:1.001, 95%CI:1.000-1.003, value of p < 0.05) and Ruminococca- ceae_UCG_014 (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) were positively associated with ME/CFS risk. Results from the weighted median method supported genus Paraprevotella (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) as a risk factor for ME/CFS. Conclusion This study reveals a causal relationship between genus paraprevotella, genus Ruminococcaceae_UCG_014 and ME/CFS, and our findings provide novel insights for further elucidating the developmental mechanisms mediated by the gut microbiota of ME/CFS.
Collapse
Affiliation(s)
- Gang He
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yu Cao
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Honghao Ma
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Siran Guo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Wangzi Xu
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Dai Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yongquan Chen
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Houzhao Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
13
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Tate WP, Walker MOM, Peppercorn K, Blair ALH, Edgar CD. Towards a Better Understanding of the Complexities of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID. Int J Mol Sci 2023; 24:ijms24065124. [PMID: 36982194 PMCID: PMC10048882 DOI: 10.3390/ijms24065124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex condition arising in susceptible people, predominantly following viral infection, but also other stressful events. The susceptibility factors discussed here are both genetic and environmental although not well understood. While the dysfunctional physiology in ME/CFS is becoming clearer, understanding has been hampered by different combinations of symptoms in each affected person. A common core set of mainly neurological symptoms forms the modern clinical case definition, in the absence of an accessible molecular diagnostic test. This landscape has prompted interest in whether ME/CFS patients can be classified into a particular phenotype/subtype that might assist better management of their illness and suggest preferred therapeutic options. Currently, the same promising drugs, nutraceuticals, or behavioral therapies available can be beneficial, have no effect, or be detrimental to each individual patient. We have shown that individuals with the same disease profile exhibit unique molecular changes and physiological responses to stress, exercise and even vaccination. Key features of ME/CFS discussed here are the possible mechanisms determining the shift of an immune/inflammatory response from transient to chronic in ME/CFS, and how the brain and CNS manifests the neurological symptoms, likely with activation of its specific immune system and resulting neuroinflammation. The many cases of the post viral ME/CFS-like condition, Long COVID, following SARS-CoV-2 infection, and the intense research interest and investment in understanding this condition, provide exciting opportunities for the development of new therapeutics that will benefit ME/CFS patients.
Collapse
Affiliation(s)
- Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Max O M Walker
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Anna L H Blair
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Christina D Edgar
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
Williams ESCP, Martins TB, Hill HR, Coiras M, Shah KS, Planelles V, Spivak AM. Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.03.22280661. [PMID: 36238724 PMCID: PMC9558442 DOI: 10.1101/2022.10.03.22280661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of interferon gamma (IFNγ) and interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.
Collapse
|
16
|
Vogl T, Kalka IN, Klompus S, Leviatan S, Weinberger A, Segal E. Systemic antibody responses against human microbiota flagellins are overrepresented in chronic fatigue syndrome patients. SCIENCE ADVANCES 2022; 8:eabq2422. [PMID: 36149952 PMCID: PMC11580831 DOI: 10.1126/sciadv.abq2422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with an unclear etiology and pathogenesis. Both an involvement of the immune system and gut microbiota dysbiosis have been implicated in its pathophysiology. However, potential interactions between adaptive immune responses and the microbiota in ME/CFS have been incompletely characterized. Here, we profiled antibody responses of patients with severe ME/CFS and healthy controls against microbiota and viral antigens represented as a phage-displayed 244,000 variant library. Patients with severe ME/CFS exhibited distinct serum antibody epitope repertoires against flagellins of Lachnospiraceae bacteria. Training machine learning algorithms on this antibody-binding data demonstrated that immune responses against gut microbiota represent a unique layer of information beyond standard blood tests, providing improved molecular diagnostics for ME/CFS. Together, our results point toward an involvement of the microbiota-immune axis in ME/CFS and lay the foundation for comparative studies with inflammatory bowel diseases and illnesses characterized by long-term fatigue symptoms, including post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Iris N. Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Vroegindeweij A, Swart JF, Houtveen J, Eijkelkamp N, van de Putte EM, Wulffraat NM, Nijhof SL. Identifying disrupted biological factors and patient-tailored interventions for chronic fatigue in adolescents and young adults with Q-Fever Fatigue Syndrome, Chronic Fatigue Syndrome and Juvenile Idiopathic Arthritis (QFS-study): study protocol for a randomized controlled trial with single-subject experimental case series design. Trials 2022; 23:683. [PMID: 35986408 PMCID: PMC9389501 DOI: 10.1186/s13063-022-06620-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic fatigue with a debilitating effect on daily life is a frequently reported symptom among adolescents and young adults with a history of Q-fever infection (QFS). Persisting fatigue after infection may have a biological origin with psychological and social factors contributing to the disease phenotype. This is consistent with the biopsychosocial framework, which considers fatigue to be the result of a complex interaction between biological, psychological, and social factors. In line, similar manifestations of chronic fatigue are observed in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and juvenile idiopathic arthritis (JIA). Cognitive behavioral therapy is often recommended as treatment for chronic fatigue, considering its effectiveness on the group level. However, not everybody benefits on the individual level. More treatment success at the individual level might be achieved with patient-tailored treatments that incorporate the biopsychosocial framework. Methods In addition to biological assessments of blood, stool, saliva, and hair, the QFS-study consists of a randomized controlled trial (RCT) in which a single-subject experimental case series (N=1) design will be implemented using Experience Sampling Methodology in fatigued adolescents and young adults with QFS, CFS/ME, and JIA (aged 12–29). With the RCT design, the effectiveness of patient-tailored PROfeel lifestyle advices will be compared against generic dietary advices in reducing fatigue severity at the group level. Pre-post analyses will be conducted to determine relevance of intervention order. By means of the N=1 design, effectiveness of both advices will be measured at the individual level. Discussion The QFS-study is a comprehensive study exploring disrupted biological factors and patient-tailored lifestyle advices as intervention in adolescent and young adults with QFS and similar manifestations of chronic fatigue. Practical or operational issues are expected during the study, but can be overcome through innovative study design, statistical approaches, and recruitment strategies. Ultimately, the study aims to contribute to biological research and (personalized) treatment in QFS and similar manifestations of chronic fatigue. Trial registration Trial NL8789. Registered July 21, 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06620-2.
