1
|
Kloc M, Wosik J. Mechanical Forces, Nucleus, Chromosomes, and Chromatin. Biomolecules 2025; 15:354. [PMID: 40149890 PMCID: PMC11940699 DOI: 10.3390/biom15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Individual cells and cells within the tissues and organs constantly face mechanical challenges, such as tension, compression, strain, shear stress, and the rigidity of cellular and extracellular surroundings. Besides the external mechanical forces, cells and their components are also subjected to intracellular mechanical forces, such as pulling, pushing, and stretching, created by the sophisticated force-generation machinery of the cytoskeleton and molecular motors. All these mechanical stressors switch on the mechanotransduction pathways, allowing cells and their components to respond and adapt. Mechanical force-induced changes at the cell membrane and cytoskeleton are also transmitted to the nucleus and its nucleoskeleton, affecting nucleocytoplasmic transport, chromatin conformation, transcriptional activity, replication, and genome, which, in turn, orchestrate cellular mechanical behavior. The memory of mechanoresponses is stored as epigenetic and chromatin structure modifications. The mechanical state of the cell in response to the acellular and cellular environment also determines cell identity, fate, and immune response to invading pathogens. Here, we give a short overview of the latest developments in understanding these processes, emphasizing their effects on cell nuclei, chromosomes, and chromatin.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA;
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
3
|
Li W, Guo J, Hobson EC, Xue X, Li Q, Fu J, Deng CX, Guo Z. Metabolic-Glycoengineering-Enabled Molecularly Specific Acoustic Tweezing Cytometry for Targeted Mechanical Stimulation of Cell Surface Sialoglycans. Angew Chem Int Ed Engl 2024; 63:e202401921. [PMID: 38498603 PMCID: PMC11073901 DOI: 10.1002/anie.202401921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.
Collapse
Affiliation(s)
- Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Eric C. Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingjiang Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianping Fu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cheri X. Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Audoin B. Principles and advances in ultrafast photoacoustics; applications to imaging cell mechanics and to probing cell nanostructure. PHOTOACOUSTICS 2023; 31:100496. [PMID: 37159813 PMCID: PMC10163675 DOI: 10.1016/j.pacs.2023.100496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
In this article we first present the foundations of ultrafast photoacoustics, a technique where the acoustic wavelength in play can be considerably shorter than the optical wavelength. The physics primarily involved in the conversion of short light pulses into high frequency sound is described. The mechanical disturbances following the relaxation of hot electrons in metals and other processes leading to the breaking of the mechanical balance are presented, and the generation of bulk shear-waves, of surface and interface waves and of guided waves is discussed. Then, efforts to overcome the limitations imposed by optical diffraction are described. Next, the principles behind the detection of the so generated coherent acoustic phonons with short light pulses are introduced for both opaque and transparent materials. The striking instrumental advances, in the detection of acoustic displacements, ultrafast acquisition, frequency and space resolution are discussed. Then secondly, we introduce picosecond opto-acoustics as a remote and label-free novel modality with an excellent capacity for quantitative evaluation and imaging of the cell's mechanical properties, currently with micron in-plane and sub-optical in depth resolution. We present the methods for time domain Brillouin spectroscopy in cells and for cell ultrasonography. The current applications of this unconventional means of addressing biological questions are presented. This microscopy of the nanoscale intra-cell mechanics, based on the optical monitoring of coherent phonons, is currently emerging as a breakthrough method offering new insights into the supra-molecular structural changes that accompany cell response to a myriad of biological events.
Collapse
|
6
|
Liu L, Simon M, Muggiolu G, Vilotte F, Antoine M, Caron J, Kantor G, Barberet P, Seznec H, Audoin B. Changes in intra-nuclear mechanics in response to DNA damaging agents revealed by time-domain Brillouin micro-spectroscopy. PHOTOACOUSTICS 2022; 27:100385. [PMID: 36068801 PMCID: PMC9441258 DOI: 10.1016/j.pacs.2022.100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 05/25/2023]
Abstract
How DNA damage and repair processes affect the biomechanical properties of the nucleus interior remains unknown. Here, an opto-acoustic microscope based on time-domain Brillouin spectroscopy (TDBS) was used to investigate the induced regulation of intra-nuclear mechanics. With this ultrafast pump-probe technique, coherent acoustic phonons were tracked along their propagation in the intra-nucleus nanostructure and the complex stiffness moduli and thicknesses were measured with an optical resolution. Osteosarcoma cells were exposed to methyl methanesulfonate (MMS) and the presence of DNA damage was tested using immunodetection targeted against damage signaling proteins. TDBS revealed that the intra-nuclear storage modulus decreased significantly upon exposure to MMS, as a result of the chromatin decondensation and reorganization that favors molecular diffusion within the organelle. When the damaging agent was removed and cells incubated for 2 h in the buffer solution before fixation the intra-nuclear reorganization led to an inverse evolution of the storage modulus, the nucleus stiffened. The same tendency was measured when DNA double-strand breaks were caused by cell exposure to ionizing radiation. TDBS microscopy also revealed changes in acoustic dissipation, another mechanical probe of the intra-nucleus organization at the nano-scale, and changes in nucleus thickness during exposure to MMS and after recovery.
