1
|
Miyasako K, Nakashima A, Ishiuchi N, Tanaka Y, Morimoto K, Sasaki K, Nagamatsu S, Matsuda G, Masaki T. Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis. Stem Cells Transl Med 2024; 13:1067-1085. [PMID: 39401338 PMCID: PMC11555481 DOI: 10.1093/stcltm/szae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 11/13/2024] Open
Abstract
Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.
Collapse
Affiliation(s)
- Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Nephrology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Yoshiki Tanaka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Keisuke Morimoto
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Go Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Karimian A, Khoshnazar SM, Kazemi T, Asadi A, Abdolmaleki A. Role of secretomes in cell-free therapeutic strategies in regenerative medicine. Cell Tissue Bank 2024; 25:411-426. [PMID: 36725732 DOI: 10.1007/s10561-023-10073-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
After an injury, peripheral nervous system neurons have the potential to rebuild their axons by generating a complicated activation response. Signals from the damaged axon are required for this genetic transition to occur. Schwann cells (SCs) near a damaged nerve's distal stump also play a role in the local modulation of axonal programs, not only via cell-to-cell contacts but also through secreted signals (the secretome). The secretome is made up of all the proteins that the cell produces, such as cytokines, growth factors, and extracellular vesicles. The released vesicles may carry signaling proteins as well as coding and regulatory RNAs, allowing for multilayer communication. The secretome of SCs is now well understood as being critical for both orchestrating Wallerian degeneration and maintaining axonal regeneration. As a consequence, secretome has emerged as a feasible tissue regeneration alternative to cell therapy. Separate SC secretome components have been used extensively in the lab to promote peripheral nerve regeneration after injury. However, in neurological therapies, the secretome generated by mesenchymal (MSC) or other derived stem cells has been the most often used. In fact, the advantages of cell treatment have been connected to the release of bioactive chemicals and extracellular vesicles, which make up MSCs' secretome.
Collapse
Affiliation(s)
- Aida Karimian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahmineh Kazemi
- Department of Basic Sciences, Faculty of Veterinary Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
3
|
Yang H, Cheong S, He Y, Lu F. Mesenchymal stem cell-based therapy for autoimmune-related fibrotic skin diseases-systemic sclerosis and sclerodermatous graft-versus-host disease. Stem Cell Res Ther 2023; 14:372. [PMID: 38111001 PMCID: PMC10729330 DOI: 10.1186/s13287-023-03543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) and sclerodermatous graft-versus-host disease (Scl-GVHD)-characterized by similar developmental fibrosis, vascular abnormalities, and innate and adaptive immune response, resulting in severe skin fibrosis at the late stage-are chronic autoimmune diseases of connective tissue. The significant immune system dysfunction, distinguishing autoimmune-related fibrosis from mere skin fibrosis, should be a particular focus of treating autoimmune-related fibrosis. Recent research shows that innovative mesenchymal stem cell (MSC)-based therapy, with the capacities of immune regulation, inflammation suppression, oxidation inhibition, and fibrosis restraint, shows great promise in overcoming the disease. MAIN BODY This review of recent studies aims to summarize the therapeutic effect and theoretical mechanisms of MSC-based therapy in treating autoimmune-related fibrotic skin diseases, SSc and Scl-GVHD, providing novel insights and references for further clinical applications. It is noteworthy that the efficacy of MSCs is not reliant on their migration into the skin. Working on the immune system, MSCs can inhibit the chemotaxis and infiltration of immune cells to the skin by down-regulating the expression of skin chemokines and chemokine receptors and reducing the inflammatory and pro-fibrotic mediators. Furthermore, to reduce levels of oxidative stress, MSCs may improve vascular abnormalities, and enhance the antioxidant defenses through inducible nitric oxide synthase, thioredoxin 1, as well as other mediators. The oxidative stress environment does not weaken MSCs and may even strengthen certain functions. Regarding fibrosis, MSCs primarily target the transforming growth factor-β signaling pathway to inhibit fibroblast activation. Here, miRNAs may play a critical role in ECM remodeling. Clinical studies have demonstrated the safety of these approaches, though outcomes have varied, possibly owing to the heterogeneity of MSCs, the disorders themselves, and other factors. Nevertheless, the research clearly reveals the immense potential of MSCs in treating autoimmune-related fibrotic skin diseases. CONCLUSION The application of MSCs presents a promising approach for treating autoimmune-related fibrotic skin diseases: SSc and Scl-GVHD. Therapies involving MSCs and MSC extracellular vesicles have been found to operate through three primary mechanisms: rebalancing the immune and inflammatory disorders, resisting oxidant stress, and inhibiting overactivated fibrosis (including fibroblast activation and ECM remodeling). However, the effectiveness of these interventions requires further validation through extensive clinical investigations, particularly randomized control trials and phase III/IV clinical trials. Additionally, the hypothetical mechanism underlying these therapies could be elucidated through further research.