Collapse
|
18
|
Gut microbiome and daytime function in Chinese patients with major depressive disorder. J Psychosom Res 2022; 157:110787. [PMID: 35344817 DOI: 10.1016/j.jpsychores.2022.110787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is underscored by daytime dysfunction-associated features, including mood disturbances, impaired cognition, fatigue, and daytime sleepiness. Importantly, the gut-brain axis may represent a potential mechanistic link between MDD and daytime dysfunction. Therefore, this study aimed to explore the gut microbiome composition and daytime dysfunction in Chinese patients with MDD. METHODS We enrolled 36 patients with MDD and 45 healthy controls (HCs) matched by age, sex, and body mass index (BMI). Daytime function including emotion, fatigue, and sleepiness were assessed using the Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD). 16S rRNA sequencing was employed to characterize the gut microbiota in stool samples. RESULTS The operational taxonomic units (OTUs) OTU255, OUT363 were positively correlated with HAMD and HAMA. OTU244, OTU542 and OTU221 were positively correlated with ESS, HAMD and HAMA. OTU725 and OTU80 were positively correlated with FSS, ESS, HAMD and HAMA, while OTU423 and OTU502 were negatively correlated with all above. Flavonifractor positively correlated with fatigue in patients with MDD and all individuals simultaneously. The correlation between gut microbiome and daytime function was different in MDD and HCs. CONCLUSIONS We identified several OTUs associated with the severity of fatigue, depression, daytime sleepiness and anxiety in all individuals. Our results revealed the differences in microbiome found between patients with MDD and HCs. These findings provide insights into the potential microbiota changes that occur in MDD, and will enable the development of specific therapeutic strategies for targeting the various symptoms of depression.
Collapse
|
19
|
Mycobacterium avium subsp. paratuberculosis and microbiome profile of patients in a referral gastrointestinal diseases centre in the Sudan. PLoS One 2022; 17:e0266533. [PMID: 35381037 PMCID: PMC8982859 DOI: 10.1371/journal.pone.0266533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s disease in animals with zoonotic potential; it has been linked to many chronic diseases in humans, especially gastrointestinal diseases (GID). MAP has been extensively studied in Europe and America, but little reports were published from Africa. Sudan is a unique country with close contact between humans and livestock. Despite such interaction, the one health concept is neglected in dealing with cases of humans with GID. In this study, patients admitted to the reference GID hospital in the Sudan over a period of 8 months were screened for presence of MAP in their faeces or colonic biopsies. A total of 86 patients were recruited for this study, but only 67 were screened for MAP, as 19 did not provide the necessary samples for analysis. Both real-time PCR and culture were used to detect MAP in the collected samples and the microbial diversity in patients´ faecal samples was investigated using 16S rDNA nanopore sequencing. In total, 27 (40.3%) patients were MAP positive: they were 15 males and 12 females, of ages between 21 and 80 years. Logistic regression analysis revealed no statistical significance for all tested variables in MAP positive patients (occupation, gender, contact with animal, milk consumption, chronic disease, etc.). A unique microbiome profile of MAP-positive patients in comparison to MAP-negative was found. These findings suggest that a considerable proportion of the population could be MAP infected or carriers. Therefore, increase awareness at community level is urgently needed to decrease the risk of MAP at human/animal interface. This study represents the first report of MAP in humans in the Sudan; nevertheless, a better view of the situation of MAP in humans in the country requires a larger study including patients with other conditions.
Collapse
|
20
|
König RS, Albrich WC, Kahlert CR, Bahr LS, Löber U, Vernazza P, Scheibenbogen C, Forslund SK. The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front Immunol 2022; 12:628741. [PMID: 35046929 PMCID: PMC8761622 DOI: 10.3389/fimmu.2021.628741] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Myalgic encephalomyelitis (ME) or Chronic Fatigue Syndrome (CFS) is a neglected, debilitating multi-systemic disease without diagnostic marker or therapy. Despite evidence for neurological, immunological, infectious, muscular and endocrine pathophysiological abnormalities, the etiology and a clear pathophysiology remains unclear. The gut microbiome gained much attention in the last decade with manifold implications in health and disease. Here we review the current state of knowledge on the interplay between ME/CFS and the microbiome, to identify potential diagnostic or interventional approaches, and propose areas where further research is needed. We iteratively selected and elaborated on key theories about a correlation between microbiome state and ME/CFS pathology, developing further hypotheses. Based on the literature we hypothesize that antibiotic use throughout life favours an intestinal microbiota composition which might be a risk factor for ME/CFS. Main proposed pathomechanisms include gut dysbiosis, altered gut-brain axis activity, increased gut permeability with concomitant bacterial translocation and reduced levels of short-chain-fatty acids, D-lactic acidosis, an abnormal tryptophan metabolism and low activity of the kynurenine pathway. We review options for microbiome manipulation in ME/CFS patients including probiotic and dietary interventions as well as fecal microbiota transplantations. Beyond increasing gut permeability and bacterial translocation, specific dysbiosis may modify fermentation products, affecting peripheral mitochondria. Considering the gut-brain axis we strongly suspect that the microbiome may contribute to neurocognitive impairments of ME/CFS patients. Further larger studies are needed, above all to clarify whether D-lactic acidosis and early-life antibiotic use may be part of ME/CFS etiology and what role changes in the tryptophan metabolism might play. An association between the gut microbiome and the disease ME/CFS is plausible. As causality remains unclear, we recommend longitudinal studies. Activity levels, bedridden hours and disease progression should be compared to antibiotic exposure, drug intakes and alterations in the composition of the microbiota. The therapeutic potential of fecal microbiota transfer and of targeted dietary interventions should be systematically evaluated.
