1
|
Luther LAM, Higley SL, Morrison KE. Stress during puberty and adulthood pregnancy impact histone acetylation regulators in the hypothalamus. Neuroscience 2025; 574:152-159. [PMID: 40157635 PMCID: PMC12033071 DOI: 10.1016/j.neuroscience.2025.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Undergoing stressful events during puberty puts women at risk for a variety of negative outcomes, and this risk is heightened if they become pregnant later in life. We previously demonstrated that stress during puberty combined with pregnancy in adulthood led to a blunted response of the hypothalamic-pituitary-adrenal stress axis in humans and mice. We have begun to understand the mechanisms underlying this effect by examining the paraventricular nucleus of the hypothalamus (PVN), a key regulator of the HPA axis. Prior studies uncovered an increase in chromatin openness within the PVN of the at-risk mice, with bioinformatic analyses implicating histone acetylation in this increased openness. Here, we measured the activity of histone acetyltransferase (HATs) and histone deacetylase (HDACs), the writers and erasers of histone acetylation, within the PVN to further characterize how stress during puberty and pregnancy may be interacting to produce a blunted stress response. We found that histone acetylation tone within the PVN is predictive of prior transcriptional and chromatin results. Pregnant, pubertally stressed females had a pro-acetylation tone within the PVN that was driven by decrease in HDAC activity. These findings establish a role for regulators of acetylation in the open chromatin landscape characteristic in the PVN of pregnant, pubertally stressed females. Overall, this study provides insight into the epigenetic mechanisms underlying female-relevant risk for stress dysregulation, a central endophenotype of affective disorders.
Collapse
Affiliation(s)
- Laiklyn A M Luther
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA.
| | - Samantha L Higley
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA.
| | - Kathleen E Morrison
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
Shen Y, Hu Y, Li H, Shen G, Shen Y, Wang Z. CXCL Gene Clusters Regulated by Enhancer-Mediated DNA Looping Alteration in Pancreatic Cancer Cells. J Cell Mol Med 2025; 29:e70538. [PMID: 40194986 PMCID: PMC11975504 DOI: 10.1111/jcmm.70538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Pancreatic cancer is one of the deadliest cancers. Chemokines affect the progression of pancreatic cancer through various mechanisms. Most of the CXC chemokine genes, CC chemokine genes and CX3C chemokine genes are clustered together within a very short region of chromatin. Transcription activity of gene clusters is usually influenced by the chromatin architecture and spatial organisation. Nevertheless, the chromatin-mediated regulatory mechanism on transcription of chemokine gene clusters has never been studied in pancreatic cancer. Herein, we determined that the expression of C-X-C motif chemokine ligand 8 (CXCL8), CXCL6, CXCL4L1, CXCL1, CXCL4, CXCL7, CXCL5, CXCL3 and CXCL2 was up-regulated, whereas CXCL9, CXCL10 and CXCL11 were down-regulated in pancreatic cancer cells compared with normal duct epithelial cells and further uncovered that four enhancer elements showed robust interaction to form DNA looping containing the up-regulated eight CXCL genes, whereas the other enhancer controlled CXCL9, CXCL10 and CXCL11 to form another DNA loop. Furthermore, after these enhancers were respectively destroyed by CRISPR-Cas9, we observed that the interaction with other enhancers was weakened as well as the expression of CXCL gene clusters and the tumour malignancy of pancreatic cancer cells was significantly changed. Taken together, our research exhibits the regulatory mechanism on transcription of CXCL gene clusters via enhance-dependent DNA looping alteration in pancreatic cancer cells.
Collapse
Affiliation(s)
- Yifen Shen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anShaanxiChina
- Central LaboratorySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Yanping Hu
- Department of Molecular PathologyThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouHenanChina
| | - Hua Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health CollegeSuzhouJiangsuChina
| | - Genhai Shen
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Yihang Shen
- Central LaboratorySuzhou Ninth People's HospitalSuzhouJiangsuChina
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Zheng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
3
|
Xie B, Dean A. A Super Enhancer-Derived Enhancer RNA Acts Together with CTCF/Cohesin in Trans to Regulate Erythropoiesis. Genes (Basel) 2025; 16:389. [PMID: 40282349 PMCID: PMC12026470 DOI: 10.3390/genes16040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Enhancer RNAs (eRNAs) function in diverse modes and increasing studies have shown that they play important roles in normal development and disease. However, their role in erythropoiesis is not fully understood. Methods: We analyzed published RNA-seq and Promoter Capture Hi-C data from mouse E14.5 fetal liver cells to identify enhancer RNAs in erythroid cells with long-range interactions. Results: We discovered an erythroid-specific enhancer RNA (CpoxeRNA) transcribed from an enhancer region upstream of Cpox, an enzyme important for heme synthesis. CpoxeRNA is important for erythropoiesis, as the knockdown of CpoxeRNA by shRNA results in impaired enucleation and cell proliferation during terminal differentiation. CpoxeRNA interacts with cohesin and acts both in cis and trans to regulate erythroid genes. Conclusions: we have identified a trans-acting eRNA, CpoxeRNA, as a potential regulator of terminal erythropoiesis.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Crooke PS, Tossberg JT, Aune TM. Increased unedited Alu RNA patterns found in cortex extracellular vesicles in Alzheimer's disease resemble hippocampus vasculature Alu RNA editing patterns but not cortex Alu RNA editing patterns. J Alzheimers Dis 2025; 103:1216-1225. [PMID: 39865681 DOI: 10.1177/13872877241313054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND Endogenous Alu RNAs form double-stranded RNAs recognized by double-stranded RNA sensors and activate IRF and NF-kB transcriptional paths and innate immunity. Deamination of adenosines to inosines by the ADAR family of enzymes, a process termed A-to-I editing, disrupts double-stranded RNA structure and prevents innate immune activation. Innate immune activation is observed in Alzheimer's disease, the most common form of dementia. We have previously reported loss of A-to-I editing in hippocampus vasculature, but no change in cortex or cortex vasculature, associated with Alzheimer's disease. OBJECTIVE Here, we investigated the status of Alu RNA A-to-I editing in cortex extracellular vesicles in Alzheimer's disease. METHODS We used existing RNA-seq data sets and the SPRINT software package to determine levels of Alu RNA A-to-I editing in cortex extracellular vesicles in Alzheimer's disease and control groups and compared these editing profiles to those found in both total cortex and hippocampus vasculature. RESULTS We find substantial loss of Alu A-to-I editing in cortex extracellular vesicles in Alzheimer's disease. By measuring editing patterns on a gene-by-gene basis, we determined that editing patterns in cortex extracellular vesicles resemble editing patterns in hippocampus vasculature rather than total cortex. CONCLUSIONS We conclude that hippocampus vasculature unedited Alu RNAs are packaged in extracellular vesicles, travel to the cortex, deliver their cargo and stimulate innate immunity and alter other basic biological processes contributing to Alzheimer's disease progression.
