1
|
Worton AJ, Norman RA, Gilbert L, Porter RB. GIS-ODE: linking dynamic population models with GIS to predict pathogen vector abundance across a country under climate change scenarios. J R Soc Interface 2024; 21:20240004. [PMID: 39106949 PMCID: PMC11303026 DOI: 10.1098/rsif.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 06/20/2024] [Indexed: 08/09/2024] Open
Abstract
Mechanistic mathematical models such as ordinary differential equations (ODEs) have a long history for their use in describing population dynamics and determining estimates of key parameters that summarize the potential growth or decline of a population over time. More recently, geographic information systems (GIS) have become important tools to provide a visual representation of statistically determined parameters and environmental features over space. Here, we combine these tools to form a 'GIS-ODE' approach to generate spatiotemporal maps predicting how projected changes in thermal climate may affect population densities and, uniquely, population dynamics of Ixodes ricinus, an important tick vector of several human pathogens. Assuming habitat and host densities are not greatly affected by climate warming, the GIS-ODE model predicted that, even under the lowest projected temperature increase, I. ricinus nymph densities could increase by 26-99% in Scotland, depending on the habitat and climate of the location. Our GIS-ODE model provides the vector-borne disease research community with a framework option to produce predictive, spatially explicit risk maps based on a mechanistic understanding of vector and vector-borne disease transmission dynamics.
Collapse
Affiliation(s)
- A. J. Worton
- Division of Computing Science and Mathematics, University of Stirling, StirlingFK9 4LA, UK
| | - R. A. Norman
- Division of Computing Science and Mathematics, University of Stirling, StirlingFK9 4LA, UK
| | - L. Gilbert
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - R. B. Porter
- Department of Engineering and Mathematics, Sheffield Hallam University, SheffieldS1 1WB, UK
| |
Collapse
|
2
|
Millien V, Leo SST, Turney S, Gonzalez A. It's about time: small mammal communities and Lyme disease emergence. Sci Rep 2023; 13:14513. [PMID: 37667029 PMCID: PMC10477272 DOI: 10.1038/s41598-023-41901-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Theory predicts that biodiversity changes due to climate warming can mediate the rate of disease emergence. The mechanisms linking biodiversity-disease relationships have been described both theoretically and empirically but remain poorly understood. We investigated the relations between host diversity and abundance and Lyme disease risk in southern Quebec, a region where Lyme disease is rapidly emerging. We found that both the abundance of small mammal hosts and the relative abundance of the tick's natural host, the white-footed mouse (Peromyscus leucopus), influenced measures of disease risk in tick vectors (Borrelia burgdorferi infection abundance and prevalence in tick vectors). Our results suggest that the increase in Lyme disease risk is modulated by regional processes involving the abundance and composition of small mammal assemblages. However, the nature and strength of these relationships was dependent both on time and geographic area. The strong effect of P. leucopus abundance on disease risk we report here is of significant concern, as this competent host is predicted to increase in abundance and occurrence in the region, with the northern shift in the range of North American species under climate warming.
Collapse
Affiliation(s)
- V Millien
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada.
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada.
| | - S S T Leo
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - S Turney
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - A Gonzalez
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| |
Collapse
|
3
|
Bienentreu JF, Schock DM, Greer AL, Lesbarrères D. Ranavirus Amplification in Low-Diversity Amphibian Communities. Front Vet Sci 2022; 9:755426. [PMID: 35224079 PMCID: PMC8863596 DOI: 10.3389/fvets.2022.755426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
In an era where emerging infectious diseases are a serious threat to biodiversity, epidemiological patterns need to be identified, particularly the complex mechanisms driving the dynamics of multi-host pathogens in natural communities. Many amphibian species have faced unprecedented population declines associated with diseases. Yet, specific processes shaping host-pathogen relationships within and among communities for amphibian pathogens such as ranaviruses (RV) remain poorly understood. To address this gap, we conducted a comprehensive study of RV in low-diversity amphibian communities in north-western Canada to assess the effects of biotic factors (species identity, species richness, abundance) and abiotic factors (conductivity, pH) on the pathogen prevalence and viral loads. Across 2 years and 18 sites, with communities of up to three hosts (wood frog, Rana sylvatica; boreal chorus frog, Pseudacris maculata; Canadian toad, Anaxyrus hemiophrys), we observed that RV prevalence nearly doubled with each additional species in a community, suggesting an amplification effect in aquatic, as well as terrestrial life-history stages. Infection intensity among infected wood frogs and boreal chorus frogs also significantly increased with an increase in species richness. Interestingly, we did not observe any effects of host abundance or abiotic factors, highlighting the importance of including host identity and species richness when investigating multi-host pathogens. Ultimately, only such a comprehensive approach can improve our understanding of complex and often highly context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Joe-Felix Bienentreu
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- *Correspondence: Joe-Felix Bienentreu
| | - Danna M. Schock
- Sciences and Environmental Technology, Keyano College, Fort McMurray, AB, Canada
| | - Amy L. Greer
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
4
|
Kocher A, Cornuault J, Gantier JC, Manzi S, Chavy A, Girod R, Dusfour I, Forget PM, Ginouves M, Prévot G, Guégan JF, Bañuls AL, de Thoisy B, Murienne J. Biodiversity and vector-borne diseases: host dilution and vector amplification occur simultaneously for Amazonian leishmaniases. Mol Ecol 2022; 32:1817-1831. [PMID: 35000240 DOI: 10.1111/mec.16341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Changes in biodiversity may impact infectious disease transmission through multiple mechanisms. We explored the impact of biodiversity changes on the transmission of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine sand flies (Psychodidae), which represent an important health burden in a region where biodiversity is both rich and threatened. Using molecular analyses of sand fly pools and blood-fed dipterans, we characterized the disease system in forest sites in French Guiana undergoing different levels of human-induced disturbance. We show that the prevalence of Leishmania parasites in sand flies correlates positively with the relative abundance of mammal species known as Leishmania reservoirs. In addition, Leishmania reservoirs tend to dominate in less diverse mammal communities, in accordance with the dilution effect hypothesis. This results in a negative relationship between Leishmania prevalence and mammal diversity. On the other hand, higher mammal diversity is associated with higher sand fly density, possibly because more diverse mammal communities harbor higher biomass and more abundant feeding resources for sand flies, although more research is needed to identify the factors that shape sand fly communities. As a consequence of these antagonistic effects, decreased mammal diversity comes with an increase of parasite prevalence in sand flies, but has no detectable impact on the density of infected sand flies. These results represent additional evidence that biodiversity changes may simultaneously dilute and amplify vector-borne disease transmission through different mechanisms that need to be better understood before drawing generalities on the biodiversity-disease relationship.