Collapse
Affiliation(s)
- Rahel S König
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Lina Samira Bahr
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Löber
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pietro Vernazza
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia K Forslund
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
21
|
Santinelli L, Laghi L, Innocenti GP, Pinacchio C, Vassalini P, Celani L, Lazzaro A, Borrazzo C, Marazzato M, Tarsitani L, Koukopoulos AE, Mastroianni CM, d'Ettorre G, Ceccarelli G. Oral Bacteriotherapy Reduces the Occurrence of Chronic Fatigue in COVID-19 Patients. Front Nutr 2022; 8:756177. [PMID: 35096923 PMCID: PMC8790565 DOI: 10.3389/fnut.2021.756177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Long COVID refers to patients with symptoms as fatigue, “brain fog,” pain, suggesting the chronic involvement of the central nervous system (CNS) in COVID-19. The supplementation with probiotic (OB) would have a positive effect on metabolic homeostasis, negatively impacting the occurrence of symptoms related to the CNS after hospital discharge. On a total of 58 patients hospitalized for COVID-19, 24 (41.4%) received OB during hospitalization (OB+) while 34 (58.6%) taken only the standard treatment (OB–). Serum metabolomic profiling of patients has been performed at both hospital acceptance (T0) and discharge (T1). Six months after discharge, fatigue perceived by participants was assessed by administrating the Fatigue Assessment Scale. 70.7% of participants reported fatigue while 29.3% were negative for such condition. The OB+ group showed a significantly lower proportion of subjects reporting fatigue than the OB– one (p < 0.01). Furthermore, OB+ subjects were characterized by significantly increased concentrations of serum Arginine, Asparagine, Lactate opposite to lower levels of 3-Hydroxyisobutirate than those not treated with probiotics. Our results strongly suggest that in COVID-19, the administration of probiotics during hospitalization may prevent the development of chronic fatigue by impacting key metabolites involved in the utilization of glucose as well as in energy pathways.
Collapse
Affiliation(s)
- Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.,Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy
| | | | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Celani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alexia E Koukopoulos
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Williams ESCP, Martins TB, Shah KS, Hill HR, Coiras M, Spivak AM, Planelles V. Cytokine Deficiencies in Patients with Long-COVID. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2022; 13:672. [PMID: 36742994 PMCID: PMC9894377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of Interferon Gamma (IFNγ) and Interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.
Collapse
Affiliation(s)
- Elizabeth SCP Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Thomas B. Martins
- ARUP Institute for Clinical and Experimental Pathology, 1950 Circle of Hope Drive, Salt Lake City, United States
| | - Kevin S. Shah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Harry R. Hill
- ARUP Institute for Clinical and Experimental Pathology, 1950 Circle of Hope Drive, Salt Lake City, United States;,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States;,Department of Pathology and Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Madrid, Spain
| | - Adam M. Spivak
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States;,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
23
|
张 星, 蔡 文, 廖 生, 何 璇, 杨 秋, 白 杨, 阮 伟. [Individuals with sub-health status have obviously unbalanced structure of the intestinal flora: analysis of 150 nursing staff members]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1870-1876. [PMID: 35012921 PMCID: PMC8752424 DOI: 10.12122/j.issn.1673-4254.2021.12.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the difference in intestinal flora composition between individuals with sub-health status and healthy subjects. METHODS From November, 2020 to May, 2021, a total of 150 nursing staff members in Nanfang Hospital were selected for this study, including 75 participants with sub-health status (SHS group) and 75 healthy participants (control group). Fecal samples were collected from all the participants for analysis of the diversity and species composition of the intestinal flora using high-throughput sequencing for V3-V4 region of 16S rRNA gene. RESULTS The results of α diversity analysis showed no significant difference in Chao1 index between the two groups (P=0.619), but the Shannon index was significantly higher in SHS group than in the control group (P < 0.001). The results of β diversity analysis showed significant differences in the community structure between the SHS group and the control group (R=0.227, P=0.001). At the phylum level, the intestinal flora in the two groups were composed mainly of Bacteroidota, Firmicutes and Actinobacteriata, and of Prevotella, Bacteroides, Blautia and Faecalibacterium at the genus level. Species difference analysis identified significant differences in the relative abundance between the two groups in 4 phyla, 3 classes, 3 orders, 3 families and 3 genera (P < 0.05). CONCLUSION Compared with healthy subjects, the individuals with sub-health status have obviously unbalanced structure of the intestinal flora.
