1
|
Lee F, Shao X, Considine JM, Gao Y(T, Naba A. Time-lapse tryptic digestion: a proteomic approach to improve sequence coverage of extracellular matrix proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645502. [PMID: 40196545 PMCID: PMC11974830 DOI: 10.1101/2025.03.26.645502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The extracellular matrix (ECM) is a complex and dynamic meshwork of proteins providing structural support to cells. It also provides biochemical signals governing cellular processes, including proliferation, adhesion, and migration. Alterations of ECM structure and/or composition have been linked to many pathological processes, including cancer and fibrosis. Over the past decade, mass-spectrometry-based proteomics has become the state-of-the-art method to profile the protein composition of ECMs. However, existing methods do not fully capture the broad dynamic range of protein abundances in the ECM. They also do not permit to achieve the high coverage needed to gain finer biochemical on ECM proteoforms (e.g., isoforms, post-translational modifications) and topographical information critical to better understand ECM protein functions. Here, we present the development of a time-lapsed proteomic pipeline using limited tryptic proteolysis and sequential release of peptides over time. This experimental pipeline was combined with data-independent acquisition mass spectrometry and the assembly of a custom matrisome spectral library to enhance peptide-to-spectrum matching. This pipeline shows superior protein identification, peptide-to-spectrum matching, and significantly increased sequence coverage against standard ECM proteomic pipelines. Exploiting the spatio-temporal resolution of this method, we further demonstrate how time-resolved 3-dimensional peptide mapping can identify protein regions differentially susceptible to trypsin, which may aid in identifying protein-protein interaction sites.
Collapse
Affiliation(s)
- Fred Lee
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - Xinhao Shao
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - James M Considine
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - Yu (Tom) Gao
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, U.S.A
- University of Illinois Cancer Center, Chicago, IL 60612, U.S.A
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
- University of Illinois Cancer Center, Chicago, IL 60612, U.S.A
| |
Collapse
|
2
|
Zhang W, Zhang N, Wu W, Li H, You H, Chen W. Atlas of mildly and highly insoluble matrisome driving liver fibrosis. Front Pharmacol 2024; 15:1435359. [PMID: 39286627 PMCID: PMC11403298 DOI: 10.3389/fphar.2024.1435359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The excessive deposition and cross-linking of core matrisome components typically result in abnormal remodeling of the extracellular matrix (ECM), leading to increased liver stiffness and worsening liver fibrosis. Exploring the biochemical properties of the ECM scaffold can deepen our understanding of the pathological mechanisms driving liver fibrosis and potentially facilitate the identification of therapeutic targets. While traditional sodium dodecyl sulfate (SDS)-based liver decellularization followed by proteomics can uncover the matrisome components within the ECM scaffold, it lacks the ability to reveal physicochemical characteristics like solubility. In our present study, using adult mouse liver as an example, we introduced a novel two-step workflow that combines our previously enhanced SDS (ESDS) decellularization with the conventional SDS method, enabling the identification of matrisome members with mild and/or high solubilities. Through this approach, we visualized the atlas of the mildly and highly insoluble matrisome contents in the adult mouse liver, as well as the regulatory network of highly insoluble matrisome that largely governs liver stiffness. Given the strong correlation between increased matrisome insolubility and heightened ECM stiffness, we believe that this methodology holds promise for future research focused on liver stiffness.
Collapse
Affiliation(s)
- Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenyue Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Li
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research (CIMR), Beijing, China
| |
Collapse
|
3
|
Ayhan S, Dursun A. ELFN1 is a new extracellular matrix (ECM)-associated protein. Life Sci 2024; 352:122900. [PMID: 38986898 DOI: 10.1016/j.lfs.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
AIMS The ELFN1, discovered in 2007, is a single-pass transmembrane protein. Studies conducted thus far to elucidate the function of the Elfn1 have been limited only to animal studies. These studies have reported that ELFN1 is a universal binding partner of metabotropic glutamate receptors (mGluRs) in the central nervous system and its functional deficiency has been associated with the pathogenesis of neurological and neuropsychiatric diseases. In 2021, we described the first disease-associated human ELFN1 pathogenic gene mutation. Severe joint laxity, which was the most striking finding of this new disease and was clearly seen in the patients since early infancy, showed that the ELFN1 may have a possible function in the connective tissue besides the nervous system. Here, we present the first experimental evidence of the extracellular matrix (ECM)-related function of the ELFN1. MATERIALS AND METHODS Primary skin fibroblasts were isolated from the skin biopsies of ELFN1 mutated patients and healthy foreskin donors. For the clinical trial in a dish, in vitro ECM and DEM (decellularized ECM) models were created from skin fibroblasts. All the in vitro models were comparatively characterized and analyzed. KEY FINDINGS The mutation in the ELFN1 signal peptide region of patients resulted in a severe lack of ELFN1 expression and dramatically altered the characteristic morphology and behavior (growth, proliferation, and motility) of fibroblasts. SIGNIFICANCE We propose that ELFN1 is involved in the cell-ECM attachment, and its deficiency is critical enough to cause a loss of cell motility and soft ECM stiffness.
Collapse
Affiliation(s)
- Selda Ayhan
- Department of Pediatrics Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.
| | - Ali Dursun
- Department of Pediatrics Metabolism, Faculty of Medicine, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.
| |
Collapse
|
4
|
Shi L, Deng J, He J, Zhu F, Jin Y, Zhang X, Ren Y, Du X. Integrative transcriptomics and proteomics analysis reveal the protection of Astragaloside IV against myocardial fibrosis by regulating senescence. Eur J Pharmacol 2024; 975:176632. [PMID: 38718959 DOI: 10.1016/j.ejphar.2024.176632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Myocardial fibrosis (MF) is a pivotal pathological process implicated in various cardiovascular diseases, particularly heart failure. Astragaloside IV (AS-IV), a natural compound derived from Astragalus membranaceus, possesses potent cardioprotective properties. However, the precise molecular mechanisms underlying its anti-MF effects, particularly in relation to senescence, remain elusive. Thus, this study aimed to investigate the therapeutic potential and underlying molecular mechanisms of AS-IV in treating ISO-induced MF in mice, employing transcriptomics, proteomics, in vitro, and in vivo experiments. We assessed the positive effects of AS-IV on ISO-induced MF using HE staining, Masson staining, ELISA, immunohistochemical staining, transthoracic echocardiography, transmission electron microscopy, and DHE fluorescence staining. Additionally, we elucidated the regulatory role of AS-IV in MF through comprehensive transcriptomics and proteomics analyses, complemented by Western blotting and RT-qPCR validation of pertinent molecular pathways. Our findings demonstrated that AS-IV treatment markedly attenuated ISO-induced myocardial injury and oxidative stress, concomitantly inhibiting the release of SASPs. Furthermore, integrated transcriptomics and proteomics analyses revealed that the anti-MF mechanism of AS-IV was associated with regulating cellular senescence and the p53 signaling pathway. These results highlight AS-IV exerts its anti-MF effects not only by inhibiting oxidative stress but also by modulating senescence through the p53 signaling pathway.
Collapse
Affiliation(s)
- Lipeng Shi
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Jingwei Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun He
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Feng Zhu
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuxia Jin
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Xi Zhang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yi Ren
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China.
| | - Xuqin Du
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
5
|
Zens B, Fäßler F, Hansen JM, Hauschild R, Datler J, Hodirnau VV, Zheden V, Alanko J, Sixt M, Schur FK. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. J Cell Biol 2024; 223:e202309125. [PMID: 38506714 PMCID: PMC10955043 DOI: 10.1083/jcb.202309125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.