Collapse
Affiliation(s)
- Arthur Kocher
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Institut Pasteur de la Guyane, Cayenne, France.,Transmission, Infection, Diversification & Evolution Group, Max-Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Josselin Cornuault
- Real Jardín Botánico CSIC, Plaza Murillo 2, 28014, Madrid, Spain.,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jean-Charles Gantier
- Laboratoire des Identifications Fongiques et Entomo-parasitologiques, Mennecy, France
| | - Sophie Manzi
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France
| | - Agathe Chavy
- Institut Pasteur de la Guyane, Cayenne, France.,TBIP, Université de Guyane, 97300, Cayenne, France
| | | | | | - Pierre-Michel Forget
- Muséum National d'Histoire Naturelle, UMR-7179 MECADEV (Mécanismes Adaptatifs et Evolution), MNHN-CNRS, Brunoy, France
| | - Marine Ginouves
- TBIP, Université de Guyane, 97300, Cayenne, France.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, 97300, Cayenne, France.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Jean-François Guégan
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,INRAE, Cirad, Université de Montpellier, UMR ASTRE, Montpellier, France
| | | | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, France.,Association Kwata, Cayenne, French Guiana
| | - Jérôme Murienne
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France
| |
Collapse
|
5
|
Rudko SP, McPhail BA, Reimink RL, Froelich K, Turnbull A, Hanington PC. Non-resident definitive host presence is sufficient to sustain avian schistosome populations. Int J Parasitol 2022; 52:305-315. [PMID: 35007566 DOI: 10.1016/j.ijpara.2021.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
To control swimmer's itch in northern Michigan inland lakes, USA, one species of bird, the common merganser (Mergus merganser), has been relocated from several lakes since 2015. Relocation efforts are driven by a desire to reduce the prevalence of the swimmer's itch-causing parasite Trichobilharzia stagnicolae. The intention of this state-sponsored control effort was to interrupt the life cycle of T. stagnicolae and reduce parasite egg contribution into the environment from summer resident mergansers such that infections of the intermediate snail host Stagnicola emarginata declined. Reduced snail infection prevalence was expected to substantially reduce the abundance of the swimmer's itch-causing cercarial stage of the parasite in water. With no official program in place to assess the success of this relocation effort, we sought to study the effectiveness and impact of the removal of a single definitive host from a location with high definitive host and parasite diversity. This was assessed through a comprehensive, lake-wide monitoring study measuring longitudinal changes in the abundance of three species of avian schistosome cercariae in four inland Michigan lakes. Environmental measurements were also taken at these lakes to understand how they can affect swimmer's itch incidence. This study demonstrates that the diversity of avian schistosomes at the study lakes would likely make targeting a single species of swimmer's itch-causing parasite meaningless from a swimmer's itch control perspective. Our data also suggest that removing the common merganser is not an effective control strategy for the T. stagnicolae parasite, likely due to contributions of the parasite made by non-resident birds, possibly migrants, in the autumn and spring. It appears likely that only minimal contact time between the definitive host and the lake ecosystem is required to contribute sufficient parasite numbers to maintain a thriving population of parasite species with high host specificity.
Collapse
Affiliation(s)
- Sydney P Rudko
- Public Health Agency of Canada, Agence de la Santé Publique du Canada, 200 René-Lévesque Blvd., Montréal, Québec, H2Z 1X4, Canada
| | - Brooke A McPhail
- School of Public Health, University of Alberta, 357F South Academic Building, 116 St. and 85th Ave., Alberta T6G 2R3, Canada
| | - Ronald L Reimink
- Office of Campus Ministries, 110 E. 12th St. Hope College, Holland, MI, 49423, United States; Freshwater Solutions LLC, 137 W 15(th) St., Holland, MI, 49423, United States
| | - Kelsey Froelich
- School of Public Health, University of Alberta, 357F South Academic Building, 116 St. and 85th Ave., Alberta T6G 2R3, Canada; Freshwater Solutions LLC, 137 W 15(th) St., Holland, MI, 49423, United States; Saint Joseph High School, 2521 Stadium Dr., Saint Joseph, MI, 49085, United States
| | - Alyssa Turnbull
- School of Public Health, University of Alberta, 357F South Academic Building, 116 St. and 85th Ave., Alberta T6G 2R3, Canada
| | - Patrick C Hanington
- School of Public Health, University of Alberta, 357F South Academic Building, 116 St. and 85th Ave., Alberta T6G 2R3, Canada.
| |
Collapse
|
6
|
PARASITES OF AN ENDANGERED HARVEST MOUSE (REITHRODONTOMYS RAVIVENTRIS HALICOETES) IN A NORTHERN CALIFORNIA MARSH. J Wildl Dis 2021; 58:122-136. [PMID: 34814173 DOI: 10.7589/jwd-d-21-00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022]
Abstract
Disease may limit recovery of endangered species. We surveyed parasites in the federally endangered salt marsh harvest mouse (SMHM; Reithrodontomys raviventris halicoetes) and sympatric rodents in Suisun Marsh (Solano County, California, USA) from April 2018 through March 2019. We investigated individual SMHM risk factors (age, sex, reproductive status, and body condition) for infection and relationships among the estimated parasite prevalence and season and habitat management (natural tidal habitats versus diked, nontidal habitats). We captured 625 individual rodents, including 439 SMHM, and tested these for infection with Bartonella spp., Borrelia spp., Rickettsia spp., Francisella tularensis, Leptospira spp., Cryptosporidium spp., Giardia spp., and Toxoplasma gondii by PCR. Over one-third (34.6%, confidence interval [CI], 30.2%-39.3%) of SMHM tested positive for at least one parasite. Four percent (CI, 2.8%-6.3%) of SMHM were infected with F. tularensis holarctica, a virulent bacterium that causes mortality in rodents shortly after infection. Additionally, we detected three species of Bartonella (B. henselae, B. rochalimae, B. vinsonii arupensis), Leptospira borgpetersenii serovar Ballum, Cryptosporidium sp. (deer mouse [Peromyscus maniculatus] genotype), Cryptosporidium parvum, Giardia intestinalis, and an unidentified Borrelia sp. The only parasite that was associated with habitat management was Bartonella spp., which was more prevalent in diked than tidal areas. Male SMHM were more likely to be parasitized than females, and individuals in modestly poor body condition were most likely to be infected with Bartonella spp. The estimated sample prevalence of multiple parasites varied by season and by host species. This is the first major parasite assessment in a long-endangered species, and these results will assist managers to incorporate parasitic disease into recovery planning and provide a critical baseline for future investigations, including how climatically induced habitat and species composition changes could alter disease dynamics.
Collapse
|
7
|
Gandy S, Kilbride E, Biek R, Millins C, Gilbert L. Experimental evidence for opposing effects of high deer density on tick-borne pathogen prevalence and hazard. Parasit Vectors 2021; 14:509. [PMID: 34593023 PMCID: PMC8485466 DOI: 10.1186/s13071-021-05000-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the mechanisms driving disease risk is challenging for multi-host pathogens, such as Borrelia burgdorferi sensu lato (s.l.), the tick-borne bacteria causing Lyme disease. Deer are tick reproduction hosts but do not transmit B. burgdorferi s.l., whereas rodents and birds are competent transmission hosts. Here, we use a long-term deer exclosure experiment to test three mechanisms for how high deer density might shape B. burgdorferi s.l. prevalence in ticks: increased prevalence due to higher larval tick densities facilitating high transmission on rodents (M1); alternatively, reduced B. burgdorferi s.l. prevalence because more larval ticks feed on deer rather than transmission-competent rodents (dilution effect) (M2), potentially due to ecological cascades, whereby higher deer grazing pressure shortens vegetation which decreases rodent abundance thus reducing transmission (M3). METHODS In a large enclosure where red deer stags were kept at high density (35.5 deer km-2), we used an experimental design consisting of eight plots of 0.23 ha, four of which were fenced to simulate the absence of deer and four that were accessible to deer. In each plot we measured the density of questing nymphs and nymphal infection prevalence in spring, summer and autumn, and quantified vegetation height and density, and small mammal abundance. RESULTS Prevalence tended to be lower, though not conclusively so, in high deer density plots compared to exclosures (predicted prevalence of 1.0% vs 2.2%), suggesting that the dilution and cascade mechanisms might outweigh the increased opportunities for transmission mechanism. Presence of deer at high density led to shorter vegetation and fewer rodents, consistent with an ecological cascade. However, Lyme disease hazard (density of infected I. ricinus nymphs) was five times higher in high deer density plots due to tick density being 18 times higher. CONCLUSIONS High densities of tick reproduction hosts such as deer can drive up vector-borne disease hazard, despite the potential to simultaneously reduce pathogen prevalence. This has implications for environmental pathogen management and for deer management, although the impact of intermediate deer densities now needs testing.
Collapse
Affiliation(s)
- Sara Gandy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK. .,The James Hutton Institute, Craigiebuckler, Aberdeen, UK.