Collapse
Affiliation(s)
- 星星 张
- 南方医科大学南方医院惠侨医疗中心,广东 广州 510515Department of Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学护理学院,广东 广州 510515Department of School of Nursing, Southern Medical University, Guangzhou 510515, China
| | - 文文 蔡
- 南方医科大学南方医院惠侨医疗中心,广东 广州 510515Department of Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学护理学院,广东 广州 510515Department of School of Nursing, Southern Medical University, Guangzhou 510515, China
| | - 生武 廖
- 南方医科大学南方医院门急诊片区,广东 广州 510515Department of Outpatient and Emergency Area, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 璇昱 何
- 南方医科大学南方医院惠侨医疗中心,广东 广州 510515Department of Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 秋玉 杨
- 南方医科大学南方医院消化内科,广东 广州 510515Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 杨 白
- 南方医科大学南方医院消化内科,广东 广州 510515Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 伟清 阮
- 南方医科大学南方医院惠侨医疗中心,广东 广州 510515Department of Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
24
|
Haran JP, Bradley E, Zeamer AL, Cincotta L, Salive MC, Dutta P, Mutaawe S, Anya O, Meza-Segura M, Moormann AM, Ward DV, McCormick BA, Bucci V. Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID. JCI Insight 2021; 6:e152346. [PMID: 34403368 PMCID: PMC8564890 DOI: 10.1172/jci.insight.152346] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
In the COVID-19 pandemic, caused by SARS-CoV-2, many individuals experience prolonged symptoms, termed long-lasting COVID-19 symptoms (long COVID). Long COVID is thought to be linked to immune dysregulation due to harmful inflammation, with the exact causes being unknown. Given the role of the microbiome in mediating inflammation, we aimed to examine the relationship between the oral microbiome and the duration of long COVID symptoms. Tongue swabs were collected from patients presenting with COVID-19 symptoms. Confirmed infections were followed until resolution of all symptoms. Bacterial composition was determined by metagenomic sequencing. We used random forest modeling to identify microbiota and clinical covariates that are associated with long COVID symptoms. Of the patients followed, 63% developed ongoing symptomatic COVID-19 and 37% went on to long COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota that induced inflammation, such as members of the genera Prevotella and Veillonella, which, of note, are species that produce LPS. The oral microbiome of patients with long COVID was similar to that of patients with chronic fatigue syndrome. Altogether, our findings suggest an association with the oral microbiome and long COVID, revealing the possibility that dysfunction of the oral microbiome may have contributed to this draining disease.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine.,Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Evan Bradley
- Department of Emergency Medicine.,Program in Microbiome Dynamics, and
| | - Abigail L Zeamer
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | | | | | | | | | | | | | - Ann M Moormann
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Doyle V Ward
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| |
Collapse
|
25
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
26
|
Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol 2021; 12:698169. [PMID: 34248921 PMCID: PMC8260991 DOI: 10.3389/fmicb.2021.698169] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The novel virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of coronavirus disease 2019 (COVID-19). Across the globe, a subset of patients who sustain an acute SARS-CoV-2 infection are developing a wide range of persistent symptoms that do not resolve over the course of many months. These patients are being given the diagnosis Long COVID or Post-acute sequelae of COVID-19 (PASC). It is likely that individual patients with a PASC diagnosis have different underlying biological factors driving their symptoms, none of which are mutually exclusive. This paper details mechanisms by which RNA viruses beyond just SARS-CoV-2 have be connected to long-term health consequences. It also reviews literature on acute COVID-19 and other virus-initiated chronic syndromes such as post-Ebola syndrome or myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) to discuss different scenarios for PASC symptom development. Potential contributors to PASC symptoms include consequences from acute SARS-CoV-2 injury to one or multiple organs, persistent reservoirs of SARS-CoV-2 in certain tissues, re-activation of neurotrophic pathogens such as herpesviruses under conditions of COVID-19 immune dysregulation, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation issues, dysfunctional brainstem/vagus nerve signaling, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage care for specific patients with the diagnosis.
Collapse
Affiliation(s)
- Amy D. Proal
- PolyBio Research Foundation, Kenmore, WA, United States
| | - Michael B. VanElzakker
- PolyBio Research Foundation, Kenmore, WA, United States
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Pacheco-Carroza EA. Visceral pain, mechanisms, and implications in musculoskeletal clinical practice. Med Hypotheses 2021; 153:110624. [PMID: 34126503 DOI: 10.1016/j.mehy.2021.110624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The global impact of visceral pain is extremely high, representing a significant portion of all forms of chronic pain. In musculoskeletal practice, at least one-third of people with persistent noncancerous pain report recurrent abdominal, pelvic, or chest pain symptoms. Visceral pain can be felt in several different areas of the body and can migrate throughout a region, even though the site of origin does not appear to change. Traditionally, clinicians have examined musculoskeletal pain through a reductionist lens that ignores the influence of the visceral system on musculoskeletal pain. The hypothesis presented is that visceral pain has an important influence on developing and maintaining different types of musculoskeletal pain through processes within the peripheral or central nervous systems, as a result of a visceral nociceptive stimulus generated by pathoanatomical or functional alterations. The hypothesis predicts that a consideration of the function of the visceral system in musculoskeletal pain conditions will improve clinical outcomes, moving beyond a linear model and adopting a more holistic approach, especially in the more complex groups of patients.
