1
|
Frandsen JR, Yuan Z, Bedi B, Prasla Z, Choi SR, Narayanasamy P, Sadikot RT. PGC-1α activation to enhance macrophage immune function in mycobacterial infections. PLoS One 2025; 20:e0310908. [PMID: 39913377 PMCID: PMC11801632 DOI: 10.1371/journal.pone.0310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/09/2024] [Indexed: 02/09/2025] Open
Abstract
Nontuberculous Mycobacteria (NTM) are a heterogeneous group of environmental microorganisms with distinct human pathogenesis. Their incidence and prevalence are rising worldwide, due in part to elevated antimicrobial resistance which complicates treatment and potential successful outcomes. Although information exists on the clinical significance of NTMs, little is known about host immune response to infection. NTM infections alter macrophage mitochondrial capacity and decrease ATP production, efficient immune response, and bacterial clearance. Transcription factor peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis, influencing metabolism, mitochondrial pathways, and antioxidant response. Mitochondrial transcription factor A (TFAM) is a protein essential for mitochondrial DNA (mtDNA) genome stability, integrity, and metabolism. Both PGC-1α and TFAM regulate mitochondrial biogenesis and activity, and their disruption is linked to inflammatory signaling and altered macrophage function. We show that NTM causes macrophage mitochondrial damage and disrupted bioenergetics. Mechanistically we show that this is related to attenuation of expression of PGC-1α and TFAM in infected macrophages. Importantly, rescuing expression of PGC-1α and TFAM using pharmacologic approaches restored macrophage immune function. Our results suggest that pharmacologic approaches to enhance mitochondrial function provide a novel approach to target macrophage immune function and means to combat NTM infections.
Collapse
Affiliation(s)
- Joel R. Frandsen
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhihong Yuan
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Brahmchetna Bedi
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Zohra Prasla
- Pulmonology and Critical Care Department, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ruxana T. Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
2
|
Xu JW, Chen FF, Qv YH, Sun CC, Zhang D, Guo Z, Wang YJ, Wang JF, Liu T, Dong L, Qi Q. Unleashing AdipoRon's Potential: A Fresh Approach to Tackle Pseudomonas aeruginosa Infections in Bronchiectasis via Sphingosine Metabolism Modulation. J Inflamm Res 2024; 17:7653-7674. [PMID: 39469062 PMCID: PMC11514707 DOI: 10.2147/jir.s483689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose Bronchiectasis patients are prone to Pseudomonas aeruginosa infection due to decreased level of sphingosine in airway. Adiponectin receptor agonist AdipoRon activates the intrinsic ceramidase activity of adiponectin receptor 1 (AdipoR1) and positively regulates sphingosine metabolism. This study aimed to investigate the potential therapeutic benefit of AdipoRon against Pseudomonas aeruginosa infection. Methods A mouse model of Pseudomonas aeruginosa lung infection and a co-culture model of human bronchial epithelial cells with Pseudomonas aeruginosa were established to explore the protective effect of AdipoRon. Liquid chromatography-mass spectrometry was used to detect the effect of AdipoRon on sphingosine level in lung of Pseudomonas aeruginosa-infected mouse models. Results The down-regulation of adiponectin and AdipoR1 in airway of bronchiectasis patients was linked to Pseudomonas aeruginosa infection. By activating AdipoR1, AdipoRon reduced Pseudomonas aeruginosa adherence on bronchial epithelial cells and protected cilia from damage in vitro. With the treatment of AdipoRon, the load of Pseudomonas aeruginosa in lung significantly decreased, and peribronchial inflammatory cell infiltration was lessened in vivo. The reduced level of sphingosine in the airway of Pseudomonas aeruginosa infected mice was replenished by AdipoRon, thus playing a protective role in the airway. Moreover, AdipoRon activated P-AMPKα/PGC1α, inhibited TLR4/P-NF-κB p65, and reduced expression of pro-apoptotic bax. However, the protective effect of AdipoRon on resisting Pseudomonas aeruginosa infection was weakened when AdipoR1 was knocked down. Conclusion AdipoRon protects bronchial epithelial cells and lung by enhancing their resistance to Pseudomonas aeruginosa infection. The mechanism might be modulating sphingosine metabolism and activating P-AMPKα/PGC1α while inhibiting TLR4/P-NF-κB p65.
Collapse
Affiliation(s)
- Jia-wei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Fang-fang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Ying-hui Qv
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Cong-cong Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Dong Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Zhi Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Yu-jiao Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Jun-fei Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Tian Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Qian Qi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| |
Collapse
|
3
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
4
|
Ferreira BL, Ramirez-Moral I, Otto NA, Salomão R, de Vos AF, van der Poll T. The PPAR-γ agonist pioglitazone exerts proinflammatory effects in bronchial epithelial cells during acute Pseudomonas aeruginosa pneumonia. Clin Exp Immunol 2022; 207:370-377. [PMID: 35553637 PMCID: PMC9113127 DOI: 10.1093/cei/uxab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/28/2021] [Accepted: 01/02/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. Peroxisome proliferator-activated receptor (PPAR)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (24 and 1 h) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, and Ccl20) and cytokine genes (Tnfa, Il6, and Cfs3) in bronchial brushes obtained 6 h after infection. This pro-inflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3 genes encoding rate-limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.