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lucy Gilbert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Retrotransposon-Based Blood Meal Analysis of Nymphal Deer Ticks Demonstrates Spatiotemporal Diversity of Borrelia burgdorferi and Babesia microti Reservoirs. Appl Environ Microbiol 2021; 87:AEM.02370-20. [PMID: 33158895 DOI: 10.1128/aem.02370-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
Deer tick-transmitted Borrelia burgdorferi sensu stricto (Lyme disease) and Babesia microti (babesiosis) increasingly burden public health across eastern North America. The white-footed mouse is considered the primary host for subadult deer ticks and the most important reservoir host for these and other disease agents. Local transmission is thought to be modulated by less reservoir-competent hosts, such as deer, diverting ticks from feeding on mice. We measured the proportion of mouse-fed or deer-fed host-seeking nymphs from 4 sites during 2 transmission seasons by blood meal remnant analysis using a new retrotransposon-based quantitative PCR (qPCR) assay. We then determined the host that was associated with the infection status of the tick. During the first year, the proportion of mouse-fed ticks ranged from 17% on mainland sites to 100% on an island, while deer-fed ticks ranged from 4% to 24%. The proportion of ticks feeding on mice and deer was greater from island sites than mainland sites (on average, 92% versus 43%). Mouse-fed ticks decreased significantly during year 2 in 3 of 4 sites (most were <20%), while deer-fed ticks increased for all sites (75% at one site). Overall, ticks were more likely to be infected when they had fed on mice (odds ratio [OR] of 2.4 and 1.6 for Borrelia and Babesia, respectively) and were less likely to be infected if they had fed on deer (OR, 0.8 and 0.4). We conclude that host utilization by deer ticks is characterized by significant spatiotemporal diversity, which may confound efficacy tests of interventions targeting reservoir hosts.IMPORTANCE White-footed mice are thought to be the most important reservoir host for the deer tick-transmitted pathogens that cause Lyme disease and human babesiosis because they are the primary host for immature ticks. Transmission would be reduced, however, if ticks feed on deer, which are not capable of infecting ticks with either pathogen. By directly measuring whether ticks had fed on either mice or deer using a new quantitative PCR (qPCR) assay to detect remnants of host DNA leftover from the larval blood meal, we demonstrate that host utilization by ticks varies significantly over time and space and that mice often feed fewer ticks than expected. This finding has implications for our understanding of the ecology of these diseases and for the efficacy of control measures.
Collapse
|
9
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
10
|
Miguel E, Grosbois V, Caron A, Pople D, Roche B, Donnelly CA. A systemic approach to assess the potential and risks of wildlife culling for infectious disease control. Commun Biol 2020; 3:353. [PMID: 32636525 PMCID: PMC7340795 DOI: 10.1038/s42003-020-1032-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
The maintenance of infectious diseases requires a sufficient number of susceptible hosts. Host culling is a potential control strategy for animal diseases. However, the reduction in biodiversity and increasing public concerns regarding the involved ethical issues have progressively challenged the use of wildlife culling. Here, we assess the potential of wildlife culling as an epidemiologically sound management tool, by examining the host ecology, pathogen characteristics, eco-sociological contexts, and field work constraints. We also discuss alternative solutions and make recommendations for the appropriate implementation of culling for disease control.
Collapse
Affiliation(s)
- Eve Miguel
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), IRD (Research Institute for Sustainable Development), CNRS (National Center for Scientific Research), Univ. Montpellier, Montpellier, France.
- CREES Centre for Research on the Ecology and Evolution of Disease, Montpellier, France.
| | - Vladimir Grosbois
- ASTRE (Animal, Health, Territories, Risks, Ecosystems), CIRAD (Agricultural Research for Development), Univ. Montpellier, INRA (French National Institute for Agricultural Research), Montpellier, France
| | - Alexandre Caron
- ASTRE (Animal, Health, Territories, Risks, Ecosystems), CIRAD (Agricultural Research for Development), Univ. Montpellier, INRA (French National Institute for Agricultural Research), Montpellier, France
| | - Diane Pople
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Benjamin Roche
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), IRD (Research Institute for Sustainable Development), CNRS (National Center for Scientific Research), Univ. Montpellier, Montpellier, France
- UMMISCO (Unité Mixte Internationnale de Modélisation Mathématique et Informatiques des Systèmes Complèxes, IRD/Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de, México, México
| | - Christl A Donnelly
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Gilbert L, Brülisauer F, Willoughby K, Cousens C. Identifying Environmental Risk Factors for Louping Ill Virus Seroprevalence in Sheep and the Potential to Inform Wildlife Management Policy. Front Vet Sci 2020; 7:377. [PMID: 32695800 PMCID: PMC7339109 DOI: 10.3389/fvets.2020.00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/28/2020] [Indexed: 11/18/2022] Open
Abstract
Identifying the risk factors for disease is crucial for developing policy and strategies for controlling exposure to pathogens. However, this is often challenging, especially in complex disease systems, such as vector-borne diseases with multiple hosts and other environmental drivers. Here we combine seroprevalence data with GIS-based environmental variables to identify the environmental risk factors associated with an endemic tick-borne pathogen—louping ill virus—in sheep in Scotland. Higher seroprevalences were associated with (i) upland/moorland habitats, in accordance with what we predicted from the habitat preferences of alternative LIV transmission hosts (such as red grouse), (ii) areas of higher deer density, which supports predictions from previous theoretical models, since deer are the key Ixodes ricinus tick reproduction host in this system, and (iii) a warmer climate, concurring with our current knowledge of how temperature affects tick activity and development rates. The implications for policy include adopting increased disease management and awareness in high risk habitats and in the presence of alternative LIV hosts (e.g., grouse) and tick hosts (especially deer). These results can also inform deer management policy, especially where there may be conflict between contrasting upland management objectives, for example, revenue from deer hunting vs. sheep farmers.
Collapse
Affiliation(s)
- Lucy Gilbert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Kim Willoughby
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| |
Collapse
|
12
|
French RK, Holmes EC. An Ecosystems Perspective on Virus Evolution and Emergence. Trends Microbiol 2019; 28:165-175. [PMID: 31744665 DOI: 10.1016/j.tim.2019.10.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Understanding the emergence of pathogenic viruses has dominated studies of virus evolution. However, new metagenomic studies imply that relatively few of an immense number of viruses may lead to overt disease. This suggests a change in emphasis, from viruses as habitual pathogens to integral components of ecosystems. Here we show how viruses alter interactions between host individuals, populations, and ecosystems, impacting ecosystem health, resilience, and function, and how host ecology in turn impacts viral abundance and diversity. Moving to an ecosystems perspective will put virus evolution and disease emergence in its true context, and enhance our understanding of ecological processes.