Collapse
Affiliation(s)
- E A Pacheco-Carroza
- Health Sciences Faculty, Universidad San Sebastián, General Lagos 1022 Valdivia, 56 2632500, Chile.
| |
Collapse
|
28
|
Jiang Z, Li L, Chen J, Wei G, Ji Y, Chen X, Liu J, Huo J. Human gut-microbiome interplay: Analysis of clinical studies for the emerging roles of diagnostic microbiology in inflammation, oncogenesis and cancer management. INFECTION GENETICS AND EVOLUTION 2021; 93:104946. [PMID: 34052417 DOI: 10.1016/j.meegid.2021.104946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Microorganisms have been known to coexist in various parts of human body including the gut. The interactions between microbes and the surrounding tissues of the host are critical for fine fettle of the gut. The incidence of such microorganisms tends to vary among specific type of cancer affected individuals. Such microbial communities of specific tumor sites in cancer affected individuals could plausibly be used as prognostic and/or diagnostic markers for tumors associated with that specific site. Microorganisms of intestinal and non-intestinal origins including Helicobacter pylori can target several organs, act as carcinogens and promote cancer. It is interesting to note that diets causing inflammation can also increase the cancer risk. Yet, dietary supplementation with prebiotics and probiotics can reduce the incidence of cancer. Therefore, both diet and microbial community of the gut have dual roles of prevention and oncogenesis. Hence, this review intends to summarize certain important details related to gut microbiome and cancer.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jianan Chen
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yi Ji
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Xi Chen
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jingbing Liu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
29
|
Kuo CF, Shi L, Lin CL, Yao WC, Chen HT, Lio CF, Wang YTT, Su CH, Hsu NW, Tsai SY. How peptic ulcer disease could potentially lead to the lifelong, debilitating effects of chronic fatigue syndrome: an insight. Sci Rep 2021; 11:7520. [PMID: 33824394 PMCID: PMC8024330 DOI: 10.1038/s41598-021-87018-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic Fatigue Syndrome (CFS) has been defined as unexplained relapsing or persistent fatigue for at least 6 consecutive months. Immuno-inflammatory pathway, bacterial infection, and other causes play essential roles in CFS. Helicobacter pylori infection is one of the most common causes of foregut inflammation, leading to peptic ulcer disease (PUD). This study aimed to analyze the risk of CFS development between patients with and without PUD. Other related factors were also analyzed. We performed a retrospective, nationwide cohort study identifying patients with or without PUD respectively by analyzing the Longitudinal Health Insurance Database 2000 (LHID2000), Taiwan. The overall incidence of CFS was higher in the PUD cohort than in the non- PUD cohort (HR = 2.01, 95% CI = 1.75-2.30), with the same adjusted HR (aHR) when adjusting for age, sex, and comorbidities. The sex-specific PUD cohort to the non-PUD cohort relative risk of CFS was significant in both genders. The age-specific incidence of CFS showed incidence density increasing with age in both cohorts. There is an increased risk of developing CFS following PUD, especially in females and the aging population. Hopefully, these findings can prevent common infections from progressing to debilitating, chronic conditions such as CFS.
Collapse
Affiliation(s)
- Chien-Feng Kuo
- Department of Medicine, Graduate Institute of Long-Term Care, Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Leiyu Shi
- Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung City, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung City, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Tao-Yuan, 330, Taiwan
| | - Hsiang-Ting Chen
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chon-Fu Lio
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ting Tina Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ching-Huang Su
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Nai-Wei Hsu
- Department of Medicine, Graduate Institute of Long-Term Care, Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Graduate Institute of Long-Term Care, Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan.
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
30
|
Toogood PL, Clauw DJ, Phadke S, Hoffman D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol Res 2021; 165:105465. [PMID: 33529750 DOI: 10.1016/j.phrs.2021.105465] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease characterized by severe and disabling fatigue that fails to improve with rest; it is commonly accompanied by multifocal pain, as well as sleep disruption, and cognitive dysfunction. Even mild exertion can exacerbate symptoms. The prevalence of ME/CFS in the U.S. is estimated to be 0.5-1.5 % and is higher among females. Viral infection is an established trigger for the onset of ME/CFS symptoms, raising the possibility of an increase in ME/CFS prevalence resulting from the ongoing COVID-19 pandemic. Current treatments are largely palliative and limited to alleviating symptoms and addressing the psychological sequelae associated with long-term disability. While ME/CFS is characterized by broad heterogeneity, common features include immune dysregulation and mitochondrial dysfunction. However, the underlying mechanistic basis of the disease remains poorly understood. Herein, we review the current understanding, diagnosis and treatment of ME/CFS and summarize past clinical studies aimed at identifying effective therapies. We describe the current status of mechanistic studies, including the identification of multiple targets for potential pharmacological intervention, and ongoing efforts towards the discovery of new medicines for ME/CFS treatment.