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Echalar B, Dostalova D, Palacka K, Javorkova E, Hermankova B, Cervena T, Zajicova A, Holan V, Rossner P. Effects of antimicrobial metal nanoparticles on characteristics and function properties of mouse mesenchymal stem cells. Toxicol In Vitro 2023; 87:105536. [PMID: 36528116 DOI: 10.1016/j.tiv.2022.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles (NPs) have a wide use in various field of industry and in medicine, where they represent a promise for their antimicrobial effects. Simultaneous application of NPs and therapeutic stem cells can speed up tissue regeneration and improve healing process but there is a danger of negative impacts of NPs on stem cells. Therefore, we tested effects of four types of metal antimicrobial NPs on characteristics and function properties of mouse mesenchymal stem cells (MSCs) in vitro. All types of tested NPs, i.e. zinc oxide, silver, copper oxide and titanium dioxide, exerted negative effects on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors by MSCs. However, there were apparent differences in the impact of individual types of NPs on tested characteristics and function properties of MSCs. The results showed that individual types of NPs influence the activity of MSCs, and thus the use of metal NPs during tissue regeneration and in combination with stem cell therapy should be well considered.
Collapse
Affiliation(s)
- Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Dominika Dostalova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Eliska Javorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
5
|
Cheng HY, Anggelia MR, Lin CH, Wei FC. Toward transplantation tolerance with adipose tissue-derived therapeutics. Front Immunol 2023; 14:1111813. [PMID: 37187733 PMCID: PMC10175575 DOI: 10.3389/fimmu.2023.1111813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Solid organ and composite tissue allotransplanation have been widely applied to treat end-stage organ failure and massive tissue defects, respectively. Currently there are a lot of research endeavors focusing on induction of transplantation tolerance, to relieve the burden derived from long-term immunosuppressant uptake. The mesenchymal stromal cells (MSCs) have been demonstrated with potent immunomodulatory capacities and applied as promising cellular therapeutics to promote allograft survival and induce tolerance. As a rich source of adult MSCs, adipose tissue provides additional advantages of easy accessibility and good safety profile. In recent years, the stromal vascular fraction (SVF) isolated from adipose tissues following enzymatic or mechanical processing without in vitro culture and expansion has demonstrated immunomodulatory and proangiogenic properties. Furthermore, the secretome of AD-MSCs has been utilized in transplantation field as a potential "cell-free" therapeutics. This article reviews recent studies that employ these adipose-derived therapeutics, including AD-MSCs, SVF, and secretome, in various aspects of organ and tissue allotransplantation. Most reports validate their efficacies in prolonging allograft survival. Specifically, the SVF and secretome have performed well for graft preservation and pretreatment, potentially through their proangiogenic and antioxidative capacities. In contrast, AD-MSCs were suitable for peri-transplantation immunosuppression. The proper combination of AD-MSCs, lymphodepletion and conventional immunosuppressants could consistently induce donor-specific tolerance to vascularized composite allotransplants (VCA). For each type of transplantation, optimizing the choice of therapeutics, timing, dose, and frequency of administration may be required. Future progress in the application of adipose-derived therapeutics to induce transplantation tolerance will be further benefited by continued research into their mechanisms of action and the development of standardized protocols for isolation methodologies, cell culture, and efficacy evaluation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Hui-Yun Cheng,
| | - Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Skoloudik L, Chrobok V, Laco J, Dedkova J, Diaz Garcia D, Filip S. An Effect of Cyclosporin A in a Treatment of Temporal Bone Defect Using hBM-MSCs. Biomedicines 2022; 10:biomedicines10112918. [PMID: 36428486 PMCID: PMC9687466 DOI: 10.3390/biomedicines10112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background. The treatment of middle ear cholesteatoma requires surgical treatment and the reconstruction of the temporal bone, which represents an ongoing problem. Otologists have focused on the research of materials allowing an airy middle ear and the preservation of hearing function to reconstruct the temporal bone. Methods. This study evaluated the effect of cyclosporin A (CsA) and a combined biomaterial in the healing process of postoperative temporal bone defects in an animal model. Cultured human Bone Marrow Mesenchymal Stromal Cells (hBM-MSCs) were mixed with hydroxyapatite (Cem-Ostetic®), and subsequently applied as a bone substitute after middle ear surgery, showing that the therapeutic potential of hBM-MSCs associated with bone regeneration and replacement is directly influenced by CsA, confirming that it promotes the survival of MSCs in vivo. Results. The therapeutic efficacy of the combination of MSCs with CsA is greater than the sole application of MSCs in a hydroxyapatite carrier. Conclusion. The reconstruction of a temporal bone defect using hBM-MSCs requires an immunosuppressant to improve the results of treatment.