Collapse
Affiliation(s)
- Rebecca K French
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
14
|
Millins C, Dickinson ER, Isakovic P, Gilbert L, Wojciechowska A, Paterson V, Tao F, Jahn M, Kilbride E, Birtles R, Johnson P, Biek R. Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen. Parasit Vectors 2018; 11:621. [PMID: 30514350 PMCID: PMC6278045 DOI: 10.1186/s13071-018-3200-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Landscape structure can affect pathogen prevalence and persistence with consequences for human and animal health. Few studies have examined how reservoir host species traits may interact with landscape structure to alter pathogen communities and dynamics. Using a landscape of islands and mainland sites we investigated how natural landscape fragmentation affects the prevalence and persistence of the zoonotic tick-borne pathogen complex Borrelia burgdorferi (sensu lato), which causes Lyme borreliosis. We hypothesized that the prevalence of B. burgdorferi (s.l.) would be lower on islands compared to the mainland and B. afzelii, a small mammal specialist genospecies, would be more affected by isolation than bird-associated B. garinii and B. valaisiana and the generalist B. burgdorferi (sensu stricto). Methods Questing (host-seeking) nymphal I. ricinus ticks (n = 6567) were collected from 12 island and 6 mainland sites in 2011, 2013 and 2015 and tested for B. burgdorferi (s.l.). Deer abundance was estimated using dung transects. Results The prevalence of B. burgdorferi (s.l.) was significantly higher on the mainland (2.5%, 47/1891) compared to island sites (0.9%, 44/4673) (P < 0.01). While all four genospecies of B. burgdorferi (s.l.) were detected on the mainland, bird-associated species B. garinii and B. valaisiana and the generalist genospecies B. burgdorferi (s.s.) predominated on islands. Conclusion We found that landscape structure influenced the prevalence of a zoonotic pathogen, with a lower prevalence detected among island sites compared to the mainland. This was mainly due to the significantly lower prevalence of small mammal-associated B. afzelii. Deer abundance was not related to pathogen prevalence, suggesting that the structure and dynamics of the reservoir host community underpins the observed prevalence patterns, with the higher mobility of bird hosts compared to small mammal hosts leading to a relative predominance of the bird-associated genospecies B. garinii and generalist genospecies B. burgdorferi (s.s.) on islands. In contrast, the lower prevalence of B. afzelii on islands may be due to small mammal populations there exhibiting lower densities, less immigration and stronger population fluctuations. This study suggests that landscape fragmentation can influence the prevalence of a zoonotic pathogen, dependent on the biology of the reservoir host. Electronic supplementary material The online version of this article (10.1186/s13071-018-3200-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK. .,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, Scotland, UK. .,School of Veterinary Medicine, University of Glasgow, Glasgow, Scotland, UK.
| | - Eleanor R Dickinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Petra Isakovic
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,, Present address: Zakot 43, 8250, Brezice, Slovenia
| | - Lucy Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen, Scotland, UK
| | - Agnieszka Wojciechowska
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,Present address: Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Victoria Paterson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Feng Tao
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,Present address: Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Martin Jahn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,Present address: GEOMAR - Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Richard Birtles
- School of Environment and Life Sciences, University of Salford, Salford, England, UK
| | - Paul Johnson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, Scotland, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
15
|
Abstract
Ixodid ticks are acknowledged as one of the most important hematophagous arthropods because of their ability in transmitting a variety of tick-borne diseases. Mathematical models have been developed, based on emerging knowledge about tick ecology, pathogen epidemiology and their interface, to understand tick population dynamics and tick-borne diseases spread patterns. However, no serious effort has been made to model and assess the impact of host immunity triggered by tick feeding on the distribution of the tick population according to tick stages and on tick population extinction and persistence. Here, we construct a novel mathematical model taking into account the effect of host immunity status on tick population dynamics, and analyze the long-term behaviours of the model solutions. Two threshold values, [Formula: see text] and [Formula: see text], are introduced to measure the reproduction ratios for the tick-host interaction in the absence and presence of host immunity. We then show that these two thresholds (sometimes under additional conditions) can be used to predict whether the tick population goes extinct ([Formula: see text]) and the tick population grows without bound ([Formula: see text]). We also prove tick permanence (persistence and boundedness of the tick population) and the existence of a tick persistence equilibrium if [Formula: see text]. As the host species adjust their immunity to tick infestation levels, they form for the tick population an environment with a carrying capacity very much like that in logistic growth. Numerical results show that the host immune reactions decrease the size of the tick population at equilibrium and apparently reduce the tick-borne infection risk.
Collapse
|
16
|
Gutierrez-Arellano C, Mulligan M. A review of regulation ecosystem services and disservices from faunal populations and potential impacts of agriculturalisation on their provision, globally. NATURE CONSERVATION 2018. [DOI: 10.3897/natureconservation.30.26989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Land use and cover change (LUCC) is the main cause of natural ecosystem degradation and biodiversity loss and can cause a decrease in ecosystem service provision. Animal populations are providers of some key regulation services: pollination, pest and disease control and seed dispersal, the so-called faunal ecosystem services (FES). Here we aim to give an overview on the current and future status of regulation FES in response to change from original habitat to agricultural land globally. FES are much more tightly linked to wildlife populations and biodiversity than are most ecosystem services, whose determinants are largely climatic and related to vegetation structure. Degradation of ecosystems by land use change thus has much more potential to affect FES. In this scoping review, we summarise the main findings showing the importance of animal populations as FES providers and as a source of ecosystem disservices; underlying causes of agriculturalisation impacts on FES and the potential condition of FES under future LUCC in relation to the expected demand for FES globally. Overall, studies support a positive relationship between FES provision and animal species richness and abundance. Agriculturalisation has negative effects on FES providers due to landscape homogenisation, habitat fragmentation and loss, microclimatic changes and development of population imbalance, causing species and population losses of key fauna, reducing services whilst enhancing disservices. Since evidence suggests an increase in FES demand worldwide is required to support increased farming, it is imperative to improve the understanding of agriculturalisation on FES supply and distribution. Spatial conservation prioritisation must factor in faunal ecosystem functions as the most biodiversity-relevant of all ecosystem services and that which most closely links sites of service provision of conservation value with nearby sites of service use to provide ecosystem services of agricultural and economic value.
Collapse
|
17
|
Jaenson TGT, Petersson EH, Jaenson DGE, Kindberg J, Pettersson JHO, Hjertqvist M, Medlock JM, Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors 2018; 11:477. [PMID: 30153856 PMCID: PMC6114827 DOI: 10.1186/s13071-018-3057-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tick-borne encephalitis (TBE) is one tick-transmitted disease where the human incidence has increased in some European regions during the last two decades. We aim to find the most important factors causing the increasing incidence of human TBE in Sweden. Based on a review of published data we presume that certain temperature-related variables and the population densities of transmission hosts, i.e. small mammals, and of primary tick maintenance hosts, i.e. cervids and lagomorphs, of the TBE virus vector Ixodes ricinus, are among the potentially most important factors affecting the TBE incidence. Therefore, we compare hunting data of the major tick maintenance hosts and two of their important predators, and four climatic variables with the annual numbers of human cases of neuroinvasive TBE. Data for six Swedish regions where human TBE incidence is high or has recently increased are examined by a time-series analysis. Results from the six regions are combined using a meta-analytical method. Results With a one-year time lag, the roe deer (Capreolus capreolus), red deer (Cervus elaphus), mountain hare (Lepus timidus) and European hare (Lepus europaeus) showed positive covariance; the Eurasian elk (moose, Alces alces) and fallow deer (Dama dama) negative covariance; whereas the wild boar (Sus scrofa), lynx (Lynx lynx), red fox (Vulpes vulpes) and the four climate parameters showed no significant covariance with TBE incidence. All game species combined showed positive covariance. Conclusions The epidemiology of TBE varies with time and geography and depends on numerous factors, i.a. climate, virus genotypes, and densities of vectors, tick maintenance hosts and transmission hosts. This study suggests that the increased availability of deer to I. ricinus over large areas of potential tick habitats in southern Sweden increased the density and range of I. ricinus and created new TBEV foci, which resulted in increased incidence of human TBE. New foci may be established by TBE virus-infected birds, or by birds or migrating mammals infested with TBEV-infected ticks. Generally, persistence of TBE virus foci appears to require presence of transmission-competent small mammals, especially mice (Apodemus spp.) or bank voles (Myodes glareolus). Electronic supplementary material The online version of this article (10.1186/s13071-018-3057-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas G T Jaenson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18d, SE-752 36, Uppsala, Sweden.