Collapse
Affiliation(s)
- Peter L Toogood
- Michigan Drug Discovery, University of Michigan, Life Science Institute, 210 Washtenaw Avenue, Ann Arbor, MI, 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States.
| | - Daniel J Clauw
- Departments of Anesthesiology, Internal Medicine (Rheumatology) and Psychiatry, University of Michigan/Michigan Medicine, Chronic Pain and Fatigue Center, 24 Frank Lloyd Wright Drive, P.O. Box 3885, Ann Arbor, MI, 48109, United States
| | - Sameer Phadke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States
| | - David Hoffman
- Cayman Chemical Company, 1180 E. Ellsworth Road, Ann Arbor, MI, 48108, United States
| |
Collapse
|
31
|
Raijmakers RPH, Roerink ME, Jansen AFM, Keijmel SP, Gacesa R, Li Y, Joosten LAB, van der Meer JWM, Netea MG, Bleeker-Rovers CP, Xu CJ. Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome. J Transl Med 2020; 18:448. [PMID: 33243243 PMCID: PMC7690002 DOI: 10.1186/s12967-020-02585-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Q fever fatigue syndrome (QFS) is characterised by a state of prolonged fatigue that is seen in 20% of acute Q fever infections and has major health-related consequences. The molecular mechanisms underlying QFS are largely unclear. In order to better understand its pathogenesis, we applied a multi-omics approach to study the patterns of the gut microbiome, blood metabolome, and inflammatory proteome of QFS patients, and compared these with those of chronic fatigue syndrome (CFS) patients and healthy controls (HC). Methods The study population consisted of 31 QFS patients, 50 CFS patients, and 72 HC. All subjects were matched for age, gender, and general geographical region (South-East part of the Netherlands). The gut microbiome composition was assessed by Metagenomic sequencing using the Illumina HiSeq platform. A total of 92 circulating inflammatory markers were measured using Proximity Extension Essay and 1607 metabolic features were assessed with a high-throughput non-targeted metabolomics approach. Results Inflammatory markers, including 4E-BP1 (P = 9.60–16 and 1.41–7) and MMP-1 (P = 7.09–9 and 3.51–9), are significantly more expressed in both QFS and CFS patients compared to HC. Blood metabolite profiles show significant differences when comparing QFS (319 metabolites) and CFS (441 metabolites) patients to HC, and are significantly enriched in pathways like sphingolipid (P = 0.0256 and 0.0033) metabolism. When comparing QFS to CFS patients, almost no significant differences in metabolome were found. Comparison of microbiome taxonomy of QFS and CFS patients with that of HC, shows both in- and decreases in abundancies in Bacteroidetes (with emphasis on Bacteroides and Alistiples spp.), and Firmicutes and Actinobacteria (with emphasis on Ruminococcus and Bifidobacterium spp.). When we compare QFS patients to CFS patients, there is a striking resemblance and hardly any significant differences in microbiome taxonomy are found. Conclusions We show that QFS and CFS patients are similar across three different omics layers and 4E-BP1 and MMP-1 have the potential to distinguish QFS and CFS patients from HC.
Collapse
Affiliation(s)
- Ruud P H Raijmakers
- Division of Infectious Diseases 463, Department of Internal Medicine, Radboud Expertise Center for Q Fever, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Megan E Roerink
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne F M Jansen
- Division of Infectious Diseases 463, Department of Internal Medicine, Radboud Expertise Center for Q Fever, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan P Keijmel
- Division of Infectious Diseases 463, Department of Internal Medicine, Radboud Expertise Center for Q Fever, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ranko Gacesa
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Yang Li
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Centre for Individualised Infection Medicine, CiiM, A Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Leo A B Joosten
- Division of Infectious Diseases 463, Department of Internal Medicine, Radboud Expertise Center for Q Fever, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos W M van der Meer
- Division of Infectious Diseases 463, Department of Internal Medicine, Radboud Expertise Center for Q Fever, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Division of Infectious Diseases 463, Department of Internal Medicine, Radboud Expertise Center for Q Fever, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chantal P Bleeker-Rovers
- Division of Infectious Diseases 463, Department of Internal Medicine, Radboud Expertise Center for Q Fever, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Centre for Individualised Infection Medicine, CiiM, A Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
32
|
Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population. Sci Rep 2020; 10:19933. [PMID: 33199820 PMCID: PMC7669873 DOI: 10.1038/s41598-020-77105-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating disease with no molecular diagnostics and no treatment options. To identify potential markers of this illness, we profiled 48 patients and 52 controls for standard laboratory tests, plasma metabolomics, blood immuno-phenotyping and transcriptomics, and fecal microbiome analysis. Here, we identified a set of 26 potential molecular markers that distinguished ME/CFS patients from healthy controls. Monocyte number, microbiome abundance, and lipoprotein profiles appeared to be the most informative markers. When we correlated these molecular changes to sleep and cognitive measurements of fatigue, we found that lipoprotein and microbiome profiles most closely correlated with sleep disruption while a different set of markers correlated with a cognitive parameter. Sleep, lipoprotein, and microbiome changes occur early during the course of illness suggesting that these markers can be examined in a larger cohort for potential biomarker application. Our study points to a cluster of sleep-related molecular changes as a prominent feature of ME/CFS in our Japanese cohort.