Collapse
Affiliation(s)
- Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| | - John T Tossberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Wang J, Guan Z, Li W, Gong Y, Wang H, Zhou T, Liu J. The role of H3K27 acetylation in oxygen-glucose deprivation-induced spinal cord injury and potential for neuroprotective therapies. Brain Res Bull 2025; 220:111152. [PMID: 39643249 DOI: 10.1016/j.brainresbull.2024.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Spinal cord injury (SCI) is a debilitating condition that often results in paralysis and lifelong medical challenges. Research has shown that epigenetic modifications, particularly histone acetylation, play a role in neuroprotection following hypoxic-ischemic events in SCI. The objective of this study was to explore the effects of histone H3K27 acetylation, along with its underlying mechanisms, on the tolerance to hypoxia and ischemia in SCI. METHODS This study employed an organotypic spinal cord slice culture model subjected to oxygen-glucose deprivation (OGD). We assessed cell apoptosis and changes in cellular type patterns under these conditions. Following hypoxia and ischemia, we analyzed the expression and distribution of H3K27ac across various nerve cell types. To identify key downstream genes, we integrated ChIP-seq and RNA-seq analyses, investigating molecular mechanisms driving the response to OGD in this model. RESULTS OGD stimulation increased cell apoptosis and induced time-dependent changes in the expression patterns of neurons, astrocytes, microglia, and oligodendrocytes in organotypic spinal cord slices, accompanied by a significant reduction in H3K27ac levels. Integrated ChIP-seq and RNA-seq analyses revealed that H3K27ac downregulation under hypoxic and ischemic conditions contributes to spinal cord damage by promoting neuroinflammation and disrupting gene regulation. Furthermore, we identified key downstream targets, including Apoc1, Spp1, Aff1, Brd4, KCNN3, and Rgma, which may represent promising therapeutic targets for SCI. CONCLUSION Our data underscore the pivotal role of H3K27ac in the organotypic spinal cord slice culture model following OGD exposure, offering promising avenues for neuroprotective therapies via epigenetic-immune regulation.
Collapse
Affiliation(s)
- Jing Wang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Zheng Guan
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Weina Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yu Gong
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Heying Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Jingjie Liu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
6
|
Haseltine WA, Patarca R. The RNA Revolution in the Central Molecular Biology Dogma Evolution. Int J Mol Sci 2024; 25:12695. [PMID: 39684407 DOI: 10.3390/ijms252312695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human genome projects in the 1990s identified about 20,000 protein-coding sequences. We are now in the RNA revolution, propelled by the realization that genes determine phenotype beyond the foundational central molecular biology dogma, stating that inherited linear pieces of DNA are transcribed to RNAs and translated into proteins. Crucially, over 95% of the genome, initially considered junk DNA between protein-coding genes, encodes essential, functionally diverse non-protein-coding RNAs, raising the gene count by at least one order of magnitude. Most inherited phenotype-determining changes in DNA are in regulatory areas that control RNA and regulatory sequences. RNAs can directly or indirectly determine phenotypes by regulating protein and RNA function, transferring information within and between organisms, and generating DNA. RNAs also exhibit high structural, functional, and biomolecular interaction plasticity and are modified via editing, methylation, glycosylation, and other mechanisms, which bestow them with diverse intra- and extracellular functions without altering the underlying DNA. RNA is, therefore, currently considered the primary determinant of cellular to populational functional diversity, disease-linked and biomolecular structural variations, and cell function regulation. As demonstrated by RNA-based coronavirus vaccines' success, RNA technology is transforming medicine, agriculture, and industry, as did the advent of recombinant DNA technology in the 1980s.
Collapse
Affiliation(s)
- William A Haseltine
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - Roberto Patarca
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
7
|
Lu Y, Gan L, Di S, Nie F, Shi H, Wang R, Yang F, Qin W, Wen W. The role of phase separation in RNA modification: both cause and effect. Int J Biol Macromol 2024; 280:135907. [PMID: 39322163 DOI: 10.1016/j.ijbiomac.2024.135907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Phase separation is a critical mechanism for partitioning cellular functions by specific aggregation of biological macromolecules. Recent studies have found that phase separation is widely contributed in various biological functions, particularly in RNA related processes. Over 170 different post-transcriptional modifications occur in RNA, which is considered to be one of the most important physiological and pathogenic epigenetic mechanisms. Here, we discuss the role of phase separation in regulating RNA modification processing to ensure orderly RNA metabolism and function. Enzymes responsible for RNA modification undergo compartmentalization, enabling them to traffic client RNAs and amplify modifying efficacy. Meanwhile, altered RNA affects the formation, dissolution, and biophysical properties of phase separation conversely. These findings deeper our understanding of the interplay between phase separation and RNAs that governs a wide range of cellular processes. Finally, we concluded pathological roles of phase separation in RNA modification towards clinical applications and outlined perspectives to research RNA modification through the lens of phase separation.
Collapse
Affiliation(s)
- Yu Lu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Lunbiao Gan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Sijia Di
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Fengze Nie
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Haoxin Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Ruoyu Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072 Xi'an, China.
| |
Collapse
|
8
|
Meza-Menchaca T, Albores-Medina A, Heredia-Mendez AJ, Ruíz-May E, Ricaño-Rodríguez J, Gallegos-García V, Esquivel A, Vettoretti-Maldonado G, Campos-Parra AD. Revisiting Epigenetics Fundamentals and Its Biomedical Implications. Int J Mol Sci 2024; 25:7927. [PMID: 39063168 PMCID: PMC11276703 DOI: 10.3390/ijms25147927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In light of the post-genomic era, epigenetics brings about an opportunity to better understand how the molecular machinery works and is led by a complex dynamic set of mechanisms, often intricate and complementary in many aspects. In particular, epigenetics links developmental biology and genetics, as well as many other areas of knowledge. The present work highlights substantial scopes and relevant discoveries related to the development of the term from its first notions. To our understanding, the concept of epigenetics needs to be revisited, as it is one of the most relevant and multifaceted terms in human knowledge. To redirect future novel experimental or theoretical efforts, it is crucial to compile all significant issues that could impact human and ecological benefit in the most precise and accurate manner. In this paper, the reader can find one of the widest compilations of the landmarks and epistemic considerations of the knowledge of epigenetics across the history of biology from the earliest epigenetic formulation to genetic determinism until the present. In the present work, we link the current body of knowledge and earlier pre-genomic concepts in order to propose a new definition of epigenetics that is faithful to its regulatory nature.