Collapse
Affiliation(s)
- Bettina Zens
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M. Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jonna Alanko
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
6
|
Jacobson KR, Saleh AM, Lipp SN, Tian C, Watson AR, Luetkemeyer CM, Ocken AR, Spencer SL, Kinzer-Ursem TL, Calve S. Extracellular matrix protein composition dynamically changes during murine forelimb development. iScience 2024; 27:108838. [PMID: 38303699 PMCID: PMC10831947 DOI: 10.1016/j.isci.2024.108838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The extracellular matrix (ECM) is an integral part of multicellular organisms, connecting different cell layers and tissue types. During morphogenesis and growth, tissues undergo substantial reorganization. While it is intuitive that the ECM remodels in concert, little is known regarding how matrix composition and organization change during development. Here, we quantified ECM protein dynamics in the murine forelimb during appendicular musculoskeletal morphogenesis (embryonic days 11.5-14.5) using tissue fractionation, bioorthogonal non-canonical amino acid tagging, and mass spectrometry. Our analyses indicated that ECM protein (matrisome) composition in the embryonic forelimb changed as a function of development and growth, was distinct from other developing organs (brain), and was altered in a model of disease (osteogenesis imperfecta murine). Additionally, the tissue distribution for select matrisome was assessed via immunohistochemistry in the wild-type embryonic and postnatal musculoskeletal system. This resource will guide future research investigating the role of the matrisome during complex tissue development.
Collapse
Affiliation(s)
- Kathryn R. Jacobson
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Aya M. Saleh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- The Indiana University Medical Scientist/Engineer Training Program, Indiana University, Indianapolis, IN 46202, USA
| | - Chengzhe Tian
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Research Center for Molecular Medicine (CEMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Audrey R. Watson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Callan M. Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Alexander R. Ocken
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sabrina L. Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Tamara L. Kinzer-Ursem
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Calve
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Lin J, Chen J, Huang C. Systematic identification of key basement membrane related genes as potential new biomarkers in Alzheimer's disease. Clin Neurol Neurosurg 2024; 236:108094. [PMID: 38154381 DOI: 10.1016/j.clineuro.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE The study aimed to identify biomarkers associated with basement membranes (BMs)-related genes (BMGs) in Alzheimer's disease (AD) and investigate their potential role in the progression of AD pathology. METHODS Gene expression profiles were retrieved from Gene Expression Omnibus database. 222 human BMGs were collected from the relevant literature. Subsequently, the differentially expressed BMGs (DE-BMGs) were filtered, and the key DE-BMGs were identified using weighted gene correlation network analysis (WGCNA) and two machine learning algorithms. The expression levels, diagnostic values, clinical significances, enrichment analyses and regulatory networks of these candidate biomarkers were further examined. RESULTS A total of 44 DE-BMGs were acquired by comparing AD temporal cortex with nondemented controls. Using WGCNA and machine learning, versiscan (VCAN), tissue inhibitor of metalloproteinase 1 (TIMP1), structural maintenance of chromosome 3 (SMC3), and laminin β2 (LAMB2) were ultimately identified as candidate biomarkers, and they were verified in a murine model. These biomarkers had high diagnostic value (area under the curve (AUC)>0.8). The diagnostic value of the four gene combination was then evaluated in multiple databases, yielding AUCs ranging from 0.688 to 1. Furthermore, a meaningful correlation between these biomarkers and AD pathology progression was observed. Finally, comprehensive analyses involving Hallmark pathway enrichment, immune cell infiltration analysis, transcriptional regulatory, and competitive endogenous RNA networks indicated that key DE-BMGs closely correlated with oxidative stress and immune dysfunction. CONCLUSION Our study comprehensively identified four candidate BMGs and their combination model that play a crucial part in the diagnosis and pathogenesis of AD.
Collapse
Affiliation(s)
- Jia'xing Lin
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Chen
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Dunne J, Griner J, Romeo M, Macdonald J, Krieg C, Lim M, Yagnik G, Rothschild KJ, Drake RR, Mehta AS, Angel PM. Evaluation of antibody-based single cell type imaging techniques coupled to multiplexed imaging of N-glycans and collagen peptides by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Bioanal Chem 2023; 415:7011-7024. [PMID: 37843548 PMCID: PMC10632234 DOI: 10.1007/s00216-023-04983-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.
Collapse
Affiliation(s)
- Jaclyn Dunne
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Jake Griner
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Martin Romeo
- Translational Science Laboratory, Hollings Cancer Center, Charleston, SC, 29425, USA
| | - Jade Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mark Lim
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
| | - Gargey Yagnik
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
| | - Kenneth J Rothschild
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
- Department of Physics and Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Wang T, Huang Q, Rao Z, Liu F, Su X, Zhai X, Ma J, Liang Y, Quan D, Liao G, Bai Y, Zhang S. Injectable decellularized extracellular matrix hydrogel promotes salivary gland regeneration via endogenous stem cell recruitment and suppression of fibrogenesis. Acta Biomater 2023; 169:256-272. [PMID: 37557943 DOI: 10.1016/j.actbio.2023.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Saliva is key to the maintenance of oral homeostasis. However, several forms of salivary gland (SG) disorders, followed by hyposalivation, often result in dental caries, oral infection, and decreased taste, which dramatically affect the quality of patient's life. Functional biomaterials hold great potential for tissue regeneration in damaged or dysfunctional SGs and maintaining the good health of oral cavity. Herein, we prepared an injectable hydrogel derived from decellularized porcine submandibular glands (pDSG-gel), the material and biological properties of the hydrogel were systematically investigated. First, good biocompatibility and bioactivities of the pDSG-gel were validated in 2D and 3D cultures of primary submandibular gland mesenchymal stem cells (SGMSCs). Especially, the pDSG-gel effectively facilitated SGMSCs migration and recruitment through the activation of PI3K/AKT signaling pathway, suggested by transcriptomic analysis and immunoblotting. Furthermore, proteomic analysis of the pDSG revealed that many extracellular matrix components and secreted factors were preserved, which may contribute to stem cell homing. The recruitment of endogenous SG cells was confirmed in vivo, upon in situ injection of the pDSG-gel into the defective SGs in rats. Acinar and ductal-like structures were evident in the injury sites after pDSG-gel treatment, suggesting the reconstruction of functional SG units. Meanwhile, histological characterizations showed that the administration of the pDSG-gel also significantly suppressed fibrogenesis within the injured SG tissues. Taken together, this tissue-specific hydrogel provides a pro-regenerative microenvironment for endogenous SG regeneration and holds great promise as a powerful and bioactive material for future treatments of SG diseases. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrix (dECM) has been acknowledged as one of the most promising biomaterials that recapitalizes the microenvironment in native tissues. Hydrogel derived from the dECM allows in situ administration for tissue repair. Herein, a tissue-specific dECM hydrogel derived from porcine salivary glands (pDSG-gel) was successfully prepared and developed for functional reconstruction of defective salivary gland (SG) tissues. The pDSG-gel effectively accelerated endogenous SG stem cells migration and their recruitment for acinar- and ductal-like regeneration, which was attributed to the activation of PI3K/AKT signaling pathway. Additionally, the introduction of the pDSG-gel resulted in highly suppressed fibrogenesis in the defective tissues. These outcomes indicated that the pDSG-gel holds great potential in clinical translation toward SG regeneration through cell-free treatments.