| | - Erik H Petersson
- Department of Aquatic Resources, Division of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-178 93, Drottningholm, Sweden
| | - David G E Jaenson
- Department of Automatic Control, Lund University, SE-221 00, Lund, Sweden
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John H-O Pettersson
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Lovisenberggata 8, N-0456, Oslo, Norway.,Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, New South Wales, 2006, Australia.,Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Jolyon M Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - Hans Bengtsson
- Swedish Meteorological and Hydrological Institute (SMHI), Gothenburg, Sweden
| |
Collapse
|
18
|
Watson A, Wilson JD. Seven decades of mountain hare counts show severe declines where high‐yield recreational game bird hunting is practised. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Watson
- Centre for Ecology and Hydrology Penicuik UK
| | | |
Collapse
|
19
|
McLeish M, Sacristán S, Fraile A, García-Arenal F. Scale dependencies and generalism in host use shape virus prevalence. Proc Biol Sci 2018; 284:rspb.2017.2066. [PMID: 29263286 DOI: 10.1098/rspb.2017.2066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Processes that generate the distribution of pathogens and their interactions with hosts are not insensitive to changes in spatial scale. Spatial scales and species traits are often selected intentionally, based on practical considerations, ignoring biases that the scale and type of observation may introduce. Specifically, these biases might change the interpretation of disease-diversity relationships that are reported as either 'dilution' or 'amplification' effects. Here, we combine field data of a host-pathogen community with empirical models to test the effects that (i) spatial scale and (ii) host range have on the relationship between plant-virus infection prevalence and diversity. We show that prevalence-diversity relationships are scale-dependent and can produce opposite effects associated with different habitats at sub-ecosystem scales. The total number of host species of each virus reflected generalism at the ecosystem scale. However, plasticity in host range resembled habitat-specific specialization and also changed model predictions. We show that habitat heterogeneity, ignored at larger (ecosystem) spatial scales, influences pathogen distributions. Hence, understanding disease distributions and the evolution of pathogens requires reconciling specific hypotheses of the study with an appropriate spatial scale, or scales, and consideration of traits, such as host range, that might strongly contribute to biotic interactions.
Collapse
Affiliation(s)
- Michael McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| |
Collapse
|
20
|
McLeish MJ, Fraile A, García-Arenal F. Ecological Complexity in Plant Virus Host Range Evolution. Adv Virus Res 2018; 101:293-339. [PMID: 29908592 DOI: 10.1016/bs.aivir.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns. The distributions of all of these factors are influenced further by competitive effects, natural enemies, anthropogenic disturbance, the abiotic environment, and herbivory to mention some. We suggest the need for further development of approaches that (i) explicitly consider resource use and the abiotic and biotic factors that affect the strategies by which viruses exploit resources; and (ii) are sensitive across scales. Host range and habitat specificity will largely determine which phyla are most likely to be new hosts, but predicting which host and when it is likely to be infected is enormously challenging because it is unclear how environmental heterogeneity affects the interactions of viruses and hosts.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
21
|
Silva SOF, Ferreira de Mello C, Figueiró R, de Aguiar Maia D, Alencar J. Distribution of the Mosquito Communities (Diptera: Culicidae) in Oviposition Traps Introduced into the Atlantic Forest in the State of Rio de Janeiro, Brazil. Vector Borne Zoonotic Dis 2018; 18:214-221. [PMID: 29595406 PMCID: PMC5878547 DOI: 10.1089/vbz.2017.2222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Atlantic Rainforest of South America is one of the major biodiversity hotspots of the world and serves as a place of residence for a wide variety of Culicidae species. Mosquito studies in the natural environment are of considerable importance because of their role in transmitting pathogens to both humans and other vertebrates. Community diversity can have significant effects on the risk of their disease transmission. The objective of this study was to understand the distribution of mosquito communities using oviposition traps in a region of the Atlantic Forest. Sampling was carried out in Bom Retiro Private Natural Reserve (RPPNBR), located in Casimiro de Abreu, Rio de Janeiro, using oviposition traps, which were set in the forest environment, from October 2015 to December 2016. The canonical correspondence analysis was used to assess the influence of the climatic variables (precipitation, maximum dew point, and direction) throughout the seasons on the population density of the mosquito species. The results showed that population density was directly influenced by climatic variables, which acted as a limiting factor for the mosquito species studied. The climatic variables that were significantly correlated with the density of the mosquito species were precipitation, maximum dew point, and direction. Haemagogus janthinomys was positively correlated with the three climatic variables, whereas Haemagogus leucocelaenus was positively correlated with precipitation and maximum dew point, and negatively correlated with direction.
Collapse
Affiliation(s)
- Shayenne Olsson Freitas Silva
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- Postgraduate Program in Tropical Medicine, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | - Cecilia Ferreira de Mello
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- Postgraduate Program in Animal Biology, Institute of Biology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Figueiró
- Environmental Biotechnology Laboratory, Fundação Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil
- Centro Universitário de Volta Redonda (UniFOA), Volta Redonda, Brazil
- Universidade Castelo Branco (UCB), Rio de Janeiro, Brazil
| | - Daniele de Aguiar Maia
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- Postgraduate Program in Animal Biology, Institute of Biology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeronimo Alencar
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Millins C, Gilbert L, Medlock J, Hansford K, Thompson DB, Biek R. Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0123. [PMID: 28438912 PMCID: PMC5413871 DOI: 10.1098/rstb.2016.0123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 02/01/2023] Open
Abstract
Landscape change and altered host abundance are major drivers of zoonotic pathogen emergence. Conservation and biodiversity management of landscapes and vertebrate communities can have secondary effects on vector-borne pathogen transmission that are important to assess. Here we review the potential implications of these activities on the risk of Lyme borreliosis in the United Kingdom. Conservation management activities include woodland expansion, management and restoration, deer management, urban greening and the release and culling of non-native species. Available evidence suggests that increasing woodland extent, implementing biodiversity policies that encourage ecotonal habitat and urban greening can increase the risk of Lyme borreliosis by increasing suitable habitat for hosts and the tick vectors. However, this can depend on whether deer population management is carried out as part of these conservation activities. Exclusion fencing or culling deer to low densities can decrease tick abundance and Lyme borreliosis risk. As management actions often constitute large-scale perturbation experiments, these hold great potential to understand underlying drivers of tick and pathogen dynamics. We recommend integrating monitoring of ticks and the risk of tick-borne pathogens with conservation management activities. This would help fill knowledge gaps and the production of best practice guidelines to reduce risks. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’.
Collapse
Affiliation(s)
- Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK .,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK.,School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Lucy Gilbert
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Jolyon Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK.,Health Protection Research Unit in Environment and Health, Porton Down, Salisbury SP4 0JG, UK
| | - Kayleigh Hansford
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK
| | - Des Ba Thompson
- Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh, EH12 7AT, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
Berg SS, Forester JD, Craft ME. Infectious Disease in Wild Animal Populations: Examining Transmission and Control with Mathematical Models. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2018. [PMCID: PMC7123867 DOI: 10.1007/978-3-319-92373-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mathematical modeling of ecological interactions is an essential tool in predicting the behavior of complex systems across landscapes. The scientific literature is growing with examples of models used to explore predator-prey interactions, resource selection, population growth, and dynamics of disease transmission. These models provide managers with an efficient alternative means of testing new management and control strategies without resorting to empirical testing that is often costly, time-consuming, and impractical. This chapter presents a review of four types of mathematical models used to understand and predict the spread of infectious diseases in wild animals: compartmental, metapopulation, spatial, and contact network models. Descriptions of each model’s uses and limitations are used to provide a look at the complexities involved in modeling the spread of diseases and the trade-offs that accompany selecting one modeling approach over another. Potential avenues for the improvement and use of these models in future studies are also discussed, as are specific examples of how each type of model has improved our understanding of infectious diseases in populations of wild animals.