Collapse
Affiliation(s)
- Lukas Skoloudik
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Viktor Chrobok
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jana Dedkova
- Department of Radiology, University Hospital Hradec Kralove, 500 05 Hradec Králové, Czech Republic
| | - Daniel Diaz Garcia
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Faculty of Medicine Hradec Kralove, Charles University, 500 03 Hradec Králové, Czech Republic
- Correspondence: ; Tel.: +420-495-834-618
| |
Collapse
|
7
|
Luo J, Liu S, Lu H, Chen Q, Shi Y. A comprehensive review of microorganism-derived cyclic peptides: Bioactive functions and food safety applications. Compr Rev Food Sci Food Saf 2022; 21:5272-5290. [PMID: 36161470 DOI: 10.1111/1541-4337.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Cyclic peptides possess advanced structural characteristics of stability and play a vital role in medical treatment and agriculture. However, the biological functions of microorganism-derived cyclic peptides (MDCPs) and their applications in food industry were relatively absent. MDCPs are derived from extensive fermented food or soil. In this review, the synthesis approaches and structural characteristics are overviewed, while the interrelationship between bioactivities and functions is emphasized. This review summarizes the bioactivities of MDCPs from in vitro to in vivo, including antimicrobial activities, immune regulation, and antiviral cell activation. Their multiple functions as well as applications during food product processing, packaging, and storage are also comprehensively reviewed. Remarkably, some potential risks and cytotoxicity of MDCPs are also critically discussed. Moreover, future applications of MDCPs in the development of novel food additives and bioengineering materials are organized. Based on this review of native MDCPs, it is noteworthy that expected improvements of synthetic cyclic peptides in bioactive properties present potential valuable applications in future food, including artificial meat.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
The Inability of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells to Survive in Newborn Mice and to Induce Transplantation Tolerance. Stem Cell Rev Rep 2022; 18:2365-2375. [PMID: 35288846 DOI: 10.1007/s12015-022-10363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
An encounter of the developing immune system with an antigen results in the induction of immunological areactivity to this antigen. In the case of transplantation antigens, the application of allogeneic hematopoietic cells induces a state of neonatal transplantation tolerance. This tolerance depends on the establishment of cellular chimerism, when allogeneic cells survive in the neonatally treated recipient. Since mesenchymal stem/stromal cells (MSCs) have been shown to have low immunogenicity and often survive in allogeneic recipients, we attempted to use these cells for induction of transplantation tolerance. Newborn (less than 24 h old) C57BL/6 mice were injected intraperitoneally with 5 × 106 adipose tissue-derived MSCs isolated from allogeneic donors and the fate and survival of these cells were monitored. The impact of MSC application on the proportion of cell populations of the immune system and immunological reactivity was assessed. In addition, the survival of skin allografts in neonatally treated recipients was tested. We found that in vitro expanded MSCs did not survive in neonatal recipients, and the living MSCs were not detected few days after their application. Furthermore, there were no significant changes in the proportion of individual immune cell populations including CD4+ cell lineages, but we detected an apparent shift to the production of Th1 cytokines IL-2 and IFN-γ in neonatally treated mice. However, skin allografts in the MSC-treated recipients were promptly rejected. These results therefore show that in vitro expanded MSCs do not survive in neonatal recipients, but induce a cytokine imbalance without induction of transplantation tolerance.