Collapse
Affiliation(s)
- Tao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Qiting Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xinyun Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xuefan Zhai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jingxin Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
12
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Titmarsh HF, von Kriegsheim A, Wills JC, O’Connor RA, Dhaliwal K, Frame MC, Pattle SB, Dorward DA, Byron A, Akram AR. Quantitative proteomics identifies tumour matrisome signatures in patients with non-small cell lung cancer. Front Oncol 2023; 13:1194515. [PMID: 37397358 PMCID: PMC10313119 DOI: 10.3389/fonc.2023.1194515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.
Collapse
Affiliation(s)
- Helen F. Titmarsh
- The EPSRC and MRC Centre for Doctoral Training in Optical Medical Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C. Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Margaret C. Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel B. Pattle
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Dorward
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
15
|
Chen W, Zhang W, Zhang N, Chen S, Huang T, You H. Pipeline for precise insoluble matrisome coverage in tissue extracellular matrices. Front Bioeng Biotechnol 2023; 11:1135936. [PMID: 37284237 PMCID: PMC10239929 DOI: 10.3389/fbioe.2023.1135936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The extracellular matrix (ECM) is assembled by hundreds of proteins orchestrating tissue patterning and surrounding cell fates via the mechanical-biochemical feedback loop. Aberrant ECM protein production or assembly usually creates pathological niches eliciting lesions that mainly involve fibrogenesis and carcinogenesis. Yet, our current knowledge about the pathophysiological ECM compositions and alterations in healthy or diseased tissues is limited since the methodology for precise insoluble matrisome coverage in the ECM is a "bottleneck." Our current study proposes an enhanced sodium dodecyl sulfonate (E-SDS) workflow for thorough tissue decellularization and an intact pipeline for the accurate identification and quantification of highly insoluble ECM matrisome proteins. We tested this pipeline in nine mouse organs and highlighted the full landscape of insoluble matrisome proteins in the decellularized ECM (dECM) scaffolds. Typical experimental validations and mass spectrometry (MS) analysis confirmed very little contamination of cellular debris remaining in the dECM scaffolds. Our current study will provide a low-cost, simple, reliable, and effective pipeline for tissue insoluble matrisome analysis in the quest to comprehend ECM discovery proteomic studies.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
16
|
Statzer C, Luthria K, Sharma A, Kann MG, Ewald CY. The Human Extracellular Matrix Diseasome Reveals Genotype-Phenotype Associations with Clinical Implications for Age-Related Diseases. Biomedicines 2023; 11:1212. [PMID: 37189830 PMCID: PMC10135578 DOI: 10.3390/biomedicines11041212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The extracellular matrix (ECM) is earning an increasingly relevant role in many disease states and aging. The analysis of these disease states is possible with the GWAS and PheWAS methodologies, and through our analysis, we aimed to explore the relationships between polymorphisms in the compendium of ECM genes (i.e., matrisome genes) in various disease states. A significant contribution on the part of ECM polymorphisms is evident in various types of disease, particularly those in the core-matrisome genes. Our results confirm previous links to connective-tissue disorders but also unearth new and underexplored relationships with neurological, psychiatric, and age-related disease states. Through our analysis of the drug indications for gene-disease relationships, we identify numerous targets that may be repurposed for age-related pathologies. The identification of ECM polymorphisms and their contributions to disease will play an integral role in future therapeutic developments, drug repurposing, precision medicine, and personalized care.
Collapse
Affiliation(s)
- Cyril Statzer
- Department of Health Sciences and Technology, Institute of Translational Medicine, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, CH-8603 Zurich, Switzerland; (C.S.); (A.S.)
| | - Karan Luthria
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Arastu Sharma
- Department of Health Sciences and Technology, Institute of Translational Medicine, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, CH-8603 Zurich, Switzerland; (C.S.); (A.S.)
| | - Maricel G. Kann
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Collin Y. Ewald
- Department of Health Sciences and Technology, Institute of Translational Medicine, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, CH-8603 Zurich, Switzerland; (C.S.); (A.S.)
| |
Collapse
|
17
|
Ha BG, Jang YJ, Lee E, Kim BG, Myung K, Sun W, Jeong SJ. Isolation and identification of extracellular matrix proteins from oil-based CASPERized mouse brains for matrisomal analysis. Heliyon 2023; 9:e14777. [PMID: 37025807 PMCID: PMC10070542 DOI: 10.1016/j.heliyon.2023.e14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The extracellular matrix (ECM) components present within all tissues and organs help to maintain the cytoskeletal architecture and tissue morphology. Although the ECM plays a role in cellular events and signaling pathways, it has not been well studied due its insolubility and complexity. Brain tissue has a higher cell density and weaker mechanical strength than other tissues in the body. When removing cells using a general decellularization method to produce scaffolds and obtain ECM proteins, various problems must be considered because tissues are easily damaged. To retain the brain shape and ECM components, we performed decellularization in combination with polymerization. We immersed mouse brains in oil for polymerization and decellularization via O-CASPER (Oil-based Clinically and Experimentally Applicable Acellular Tissue Scaffold Production for Tissue Engineering and Regenerative Medicine) and then isolated ECM components using sequential matrisome preparation reagents (SMPRs), namely, RIPA, PNGase F, and concanavalin A. Adult mouse brains were preserved with our decellularization method. Western blot and LC-MS/MS analyses revealed that ECM components, including collagen and laminin, were isolated efficiently from decellularized mouse brains using SMPRs. Our method will be useful to obtain matrisomal data and perform functional studies using adult mouse brains and other tissues.
Collapse
Affiliation(s)
- Byung Geun Ha
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Yu-Jin Jang
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - EunSoo Lee
- Fluorescence Core Imaging Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sung-Jin Jeong
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Corresponding author.Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
18
|
Salamito M, Gillet B, Syx D, Vaganay E, Malbouyres M, Cerutti C, Tissot N, Exbrayat-Héritier C, Perez P, Jones C, Hughes S, Malfait F, Haydont V, Jäger S, Ruggiero F. NRF2 Shortage in Human Skin Fibroblasts Dysregulates Matrisome Gene Expression and Affects Collagen Fibrillogenesis. J Invest Dermatol 2023; 143:386-397.e12. [PMID: 38487918 DOI: 10.1016/j.jid.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
NRF2 is a master regulator of the antioxidative response that was recently proposed as a potential regulator of extracellular matrix (ECM) gene expression. Fibroblasts are major ECM producers in all connective tissues, including the dermis. A better understanding of NRF2-mediated ECM regulation in skin fibroblasts is thus of great interest for skin homeostasis maintenance and aging protection. In this study, we investigate the impact of NRF2 downregulation on matrisome gene expression and ECM deposits in human primary dermal fibroblasts. RNA-sequencing‒based transcriptome analysis of NRF2 silenced dermal fibroblasts shows that ECM genes are the most regulated gene sets, highlighting the relevance of the NRF2-mediated matrisome program in these cells. Using complementary light and electron microscopy methods, we show that NRF2 deprivation in dermal fibroblasts results in reduced collagen I biosynthesis and impacts collagen fibril deposition. Moreover, we identify ZNF469, a putative transcriptional regulator of collagen biosynthesis, as a target of NRF2. Both ZNF469 silenced fibroblasts and fibroblasts derived from Brittle Corneal Syndrome patients carrying variants in ZNF469 gene show reduced collagen I gene expression. Our study shows that NRF2 orchestrates matrisome expression in human skin fibroblasts through direct or indirect transcriptional mechanisms that could be prioritized to target dermal ECM homeostasis in health and disease.