Collapse
|
24
|
Levine RS, Hedeen DL, Hedeen MW, Hamer GL, Mead DG, Kitron UD. Avian species diversity and transmission of West Nile virus in Atlanta, Georgia. Parasit Vectors 2017; 10:62. [PMID: 28159002 PMCID: PMC5291963 DOI: 10.1186/s13071-017-1999-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background The dilution effect is the reduction in vector-borne pathogen transmission associated with the presence of diverse potential host species, some of which are incompetent. It is popularized as the notion that increased biodiversity leads to decreased rates of disease. West Nile virus (WNV) is an endemic mosquito-borne virus in the United States that is maintained in a zoonotic cycle involving various avian host species. In Atlanta, Georgia, substantial WNV presence in the vector and host species has not translated into a high number of human cases. Methods To determine whether a dilution effect was contributing to this reduced transmission, we characterized the host species community composition and performed WNV surveillance of hosts and vectors in urban Atlanta between 2010 and 2011. We tested the relationship between host diversity and both host seroprevalence and vector infection rates using a negative binomial generalized linear mixed model. Results Regardless of how we measured host diversity or whether we considered host seroprevalence and vector infection rates as predictor variables or outcome variables, we did not detect a dilution effect. Rather, we detected an amplification effect, in which increased host diversity resulted in increased seroprevalence or infection rates; this is the first empirical evidence for this effect in a mosquito-borne system. Conclusions We suggest that this effect may be driven by an over-abundance of moderately- to poorly-competent host species, such as northern cardinals and members of the Mimid family, which cause optimal hosts to become rarer and present primarily in species-rich areas. Our results support the notion that dilution or amplification effects depend more on the identities of the species comprising the host community than on the absolute diversity of hosts. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-1999-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca S Levine
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Math and Science Center 5th Floor, Suite E510, Atlanta, GA, 30322, USA.
| | - David L Hedeen
- Georgia Department of Transportation, Office of Environmental Services, One Georgia Center, 600 West Peachtree Street NW, Atlanta, GA, 30308, USA
| | - Meghan W Hedeen
- Georgia Department of Transportation, Office of Environmental Services, One Georgia Center, 600 West Peachtree Street NW, Atlanta, GA, 30308, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University College of Agriculture and Life Sciences, TAMU 2475, College Station, TX, 77843, USA
| | - Daniel G Mead
- University of Georgia College of Veterinary Medicine, Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Uriel D Kitron
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Math and Science Center 5th Floor, Suite E510, Atlanta, GA, 30322, USA
| |
Collapse
|
25
|
Weber JN, Kalbe M, Shim KC, Erin NI, Steinel NC, Ma L, Bolnick DI. Resist Globally, Infect Locally: A Transcontinental Test of Adaptation by Stickleback and Their Tapeworm Parasite. Am Nat 2017; 189:43-57. [DOI: 10.1086/689597] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Baines D, Taylor L. Can acaricide-impregnated leg bands fitted to female red grouse reduce sheep tick parasitization of chicks and increase chick survival? MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:360-364. [PMID: 27377883 DOI: 10.1111/mve.12185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
In parts of northern England, North Wales and the Scottish Highlands, increasing numbers of sheep ticks Ixodes ricinus (Ixodida: Ixodidae), and the louping ill virus they can carry, are considered to be important factors that reduce red grouse Lagopus lagopus scotica productivity. The present study tested this hypothesis by fitting adult female grouse with leg bands impregnated with the acaricide cypermethrin to experimentally control ticks on their chicks on two managed grouse moors in northeast Scotland. The chicks of females fitted with acaricide leg bands showed reduced tick infestations and improved survival in one of the two study years, relative to chicks of control females. Acaricide leg bands constitute a potential management technique that may be adopted by grouse moor managers in circumstances of high tick infestations on grouse chicks.
Collapse
Affiliation(s)
- D Baines
- Game and Wildlife Conservation Trust, Upland Research Group, Durham, U.K
| | - L Taylor
- Game and Wildlife Conservation Trust, Upland Research Group, Durham, U.K
| |
Collapse
|
27
|
Gortázar C, Ruiz-Fons JF, Höfle U. Infections shared with wildlife: an updated perspective. EUR J WILDLIFE RES 2016. [DOI: 10.1007/s10344-016-1033-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Abstract
The field of disease ecology - the study of the spread and impact of parasites and pathogens within their host populations and communities - has a long history of using mathematical models. Dating back over 100 years, researchers have used mathematics to describe the spread of disease-causing agents, understand the relationship between host density and transmission and plan control strategies. The use of mathematical modelling in disease ecology exploded in the late 1970s and early 1980s through the work of Anderson and May (Anderson and May, 1978, 1981, 1992; May and Anderson, 1978), who developed the fundamental frameworks for studying microparasite (e.g. viruses, bacteria and protozoa) and macroparasite (e.g. helminth) dynamics, emphasizing the importance of understanding features such as the parasite's basic reproduction number (R 0) and critical community size that form the basis of disease ecology research to this day. Since the initial models of disease population dynamics, which primarily focused on human diseases, theoretical disease research has expanded hugely to encompass livestock and wildlife disease systems, and also to explore evolutionary questions such as the evolution of parasite virulence or drug resistance. More recently there have been efforts to broaden the field still further, to move beyond the standard 'one-host-one-parasite' paradigm of the original models, to incorporate many aspects of complexity of natural systems, including multiple potential host species and interactions among multiple parasite species.
Collapse
|
29
|
Gilbert L. Louping ill virus in the UK: a review of the hosts, transmission and ecological consequences of control. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:363-374. [PMID: 26205612 DOI: 10.1007/s10493-015-9952-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/14/2015] [Indexed: 05/26/2023]
Abstract
Louping ill virus (LIV) is a tick-borne flavivirus that is part of the tick-borne encephalitis complex of viruses (TBEV) and has economic and welfare importance by causing illness and death in livestock, especially sheep, Ovies aries, and red grouse, Lagopus lagopus scoticus, an economically valuable gamebird. Unlike Western TBEV which is found primarily in woodlands and is reservoired by small rodents, LIV is not generally transmitted by small rodents but instead by sheep, red grouse and mountain hares and, therefore, is associated with upland heather moorland and rough grazing land. Red grouse are a particularly interesting transmission host because they may acquire most of their LIV infections through eating ticks rather than being bitten by ticks. Furthermore, the main incentive for the application of LIV control methods is not to protect sheep, but to protect red grouse, which is an economically important gamebird. The widespread intensive culling of mountain hares which has been adopted in several areas of Scotland to try to control ticks and LIV has become an important issue in Scotland in recent years. This review outlines the reservoir hosts and transmission cycles of LIV in the UK, then describes the various control methods that have been tried or modelled, with far-reaching implications for conservation and public opinion.
Collapse
Affiliation(s)
- Lucy Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
30
|
Abstract
SUMMARYTicks are vectors of pathogens which are important both with respect to human health and economically. They have a complex life cycle requiring several blood meals throughout their life. These blood meals take place on different individual hosts and potentially on different host species. Their life cycle is also dependent on environmental conditions such as the temperature and habitat type. Mathematical models have been used for the more than 30 years to help us understand how tick dynamics are dependent on these environmental factors and host availability. In this paper, we review models of tick dynamics and summarize the main results. This summary is split into two parts, one which looks at tick dynamics and one which looks at tick-borne pathogens. In general, the models of tick dynamics are used to determine when the peak in tick densities is likely to occur in the year and how that changes with environmental conditions. The models of tick-borne pathogens focus more on the conditions under which the pathogen can persist and how host population densities might be manipulated to control these pathogens. In the final section of the paper, we identify gaps in the current knowledge and future modelling approaches. These include spatial models linked to environmental information and Geographic Information System maps, and development of new modelling techniques which model tick densities per host more explicitly.