Collapse
|
9
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
10
|
Janikashvili N, Gérard C, Thébault M, Brazdova A, Boibessot C, Cladière C, Ciudad M, Greigert H, Ouandji S, Ghesquière T, Samson M, Audia S, Saas P, Bonnotte B. Efficiency of human monocyte-derived suppressor cell-based treatment in graft-versus-host disease prevention while preserving graft-versus-leukemia effect. Oncoimmunology 2021; 10:1880046. [PMID: 33659098 PMCID: PMC7899641 DOI: 10.1080/2162402x.2021.1880046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Immunosuppressive cell-based therapy is a recent strategy for controlling Graft-versus-Host Disease (GvHD). Such cells ought to maintain their suppressive function in inflammatory conditions and in the presence of immunosuppressive agents currently used in allogeneic hematopoietic cell transplantation (allo-HCT). Moreover, these therapies should not diminish the benefits of allo-HCT, the Graft-versus-Leukemia (GvL) effect. We have previously reported on a novel subset of human monocyte-derived suppressor cells (HuMoSC) as a prospective approach for controlling GvHD.Objective The objective of this study was to explore the therapeutic relevance of the HuMoSC in clinical conditions. Methods Immune regulatory functions of HuMoSC were assessed in inflammatory conditions and in the presence of immunosuppressants. The therapeutic efficiency of the association of HuMoSC with immunosuppressants was evaluated in an experimental model of GvHD induced by human PBMC in NOD/SCID/IL2-Rγc−/− (NSG) mice. Interestingly, the inhibitory functions of HuMoSC against T lymphocytes and their ability to polarize Treg are preserved, in vitro, in inflammatory environments and are not affected by immunosuppressive agents. In vivo, the association of HuMoSC-based treatment with an immunosuppressive drug showed a synergistic effect for controlling GvHD. Furthermore, HuMoSC control GvHD while preserving GvL effect in a xeno-GvHD conditioned mouse model with cell neoplasm (CAL-1). HuMoSC are generated according to good manufacturing practices (GMP) and we demonstrated that these cells tolerate long-term preservation with unaltered phenotype and function.Conclusion HuMoSC-based therapy represents a promising approach for controlling GvHD and could be quickly implemented in clinical practice.
Collapse
Affiliation(s)
- Nona Janikashvili
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Immunology, Faculty of Medicine, Tbilisi State Medical University (TSMU), Tbilisi, Georgia
| | - Claire Gérard
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Marine Thébault
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Andrea Brazdova
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Clovis Boibessot
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Claudie Cladière
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Marion Ciudad
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Hélène Greigert
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Séthi Ouandji
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France
| | - Thibault Ghesquière
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Maxime Samson
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Sylvain Audia
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| | - Philippe Saas
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Besançon, France
| | - Bernard Bonnotte
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Dijon, France.,Department of Internal Medicine, University Hospital, Dijon, France
| |
Collapse
|
11
|
Holan V, Echalar B, Palacka K, Kossl J, Bohacova P, Krulova M, Brejchova J, Svoboda P, Zajicova A. The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients. Stem Cell Rev Rep 2021; 17:1420-1428. [PMID: 33582958 DOI: 10.1007/s12015-021-10126-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSCs) have the ability to migrate to the site of injury or inflammation, and to contribute to the healing process. Since patients treated with MSCs are often users of analgesic drugs, to relieve their uncomfortable pain associated with the tissue disorder, there is a possibility of negative effects of these drugs on the migration of endogenous and exogenous MSCs. Therefore, we tested the impact of acute and chronic treatment with morphine on the migration and organ distribution of exogenous adipose tissue-derived MSCs in mouse models. Firstly, we showed that the incubation of MSCs with morphine significantly reduced the expression of adhesive molecules CD44 (HCAM), CD54 (ICAM-1) and CD106 (VCAM-1) on MSCs. Using a model of systemic administration of MSCs labeled with vital dye PKH26 and by the application of flow cytometry to detect living CD45-PKH26+ cells, we found a decreased number of labeled MSCs in the lung, spleen and bone marrow, and a significantly increased number of MSCs in the liver of morphine-treated recipients. A skin allograft model was used to study the effects of morphine on the migration of exogenous MSCs to the superficial wound. Intraperitoneally administered MSCs migrated preferentially to the wound site, and this migration was significantly decreased in the morphine-treated recipients. The present results showed that morphine significantly influences the distribution of exogenous MSCs in the body, and decreases their migration to the site of injury.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic. .,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic.
| | - Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Jan Kossl
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Pavla Bohacova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Magdalena Krulova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Jana Brejchova
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Petr Svoboda
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| |
Collapse
|
12
|
Wang X, Qin W, Chen W, Liu H, Zhang D, Zhang X, Li P. Validation of a novel UPLC-HRMS method for human whole-blood cyclosporine and comparison with a CMIA immunoassay. Exp Ther Med 2021; 21:191. [PMID: 33488800 PMCID: PMC7812591 DOI: 10.3892/etm.2021.9623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Therapeutic drug monitoring is an essential tool when managing the therapeutic use of immunosuppressant cyclosporine A (CsA) in cases with solid organ transplantation. In China, the concentration of CsA is primarily measured using immunoassays. However, existing literature recommends mass spectrometry as the current gold standard for the quantitation of CsA. In the present study, it was attempted to develop a novel application to determine CsA concentrations by using ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS). This technique was then compared with a commercially available chemiluminescent microparticle immunoassay (CMIA) and it was investigated how clinical factors may contribute to quantitation differences between the two methods. An UPLC-Orbitrap-MS method was developed to determine CsA concentrations and this method was validated using guidelines put forward by the Food and Drug Administration from the US. In total, 127 blood samples were acquired from patients undergoing kidney transplantation and analyzed by UPLC-HRMS and CMIA assays. The novel method provided sensitive, accurate and precise results. The mean CsA concentration measured by CMIA was significantly higher than that measured by UPLC-HRMS (85.70±48.99 vs. 67.06±34.56 ng/ml, P<0.0001). Passing Bablok analysis yielded a slope of 1.34 (95% CI: 1.22-1.47) and an intercept of -2.54 (95% CI: -10.29-5.52). A group of samples with a higher metabolic ratio (hydroxylated CsA/CsA>1) exhibited larger discrepancies, while a group of samples taken from patients with a longer post-transplantation time (>10 years) featured narrow 95% CIs from -15.32 to 65.69%, as determined by Bland-Altman analysis. In summary, a reliable, accurate and rapid UPLC-HRMS method for CsA analysis was successfully developed. The measurement of CsA by the CMIA assay in renal transplant patients should be further evaluated with a specific focus on positive bias.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Wei Qin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Huifang Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dan Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xianglin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
13
|
Gao C, Wang X, Lu J, Li Z, Jia H, Chen M, Chang Y, Liu Y, Li P, Zhang B, Du X, Qi F. Mesenchymal stem cells transfected with sFgl2 inhibit the acute rejection of heart transplantation in mice by regulating macrophage activation. Stem Cell Res Ther 2020; 11:241. [PMID: 32552823 PMCID: PMC7301524 DOI: 10.1186/s13287-020-01752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have become a promising candidate for cell-based immune therapy for acute rejection (AR) after heart transplantation due to possessing immunomodulatory properties. In this study, we evaluated the efficacy of soluble fibronectin-like protein 2 (sFgl2) overexpressing mesenchymal stem cells (sFgl2-MSCs) in inhibiting AR of heart transplantation in mice by regulating immune tolerance through inducing M2 phenotype macrophage polarization. METHODS AND RESULTS The sFgl2, a novel immunomodulatory factor secreted by regulatory T cells, was transfected into MSCs to enhance their immunosuppressive functions. After being co-cultured for 72 h, the sFgl2-MSCs inhibited M1 polarization whereas promoted M2 of polarization macrophages through STAT1 and NF-κB pathways in vitro. Besides, the sFgl2-MSCs significantly enhanced the migration and phagocytosis ability of macrophages stimulated with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Further, the application potential of sFgl2-MSCs in AR treatment was demonstrated by heterotopic cardiac transplantation in mice. The tissue damage and macrophage infiltration were evaluated by H&E and immunohistochemistry staining, and the secretion of inflammatory cytokines was analyzed by ELISA. The results showed that sFgl2-MSCs injected intravenously were able to locate in the graft, promote the M2 polarization of macrophages in vivo, regulate the local and systemic immune response, significantly protect tissues from damaging, and finally prolonged the survival time of mice heart grafts. CONCLUSION sFgl2-MSCs ameliorate AR of heart transplantation by regulating macrophages, which provides a new idea for the development of anti-AR treatment methods after heart transplantation.
Collapse
Affiliation(s)
- Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xiaodong Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Zhilin Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Haowen Jia
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Minghao Chen
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yuchen Chang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin, 300052, China.
| |
Collapse
|