Collapse
Affiliation(s)
- Mélanie Salamito
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France; L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Benjamin Gillet
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Delfien Syx
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Elisabeth Vaganay
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Marilyne Malbouyres
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine Cerutti
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | | | - Chloé Exbrayat-Héritier
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Sandrine Hughes
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Fransiska Malfait
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Sibylle Jäger
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Florence Ruggiero
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
19
|
Tumor decellularization reveals proteomic and mechanical characteristics of the extracellular matrix of primary liver cancer. BIOMATERIALS ADVANCES 2023; 146:213289. [PMID: 36724550 DOI: 10.1016/j.bioadv.2023.213289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Tumor initiation and progression are critically dependent on interaction of cancer cells with their cellular and extracellular microenvironment. Alterations in the composition, integrity, and mechanical properties of the extracellular matrix (ECM) dictate tumor processes including cell proliferation, migration, and invasion. Also in primary liver cancer, consisting of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the dysregulation of the extracellular environment by liver fibrosis and tumor desmoplasia is pertinent. Yet, the exact changes occurring in liver cancer ECM remain uncharacterized and underlying tumor-promoting mechanisms remain largely unknown. Herein, an integrative molecular and mechanical approach is used to extensively characterize the ECM of HCC and CCA tumors by utilizing an optimized decellularization technique. We identified a myriad of proteins in both tumor and adjacent liver tissue, uncovering distinct malignancy-related ECM signatures. The resolution of this approach unveiled additional ECM-related proteins compared to large liver cancer transcriptomic datasets. The differences in ECM protein composition resulted in divergent mechanical properties on a macro- and micro-scale that are tumor-type specific. Furthermore, the decellularized tumor ECM was employed to create a tumor-specific hydrogel that supports patient-derived tumor organoids, which provides a new avenue for personalized medicine applications. Taken together, this study contributes to a better understanding of alterations to composition, stiffness, and collagen alignment of the tumor ECM that occur during liver cancer development.
Collapse
|
20
|
Rende U, Ahn SB, Adhikari S, Moh ESX, Pollock CA, Saad S, Guller A. Deciphering the Kidney Matrisome: Identification and Quantification of Renal Extracellular Matrix Proteins in Healthy Mice. Int J Mol Sci 2023; 24:ijms24032827. [PMID: 36769148 PMCID: PMC9917693 DOI: 10.3390/ijms24032827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Precise characterization of a tissue's extracellular matrix (ECM) protein composition (matrisome) is essential for biomedicine. However, ECM protein extraction that requires organ-specific optimization is still a major limiting factor in matrisome studies. In particular, the matrisome of mouse kidneys is still understudied, despite mouse models being crucial for renal research. Here, we comprehensively characterized the matrisome of kidneys in healthy C57BL/6 mice using two ECM extraction methods in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), protein identification, and label-free quantification (LFQ) using MaxQuant. We identified 113 matrisome proteins, including 22 proteins that have not been previously listed in the Matrisome Database. Depending on the extraction approach, the core matrisome (structural proteins) comprised 45% or 73% of kidney ECM proteins, and was dominated by glycoproteins, followed by collagens and proteoglycans. Among matrisome-associated proteins, ECM regulators had the highest LFQ intensities, followed by ECM-affiliated proteins and secreted factors. The identified kidney ECM proteins were primarily involved in cellular, developmental and metabolic processes, as well as in molecular binding and regulation of catalytic and structural molecules' activity. We also performed in silico comparative analysis of the kidney matrisome composition in humans and mice based on publicly available data. These results contribute to the first reference database for the mouse renal matrisome.
Collapse
Affiliation(s)
- Umut Rende
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Subash Adhikari
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Edward S. X. Moh
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol A. Pollock
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Anna Guller
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
21
|
Pomerleau V, Nicolas VR, Jurkovic CM, Faucheux N, Lauzon MA, Boisvert FM, Perreault N. FOXL1+ Telocytes in mouse colon orchestrate extracellular matrix biodynamics and wound repair resolution. J Proteomics 2023; 271:104755. [PMID: 36272709 DOI: 10.1016/j.jprot.2022.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Recent studies have identified FoxL1+-telocytes (TCFoxL1+) as key players in gut epithelial-mesenchymal interactions which can determine the colonic microenvironment. Bone morphogenetic protein signaling disruption in TCFoxL1+ alters the physical and cellular microenvironment and leads to colon pathophysiology. This suggests a role for TCFoxL1+ in stromagenesis, but it is hard to identify the specific contribution of TCFoxL1+ when analyzing whole tissue profiling studies. We performed ex vivo deconstruction of control and BmpR1a△FoxL1+ colon samples, isolated the mesenchyme-enriched fractions, and determined the protein composition of the in vivo extracellular matrix (ECM) to analyze microenvironment variation. Matrisomic analysis of mesenchyme fractions revealed modulations in ECM proteins with functions associated with innate immunity, epithelial wound healing, and the collagen network. These results show that TCFoxL1+ is critical in orchestrating the biodynamics of the colon ECM. TCFoxL1+ disfunction reprograms the gut's microenvironment and drives the intestinal epithelium toward colonic pathologies. SIGNIFICANCE: In this study, the method that was elected to isolate ECM proteins might not encompass the full extent of ECM proteins in a tissue, due to the protocol chosen, as this protocol by Naba et al., targets more the insoluble part of the matrisome and eliminates the more soluble components in the first steps. However, this ECM-enrichment strategy represents an improvement and interesting avenue to study ECM proteins in the colon compared to total tissue analysis with a background of abundant cellular protein. Thus, the matrisomic approach presented in this study, and its target validation delivered a broader evaluation of the matrix remodeling occurring in the colonic sub-epithelial mesenchyme of the BmpR1a△FoxL1+ mouse model.
Collapse
Affiliation(s)
- Véronique Pomerleau
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vilcy Reyes Nicolas
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Carla-Marie Jurkovic
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Faucheux
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc-Antoine Lauzon
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - François-Michel Boisvert
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Perreault
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
22
|
Alfonso AB, Pomerleau V, Nicolás VR, Raisch J, Jurkovic CM, Boisvert FM, Perreault N. Comprehensive Profiling of Early Neoplastic Gastric Microenvironment Modifications and Biodynamics in Impaired BMP-Signaling FoxL1 +-Telocytes. Biomedicines 2022; 11:biomedicines11010019. [PMID: 36672527 PMCID: PMC9856000 DOI: 10.3390/biomedicines11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
FoxL1+telocytes (TCFoxL1+) are novel gastrointestinal subepithelial cells that form a communication axis between the mesenchyme and epithelium. TCFoxL1+ are strategically positioned to be key contributors to the microenvironment through production and secretion of growth factors and extracellular matrix (ECM) proteins. In recent years, the alteration of the bone morphogenetic protein (BMP) signaling in TCFoxL1+ was demonstrated to trigger a toxic microenvironment with ECM remodeling that leads to the development of pre-neoplastic gastric lesions. However, a comprehensive analysis of variations in the ECM composition and its associated proteins in gastric neoplasia linked to TCFoxL1+ dysregulation has never been performed. This study provides a better understanding of how TCFoxL1+ defective BMP signaling participates in the gastric pre-neoplastic microenvironment. Using a proteomic approach, we determined the changes in the complete matrisome of BmpR1a△FoxL1+ and control mice, both in total antrum as well as in isolated mesenchyme-enriched antrum fractions. Comparative proteomic analysis revealed that the deconstruction of the gastric antrum led to a more comprehensive analysis of the ECM fraction of gastric tissues microenvironment. These results show that TCFoxL1+ are key members of the mesenchymal cell population and actively participate in the establishment of the matrisomic fraction of the microenvironment, thus influencing epithelial cell behavior.