Collapse
Affiliation(s)
- Thuluz Meza-Menchaca
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Alma Jaqueline Heredia-Mendez
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Cluster BioMimic®, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Mexico;
| | - Jorge Ricaño-Rodríguez
- Centro de Eco-Alfabetización y Diálogo de Saberes, Universidad Veracruzana, Zona Universitaria, Xalapa 91090, Mexico;
| | - Verónica Gallegos-García
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| | - Adriana Esquivel
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Giancarlo Vettoretti-Maldonado
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | | |
Collapse
|
9
|
Bohrer C, Varon E, Peretz E, Reinitz G, Kinor N, Halle D, Nissan A, Shav-Tal Y. CCAT1 lncRNA is chromatin-retained and post-transcriptionally spliced. Histochem Cell Biol 2024; 162:91-107. [PMID: 38763947 PMCID: PMC11227459 DOI: 10.1007/s00418-024-02294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Super-enhancers are unique gene expression regulators widely involved in cancer development. Spread over large DNA segments, they tend to be found next to oncogenes. The super-enhancer c-MYC locus forms long-range chromatin looping with nearby genes, which brings the enhancer and the genes into proximity, to promote gene activation. The colon cancer-associated transcript 1 (CCAT1) gene, which is part of the MYC locus, transcribes a lncRNA that is overexpressed in colon cancer cells through activation by MYC. Comparing different types of cancer cell lines using RNA fluorescence in situ hybridization (RNA FISH), we detected very prominent CCAT1 expression in HeLa cells, observed as several large CCAT1 nuclear foci. We found that dozens of CCAT1 transcripts accumulate on the gene locus, in addition to active transcription occurring from the gene. The accumulating transcripts are released from the chromatin during cell division. Examination of CCAT1 lncRNA expression patterns on the single-RNA level showed that unspliced CCAT1 transcripts are released from the gene into the nucleoplasm. Most of these unspliced transcripts were observed in proximity to the active gene but were not associated with nuclear speckles in which unspliced RNAs usually accumulate. At larger distances from the gene, the CCAT1 transcripts appeared spliced, implying that most CCAT1 transcripts undergo post-transcriptional splicing in the zone of the active gene. Finally, we show that unspliced CCAT1 transcripts can be detected in the cytoplasm during splicing inhibition, which suggests that there are several CCAT1 variants, spliced and unspliced, that the cell can recognize as suitable for export.
Collapse
Affiliation(s)
- Chaya Bohrer
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Varon
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eldar Peretz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Gita Reinitz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - David Halle
- Biochemistry Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Aviram Nissan
- Ziv Medical Center, Safed, Israel
- Surgical Innovation Laboratory, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
10
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Peak T, Tian Y, Patel A, Shaw T, Obermayer A, Laborde J, Kim Y, Johnson J, Stewart P, Fang B, Teer JK, Koomen J, Berglund A, Marchion D, Francis N, Echevarria PR, Dhillon J, Clark N, Chang A, Sexton W, Zemp L, Chahoud J, Wang L, Manley B. Pathogenic Roles for RNASET2 in Clear Cell Renal Cell Carcinoma. J Transl Med 2024; 104:102041. [PMID: 38431116 DOI: 10.1016/j.labinv.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
A specific splicing isoform of RNASET2 is associated with worse oncologic outcomes in clear cell renal cell carcinoma (ccRCC). However, the interplay between wild-type RNASET2 and its splice variant and how this might contribute to the pathogenesis of ccRCC remains poorly understood. We sought to better understand the relationship of RNASET2 in the pathogenesis of ccRCC and the interplay with a pathogenic splicing isoform (RNASET2-SV) and the tumor immune microenvironment. Using data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium, we correlated clinical variables to RNASET2 expression and the presence of a specific RNASET2-SV. Immunohistochemical staining with matched RNA sequencing of ccRCC patients was then utilized to understand the spatial relationships of RNASET2 with immune cells. Finally, in vitro studies were performed to demonstrate the oncogenic role of RNASET2 and highlight its potential mechanisms. RNASET2 gene expression is associated with higher grade tumors and worse overall survival in The Cancer Genome Atlas cohort. The presence of the RNASET2-SV was associated with increased expression of the wild-type RNASET2 protein and epigenetic modifications of the gene. Immunohistochemical staining revealed increased intracellular accumulation of RNASET2 in patients with increased RNA expression of RNASET2-SV. In vitro experiments reveal that this accumulation results in increased cell proliferation, potentially from altered metabolic pathways. RNASET2 exhibits a tumor-promoting role in the pathogenesis of ccRCC that is increased in the presence of a specific RNASET2-SV and associated with changes in the cellular localization of the protein.
Collapse
Affiliation(s)
- Taylor Peak
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aman Patel
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Tim Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jose Laborde
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Joseph Johnson
- Analytic Microcopy Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Bin Fang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Doug Marchion
- Tissue Core Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Natasha Francis
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Paola Ramos Echevarria
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Noel Clark
- Tissue Core Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Andrew Chang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Wade Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Logan Zemp
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
12
|
Lavaud M, Tesfaye R, Lassous L, Brounais B, Baud'huin M, Verrecchia F, Lamoureux F, Georges S, Ory B. Super-enhancers: drivers of cells' identities and cells' debacles. Epigenomics 2024; 16:681-700. [PMID: 38587919 PMCID: PMC11160454 DOI: 10.2217/epi-2023-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Precise spatiotemporal regulations of gene expression are essential for determining cells' fates and functions. Enhancers are cis-acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities. Here we review the current knowledge on the composition and structure of super-enhancers to understand how they robustly stimulate the expression of cellular identity genes. We also review their involvement in the development of various cell types and both noncancerous and cancerous disorders, implying the therapeutic interest of targeting them to fight against various diseases.
Collapse
Affiliation(s)
- Mélanie Lavaud
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Robel Tesfaye
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
- Cancéropôle Grand-Ouest, Réseau Épigénétique, Medical School, Nantes, 44035, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| | - Léa Lassous
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Bénédicte Brounais
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Marc Baud'huin
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Franck Verrecchia
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - François Lamoureux
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Steven Georges
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Benjamin Ory
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
- Cancéropôle Grand-Ouest, Réseau Épigénétique, Medical School, Nantes, 44035, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| |
Collapse
|
13
|
Sun Y, Sun J, Ying K, Chen J, Chen T, Tao L, Bian W, Qiu L. EP300 regulates the SLC16A1-AS1-AS1/TCF3 axis to promote lung cancer malignancies through the Wnt signaling pathway. Heliyon 2024; 10:e27727. [PMID: 38515708 PMCID: PMC10955305 DOI: 10.1016/j.heliyon.2024.e27727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Objective To investigate the regulatory mechanism of EP300 in the interaction between SLC16A1-AS1 and TCF3 to activate the Wnt pathway, thereby promoting malignant progression in lung cancer. Methods In lung cancer cell lines, SLC16A1-AS1 was knocked down, and the impact of this knockdown on the malignant progression of lung cancer cells was assessed through clonogenic assays, Transwell assays, and apoptosis experiments. The regulatory relationship between EP300 and SLC16A1-AS1 was investigated through bioinformatic analysis and ChIP experiments. The expression of SLC16A1-AS1 and TCF3 in 56 paired lung cancer tissues was examined using RT-qPCR, and their correlation was analyzed. The interaction between TCF3 and SLC16A1-AS1 was explored through bioinformatic analysis and CoIP experiments. Activation of the Wnt/β-catenin pathway was assessed by detecting the accumulation of β-catenin in the nucleus through Western blotting. The role of EP300 in regulating the effect of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression was validated through in vitro and in vivo experiments. Results SLC16A1-AS1 is highly expressed in lung cancer and regulates its malignant progression. EP300 mediates histone modifications on the SLC16A1-AS1 promoter, thus controlling its expression. SLC16A1-AS1 exhibits specific interactions with TCF3, and the SLC16A1-AS1/TCF3 complex activates the Wnt/β-catenin pathway. EP300 plays a critical role in regulating the impact of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression. Conclusion EP300 regulates the SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling pathway, influencing the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Yunhao Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Kaijun Ying