Collapse
Affiliation(s)
- Liwang Liu
- Univ. Bordeaux, CNRS, I2M, UMR 5295, F-33400 Talence, France
| | - Marina Simon
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | | | - Florent Vilotte
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Mikael Antoine
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Jerôme Caron
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | - Guy Kantor
- Department of Radiotherapy, Institut Bergonié, Comprehensive Regional Cancer Centre of Bordeaux and Southwest and University of Bordeaux, France
| | | | - Hervé Seznec
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Bertrand Audoin
- Univ. Bordeaux, CNRS, I2M, UMR 5295, F-33400 Talence, France
| |
Collapse
|
7
|
Nordgaard C, Vind AC, Stonadge A, Kjøbsted R, Snieckute G, Antas P, Blasius M, Reinert MS, Del Val AM, Bekker-Jensen DB, Haahr P, Miroshnikova YA, Mazouzi A, Falk S, Perrier-Groult E, Tiedje C, Li X, Jakobsen JR, Jørgensen NO, Wojtaszewski JF, Mallein-Gerin F, Andersen JL, Pennisi CP, Clemmensen C, Kassem M, Jafari A, Brummelkamp T, Li VS, Wickström SA, Olsen JV, Blanco G, Bekker-Jensen S. ZAKβ is activated by cellular compression and mediates contraction-induced MAP kinase signaling in skeletal muscle. EMBO J 2022; 41:e111650. [PMID: 35899396 PMCID: PMC9434084 DOI: 10.15252/embj.2022111650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
Collapse
Affiliation(s)
- Cathrine Nordgaard
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Amy Stonadge
- Department of Biology, University of York, York, UK
| | - Rasmus Kjøbsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Antas
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sofie Reinert
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Martinez Del Val
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Breinholdt Bekker-Jensen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Peter Haahr
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yekaterina A Miroshnikova
- Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Abdelghani Mazouzi
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christopher Tiedje
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Xiang Li
- Department of Biology, University of York, York, UK
| | - Jens Rithamer Jakobsen
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Jørgen Fp Wojtaszewski
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Løvind Andersen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology and Metabolism, University Hospital of Odense and University of Southern Denmark, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Thijn Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Cancer Genomics Center, Amsterdam, The Netherlands
| | - Vivian Sw Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Sara A Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jesper Velgaard Olsen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Urciuoli E, Peruzzi B. The Paradox of Nuclear Lamins in Pathologies: Apparently Controversial Roles Explained by Tissue-Specific Mechanobiology. Cells 2022; 11:cells11142194. [PMID: 35883635 PMCID: PMC9318957 DOI: 10.3390/cells11142194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
The nuclear lamina is a complex meshwork of intermediate filaments (lamins) that is located beneath the inner nuclear membrane and the surrounding nucleoplasm. The lamins exert both structural and functional roles in the nucleus and, by interacting with several nuclear proteins, are involved in a wide range of nuclear and cellular activities. Due their pivotal roles in basic cellular processes, lamin gene mutations, or modulations in lamin expression, are often associated with pathological conditions, ranging from rare genetic diseases, such as laminopathies, to cancer. Although a substantial amount of literature describes the effects that are mediated by the deregulation of nuclear lamins, some apparently controversial results have been reported, which may appear to conflict with each other. In this context, we herein provide our explanation of such “controversy”, which, in our opinion, derives from the tissue-specific expression of nuclear lamins and their close correlation with mechanotransduction processes, which could be very different, or even opposite, depending on the specific mechanical conditions that should not be compared (a tissue vs. another tissue, in vivo studies vs. cell cultures on glass/plastic supports, etc.). Moreover, we have stressed the relevance of considering and reproducing the “mechano-environment” in in vitro experimentation. Indeed, when primary cells that are collected from patients or donors are maintained in a culture, the mechanical signals deriving from canonical experimental procedures of cell culturing could alter the lamin expression, thereby profoundly modifying the assessed cell type, in some cases even too much, compared to the cell of origin.