Collapse
|
23
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
24
|
Shao X, Gomez CD, Kapoor N, Considine JM, Grams C, Gao Y(T, Naba A. MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucleic Acids Res 2022; 51:D1519-D1530. [PMID: 36399478 PMCID: PMC9825471 DOI: 10.1093/nar/gkac1009] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of proteins that constitutes the scaffold organizing cells, tissues, and organs. Over the past decade, mass-spectrometry-based proteomics has become the method of choice to profile the composition of the ECM, or the matrisome, of tissues. To assist non-specialists with the reuse of ECM proteomic datasets, we released MatrisomeDB (https://matrisomedb.org) in 2020. Here, we report the expansion of the database to include 25 new curated studies on the ECM of 24 new tissues in addition to datasets on tissues previously included, more than doubling the size of the original database and achieving near-complete coverage of the in-silico predicted matrisome. We further enhanced data visualization by maps of peptides and post-translational-modifications detected onto domain-based representations and 3D structures of ECM proteins. We also referenced external resources to facilitate the design of targeted mass spectrometry assays. Last, we implemented an abstract-mining tool that generates an enrichment word cloud from abstracts of studies in which a queried protein is found with higher confidence and higher abundance relative to other studies in MatrisomeDB.
Collapse
Affiliation(s)
- Xinhao Shao
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Clarissa D Gomez
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nandini Kapoor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James M Considine
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher Grams
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yu (Tom) Gao
- Correspondence may also be addressed to Dr. Yu (Tom) Gao. Tel: +1 312 996 8087;
| | - Alexandra Naba
- To whom correspondence should be addressed. Tel: +1 312 355 5417;
| |
Collapse
|
25
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
26
|
He S, Zhou X, Yang G, Zhou Z, Zhang Y, Shao X, Liang T, Lv N, Chen J, Qian Z. Proteomic comparison between physiological degeneration and needle puncture model of disc generation disease. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2920-2934. [PMID: 35842490 DOI: 10.1007/s00586-022-07284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The completeness of the intervertebral disc proteome is fundamental to the integrity and functionality of the intervertebral disc. METHODS The 20 experimental rats were placed into two groups randomly, normal group (NG) and acupuncture pathological degeneration group-2 weeks (APDG-2w). The ten 24-month-old rats were grouped into physiological degeneration group (PDG). Magnetic resonance imaging, X-ray examination, histological staining (hematoxylin & eosin, safranin-O cartilage, and alcian blue staining), and immunohistochemical examination were carried out for assessing the degree of disc degradation. Intervertebral disc was collected, and protein composition was determined by LC- MS, followed by bioinformatic analysis including significance analysis, subcellular localization prediction, protein domain prediction, GO function and KEGG pathway analysis, and protein interaction network construction. LC-PRM was done for protein quantification. RESULTS Physiological degeneration and especially needle puncture decreased T2 signal intensity and intervertebral disc height. Results from hematoxylin & eosin, safranin-O, and alcian blue staining revealed that the annulus fibrosus apparently showed the wavy and collapsed fibrocartilage lamellas in APDG-2w and PDG groups. The contents of the nucleus pulposus were decreased in physiological degeneration group and APDG-2w group compared with NG. Results from immunohistochemical analysis suggested the degeneration of intervertebral disc and inflammation in APDG-2w and PDG groups. The protein composition and expression between needle puncture rat models and the physiological degeneration group showed significant difference. CONCLUSIONS Our studies produced point-reference datasets of normal rats, physiological degeneration rats, and needle puncture rat models, which is beneficial to subsequent pathological studies. There is differential expression of protein expression in degenerative discs with aging and acupuncture, which may be used as a potential discriminating index for different intervertebral degenerations.
Collapse
Affiliation(s)
- Shuangjun He
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinfeng Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Guotao Yang
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yijian Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xiaofeng Shao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ting Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Nanning Lv
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, 41 Hailian Street, Lianyungang, Jiangsu, China.
| | - Jianhong Chen
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Xinmin Road 2, Danyang, Zhenjiang, 212300, Jiangsu, China.
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
27
|
A pan-cancer analysis of matrisome proteins reveals CTHRC1 and a related network as major ECM regulators across cancers. PLoS One 2022; 17:e0270063. [PMID: 36190948 PMCID: PMC9529084 DOI: 10.1371/journal.pone.0270063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
The extracellular matrix in the tumour microenvironment can regulate cancer cell growth and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the top 5% of matrisome genes with amplifications or deletions in their copy number, that affect their expression and cancer survival. A similar analysis of matrisome genes in individual cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen synthesis, was identified as the most prominently upregulated matrisome gene of interest across cancers. Differential gene expression analysis identified 19 genes whose expression is increased with CTHRC1. STRING analysis of these genes classified them as ‘extracellular’, involved most prominently in ECM organization and cell adhesion. KEGG analysis showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect survival across cancers. This could in part be mediated by their overlapping roles in regulating ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour samples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further supporting the need to evaluate their crosstalk in cancers.
Collapse
|
28
|
Whitehead KM, Hendricks HKL, Cakir SN, de Castro Brás LE. ECM roles and biomechanics in cardiac tissue decellularization. Am J Physiol Heart Circ Physiol 2022; 323:H585-H596. [PMID: 35960635 PMCID: PMC9467473 DOI: 10.1152/ajpheart.00372.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Natural biomaterials hold enormous potential for tissue regeneration. The rapid advance of several tissue-engineered biomaterials, such as natural and synthetic polymer-based scaffolds, has led to widespread application of these materials in the clinic and in research. However, biomaterials can have limited repair capacity; obstacles result from immunogenicity, difficulties in mimicking native microenvironments, and maintaining the mechanical and biochemical (i.e., biomechanical) properties of native organs/tissues. The emergence of decellularized extracellular matrix (ECM)-derived biomaterials provides an attractive solution to overcome these hurdles since decellularized ECM provides a nonimmune environment with native three-dimensional structures and bioactive components. More importantly, decellularized ECM can be generated from the tissue of interest, such as the heart, and keep its native macro- and microstructure and tissue-specific composition. These decellularized cardiac matrices/scaffolds can then be reseeded using cardiac cells, and the resulting recellularized construct is considered an ideal choice for regenerating functional organs/tissues. Nonetheless, the decellularization process must be optimized and depends on tissue type, age, and functional goal. Although most decellularization protocols significantly reduce immunogenicity and deliver a matrix that maintains the tissue macrostructure, suboptimal decellularization can change ECM composition and microstructure, which affects the biomechanical properties of the tissue and consequently changes cell-matrix interactions and organ function. Herein, we review methods of decellularization, with particular emphasis on cardiac tissue, and how they can affect the biomechanics of the tissue, which in turn determines success of reseeding and in vivo viability. Moreover, we review recent developments in decellularized ECM-derived cardiac biomaterials and discuss future perspectives.