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jinjin Chen
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Tingting Chen
- Department of Emergency, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Leilei Tao
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Weigang Bian
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Limin Qiu
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| |
Collapse
|
14
|
Ma T, Jin L, Bai S, Liu Z, Wang S, Shen B, Cho Y, Cao S, Sun MJS, Fazli L, Zhang D, Wedderburn C, Zhang DY, Mugon G, Ungerleider N, Baddoo M, Zhang K, Schiavone LH, Burkhardt BR, Fan J, You Z, Flemington EK, Dong X, Dong Y. Loss of feedback regulation between FAM3B and androgen receptor driving prostate cancer progression. J Natl Cancer Inst 2024; 116:421-433. [PMID: 37847647 PMCID: PMC10919334 DOI: 10.1093/jnci/djad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Although the fusion of the transmembrane serine protease 2 gene (TMPRSS2) with the erythroblast transformation-specific-related gene (ERG), or TMPRSS2-ERG, occurs frequently in prostate cancer, its impact on clinical outcomes remains controversial. Roughly half of TMPRSS2-ERG fusions occur through intrachromosomal deletion of interstitial genes and the remainder via insertional chromosomal rearrangements. Because prostate cancers with deletion-derived TMPRSS2-ERG fusions are more aggressive than those with insertional fusions, we investigated the impact of interstitial gene loss on prostate cancer progression. METHODS We conducted an unbiased analysis of transcriptome data from large collections of prostate cancer samples and employed diverse in vitro and in vivo models combined with genetic approaches to characterize the interstitial gene loss that imposes the most important impact on clinical outcome. RESULTS This analysis identified FAM3B as the top-ranked interstitial gene whose loss is associated with a poor prognosis. The association between FAM3B loss and poor clinical outcome extended to fusion-negative prostate cancers where FAM3B downregulation occurred through epigenetic imprinting. Importantly, FAM3B loss drives disease progression in prostate cancer. FAM3B acts as an intermediator of a self-governing androgen receptor feedback loop. Specifically, androgen receptor upregulates FAM3B expression by binding to an intronic enhancer to induce an enhancer RNA and facilitate enhancer-promoter looping. FAM3B, in turn, attenuates androgen receptor signaling. CONCLUSION Loss of FAM3B in prostate cancer, whether through the TMPRSS2-ERG translocation or epigenetic imprinting, causes an exit from this autoregulatory loop to unleash androgen receptor activity and prostate cancer progression. These findings establish FAM3B loss as a new driver of prostate cancer progression and support the utility of FAM3B loss as a biomarker to better define aggressive prostate cancer.
Collapse
Affiliation(s)
- Tianfang Ma
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Lianjin Jin
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Shanshan Bai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Zhan Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Shuo Wang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Urological Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beibei Shen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yeyoung Cho
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - David Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Duke University, Durham, NC, USA
| | - Chiyaro Wedderburn
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Derek Y Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Gavisha Mugon
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | | | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
15
|
Liu D, Wang W, Wu Y, Qiu Y, Zhang L. LINC00887 Acts as an Enhancer RNA to Promote Medullary Thyroid Carcinoma Progression by Binding with FOXQ1. Curr Cancer Drug Targets 2024; 24:519-533. [PMID: 38804344 DOI: 10.2174/0115680096258716231026063704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs. METHODS GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit. RESULTS Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown. CONCLUSION LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.
Collapse
Affiliation(s)
- Daxiang Liu
- Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
| | - Wenjing Wang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035 , China
| | - Yanzhao Wu
- Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
| | - Yongle Qiu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035 , China
| | - Lan Zhang
- Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
| |
Collapse
|
16
|
Zhang T, Yu H, Jiang L, Bai Y, Liu X, Guo Y. Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA. Int J Mol Sci 2023; 25:534. [PMID: 38203707 PMCID: PMC10778997 DOI: 10.3390/ijms25010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Significant advances have been achieved in understanding the critical role of enhancer RNAs (eRNAs) in the complex field of gene regulation. However, notable uncertainty remains concerning the biology of eRNAs, highlighting the need for continued research to uncover their exact functions in cellular processes and diseases. We present a comprehensive study to scrutinize mutation density patterns, mutation strand bias, and mutation burden in eRNAs across multiple cancer types. Our findings reveal that eRNAs exhibit mutation strand bias akin to that observed in protein-coding RNAs. We also identified a novel pattern, in which mutation density is notably diminished around the central region of the eRNA, but conspicuously elevated towards both the beginning and end. This pattern can be potentially explained by a mechanism involving heightened transcriptional activity and the activation of transcription-coupled repair. The central regions of the eRNAs appear to be more conserved, hinting at a potential mechanism preserving their structural and functional integrity, while the extremities may be more susceptible to mutations due to increased exposure. The evolutionary trajectory of this mutational pattern suggests a nuanced adaptation in eRNAs, where stability at their core coexists with flexibility at their extremities, potentially facilitating their diverse interactions with other genetic entities.
Collapse
Affiliation(s)
- Troy Zhang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Hui Yu
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Limin Jiang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Yongsheng Bai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA;
| | - Xiaoyi Liu
- Department of Computer Science, University of South Carolina, Columbia, SC 29208, USA;
| | - Yan Guo
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| |
Collapse
|
17
|
Liu X, Chen M, Qu X, Liu W, Dou Y, Liu Q, Shi D, Jiang M, Li H. Cis-Regulatory Elements in Mammals. Int J Mol Sci 2023; 25:343. [PMID: 38203513 PMCID: PMC10779164 DOI: 10.3390/ijms25010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
18
|
Wang Q, Zhang J, Liu Z, Duan Y, Li C. Integrative approaches based on genomic techniques in the functional studies on enhancers. Brief Bioinform 2023; 25:bbad442. [PMID: 38048082 PMCID: PMC10694556 DOI: 10.1093/bib/bbad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
With the development of sequencing technology and the dramatic drop in sequencing cost, the functions of noncoding genes are being characterized in a wide variety of fields (e.g. biomedicine). Enhancers are noncoding DNA elements with vital transcription regulation functions. Tens of thousands of enhancers have been identified in the human genome; however, the location, function, target genes and regulatory mechanisms of most enhancers have not been elucidated thus far. As high-throughput sequencing techniques have leapt forwards, omics approaches have been extensively employed in enhancer research. Multidimensional genomic data integration enables the full exploration of the data and provides novel perspectives for screening, identification and characterization of the function and regulatory mechanisms of unknown enhancers. However, multidimensional genomic data are still difficult to integrate genome wide due to complex varieties, massive amounts, high rarity, etc. To facilitate the appropriate methods for studying enhancers with high efficacy, we delineate the principles, data processing modes and progress of various omics approaches to study enhancers and summarize the applications of traditional machine learning and deep learning in multi-omics integration in the enhancer field. In addition, the challenges encountered during the integration of multiple omics data are addressed. Overall, this review provides a comprehensive foundation for enhancer analysis.
Collapse
Affiliation(s)
- Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
19
|
Li Y. Non-Coding RNA Performs Its Biological Function by Interacting with Macromolecules. Int J Mol Sci 2023; 24:16246. [PMID: 38003435 PMCID: PMC10671565 DOI: 10.3390/ijms242216246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most significant discoveries resulting from the sequencing of the human genome is the realization that a large portion (over 85%) of the genome is transcribed into RNA, yet less than 2% of it encodes protein-coding genes [...].