Collapse
|
33
|
The Role of Rhizosphere Bacteriophages in Plant Health. Trends Microbiol 2020; 28:709-718. [DOI: 10.1016/j.tim.2020.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
|
34
|
Sandler CX, Lloyd AR. Chronic fatigue syndrome: progress and possibilities. Med J Aust 2020; 212:428-433. [DOI: 10.5694/mja2.50553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carolina X Sandler
- UNSW Fatigue ClinicUNSW Sydney NSW
- Queensland University of Technology Brisbane QLD
| | - Andrew R Lloyd
- Kirby Institute for Infection and Immunity in SocietyUNSW Sydney NSW
- UNSW Medicine Sydney NSW
| |
Collapse
|
35
|
Ovejero T, Sadones O, Sánchez-Fito T, Almenar-Pérez E, Espejo JA, Martín-Martínez E, Nathanson L, Oltra E. Activation of Transposable Elements in Immune Cells of Fibromyalgia Patients. Int J Mol Sci 2020; 21:1366. [PMID: 32085571 PMCID: PMC7072917 DOI: 10.3390/ijms21041366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Advancements in nucleic acid sequencing technology combined with an unprecedented availability of metadata have revealed that 45% of the human genome constituted by transposable elements (TEs) is not only transcriptionally active but also physiologically necessary. Dysregulation of TEs, including human retroviral endogenous sequences (HERVs) has been shown to associate with several neurologic and autoimmune diseases, including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). However, no study has yet addressed whether abnormal expression of these sequences correlates with fibromyalgia (FM), a disease frequently comorbid with ME/CFS. The work presented here shows, for the first time, that, in fact, HERVs of the H, K and W types are overexpressed in immune cells of FM patients with or without comorbid ME/CFS. Patients with increased HERV expression (N = 14) presented increased levels of interferon (INF-β and INF-γ) but unchanged levels of TNF-α. The findings reported in this study could explain the flu-like symptoms FM patients present with in clinical practice, in the absence of concomitant infections. Future work aimed at identifying specific genomic loci differentially affected in FM and/or ME/CFS is warranted.
Collapse
Affiliation(s)
- Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - José Andrés Espejo
- School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA;
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
36
|
Flux MC, Lowry CA. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 2020; 135:104578. [PMID: 31454550 PMCID: PMC6995775 DOI: 10.1016/j.nbd.2019.104578] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.
Collapse
Affiliation(s)
- M C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Senior Fellow, VIVO Planetary Health, Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
37
|
|
38
|
Almenar-Pérez E, Ovejero T, Sánchez-Fito T, Espejo JA, Nathanson L, Oltra E. Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clin Ther 2019; 41:675-698. [PMID: 30910331 DOI: 10.1016/j.clinthera.2019.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Studies to determine epigenetic changes associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain scarce; however, current evidence clearly shows that methylation patterns of genomic DNA and noncoding RNA profiles of immune cells differ between patients and healthy subjects, suggesting an active role of these epigenetic mechanisms in the disease. The present study compares and contrasts the available ME/CFS epigenetic data in an effort to evidence overlapping pathways capable of explaining at least some of the dysfunctional immune parameters linked to this disease. METHODS A systematic search of the literature evaluating the ME/CFS epigenome landscape was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Differential DNA methylation and noncoding RNA differential expression patterns associated with ME/CFS were used to screen for the presence of transposable elements using the Dfam browser, a search program nurtured with the Repbase repetitive sequence database and the RepeatMasker annotation tool. FINDINGS Unexpectedly, particular associations of transposable elements and ME/CFS epigenetic hallmarks were uncovered. A model for the disease emerged involving transcriptional induction of endogenous dormant transposons and structured cellular RNA interactions, triggering the activation of the innate immune system without a concomitant active infection. IMPLICATIONS Repetitive sequence filters (ie, RepeatMasker) should be avoided when analyzing transcriptomic data to assess the potential participation of repetitive sequences ("junk repetitive DNA"), representing >45% of the human genome, in the onset and evolution of ME/CFS. In addition, transposable element screenings aimed at designing cost-effective, focused empirical assays that can confirm or disprove the suspected involvement of transposon transcriptional activation in this disease, following the pilot strategy presented here, will require databases gathering large ME/CFS epigenetic datasets.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - José A Espejo
- School of Experimental Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Lubov Nathanson
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain; Unidad Mixta CIPF-UCV, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
39
|
Tsai SY, Chen HJ, Lio CF, Kuo CF, Kao AC, Wang WS, Yao WC, Chen C, Yang TY. Increased risk of chronic fatigue syndrome in patients with inflammatory bowel disease: a population-based retrospective cohort study. J Transl Med 2019; 17:55. [PMID: 30795765 PMCID: PMC6387539 DOI: 10.1186/s12967-019-1797-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background Similarities in the symptoms of chronic fatigue syndrome (CFS) and inflammatory bowel disease (IBD) have been observed as follows: severe disease activity in IBD correlates with severe fatigue, major psychiatric signs, the common use of medication, and bacterial translocation. One of several hypotheses for explaining the mechanisms underlying CFS suggests a similarity to the impaired intestinal mucosa of IBD. “This study investigated the risk of incident CFS among patients with IBD”. Methods We conducted a population-based retrospective cohort study by using Taiwan’s National Health Insurance Research Database to evaluate the subsequent risk of CFS in patients with IBD, according to demographic characteristics and comorbidities. The exposure cohort comprised 2163 patients with new diagnoses of IBD. Each patient was randomly selected and frequency matching according to gender and age with four participants from the general population who had no history of CFS at the index date (control cohort). Cox proportional hazards regression analysis was conducted to estimate the relationship between IBD and the subsequent risk of CFS. Results The exposure cohort had a significantly higher overall risk of subsequent CFS than that of the control group [adjusted hazard ratio (Christophi in Inflamm Bowel Dis 18(12):2342–2356, 2012) = 2.25, 95%, confidence interval (Aaron and Buchwald in Ann Intern Med 134(9 Pt 2):868–881, 2001; Farraye et al. in Am J Gastroenterol 112:241, 2017) 1.70–2.99]. Further analysis indicated a significantly higher risk of CFS in patients who were male (HR = 3.23, 95% CI 2.12–4.91), were older than 35 years, and had IBD but without comorbidity status, e.g. Cancers, diabetes, obesity, depression, anxiety, sleep disorder, renal disease (HR = 2.50, 95% CI 1.63–3.84) after adjustment. Conclusion The findings from this population-based retrospective cohort study suggest that IBD, especially Crohn’s disease, is associated with an increased risk of subsequent CFS. Electronic supplementary material The online version of this article (10.1186/s12967-019-1797-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shin-Yi Tsai