Collapse
Affiliation(s)
- Kaitlin M Whitehead
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Hanifah K L Hendricks
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Sirin N Cakir
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
29
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
30
|
Burnum-Johnson KE, Conrads TP, Drake RR, Herr AE, Iyengar R, Kelly RT, Lundberg E, MacCoss MJ, Naba A, Nolan GP, Pevzner PA, Rodland KD, Sechi S, Slavov N, Spraggins JM, Van Eyk JE, Vidal M, Vogel C, Walt DR, Kelleher NL. New Views of Old Proteins: Clarifying the Enigmatic Proteome. Mol Cell Proteomics 2022; 21:100254. [PMID: 35654359 PMCID: PMC9256833 DOI: 10.1016/j.mcpro.2022.100254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
Collapse
Affiliation(s)
- Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Thomas P Conrads
- Inova Women's Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Emma Lundberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, California, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Salvatore Sechi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Jeffrey M Spraggins
- Department of Cell and Developmental Biology, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Institute in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marc Vidal
- Department of Genetics, Harvard University, Cambridge, Massachusetts, USA
| | - Christine Vogel
- New York University Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - David R Walt
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Wyss Institute at Harvard University, Boston, Massachusetts, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
31
|
Thant L, Kaku M, Kakihara Y, Mizukoshi M, Kitami M, Arai M, Kitami K, Kobayashi D, Yoshida Y, Maeda T, Saito I, Uoshima K, Saeki M. Extracellular Matrix-Oriented Proteomic Analysis of Periodontal Ligament Under Mechanical Stress. Front Physiol 2022; 13:899699. [PMID: 35669581 PMCID: PMC9163570 DOI: 10.3389/fphys.2022.899699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
The periodontal ligament (PDL) is a specialized connective tissue that provides structural support to the tooth and is crucial for oral functions. The mechanical properties of the PDL are mainly derived from the tissue-specific composition and structural characteristics of the extracellular matrix (ECM). The ECM also plays key roles in determining cell fate in the cellular microenvironment thus crucial in the PDL tissue homeostasis. In the present study, we determined the comprehensive ECM profile of mouse molar PDL using laser microdissection and mass spectrometry-based proteomic analysis with ECM-oriented data curation. Additionally, we evaluated changes in the ECM proteome under mechanical loading using a mouse orthodontic tooth movement (OTM) model and analyzed potential regulatory networks using a bioinformatics approach. Proteomic changes were evaluated in reference to the novel second harmonic generation (SHG)-based fiber characterization. Our ECM-oriented proteomics approach succeeded in illustrating the comprehensive ECM profile of the mouse molar PDL. We revealed the presence of type II collagen in PDL, possibly associated with the load-bearing function upon occlusal force. Mechanical loading induced unique architectural changes in collagen fibers along with dynamic compositional changes in the matrisome profile, particularly involving ECM glycoproteins and matrisome-associated proteins. We identified several unique matrisome proteins which responded to the different modes of mechanical loading in PDL. Notably, the proportion of type VI collagen significantly increased at the mesial side, contributing to collagen fibrogenesis. On the other hand, type XII collagen increased at the PDL-cementum boundary of the distal side. Furthermore, a multifaceted bioinformatics approach illustrated the potential molecular cues, including PDGF signaling, that maintain ECM homeostasis under mechanical loading. Our findings provide fundamental insights into the molecular network underlying ECM homeostasis in PDL, which is vital for clinical diagnosis and development of biomimetic tissue-regeneration strategies.
Collapse
Affiliation(s)
- Lay Thant
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- *Correspondence: Masaru Kaku,
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daiki Kobayashi
- Omics Unit, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
32
|
Kontio J, Soñora VR, Pesola V, Lamba R, Dittmann A, Navarro AD, Koivunen J, Pihlajaniemi T, Izzi V. Analysis of extracellular matrix network dynamics in cancer using the MatriNet database. Matrix Biol 2022; 110:141-150. [DOI: 10.1016/j.matbio.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
33
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
34
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
35
|
Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, Naba A, Aguirre-Ghiso JA, Bravo-Cordero JJ. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. NATURE CANCER 2022; 3:90-107. [PMID: 35121989 PMCID: PMC8818089 DOI: 10.1038/s43018-021-00291-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/21/2021] [Indexed: 04/14/2023]
Abstract
Cancer cells disseminate and seed in distant organs, where they can remain dormant for many years before forming clinically detectable metastases. Here we studied how disseminated tumor cells sense and remodel the extracellular matrix (ECM) to sustain dormancy. ECM proteomics revealed that dormant cancer cells assemble a type III collagen-enriched ECM niche. Tumor-derived type III collagen is required to sustain tumor dormancy, as its disruption restores tumor cell proliferation through DDR1-mediated STAT1 signaling. Second-harmonic generation two-photon microscopy further revealed that the dormancy-to-reactivation transition is accompanied by changes in type III collagen architecture and abundance. Analysis of clinical samples revealed that type III collagen levels were increased in tumors from patients with lymph node-negative head and neck squamous cell carcinoma compared to patients who were positive for lymph node colonization. Our data support the idea that the manipulation of these mechanisms could serve as a barrier to metastasis through disseminated tumor cell dormancy induction.
Collapse
Affiliation(s)
- Julie S Di Martino
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Precision Immunology Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chandrani Mondal
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isra Taha
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Eduardo F Farias
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elana J Fertig
- Departments of Oncology, Applied Mathematics and Statistics and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Precision Immunology Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
AIM in Medical Informatics. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Zhang X, Yang W, Chen K, Zheng T, Guo Z, Peng Y, Yang Z. The potential prognostic values of the ADAMTS-like protein family: an integrative pan-cancer analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1562. [PMID: 34790768 PMCID: PMC8576672 DOI: 10.21037/atm-21-4946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Background A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs (ADAMTS)-like proteins, including ADAMTSL1-6 and papilin, which are part of the mammalian ADAMTS superfamily, appear to be relevant to extracellular matrix function and the regulation of ADAMTS protease activity. Their roles in tumor initiation and progression and regulating the tumor microenvironment (TME) are now recognized. Methods In the present study, a comprehensive investigation of the pan-cancer effects of ADAMTSLs and their associations with patient survival, drug responses, and the TME was performed by integrating The Cancer Genome Atlas (TCGA) data and annotated data resources. Results The expression of ADAMTSL family members was found to be dysregulated in many cancer types. More importantly, their expression was frequently associated with patients’ overall survival (OS), drug responses, and the TME. ADAMTSL1, ADAMTSL4, and ADAMTSL5 were primarily associated with aggressive phenotypes, while PAPLN was more frequently associated with a favorable prognosis. In a non-small cell lung cancer (NSCLC) cohort, Thrombospondin Type 1 Domain Containing 4 (THSD4) (ADAMTSL6) and Papilin (PAPLN) were associated with immune checkpoint inhibitor (ICI) sensitivity in samples from the Gene Expression Omnibus repository (GSE135222). Twenty and 30 proteins related to THSD4 and PAPLN, respectively, were identified through a proteomic analysis of 18 Chinese lung adenocarcinoma patients. Conclusions Our findings extend understandings of the role of the ADAMTSL family in cancers and are a valuable resource on their clinical utility. This article provides insight into the clinical importance of next-generation sequencing technology to identify novel biomarkers for prognosis and investigate therapeutic strategy for clinical benefit.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wendi Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kehong Chen
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Taihao Zheng
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengjun Guo
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Peng
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Respiratory Medicine, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Zhenzhou Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|