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Zhou H, Hao X, Zhang P, He S. Noncoding RNA mutations in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1812. [PMID: 37544928 DOI: 10.1002/wrna.1812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Cancer is driven by both germline and somatic genetic changes. Efforts have been devoted to characterizing essential genetic variations in cancer initiation and development. Most attention has been given to mutations in protein-coding genes and associated regulatory elements such as promoters and enhancers. The development of sequencing technologies and in silico and experimental methods has allowed further exploration of cancer predisposition variants and important somatic mutations in noncoding RNAs, mainly for long noncoding RNAs and microRNAs. Association studies including GWAS have revealed hereditary variations including SNPs and indels in lncRNA or miRNA genes and regulatory regions. These mutations altered RNA secondary structures, expression levels, and target recognition and then conferred cancer predisposition to carriers. Whole-exome/genome sequencing comparing cancer and normal tissues has revealed important somatic mutations in noncoding RNA genes. Mutation hotspots and somatic copy number alterations have been identified in various tumor-associated noncoding RNAs. Increasing focus and effort have been devoted to studying the noncoding region of the genome. The complex genetic network of cancer initiation is being unveiled. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinpei Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Jia Q, Tan Y, Li Y, Wu Y, Wang J, Tang F. JUN-induced super-enhancer RNA forms R-loop to promote nasopharyngeal carcinoma metastasis. Cell Death Dis 2023; 14:459. [PMID: 37479693 PMCID: PMC10361959 DOI: 10.1038/s41419-023-05985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Oncogenic super-enhancers (SEs) generate noncoding enhancer/SE RNAs (eRNAs/seRNAs) that exert a critical function in malignancy through powerful regulation of target gene expression. Herein, we show that a JUN-mediated seRNA can form R-loop to regulate target genes to promote metastasis of nasopharyngeal carcinoma (NPC). A combination of global run-on sequencing, chromatin-immunoprecipitation sequencing, and RNA sequencing was used to screen seRNAs. A specific seRNA associated with NPC metastasis (seRNA-NPCM) was identified as a transcriptional regulator for N-myc downstream-regulated gene 1 (NDRG1). JUN was found to regulate seRNA-NPCM through motif binding. seRNA-NPCM was elevated in NPC cancer tissues and highly metastatic cell lines, and promoted the metastasis of NPC cells in vitro and in vivo. Mechanistically, the 3' end of seRNA-NPCM hybridizes with the SE region to form an R-loop, and the middle segment of seRNA-NPCM binds to heterogeneous nuclear ribonucleoprotein R (hnRNPR) at the promoter of distal gene NDRG1 and neighboring gene tribbles pseudokinase 1 (TRIB1). These structures promote chromatin looping and long-distance chromatin interactions between SEs and promoters, thus facilitating NDRG1 and TRIB1 transcription. Furthermore, the clinical analyses showed that seRNA-NPCM and NDRG1 were independent prognostic factors for NPC patients. seRNA-NPCM plays a critical role in orchestrating target gene transcription to promote NPC metastasis.
Collapse
Affiliation(s)
- Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Yuan Tan
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Yuejin Li
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Yao Wu
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
- Department of Ophthalmology and Otolaryngology, The First Hospital of Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Jing Wang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Faqin Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China.
| |
Collapse
|
22
|
Liang L, Cao C, Ji L, Cai Z, Wang D, Ye R, Chen J, Yu X, Zhou J, Bai Z, Wang R, Yang X, Zhu P, Xue Y. Complementary Alu sequences mediate enhancer-promoter selectivity. Nature 2023:10.1038/s41586-023-06323-x. [PMID: 37438529 DOI: 10.1038/s41586-023-06323-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Enhancers determine spatiotemporal gene expression programs by engaging with long-range promoters1-4. However, it remains unknown how enhancers find their cognate promoters. We recently developed a RNA in situ conformation sequencing technology to identify enhancer-promoter connectivity using pairwise interacting enhancer RNAs and promoter-derived noncoding RNAs5,6. Here we apply this technology to generate high-confidence enhancer-promoter RNA interaction maps in six additional cell lines. Using these maps, we discover that 37.9% of the enhancer-promoter RNA interaction sites are overlapped with Alu sequences. These pairwise interacting Alu and non-Alu RNA sequences tend to be complementary and potentially form duplexes. Knockout of Alu elements compromises enhancer-promoter looping, whereas Alu insertion or CRISPR-dCasRx-mediated Alu tethering to unregulated promoter RNAs can create new loops to homologous enhancers. Mapping 535,404 noncoding risk variants back to the enhancer-promoter RNA interaction maps enabled us to construct variant-to-function maps for interpreting their molecular functions, including 15,318 deletions or insertions in 11,677 Alu elements that affect 6,497 protein-coding genes. We further demonstrate that polymorphic Alu insertion at the PTK2 enhancer can promote tumorigenesis. Our study uncovers a principle for determining enhancer-promoter pairing specificity and provides a framework to link noncoding risk variants to their molecular functions.
Collapse
Affiliation(s)
- Liang Liang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Ji
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Yu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibo Bai
- School of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ruoyan Wang
- School of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianguang Yang
- School of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
24
|
Lin Z, Liu Y, Xu T, Su T, Yang Y, Liang R, Gu S, Li J, Song X, Liang B, Leng Z, Li Y, Meng L, Luo Y, Chang X, Huang D, Xie L. STAT3-Mediated Promoter-Enhancer Interaction Up-Regulates Inhibitor of DNA Binding 1 ( ID1) to Promote Colon Cancer Progression. Int J Mol Sci 2023; 24:10041. [PMID: 37373188 DOI: 10.3390/ijms241210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND High expression of inhibitor of DNA binding 1 (ID1) correlates with poor prognosis in colorectal cancer (CRC). Aberrant enhancer activation in regulating ID1 transcription is limited. METHODS Immunohistochemistry (IHC), quantitative RT-PCR (RT-qPCR) and Western blotting (WB) were used to determine the expression of ID1. CRISPR-Cas9 was used to generate ID1 or enhancer E1 knockout cell lines. Dual-luciferase reporter assay, chromosome conformation capture assay and ChIP-qPCR were used to determine the active enhancers of ID1. Cell Counting Kit 8, colony-forming, transwell assays and tumorigenicity in nude mice were used to investigate the biological functions of ID1 and enhancer E1. RESULTS Human CRC tissues and cell lines expressed a higher level of ID1 than normal controls. ID1 promoted CRC cell proliferation and colony formation. Enhancer E1 actively regulated ID1 promoter activity. Signal transducer and activator of transcription 3 (STAT3) bound to ID1 promoter and enhancer E1 to regulate their activity. The inhibitor of STAT3 Stattic attenuated ID1 promoter and enhancer E1 activity and the expression of ID1. Enhancer E1 knockout down-regulated ID1 expression level and cell proliferation in vitro and in vivo. CONCLUSIONS Enhancer E1 is positively regulated by STAT3 and contributes to the regulation of ID1 to promote CRC cell progression and might be a potential target for anti-CRC drug studies.