Collapse
|
31
|
Johnson PTJ, de Roode JC, Fenton A. Why infectious disease research needs community ecology. Science 2015; 349:1259504. [PMID: 26339035 DOI: 10.1126/science.1259504] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infectious diseases often emerge from interactions among multiple species and across nested levels of biological organization. Threats as diverse as Ebola virus, human malaria, and bat white-nose syndrome illustrate the need for a mechanistic understanding of the ecological interactions underlying emerging infections. We describe how recent advances in community ecology can be adopted to address contemporary challenges in disease research. These analytical tools can identify the factors governing complex assemblages of multiple hosts, parasites, and vectors, and reveal how processes link across scales from individual hosts to regions. They can also determine the drivers of heterogeneities among individuals, species, and regions to aid targeting of control strategies. We provide examples where these principles have enhanced disease management and illustrate how they can be further extended.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
32
|
Dearing MD, Clay C, Lehmer E, Dizney L. The roles of community diversity and contact rates on pathogen prevalence. J Mammal 2015. [DOI: 10.1093/jmammal/gyu025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Turney S, Gonzalez A, Millien V. The negative relationship between mammal host diversity and Lyme disease incidence strengthens through time. Ecology 2014. [DOI: 10.1890/14-0980.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Hollingsworth TD, Pulliam JRC, Funk S, Truscott JE, Isham V, Lloyd AL. Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases. Epidemics 2014; 10:16-20. [PMID: 25843376 PMCID: PMC4383804 DOI: 10.1016/j.epidem.2014.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/04/2022] Open
Abstract
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease.
Collapse
Affiliation(s)
- T Déirdre Hollingsworth
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Juliet R C Pulliam
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - James E Truscott
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, W2 1PG London, UK
| | - Valerie Isham
- Department of Statistical Science, University College London, WC1E 6BT, UK
| | - Alun L Lloyd
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, NC 27695, USA
| |
Collapse
|
35
|
The role of wildlife in bluetongue virus maintenance in Europe: lessons learned after the natural infection in Spain. Virus Res 2014; 182:50-8. [PMID: 24394295 DOI: 10.1016/j.virusres.2013.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
Abstract
Bluetongue (BT) is a re-emergent vector-borne viral disease of domestic and wild ruminants caused by bluetongue virus (BTV), a member of the genus Orbivirus. A complex multi-host, multi-vector and multi-pathogen (26 serotypes) transmission and maintenance network has recently emerged in Europe, and wild ruminants are regarded as an important node in this network. This review analyses the reservoir role of wild ruminants in Europe, identifying gaps in knowledge and proposing actions. Wild ruminant species are indicators of BTV circulation. Excepting the mouflon (Ovis aries musimon), European wild ungulates do not develop clinical disease. Diagnostic techniques used in wildlife do not differ from those used in domestic ruminants provided they are validated. Demographic, behavioural and physiological traits of wild hosts modulate their relationship with BTV vectors and with the virus itself. While BTV has been eradicated from central and northern Europe, it is still circulating in the Mediterranean Basin. We propose that currently two BTV cycles coexist in certain regions of the Mediterranean Basin, a wild one largely driven by deer of the subfamily Cervinae and a domestic one. These are probably linked through shared Culicoides vectors of several species. We suggest that wildlife might be contributing to this situation through vector maintenance and virus maintenance. Additionally, differences in temperature and other environmental factors add complexity to the Mediterranean habitats as compared to central and northern European ones. Intervention options in wildlife populations are limited. There is a need to know the role of wildlife in maintaining Culicoides populations, and to know which Culicoides species mediate the wildlife-livestock-BTV transmission events. There is also a clear need to study more in depth the links between Cervinae deer densities, environmental factors and BTV maintenance. Regarding disease control, we suggest that research efforts should be focused on wildlife population and wildlife disease monitoring.
Collapse
|
36
|
Investigating the loss of recruitment potential in red grouse (Lagopus lagopus scoticus): the relative importance of hen mortality, food supply, tick infestation and louping-ill. EUR J WILDLIFE RES 2013. [DOI: 10.1007/s10344-013-0788-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Porter R, Norman RA, Gilbert L. A model to test how ticks and louping ill virus can be controlled by treating red grouse with acaricide. MEDICAL AND VETERINARY ENTOMOLOGY 2013; 27:237-246. [PMID: 23088727 DOI: 10.1111/j.1365-2915.2012.01047.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ticks are the most important vectors of disease-causing pathogens in Europe. In the U.K., Ixodes ricinus L. (Ixodida: Ixodidae) transmits louping ill virus (LIV; Flaviviridae), which kills livestock and red grouse, Lagopus lagopus scoticus Lath. (Galliformes: Phasianidae), a valuable game bird. Tick burdens on grouse have been increasing. One novel method to reduce ticks and LIV in grouse may be acaricide treatment. Here, we use a mathematical model parameterized with empirical data to investigate how the acaricide treatment of grouse might theoretically control ticks and LIV in grouse. Assuming a situation in which ticks and LIV impact on the grouse population, the model predicts that grouse density will depend on deer density because deer maintain the tick population. In low deer densities, no acaricide treatment is predicted to be necessary because abundances of grouse will be high. However, at higher deer densities, the model predicts that grouse densities will increase only if high numbers of grouse are treated, and the efficacy of acaricide is high and lasts 20 weeks. The qualitative model predictions may help to guide decisions on whether to treat grouse or cull deer depending on deer densities and how many grouse can be treated. The model is discussed in terms of practical management implications.
Collapse
Affiliation(s)
- R Porter
- Division of Computing Science and Mathematics, University of Stirling, Stirling, U.K
| | | | | |
Collapse
|
38
|
Environmental determinants of Ixodes ricinus ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland. Parasitology 2012; 140:237-46. [PMID: 23036286 DOI: 10.1017/s003118201200145x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lyme borreliosis (LB) is the most common arthropod-borne disease of humans in the Northern hemisphere. In Europe, the causative agent, Borrelia burgdorferi sensu lato complex, is principally vectored by Ixodes ricinus ticks. The aim of this study was to identify environmental factors influencing questing I. ricinus nymph abundance and B. burgdorferi s.l. infection in questing nymphs using a large-scale survey across Scotland. Ticks, host dung and vegetation were surveyed at 25 woodland sites, and climatic variables from a Geographical Information System (GIS) were extracted for each site. A total of 2397 10 m2 transect surveys were conducted and 13 250 I. ricinus nymphs counted. Questing nymphs were assayed for B. burgdorferi s.l. and the average infection prevalence was 5·6% (range 0·8-13·9%). More questing nymphs and higher incidence of B. burgdorferi s.l. infection were found in areas with higher deer abundance and in mixed/deciduous compared to coniferous forests, as well as weaker correlations with season, altitude, rainfall and ground vegetation. No correlation was found between nymph abundance and infection prevalence within the ranges encountered. An understanding of the environmental conditions associated with tick abundance and pathogen prevalence may be used to reduce risk of exposure and to predict future pathogen prevalence and distributions under environmental changes.
Collapse
|
39
|
Affiliation(s)
- Sandra Telfer
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| | - Kevin Bown
- School of Environment and Life Sciences; University of Salford; Salford M5 4WT UK
| |
Collapse
|
40
|
An alternative to killing? Treatment of reservoir hosts to control a vector and pathogen in a susceptible species. Parasitology 2012; 140:247-57. [PMID: 22939093 DOI: 10.1017/s0031182012001400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parasite-mediated apparent competition occurs when one species affects another through the action of a shared parasite. One way of controlling the parasite in the more susceptible host is to manage the reservoir host. Culling can cause issues in terms of ethics and biodiversity impacts, therefore we ask: can treating, as compared to culling, a wildlife host protect a target species from the shared parasite? We used Susceptible Infected Recovered (SIR) models parameterized for the tick-borne louping ill virus (LIV) system. Deer are the key hosts of the vector (Ixodes ricinus) that transmits LIV to red grouse Lagopus lagopus scoticus, causing high mortality. The model was run under scenarios of varying acaricide efficacy and deer densities. The model predicted that treating deer can increase grouse density through controlling ticks and LIV, if acaricide efficacies are high and deer densities low. Comparing deer treated with 70% acaricide efficacy with a 70% cull rate suggested that treatment may be more effective than culling if initial deer densities are high. Our results will help inform tick control policies, optimize the targeting of control methods and identify conditions where host management is most likely to succeed. Our approach is applicable to other host-vector-pathogen systems.