Collapse
Affiliation(s)
- Bianca L Ferreira
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Natasja A Otto
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Reinaldo Salomão
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Liu X, Wu Y, Mao C, Shen J, Zhu K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol 2022; 30:761-777. [DOI: 10.1016/j.tim.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
|
6
|
Morgan R, Manfredi C, Easley KF, Watkins LD, Hunt WR, Goudy SL, Sorscher EJ, Koval M, Molina SA. A medium composition containing normal resting glucose that supports differentiation of primary human airway cells. Sci Rep 2022; 12:1540. [PMID: 35087167 PMCID: PMC8795386 DOI: 10.1038/s41598-022-05446-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Primary cells isolated from the human respiratory tract are the state-of-the-art for in vitro airway epithelial cell research. Airway cell isolates require media that support expansion of cells in a basal state to maintain the capacity for differentiation as well as proper cellular function. By contrast, airway cell differentiation at an air-liquid interface (ALI) requires a distinct medium formulation that typically contains high levels of glucose. Here, we expanded and differentiated human basal cells isolated from the nasal and conducting airway to a mature mucociliary epithelial cell layer at ALI using a medium formulation containing normal resting glucose levels. Of note, bronchial epithelial cells expanded and differentiated in normal resting glucose medium showed insulin-stimulated glucose uptake which was inhibited by high glucose concentrations. Normal glucose containing ALI also enabled differentiation of nasal and tracheal cells that showed comparable electrophysiological profiles when assessed for cystic fibrosis transmembrane conductance regulator (CFTR) function and that remained responsive for up to 7 weeks in culture. These data demonstrate that normal glucose containing medium supports differentiation of primary nasal and lung epithelial cells at ALI, is well suited for metabolic studies, and avoids pitfalls associated with exposure to high glucose.
Collapse
Affiliation(s)
- Rachel Morgan
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Candela Manfredi
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Lionel D Watkins
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - William R Hunt
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Steven L Goudy
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric J Sorscher
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael Koval
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Samuel A Molina
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| |
Collapse
|
7
|
Zhang X, Jiang L, Chen H, Wei S, Yao K, Sun X, Yang G, Jiang L, Zhang C, Wang N, Wang Y, Liu X. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress- related PERK pathway in MIN6 cells. Toxicology 2022; 465:153048. [PMID: 34813903 DOI: 10.1016/j.tox.2021.153048] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Acrolein is a typical food and environmental pollutant and a risk factor for diabetes. The primary pathogenesis of diabetes is insulin deficiency and resistance. Ferroptosis is an iron-dependent cell death type, accompanying by lipid peroxide accumulation. Here, 25 μM acrolein-induced ferroptosis is observed in mouse pancreatic β-cell MIN6 cells as indicated by ferroptosis-related indicators, including GPX4 exhaustion, lipid peroxides accumulation, and insulin secretion impairment. Additionally, acrolein-induced ferroptosis could be reversed by Ferrostatin-1. Furthermore, endoplasmic reticulum stress (ER stress) is involved in acrolein-induced ferroptosis. The ER stress inhibits the expression of PPARγ, an essential gene in glucose and lipid metabolism, and facilitates lipid peroxide accumulation, leading to MIN6 cells ferroptosis and dysfunction. Moreover, resveratrol, an antioxidant natural product, may relieve ER stress and upregulate PPARγ expression, thereby inhibiting acrolein-induced ferroptosis. Thus, this study demonstrated a new perspective for the cytotoxic mechanism of acrolein on pancreatic β-cell and the protective effect of resveratrol.
Collapse
Affiliation(s)
- Xinhao Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Liping Jiang
- Preventive Medicine Laboratory, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Huangben Chen
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Sen Wei
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University. No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Kun Yao
- Department of Orthopedics, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiance Sun
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University. No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Guang Yang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Lijie Jiang
- Department of Internal Medicine, The Afliated Zhong Shan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China
| | - Cong Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Ningning Wang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Yan Wang
- Department of Endocrinology, the Second Hospital of Chaoyang, No. 26, Chaoyang Street of the Twin Towers, Chaoyang, 122000, China.
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China.
| |
Collapse
|
8
|
Trouvé P, Férec C, Génin E. The Interplay between the Unfolded Protein Response, Inflammation and Infection in Cystic Fibrosis. Cells 2021; 10:2980. [PMID: 34831204 PMCID: PMC8616505 DOI: 10.3390/cells10112980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
In cystic fibrosis (CF), p.Phe508del is the most frequent mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The p.Phe508del-CFTR protein is retained in the ER and rapidly degraded. This retention likely triggers an atypical Unfolded Protein Response (UPR) involving ATF6, which reduces the expression of p.Phe508del-CFTR. There are still some debates on the role of the UPR in CF: could it be triggered by the accumulation of misfolded CFTR proteins in the endoplasmic reticulum as was proposed for the most common CFTR mutation p.Phe508del? Or, is it the consequence of inflammation and infection that occur in the disease? In this review, we summarize recent findings on UPR in CF and show how infection, inflammation and UPR act together in CF. We propose to rethink their respective role in CF and to consider them as a whole.
Collapse
Affiliation(s)
- Pascal Trouvé
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.F.); (E.G.)
| | | | | |
Collapse
|
9
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|