Collapse
Affiliation(s)
- Zhike Lin
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Ying Liu
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Tian Xu
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Ting Su
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Yingying Yang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Runhua Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Songgang Gu
- Department of Hepatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jie Li
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Zhijun Leng
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Yangsihan Li
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Lele Meng
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Yijing Luo
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lingzhu Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
25
|
He B, Xu HM, Liu HW, Zhang YF. Unique regulatory roles of ncRNAs changed by PM 2.5 in human diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114812. [PMID: 36963186 DOI: 10.1016/j.ecoenv.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 is a type of particulate matter with an aerodynamic diameter smaller than 2.5 µm, and exposure to PM2.5 can adversely damage human health. PM2.5 may impair health through oxidative stress, inflammatory reactions, immune function alterations and chromosome or DNA damage. Through increasing in-depth studies, researchers have found that noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), circular RNAs (circRNAs) as well as long noncoding RNAs (lncRNAs), might play significant roles in PM2.5-related human diseases via some of the abovementioned mechanisms. Therefore, in this review, we mainly discuss the regulatory function of ncRNAs altered by PM2.5 in human diseases and summarize the potential molecular mechanisms. The findings reveal that these ncRNAs might induce or promote diseases via inflammation, the oxidative stress response, cell autophagy, apoptosis, cell junction damage, altered cell proliferation, malignant cell transformation, disruption of synaptic function and abnormalities in the differentiation and status of immune cells. Moreover, according to a bioinformatics analysis, the altered expression of potential genes caused by these ncRNAs might be related to the development of some human diseases. Furthermore, some ncRNAs, including lncRNAs, miRNAs and circRNAs, or processes in which they are involved may be used as biomarkers for relevant diseases and potential targets to prevent these diseases. Additionally, we performed a meta-analysis to identify more promising diagnostic ncRNAs as biomarkers for related diseases.
Collapse
Affiliation(s)
- Bo He
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
26
|
Wu J, Li Y, Feng D, Yu Y, Long H, Hu Z, Lu Q, Zhao M. Integrated analysis of ATAC-seq and RNA-seq reveals the transcriptional regulation network in SLE. Int Immunopharmacol 2023; 116:109803. [PMID: 36738683 DOI: 10.1016/j.intimp.2023.109803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND CD4+ T cells have a vital role in the pathogenesis of systemic lupus erythematosus (SLE), abnormal gene expression in CD4+ T cells partly accounting for dysfunctional CD4+T cells. However, the underying regulatory mechanisms of abnormal gene expression in CD4+ T cells derived from SLE patients are not fully understood. METHODS The peripheral blood CD4+ T cells were acquired from 4 SLE patients and 4 matched healthy controls. Assay for transposase-accessible chromatin using sequencing (ATAC-seq) was conducted to screen differentially accessible chromatin regions between SLE and normals, and motif prediction was used to identify potentially key transcription factors (TFs) involved in CD4+T dysfunction. RNA sequencing (RNA-seq) was performed to screen differentially expressed genes in SLE CD4+T cells. ATAC-seq and RNA-seq were integrated to further analyze the relationship between chromatin accessibility and gene expression. KEGG pathway enrichment analysis was to determine enriched pathways of interactions between all predicted TFs and differentially expressed genes (DEGs). Meanwhile, the expression changes of target genes followed by siRNA knockdown of the predicted TF were experimentally verified by qPCR. Finally, the H3K27ac modification levels of immune-related genes with open chromatin and up-regulated expression in SLE CD4+T cells was detected by ChIP-qPCR. RESULTS We identified 3067 differentially accessible regions (DARs) and 1292 DEGs. TF prediction and functional enrichment analyses showed the TF-gene interaction networks were enriched predominantly in T helper 17 (Th17) cell differentiation, the cell cycle and some signaling pathways. Top 5 TFs were predicted based on overlapping genes between the DAR-related genes and the DEGs: ZNF770, THAP11, ZBTB14, ETV1, POU3F1. Validation experiments indicated that the expression of TRIM25, CD163, BST2, IFIT5, IFITM3, OASL, TBX21, IL15RA and IL12RB2 was significantly downregulated in CD4+Tcells with ZNF770 knockdown. H3K27ac showed significantly higher levels in the promoter regions of KLF4 and MX2 in SLE CD4+ T cells. CONCLUSION These DARs associated with this disease may become targets for future treatment of SLE.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Yuwei Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Yaqin Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Haojun Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China.
| |
Collapse
|
27
|
Cheng TY, Liu YJ, Yan H, Xi YB, Duan LQ, Wang Y, Zhang TT, Gu YM, Wang XD, Wu CX, Gao S. Tumor Cell-Intrinsic BTLA Receptor Inhibits the Proliferation of Tumor Cells via ERK1/2. Cells 2022; 11:cells11244021. [PMID: 36552785 PMCID: PMC9777428 DOI: 10.3390/cells11244021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is an immune checkpoint molecule that mediates the escape of tumor cells from immunosurveillance. Consequently, BTLA and its ligand herpesvirus entry mediator (HVEM) are potentially immunotherapeutic targets. However, the potential effects of BTLA on tumor cells remain incompletely unknown. Here, we show that BTLA is expressed across a broad range of tumor cells. The depletion of BTLA or HVEM promotes cell proliferation and colony formation, which is reversed by the overexpression of BTLA in BTLA knockout cells. In contrast, overexpression of BTLA or HVEM inhibits tumor cell proliferation and colony formation. Furthermore, the proliferation of a subpopulation with high BTLA was also significantly slower than that of the low BTLA subpopulation. Mechanistically, the coordination of BTLA and HVEM inhibits its major downstream extracellular regulated protein kinase (ERK1/2) signaling pathway, thus preventing tumor cell growth. This study demonstrates that tumor cell-intrinsic BTLA/HVEM is a potential tumor suppressor and is likely to have a potential antagonist for immunotherapy, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.
Collapse
Affiliation(s)
- Tian-You Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ya-Juan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Hong Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yi-Bo Xi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Li-Qiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yang Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tian-Tian Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yin-Min Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Xiao-Dong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chang-Xin Wu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- Correspondence:
| |
Collapse
|
28
|
Gan Y, Yang Y, Wu Y, Li T, Liu L, Liang F, Qi J, Liang P, Pan D. Comprehensive transcriptomic analysis of immune-related eRNAs associated with prognosis and immune microenvironment in melanoma. Front Surg 2022; 9:917061. [PMID: 36338651 PMCID: PMC9632973 DOI: 10.3389/fsurg.2022.917061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Recent evidence suggests that enhancer RNAs (eRNAs) play key roles in cancers. Identification of immune-related eRNAs (ireRNAs) in melanoma can provide novel insights into the mechanisms underlying its genesis and progression, along with potential therapeutic targets. Aim To establish an ireRNA-related prognostic signature for melanoma and identify potential drug candidates. Methods The ireRNAs associated with the overall survival (OS-ireRNAs) of melanoma patients were screened using data from The Cancer Genome Atlas (TCGA) via WGCNA and univariate Cox analysis. A prognostic signature based on these OS-ireRNAs was then constructed by performing the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The immune landscape associated with the prognostic model was evaluated by the ESTIMATE algorithm and CIBERSORT method. Finally, the potential drug candidates for melanoma were screened through the cMap database. Results A total of 24 OS-ireRNAs were obtained, of which 7 ireRNAs were used to construct a prognostic signature. The ireRNAs-related signature performed well in predicting the overall survival (OS) of melanoma patients. The risk score of the established signature was further verified as an independent risk factor, and was associated with the unique tumor microenvironment in melanoma. We also identified several potential anti-cancer drugs for melanoma, of which corticosterone ranked first. Conclusions The ireRNA-related signature is an effective prognostic predictor and provides reliable information to better understand the mechanism of ireRNAs in the progression of melanoma.