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan. .,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan. .,Graduate Institute of Long-Term Care, Mackay Medical College, New Taipei City, Taiwan. .,Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan. .,Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Hsuan-Ju Chen
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Chon-Fu Lio
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Feng Kuo
- Institute of Infectious Disease, MacKay Memorial Hospital, Taipei, Taiwan
| | - An-Chun Kao
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Shieng Wang
- Institute of Infectious Disease, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Tao-Yuan, 330, Taiwan
| | - Chi Chen
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tse-Yen Yang
- College of Medicine, China Medical University, Taichung, Taiwan. .,Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung, Taiwan. .,Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
40
|
Proal A, Marshall T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr 2018; 6:373. [PMID: 30564562 PMCID: PMC6288442 DOI: 10.3389/fped.2018.00373] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The illness ME/CFS has been repeatedly tied to infectious agents such as Epstein Barr Virus. Expanding research on the human microbiome now allows ME/CFS-associated pathogens to be studied as interacting members of human microbiome communities. Humans harbor these vast ecosystems of bacteria, viruses and fungi in nearly all tissue and blood. Most well-studied inflammatory conditions are tied to dysbiosis or imbalance of the human microbiome. While gut microbiome dysbiosis has been identified in ME/CFS, microbes and viruses outside the gut can also contribute to the illness. Pathobionts, and their associated proteins/metabolites, often control human metabolism and gene expression in a manner that pushes the body toward a state of illness. Intracellular pathogens, including many associated with ME/CFS, drive microbiome dysbiosis by directly interfering with human transcription, translation, and DNA repair processes. Molecular mimicry between host and pathogen proteins/metabolites further complicates this interference. Other human pathogens disable mitochondria or dysregulate host nervous system signaling. Antibodies and/or clonal T cells identified in patients with ME/CFS are likely activated in response to these persistent microbiome pathogens. Different human pathogens have evolved similar survival mechanisms to disable the host immune response and host metabolic pathways. The metabolic dysfunction driven by these organisms can result in similar clusters of inflammatory symptoms. ME/CFS may be driven by this pathogen-induced dysfunction, with the nature of dysbiosis and symptom presentation varying based on a patient's unique infectious and environmental history. Under such conditions, patients would benefit from treatments that support the human immune system in an effort to reverse the infectious disease process.
Collapse
Affiliation(s)
- Amy Proal
- Autoimmunity Research Foundation, Thousand Oaks, CA, United States
| | | |
Collapse
|
41
|
Bjørklund G, Dadar M, Pen JJ, Chirumbolo S, Aaseth J. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed Pharmacother 2018; 109:1000-1007. [PMID: 30551349 DOI: 10.1016/j.biopha.2018.10.076] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is known as a multi-systemic and complex illness, which induces fatigue and long-term disability in educational, occupational, social, or personal activities. The diagnosis of this disease is difficult, due to lacking a proper and suited diagnostic laboratory test, besides to its multifaceted symptoms. Numerous factors, including environmental and immunological issues, and a large spectrum of CFS symptoms, have recently been reported. In this review, we focus on the nutritional intervention in CFS, discussing the many immunological, environmental, and nutritional aspects currently investigated about this disease. Changes in immunoglobulin levels, cytokine profiles and B- and T- cell phenotype and declined cytotoxicity of natural killer cells, are commonly reported features of immune dysregulation in CFS. Also, some nutrient deficiencies (vitamin C, vitamin B complex, sodium, magnesium, zinc, folic acid, l-carnitine, l-tryptophan, essential fatty acids, and coenzyme Q10) appear to be important in the severity and exacerbation of CFS symptoms. This review highlights a far-driven analysis of mineral and vitamin deficiencies among CFS patients.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
42
|
Noda M, Ifuku M, Hossain MS, Katafuchi T. Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome. Front Psychiatry 2018; 9:589. [PMID: 30505285 PMCID: PMC6250825 DOI: 10.3389/fpsyt.2018.00589] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Fatigue is commonly reported in a variety of illnesses and has major impact on quality of life. Chronic fatigue syndrome (CFS) is a debilitating syndrome of unknown etiology. The clinical symptoms include problems in neuroendocrine, autonomic, and immune systems. It is becoming clear that the brain is the central regulator of CFS. For example, neuroinflammation, especially induced by activation of microglia and astrocytes, may play a prominent role in the development of CFS, though little is known about molecular mechanisms. Many possible causes of CFS have been proposed. However, in this mini-review, we summarize evidence for a role for microglia and astrocytes in the onset and the maintenance of immunologically induced CFS. In a model using virus mimicking synthetic double-stranded RNA, infection causes sequential signaling such as increased blood brain barrier (BBB) permeability, microglia/macrophage activation through Toll-like receptor 3 (TLR3) signaling, secretion of IL-1β, upregulation of the serotonin transporter (5-HTT) in astrocytes, reducing extracellular serotonin (5-HT) levels and hence reduced activation of 5-HT1A receptor subtype. Hopefully, drug discovery targeting these pathways may be effective for CFS therapy.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ifuku
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Md Shamim Hossain
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiko Katafuchi
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|