Collapse
|
9
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. mTOR Signaling Components in Tumor Mechanobiology. Int J Mol Sci 2022; 23:1825. [PMID: 35163745 PMCID: PMC8837098 DOI: 10.3390/ijms23031825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| |
Collapse
|
10
|
John S, K G G, Krishna AP, Mishra R. Neurotherapeutic implications of sense and respond strategies generated by astrocytes and astrocytic tumours to combat pH mechanical stress. Neuropathol Appl Neurobiol 2021; 48:e12774. [PMID: 34811795 PMCID: PMC9300154 DOI: 10.1111/nan.12774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/04/2023]
Abstract
Aims Astrocytes adapt to acute acid stress. Intriguingly, cancer cells with astrocytic differentiation thrive even better in an acidic microenvironment. How changes in extracellular pH (pHe) are sensed and measured by the cell surface assemblies that first intercept the acid stress, and how this information is relayed downstream for an appropriate survival response remains largely uncharacterized. Methods In vitro cell‐based studies were combined with an in vivo animal model to delineate the machinery involved in pH microenvironment sensing and generation of mechanoadaptive responses in normal and neoplastic astrocytes. The data was further validated on patient samples from acidosis driven ischaemia and astrocytic tumour tissues. Results We demonstrate that low pHe is perceived and interpreted by cells as mechanical stress. GM3 acts as a lipid‐based pH sensor, and in low pHe, its highly protonated state generates plasma membrane deformation stress which activates the IRE1‐sXBP1‐SREBP2‐ACSS2 response axis for cholesterol biosynthesis and surface trafficking. Enhanced surface cholesterol provides mechanical tenacity and prevents acid‐mediated membrane hydrolysis, which would otherwise result in cell leakage and death. Conclusions In summary, activating these lipids or the associated downstream machinery in acidosis‐related neurodegeneration may prevent disease progression, while specifically suppressing this key mechanical ‘sense‐respond’ axis should effectively target astrocytic tumour growth.
Collapse
Affiliation(s)
- Sebastian John
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Gayathri K G
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Aswani P Krishna
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rashmi Mishra
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
11
|
Berger AJ, Anvari G, Bellas E. Mechanical Memory Impairs Adipose-Derived Stem Cell (ASC) Adipogenic Capacity After Long-Term In Vitro Expansion. Cell Mol Bioeng 2021; 14:397-408. [PMID: 34777600 DOI: 10.1007/s12195-021-00705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction Adipose derived stem cells (ASCs) hold great promise for clinical applications such as soft tissue regeneration and for in vitro tissue models and are notably easy to derive in large numbers. Specifically, ASCs provide an advantage for in vitro models of adipose tissue, where they can be employed as tissue specific cells and for patient specific models. However, ASC in vitro expansion may unintentionally reduce adipogenic capacity due to the stiffness of tissue culture plastic (TCPS). Methods Here, we expanded freshly isolated ASCs on soft and stiff substrates for 4 passages before adipogenic differentiation. At the last passage we swapped the substrate from stiff to soft, or soft to stiff to determine if short term exposure to a different substrate altered adipogenic capacity. Results Expansion on stiff substrates reduced adipogenic capacity by 50% which was not rescued by swapping to a soft substrate for the last passage. Stiff substrates had greater nuclear area and gene expression of nesprin-2, a protein that mediates the tension of the nuclear envelope by tethering it to the actin cytoskeleton. Upon swapping to a soft substrate, the nuclear area was reduced but nesprin-2 levels did not fully recover, which differentially regulated cell commitment transcriptional factors. Conclusion Therefore, in vitro expansion on stiff substrates must be carefully considered when the end-goal of the expansion is for adipose tissue or soft tissue applications.