Collapse
Affiliation(s)
- Yuling Gan
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Yuan Yang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yajiao Wu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tingdong Li
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Libing Liu
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Fudong Liang
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Jianghua Qi
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Peng Liang
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
- Correspondence: Dongsheng Pan Peng Liang
| | - Dongsheng Pan
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
- Correspondence: Dongsheng Pan Peng Liang
| |
Collapse
|
29
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
30
|
Methylated RNA Immunoprecipitation Sequencing Reveals the m6A Landscape in Oral Squamous Cell Carcinoma. J Immunol Res 2022; 2022:7277583. [PMID: 35874897 PMCID: PMC9307381 DOI: 10.1155/2022/7277583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common epigenetic modification existing in eukaryocyte transcripts. However, genes related to m6A modification in oral squamous cell carcinoma (OSCC) are still unclear. Here, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was performed to map the m6A landscape in OSCC and corresponding controls. The m6A peaks are always distributed in the junction of the 3′-untranslated regions (3′-UTRs) and the coding sequences (CDS) of mRNAs, as well as the entire genome of long noncoding RNA (lncRNA). Furthermore, enrichment analysis showed that differentially methylated genes were significantly enriched in NF-kappa B signaling pathway, Hedgehog signaling pathway, etc. In summary, our findings reveal the landscape of m6A modification on mRNAs and lncRNAs in OSCC, which may provide key clues for the precision-targeted therapy of OSCC.
Collapse
|
31
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
32
|
Comprehensive Analysis of Enhancer RNAs Identifies LINC00689 and ELFN1-AS1 as Novel Prognostic Biomarkers in Uveal Melanoma. DISEASE MARKERS 2022; 2022:5994800. [PMID: 35251374 PMCID: PMC8892034 DOI: 10.1155/2022/5994800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Enhancer RNAs (eRNAs) have emerged as key players in the pathology of several tumors, including uveal melanoma. Here, we aimed to explore the prognostic values of eRNAs in uveal melanoma (UVM) patients. The expressing data and survival data of UVM patients were downloaded from TCGA and GSE22138 datasets. The Kaplan-Meier methods with the log-rank test were applied to screen survival-related eRNAs in UVM. GEPIA was applied to analyze the associations between expressions of eRNA and disease-free survival. KEGG assays were applied to explore the potential signaling pathways of the key eRNA. The prognostic values of eRNAs were further explored by multivariate assays by the R package survival. The eRNAs were validated in pan-cancer. In this study, we identified 89 survival-related eRNAs in UVM based on TCGA datasets. Based on GSE22138 datasets, we found 27 survival-related eRNAs in UVM. Only two eRNAs (LINC00689 and ELFN1-AS1) were overlapped in both two datasets. The results of multivariate analysis revealed that both LINC00689 and ELFN1-AS1 were independent prognostic factors in UVM patients. The pan-cancer validation results further confirmed the prognostic values of LINC00689 and ELFN1-AS1 in eight tumors. Overall, we identified two novel UVM-related eRNAs, LINC00689 and ELFN1-AS1 which may serve as prognostic and diagnostic biomarkers of UVM patients for clinical decision-making.
Collapse
|
33
|
Han Z, Li W. Enhancer RNA: What we know and what we can achieve. Cell Prolif 2022; 55:e13202. [PMID: 35170113 PMCID: PMC9055912 DOI: 10.1111/cpr.13202] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Enhancers are important cis-acting elements that can regulate gene transcription and cell fate alongside promoters. In fact, many human cancers and diseases are associated with the malfunction of enhancers. Recent studies have shown that enhancers can produce enhancer RNAs (eRNAs) by RNA polymerase II. In this review, we discuss eRNA production, characteristics, functions and mechanics. eRNAs can determine chromatin accessibility, histone modification and gene expression by constructing a 'chromatin loop', thereby bringing enhancers to their target gene. eRNA can also be involved in the phase separation with enhancers and other proteins. eRNAs are abundant, and importantly, tissue-specific in tumours, various diseases and stem cells; thus, eRNAs can be a potential target for disease diagnosis and treatment. As eRNA is produced from the active transcription of enhancers and is involved in the regulation of cell fate, its manipulation will influence cell function, and therefore, it can be a new target for biological therapy.
Collapse
Affiliation(s)
- Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Wang D, Ye R, Cai Z, Xue Y. Emerging roles of RNA-RNA interactions in transcriptional regulation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1712. [PMID: 35042277 DOI: 10.1002/wrna.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome generates a massive amount of noncoding RNAs (ncRNAs) that lack protein-coding potential but play crucial roles in development, differentiation, and tumorigenesis. To achieve these biological functions, ncRNAs must first fold into intricate structures via intramolecular RNA-RNA interactions (RRIs) and then interact with different RNA substrates via intermolecular RRIs. RRIs are usually facilitated, stabilized, or mediated by RNA-binding proteins. With this guiding principle, several protein-based high-throughput methods have been developed for unbiased mapping of defined or all RNA-binding protein-mediated RRIs in various species and cell lines. In addition, some chemical-based approaches are also powerful to detect RRIs globally based on the fact that RNA duplex can be cross-linked by psoralen or its derivative 4'-aminomethyltrioxsalen. These efforts have significantly expanded our understanding of RRIs in determining the specificity and variability of gene regulation. Here, we review the current knowledge of the regulatory roles of RRI, focusing on their emerging roles in transcriptional regulation and nuclear body formation. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
CYP1B1-AS1 Is a Novel Biomarker in Glioblastoma by Comprehensive Analysis. DISEASE MARKERS 2022; 2021:8565943. [PMID: 35003394 PMCID: PMC8733712 DOI: 10.1155/2021/8565943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Objective Growing evidence shows that enhancer RNAs (eRNAs) are pivotal for tumor progression. In this research, our team aimed to identify the survival-related eRNAs and further explore their potential function in glioblastoma (GBM). Methods RNA-sequencing data in 31 tumor types were acquired from TCGA datasets. The survival-related eRNAs were identified by the use of Kaplan-Meier survival analyses and Spearman's correlation analyses. KEGG pathway enrichment analysis was completed to investigate the underlying signal paths of the critical eRNA. Pancancer assays were applied to explore the association between CYP1B1-AS1 and CYP1B1. Results We identified 74 survival-related eRNAs and focused on CYP1B1-AS1 which displayed the greatest cor value. CYP1B1 was identified as a regulatory target of CYP1B1-AS1. KEGG analyses suggested that CYP1B1-AS1 might play an essential role through CK-CKR mutual effect, complement and coagulation cascades, TNF signal path, and JAK-STAT signal path. The pancancer verification outcomes revealed that CYP1B1-AS1 was related to survival in 4 cancers, i.e., LIHC, KIRP, KICH, and KIRC. Association was discovered between CYP1B1-AS1 and the targeted gene, CYP1B1, in 29 cancer types. Conclusion The outcomes herein provided the first evidence that overexpression of CYP1B1-AS1 might be a potential molecular biomarker for predicting the prognosis of patients with GBM.