39
|
Statzer C, Jongsma E, Liu SX, Dakhovnik A, Wandrey F, Mozharovskyi P, Zülli F, Ewald CY. Youthful and age-related matreotypes predict drugs promoting longevity. Aging Cell 2021; 20:e13441. [PMID: 34346557 PMCID: PMC8441316 DOI: 10.1111/acel.13441] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
The identification and validation of drugs that promote health during aging ("geroprotectors") are key to the retardation or prevention of chronic age-related diseases. Here, we found that most of the established pro-longevity compounds shown to extend lifespan in model organisms also alter extracellular matrix gene expression (i.e., matrisome) in human cell lines. To harness this observation, we used age-stratified human transcriptomes to define the age-related matreotype, which represents the matrisome gene expression pattern associated with age. Using a "youthful" matreotype, we screened in silico for geroprotective drug candidates. To validate drug candidates, we developed a novel tool using prolonged collagen expression as a non-invasive and in-vivo surrogate marker for Caenorhabditis elegans longevity. With this reporter, we were able to eliminate false-positive drug candidates and determine the appropriate dose for extending the lifespan of C. elegans. We improved drug uptake for one of our predicted compounds, genistein, and reconciled previous contradictory reports of its effects on longevity. We identified and validated new compounds, tretinoin, chondroitin sulfate, and hyaluronic acid, for their ability to restore age-related decline of collagen homeostasis and increase lifespan. Thus, our innovative drug screening approach-employing extracellular matrix homeostasis-facilitates the discovery of pharmacological interventions promoting healthy aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Department of Health Sciences and TechnologyInstitute of Translational MedicineEidgenössische Technische Hochschule ZürichSchwerzenbach‐ZürichSwitzerland
| | - Elisabeth Jongsma
- Department of Health Sciences and TechnologyInstitute of Translational MedicineEidgenössische Technische Hochschule ZürichSchwerzenbach‐ZürichSwitzerland
| | - Sean X. Liu
- Department of Health Sciences and TechnologyInstitute of Translational MedicineEidgenössische Technische Hochschule ZürichSchwerzenbach‐ZürichSwitzerland
| | - Alexander Dakhovnik
- Department of Health Sciences and TechnologyInstitute of Translational MedicineEidgenössische Technische Hochschule ZürichSchwerzenbach‐ZürichSwitzerland
| | | | | | - Fred Zülli
- Mibelle Biochemistry, Mibelle AGBuchsSwitzerland
| | - Collin Y. Ewald
- Department of Health Sciences and TechnologyInstitute of Translational MedicineEidgenössische Technische Hochschule ZürichSchwerzenbach‐ZürichSwitzerland
| |
Collapse
|
40
|
Pokhilko A, Brezzo G, Handunnetthi L, Heilig R, Lennon R, Smith C, Allan SM, Granata A, Sinha S, Wang T, Markus HS, Naba A, Fischer R, Van Agtmael T, Horsburgh K, Cader MZ. Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. J Cereb Blood Flow Metab 2021; 41:2423-2438. [PMID: 33730931 PMCID: PMC8392779 DOI: 10.1177/0271678x211004307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gaia Brezzo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Raphael Heilig
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stuart M Allan
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alessandra Granata
- Clinical Neurosciences Department, University of Cambridge, Cambridge, UK
| | | | - Tao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Roman Fischer
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Buravkova L, Larina I, Andreeva E, Grigoriev A. Microgravity Effects on the Matrisome. Cells 2021; 10:2226. [PMID: 34571874 PMCID: PMC8471442 DOI: 10.3390/cells10092226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the "gravisensors" in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth.
Collapse
Affiliation(s)
- Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, 123007 Moscow, Russia; (I.L.); (E.A.); (A.G.)
| | | | | | | |
Collapse
|
42
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials 2021; 276:121020. [PMID: 34280822 DOI: 10.1016/j.biomaterials.2021.121020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Organoids are a new class of biological model systems that have garnered significant interest in the life sciences. When provided with the proper 3D matrix and biochemical factors, stem cells can self-organize and form tissue-specific organoids. Thus far, there has been a substantial effort to identify soluble niche components essential for organoid culture; however, the role of the solid extracellular matrix (ECM) as an essential element of the niche is still largely lacking. In this review, we discuss the importance of the ECM in intestinal, hepatic, and pancreatic organoid culture and how biomaterial-based approaches can be used to probe different ECM properties required for more physiologically and translationally relevant organoid models.
Collapse
Affiliation(s)
- S Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland
| | - N Gjorevski
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - M P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
44
|
Lipp SN, Jacobson KR, Hains DS, Schwarderer AL, Calve S. 3D Mapping Reveals a Complex and Transient Interstitial Matrix During Murine Kidney Development. J Am Soc Nephrol 2021; 32:1649-1665. [PMID: 33875569 PMCID: PMC8425666 DOI: 10.1681/asn.2020081204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/20/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a network of proteins and glycosaminoglycans that provides structural and biochemical cues to cells. In the kidney, the ECM is critical for nephrogenesis; however, the dynamics of ECM composition and how it relates to 3D structure during development is unknown. METHODS Using embryonic day 14.5 (E14.5), E18.5, postnatal day 3 (P3), and adult kidneys, we fractionated proteins based on differential solubilities, performed liquid chromatography-tandem mass spectrometry, and identified changes in ECM protein content (matrisome). Decellularized kidneys were stained for ECM proteins and imaged in 3D using confocal microscopy. RESULTS We observed an increase in interstitial ECM that connects the stromal mesenchyme to the basement membrane (TNXB, COL6A1, COL6A2, COL6A3) between the embryo and adult, and a transient elevation of interstitial matrix proteins (COL5A2, COL12A1, COL26A1, ELN, EMID1, FBN1, LTBP4, THSD4) at perinatal time points. Basement membrane proteins critical for metanephric induction (FRAS1, FREM2) were highest in abundance in the embryo, whereas proteins necessary for integrity of the glomerular basement membrane (COL4A3, COL4A4, COL4A5, LAMB2) were more abundant in the adult. 3D visualization revealed a complex interstitial matrix that dramatically changed over development, including the perinatal formation of fibrillar structures that appear to support the medullary rays. CONCLUSION By correlating 3D ECM spatiotemporal organization with global protein abundance, we revealed novel changes in the interstitial matrix during kidney development. This new information regarding the ECM in developing kidneys offers the potential to inform the design of regenerative scaffolds that can guide nephrogenesis in vitro.
Collapse
Affiliation(s)
- Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Medical Scientist/Engineer Training Program, Indiana University, Indianapolis, Indiana
| | - Kathryn R. Jacobson
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
| | - David S. Hains
- Department of Pediatrics, School of Medicine, Indiana University, Riley Children’s Hospital, Indianapolis, Indiana
| | - Andrew L. Schwarderer
- Department of Pediatrics, School of Medicine, Indiana University, Riley Children’s Hospital, Indianapolis, Indiana
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
45
|
Sacher F, Feregrino C, Tschopp P, Ewald CY. Extracellular matrix gene expression signatures as cell type and cell state identifiers. Matrix Biol Plus 2021; 10:100069. [PMID: 34195598 PMCID: PMC8233473 DOI: 10.1016/j.mbplus.2021.100069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell types and states. Yet whether different functional groups of genes perform better or worse in this process remains largely unexplored. Here we test the core matrisome - that is, all genes coding for structural proteins of the extracellular matrix - for its ability to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data. We show that even though expressed core matrisome genes correspond to less than 2% of an entire cellular transcriptome, their RNA expression levels suffice to recapitulate essential aspects of cell type-specific clustering. Notably, using scRNA-seq data from the embryonic limb, we demonstrate that core matrisome gene expression outperforms random gene subsets of similar sizes and can match and exceed the predictive power of transcription factors. While transcription factor signatures generally perform better in predicting cell types at early stages of chicken and mouse limb development, i.e., when cells are less differentiated, the information content of the core matrisome signature increases in more differentiated cells. Moreover, using cross-species analyses, we show that these cell type-specific signatures are evolutionarily conserved. Our findings suggest that each cell type produces its own unique extracellular matrix, or matreotype, which becomes progressively more refined and cell type-specific as embryonic tissues mature.