Collapse
Affiliation(s)
- Anthony J Berger
- Department of Bioengineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 USA
| | - Golnaz Anvari
- Department of Bioengineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 USA
| | - Evangelia Bellas
- Department of Bioengineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 USA.,Department of Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
12
|
Urciuoli E, D'Oria V, Petrini S, Peruzzi B. Lamin A/C Mechanosensor Drives Tumor Cell Aggressiveness and Adhesion on Substrates With Tissue-Specific Elasticity. Front Cell Dev Biol 2021; 9:712377. [PMID: 34595168 PMCID: PMC8476891 DOI: 10.3389/fcell.2021.712377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Besides its structural properties in the nucleoskeleton, Lamin A/C is a mechanosensor protein involved in perceiving the elasticity of the extracellular matrix. In this study we provide evidence about Lamin A/C-mediated regulation of osteosarcoma cell adhesion and spreading on substrates with tissue-specific elasticities. Our working hypothesis is based on the observation that low-aggressive and bone-resident SaOS-2 osteosarcoma cells express high level of Lamin A/C in comparison to highly metastatic, preferentially to the lung, osteosarcoma 143B cells, thereby suggesting a role for Lamin A/C in tumor cell tropism. Specifically, LMNA gene over-expression in 143B cells induced a reduction in tumor cell aggressiveness in comparison to parental cells, with decreased proliferation rate and reduced migration capability. Furthermore, LMNA reintegration into 143B cells changed the adhesion properties of tumor cells, from a preferential tropism toward the 1.5 kPa PDMS substrate (resembling normal lung parenchyma) to the 28 kPa (resembling pre-mineralized bone osteoid matrix). Our study suggests that Lamin A/C expression could be involved in the organ tropism of tumor cells, thereby providing a rationale for further studies focused on the definition of cancer mechanism of metastatization.
Collapse
Affiliation(s)
- Enrica Urciuoli
- Multifactorial Disease and Complex Phenotype Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Center, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
13
|
Orchestration of Force Generation and Nuclear Collapse in Apoptotic Cells. Int J Mol Sci 2021; 22:ijms221910257. [PMID: 34638598 PMCID: PMC8508646 DOI: 10.3390/ijms221910257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Apoptosis, or programmed cell death, is a form of cell suicide that is extremely important for ridding the body of cells that are no longer required, to protect the body against hazardous cells, such as cancerous ones, and to promote tissue morphogenesis during animal development. Upon reception of a death stimulus, the doomed cell activates biochemical pathways that eventually converge on the activation of dedicated enzymes, caspases. Numerous pieces of information on the biochemical control of the process have been gathered, from the successive events of caspase activation to the identification of their targets, such as lamins, which constitute the nuclear skeleton. Yet, evidence from multiple systems now shows that apoptosis is also a mechanical process, which may even ultimately impinge on the morphogenesis of the surrounding tissues. This mechanical role relies on dramatic actomyosin cytoskeleton remodelling, and on its coupling with the nucleus before nucleus fragmentation. Here, we provide an overview of apoptosis before describing how apoptotic forces could combine with selective caspase-dependent proteolysis to orchestrate nucleus destruction.
Collapse
|
14
|
Stiekema M, Ramaekers FCS, Kapsokalyvas D, van Zandvoort MAMJ, Veltrop RJA, Broers JLV. Super-Resolution Imaging of the A- and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures. Int J Mol Sci 2021; 22:ijms221910194. [PMID: 34638534 PMCID: PMC8508656 DOI: 10.3390/ijms221910194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- Interdisciplinary Center for Clinical Research, IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogier J. A. Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881366
| |
Collapse
|
15
|
Akintayo CO, Creusen G, Straub P, Walther A. Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Oluwadunsin Akintayo
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Guido Creusen
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Paula Straub
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
17
|
Venturini V, Pezzano F, Català Castro F, Häkkinen HM, Jiménez-Delgado S, Colomer-Rosell M, Marro M, Tolosa-Ramon Q, Paz-López S, Valverde MA, Weghuber J, Loza-Alvarez P, Krieg M, Wieser S, Ruprecht V. The nucleus measures shape changes for cellular proprioception to control
dynamic cell behavior. Science 2020; 370:370/6514/eaba2644. [DOI: 10.1126/science.aba2644] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
The physical microenvironment regulates cell behavior during tissue
development and homeostasis. How single cells decode information about their
geometrical shape under mechanical stress and physical space constraints
within tissues remains largely unknown. Here, using a zebrafish model, we
show that the nucleus, the biggest cellular organelle, functions as an
elastic deformation gauge that enables cells to measure cell shape
deformations. Inner nuclear membrane unfolding upon nucleus stretching
provides physical information on cellular shape changes and adaptively
activates a calcium-dependent mechanotransduction pathway, controlling
actomyosin contractility and migration plasticity. Our data support that the
nucleus establishes a functional module for cellular proprioception that
enables cells to sense shape variations for adapting cellular behavior to
their microenvironment.
Collapse
Affiliation(s)
- Valeria Venturini
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fabio Pezzano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Frederic Català Castro
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Hanna-Maria Häkkinen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Senda Jiménez-Delgado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Mariona Colomer-Rosell
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Monica Marro
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Queralt Tolosa-Ramon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sonia Paz-López
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria
| | - Pablo Loza-Alvarez
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Michael Krieg
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Stefan Wieser
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
18
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
19
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|