Collapse
|
36
|
Gao Y, Liu C, Wu T, Liu R, Mao W, Gan X, Lu X, Liu Y, Wan L, Xu B, Chen M. Current status and perspectives of non-coding RNA and phase separation interactions. Biosci Trends 2022; 16:330-345. [DOI: 10.5582/bst.2022.01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Tiange Wu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Ruiji Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Weipu Mao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xinqiang Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xun Lu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yifan Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Lilin Wan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Xue Y. Architecture of RNA-RNA interactions. Curr Opin Genet Dev 2021; 72:138-144. [PMID: 34954430 DOI: 10.1016/j.gde.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
RNA molecules tend to form intricate tertiary structures via intramolecular RNA-RNA interactions (RRIs) to regulate transcription, RNA processing, and translation processes. In these biological processes, RNAs, especially noncoding RNAs, usually achieve their regulatory specificity through intermolecular RNA-RNA base pairing and execute their regulatory outcomes via associated RNA-binding proteins. Decoding intramolecular and intermolecular RRIs is a prerequisite for understanding the architecture of various RNA molecules and their regulatory roles in development, differentiation, and disease. Many sequencing-based methods have recently been invented and have revealed extraordinarily complicated RRIs in mammalian cells. Here, we discuss the technical advances and limitations of various methodologies developed for studying cellular RRIs, with a focus on the emerging architectural roles of RRIs in gene regulation.
Collapse
Affiliation(s)
- Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
39
|
Chen ZY, Huang JQ, Zhu Y, Chen YS, Yu XF. Comprehensive Analysis of the Immune Implication of TEX41 in Skin Cutaneous Melanoma. DISEASE MARKERS 2021; 2021:2409820. [PMID: 34795805 PMCID: PMC8595038 DOI: 10.1155/2021/2409820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/03/2023]
Abstract
Enhancer RNAs (eRNAs), a subclass of noncoding RNAs from enhancers, have been demonstrated to exhibit important regulatory effects on the expressions of various genes. However, the role of eRNAs in skin cutaneous melanoma (SKCM) remained largely unclear. In this study, we aimed to explore the expression and prognostic value of an enhancer RNA TEX41 in SKCM as well as the associations between TEX41 and tumor-infiltrating immune cells (TICs). We observed that TEX41 expression was distinctly increased in SKCM specimens compared with normal skin specimens using GEPIA. Survival assays based on TGCA datasets revealed that patients with low TEX41 expressions displayed a longer overall survival than those with high TEX41 expression. CIBERSORT datasets revealed that TEX41 was related to 8 types of TICs (macrophages M1, T cells regulatory, plasma cells, mast cells resting, T cells CD8, dendritic cells resting, and T cells follicular helper). Three kinds of TICs were negatively related to TEX41 expressions, including macrophages M2, NK cells resting, and macrophages M0. The expressions of TEX41 were involved in five KEGG pathways, including transcriptional misregulation in cancer, SNARE interactions in vesicular transport, mitophagy-animal, melanoma, melanogenesis, and progesterone-mediated oocyte maturation. Overall, TEX41 can be used as a novel biomarker for the prognosis of SKCM patients and is associated with TICs, indicating it as a therapeutic target for SKCM.
Collapse
Affiliation(s)
- Zhi-yong Chen
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Jie-qing Huang
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Yu Zhu
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Yong-song Chen
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Xue-feng Yu
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| |
Collapse
|
40
|
In-Depth Annotation of the Drosophila Bithorax-Complex Reveals the Presence of Several Alternative ORFs That Could Encode for Motif-Rich Peptides. Cells 2021; 10:cells10112983. [PMID: 34831206 PMCID: PMC8616405 DOI: 10.3390/cells10112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
It is recognized that a large proportion of eukaryotic RNAs and proteins is not produced from conventional genes but from short and alternative (alt) open reading frames (ORFs) that are not captured by gene prediction programs. Here we present an in silico prediction of altORFs by applying several selecting filters based on evolutionary conservation and annotations of previously characterized altORF peptides. Our work was performed in the Bithorax-complex (BX-C), which was one of the first genomic regions described to contain long non-coding RNAs in Drosophila. We showed that several altORFs could be predicted from coding and non-coding sequences of BX-C. In addition, the selected altORFs encode for proteins that contain several interesting molecular features, such as the presence of transmembrane helices or a general propensity to be rich in short interaction motifs. Of particular interest, one altORF encodes for a protein that contains a peptide sequence found in specific isoforms of two Drosophila Hox proteins. Our work thus suggests that several altORF proteins could be produced from a particular genomic region known for its critical role during Drosophila embryonic development. The molecular signatures of these altORF proteins further suggests that several of them could make numerous protein–protein interactions and be of functional importance in vivo.
Collapse
|
41
|
Ye M, Wang S, Qie JB, Sun PL. SPRY4-AS1, A Novel Enhancer RNA, Is a Potential Novel Prognostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Front Oncol 2021; 11:765484. [PMID: 34671565 PMCID: PMC8521147 DOI: 10.3389/fonc.2021.765484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 01/05/2023] Open
Abstract
A growing number of evidence have demonstrated the involvement of enhancer RNAs (eRNAs) in tumor progression. However, the possible functions of eRNAs in hepatocellular carcinoma (HCC) remain largely unclear. Our present research aimed to screen critical eRNAs and to further delve into the clinical significance of eRNAs in HCC patients. In this study, we identified 124 prognosis-related eRNAs by analyzing The Cancer Genome Atlas (TCGA) datasets. Among them, SPRY4 antisense RNA 1 (SPRY4-AS1) may be a key eRNA involved in HCC progression. SPRY4 was a regulatory target of SPRY4-AS1. High SPRY4-AS1 expression was associated with poor prognosis of HCC patients. Kyoto Encyclopedia of Genes and Genomes (KEGG) assays revealed that the mainly enriched biological process included Human papillomavirus infection, Hippo signaling pathway, and Proteoglycans in cancer. Besides, RT-PCR and immunohistochemical staining confirmed SPRY4-AS1 as an overexpressed eRNA in HCC specimens. The pan-cancer assays revealed that SPRY4-AS1 was associated with glioblastoma multiforme (GBM), adrenocortical carcinoma (ACC), brain lower grade glioma (LGG) and mesothelioma(MESO). Positive associations were observed between SPRY4-AS1 and SPRY4 (its target gene) in 16 tumor types. Collectively, our findings reveal a novel eRNA SPRY4-AS1 for HCC progression and suggest that SPRY4-AS1 may be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Mu Ye
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Sheng Wang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing-Bo Qie
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pei-Long Sun
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
An introduction to the themed issue on RNA biology in China. Essays Biochem 2021; 64:863-866. [PMID: 33284952 DOI: 10.1042/ebc20200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
The year 2019 marked the fortieth anniversary of the Chinese Society of Biochemistry and Molecular Biology (CSBMB), whose mission is to promote biomolecular research and education in China. The last 40 years have witnessed tremendous growth and achievements in biomolecular research by Chinese scientists and Essays in Biochemistry is delighted to publish this themed issue that focuses on exciting areas within RNA biology, with each review contributed by key experts from China.
Collapse
|