Collapse
Affiliation(s)
- Fabio Sacher
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Christian Feregrino
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Patrick Tschopp
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
46
|
Angel PM, Rujchanarong D, Pippin S, Spruill L, Drake R. Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge. Expert Rev Proteomics 2021; 18:423-436. [PMID: 34129411 PMCID: PMC8717608 DOI: 10.1080/14789450.2021.1941893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fibroblasts maintain tissue and organ homeostasis through output of extracellular matrix that affects nearby cell signaling within the stroma. Altered fibroblast signaling contributes to many disease states and extracellular matrix secreted by fibroblasts has been used to stratify patient by outcome, recurrence, and therapeutic resistance. Recent advances in imaging mass spectrometry allow access to single cell fibroblasts and their ECM niche within clinically relevant tissue samples. AREAS COVERED We review biological and technical challenges as well as new solutions to proteomic access of fibroblast expression within the complex tissue microenvironment. Review topics cover conventional proteomic methods for single fibroblast analysis and current approaches to accessing single fibroblast proteomes by imaging mass spectrometry approaches. Strategies to target and evaluate the single cell stroma proteome on the basis of cell signaling are presented. EXPERT OPINION The promise of defining proteomic signatures from fibroblasts and their extracellular matrix niches is the discovery of new disease markers and the ability to refine therapeutic treatments. Several imaging mass spectrometry approaches exist to define the fibroblast in the setting of pathological changes from clinically acquired samples. Continued technology advances are needed to access and understand the stromal proteome and apply testing to the clinic.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| |
Collapse
|
47
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Tartaglia G, Cao Q, Padron ZM, South AP. Impaired Wound Healing, Fibrosis, and Cancer: The Paradigm of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:5104. [PMID: 34065916 PMCID: PMC8151646 DOI: 10.3390/ijms22105104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a devastating skin blistering disease caused by mutations in the gene encoding type VII collagen (C7), leading to epidermal fragility, trauma-induced blistering, and long term, hard-to-heal wounds. Fibrosis develops rapidly in RDEB skin and contributes to both chronic wounds, which emerge after cycles of repetitive wound and scar formation, and squamous cell carcinoma-the single biggest cause of death in this patient group. The molecular pathways disrupted in a broad spectrum of fibrotic disease are also disrupted in RDEB, and squamous cell carcinomas arising in RDEB are thus far molecularly indistinct from other sub-types of aggressive squamous cell carcinoma (SCC). Collectively these data demonstrate RDEB is a model for understanding the molecular basis of both fibrosis and rapidly developing aggressive cancer. A number of studies have shown that RDEB pathogenesis is driven by a radical change in extracellular matrix (ECM) composition and increased transforming growth factor-beta (TGFβ) signaling that is a direct result of C7 loss-of-function in dermal fibroblasts. However, the exact mechanism of how C7 loss results in extensive fibrosis is unclear, particularly how TGFβ signaling is activated and then sustained through complex networks of cell-cell interaction not limited to the traditional fibrotic protagonist, the dermal fibroblast. Continued study of this rare disease will likely yield paradigms relevant to more common pathologies.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Qingqing Cao
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Zachary M. Padron
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew P. South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
49
|
Yazdanpanah G, Jiang Y, Rabiee B, Omidi M, Rosenblatt MI, Shokuhfar T, Pan Y, Naba A, Djalilian AR. Fabrication, Rheological, and Compositional Characterization of Thermoresponsive Hydrogel from Cornea. Tissue Eng Part C Methods 2021; 27:307-321. [PMID: 33813860 DOI: 10.1089/ten.tec.2021.0011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fabricating thermoresponsive hydrogels from decellularized tissues is a trending and promising approach to develop novel biomaterials for tissue engineering and therapeutic purposes. There are differences in the characteristics of the produced hydrogels related to the source tissue as well as the decellularization and solubilization protocols used. Detailed characterization of the hydrogels will support the efforts to optimize their application as biomaterials for tissue engineering and therapeutics. Here, we describe an optimized method for fabricating an in situ thermoresponsive hydrogel from decellularized porcine cornea extracellular matrix (COMatrix), and provide a detailed characterization of its structure, thermoresponsive rheological behavior (heat-induced sol-gel transition), as well as exploring its protein composition using proteomics. COMatrix forms a transparent gel (10-min time to gelation) after in situ curing with heat, characterized by alteration in light absorbance and rheological indexes. The rheological characterization of heat-formed COMatrix gel shows similar behavior to common biomaterials utilized in tissue engineering. The fibrillar structure of COMatrix gel was observed by scanning electron microscopy showing that the density of fibers attenuates in lower concentrations. Mass spectrometry-based proteomic analysis revealed that COMatrix hydrogel is rich in proteins with known regenerative properties such as lumican, keratocan, and laminins in addition to structural collagen proteins (Data is available via ProteomeXchange with identifier PXD020606). COMatrix hydrogel is a naturally driven biomaterial with favorable biomechanical properties and protein content with potential application as a therapeutic biomaterial in ocular regeneration and tissue engineering. Impact statement Fabrication and application of decellularized porcine corneal extracellular matrix is an emerging approach for corneal tissue engineering and regeneration. There are several protocols for decellularization of porcine cornea with various efficiencies. Here, we are presenting an optimized protocol for decellularization of porcine cornea followed by fabrication of a thermoresponsive hydrogel from the decellularized cornea matrix. Moreover, the fabricated hydrogel was rheologically and compositionally characterized as crucial features to be employed for further application of this hydrogel in corneal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Meisam Omidi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Bonet IJM, Green PG, Levine JD. Sexual dimorphism in the nociceptive effects of hyaluronan. Pain 2021; 162:1116-1125. [PMID: 33065736 PMCID: PMC7969372 DOI: 10.1097/j.pain.0000000000002116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT Intradermal administration of low-molecular-weight hyaluronan (LMWH) in the hind paw induced dose-dependent (0.1, 1, or 10 µg) mechanical hyperalgesia of similar magnitude in male and female rats. However, the duration of LMWH hyperalgesia was greater in females. This sexual dimorphism was eliminated by bilateral ovariectomy and by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to the G-protein-coupled estrogen receptor (GPR30) mRNA in females, indicating estrogen dependence. To assess the receptors at which LMWH acts to induce hyperalgesia, LMWH was administered to groups of male and female rats that had been pretreated with ODN antisense (or mismatch) to the mRNA for 1 of 3 hyaluronan receptors, cluster of differentiation 44 (CD44), toll-like receptor 4, or receptor for hyaluronan-mediated motility (RHAMM). Although LMWH-induced hyperalgesia was attenuated in both male and female rats pretreated with ODN antisense for CD44 and toll-like receptor 4 mRNA, RHAMM antisense pretreatment only attenuated LMWH-induced hyperalgesia in males. Oligodeoxynucleotide antisense for RHAMM, however, attenuated LMWH-induced hyperalgesia in female rats treated with ODN antisense to GPR30, as well as in ovariectomized females. Low-molecular-weight hyaluronan-induced hyperalgesia was significantly attenuated by pretreatment with high-molecular-weight hyaluronan (HMWH) in male, but not in female rats. After gonadectomy or treatment with ODN antisense to GPR30 expression in females, HMWH produced similar attenuation of LMWH-induced hyperalgesia to that seen in males. These experiments identify nociceptors at which LMWH acts to produce mechanical hyperalgesia, establishes estrogen dependence in the role of RHAMM in female rats, and establishes estrogen dependence in the inhibition of LMWH-induced hyperalgesia by HMWH.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|