Collapse
|
41
|
Allen LJS, Bokil VA. Stochastic models for competing species with a shared pathogen. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2012; 9:461-485. [PMID: 22881022 DOI: 10.3934/mbe.2012.9.461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The presence of a pathogen among multiple competing species has important ecological implications. For example, a pathogen may change the competitive outcome, resulting in replacement of a native species by a non-native species. Alternately, if a pathogen becomes established, there may be a drastic reduction in species numbers. Stochastic variability in the birth, death and pathogen transmission processes plays an important role in determining the success of species or pathogen invasion. We investigate these phenomena while studying the dynamics of deterministic and stochastic models for n competing species with a shared pathogen. The deterministic model is a system of ordinary differential equations for n competing species in which a single shared pathogen is transmitted among the n species. There is no immunity from infection, individuals either die or recover and become immediately susceptible, an SIS disease model. Analytical results about pathogen persistence or extinction are summarized for the deterministic model for two and three species and new results about stability of the infection-free state and invasion by one species of a system of n-1 species are obtained. New stochastic models are derived in the form of continuous-time Markov chains and stochastic differential equations. Branching process theory is applied to the continuous-time Markov chain model to estimate probabilities for pathogen extinction or species invasion. Finally, numerical simulations are conducted to explore the effect of disease on two-species competition, to illustrate some of the analytical results and to highlight some of the differences in the stochastic and deterministic models.
Collapse
Affiliation(s)
- Linda J S Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, United States.
| | | |
Collapse
|
42
|
Lehmer EM, Korb J, Bombaci S, McLean N, Ghachu J, Hart L, Kelly A, Jara-Molinar E, O'Brien C, Wright K. The interplay of plant and animal disease in a changing landscape: the role of sudden aspen decline in moderating Sin Nombre virus prevalence in natural deer mouse populations. ECOHEALTH 2012; 9:205-216. [PMID: 22526751 DOI: 10.1007/s10393-012-0765-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/07/2012] [Accepted: 03/31/2012] [Indexed: 05/31/2023]
Abstract
We examined how climate-mediated forest dieback regulates zoonotic disease prevalence using the relationship between sudden aspen decline (SAD) and Sin Nombre virus (SNV) as a model system. We compared understory plant community structure, small mammal community composition, and SNV prevalence on 12 study sites within aspen forests experiencing levels of SAD ranging from <10.0% crown fade to >95.0% crown fade. Our results show that sites with the highest levels of SAD had reduced canopy cover, stand density, and basal area, and these differences were reflected by reductions in understory vegetation cover. Conversely, sites with the highest levels of SAD had greater understory standing biomass, suggesting that vegetation on these sites was highly clustered. Changes in forest and understory vegetation structure likely resulted in shifts in small mammal community composition across the SAD gradient, as we found reduced species diversity and higher densities of deer mice, the primary host for SNV, on sites with the highest levels of SAD. Sites with the highest levels of SAD also had significantly greater SNV prevalence compared to sites with lower levels of SAD, which is likely a result of their abundance of deer mice. Collectively, results of our research provide strong evidence to show SAD has considerable impacts on vegetation community structure, small mammal density and biodiversity and the prevalence of SNV.
Collapse
Affiliation(s)
- Erin M Lehmer
- Department of Biology, Fort Lewis College, Durango, CO 81301, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Modelling transmission of vector-borne pathogens shows complex dynamics when vector feeding sites are limited. PLoS One 2012; 7:e36730. [PMID: 22590597 PMCID: PMC3348133 DOI: 10.1371/journal.pone.0036730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 04/12/2012] [Indexed: 11/19/2022] Open
Abstract
The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R(0) is a non-monotonic function of the population size of host individuals (H), i.e. a value [Formula: see text] exists that maximises R(0). Surprisingly, if [Formula: see text] a reduction in host population size may actually increase R(0). Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of [Formula: see text] which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models.
Collapse
|
44
|
Cagnacci F, Bolzoni L, Rosà R, Carpi G, Hauffe H, Valent M, Tagliapietra V, Kazimirova M, Koci J, Stanko M, Lukan M, Henttonen H, Rizzoli A. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: Empirical assessment. Int J Parasitol 2012; 42:365-72. [DOI: 10.1016/j.ijpara.2012.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/02/2012] [Accepted: 02/16/2012] [Indexed: 11/16/2022]
|
45
|
Bolzoni L, Rosà R, Cagnacci F, Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int J Parasitol 2012; 42:373-81. [PMID: 22429768 DOI: 10.1016/j.ijpara.2012.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022]
Abstract
Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.
Collapse
Affiliation(s)
- L Bolzoni
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | | | | | | |
Collapse
|
46
|
Newborn D, Baines D. Enhanced control of sheep ticks in upland sheep flocks: repercussions for red grouse co-hosts. MEDICAL AND VETERINARY ENTOMOLOGY 2012; 26:63-69. [PMID: 22112150 DOI: 10.1111/j.1365-2915.2011.00989.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sheep ticks Ixodes ricinus (Acari: Ixodidae) and tick-borne diseases cause major economic losses in both upland sheep farming and moorland shoots of red grouse Lagopus lagopus scoticus. Sheep were treated with acaricide four times between March and October and double-vaccinated against louping ill virus (LIV), instead of the conventional regime of two acaricide treatments and no vaccinations, on two moors in northern England. Enhanced treatment started at Westerdale Moor in 1995 and at Danby Moor in 2000; the latter had previously represented a spatial control site. From 1992 to 2003, grouse chick condition, tick burdens, reproductive success, shooting bags and LIV seroprevalence were measured. A total of 1297 grouse chicks from 398 broods were examined for ticks. Enhanced acaricide treatment reduced tick burdens by 90%, and LIV seroprevalence decreased in relation to the number of years since treatment began. Breeding success and post-breeding densities of grouse in the current sample area remained unrelated to acaricide treatment, tick burdens or LIV seroprevalence, but 25% and 60% more grouse were shot on Westerdale and Danby, respectively, after treatment enhancement than before. By improving shooting bags, tick management schemes help to maintain the economic viability of grouse moors, which, in turn, provide upland landscape and wildlife benefits.
Collapse
Affiliation(s)
- D Newborn
- Game and Wildlife Conservation Trust, The Gillett, Forest-in-Teesdale, Barnard Castle, County Durham,U.K
| | | |
Collapse
|
47
|
Gilbert L, Maffey GL, Ramsay SL, Hester AJ. The effect of deer management on the abundance of Ixodes ricinus in Scotland. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:658-667. [PMID: 22611862 DOI: 10.1890/11-0458.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The management of wildlife hosts for controlling parasites and disease has a history of mixed success. Deer can be important hosts for ticks, such as Ixodes ricinus, which is the primary vector of disease-causing zoonotic pathogens in Europe. Deer are generally managed by culling and fencing for forestry protection, habitat conservation, and commercial hunting, and in this study we test whether these deer management methods can be useful for controlling ticks, with implications for tick-borne pathogens. At different spatial scales and habitats we tested the hypotheses that tick abundance is reduced by (1) culling deer and (2) deer exclusion using fencing. We compared abundance indices of hosts and questing I. ricinus nymphs using a combination of small-scale fencing experiments on moorland, a large-scale natural experiment of fenced and unfenced pairs of forests, and cross-sectional surveys of forest and moorland areas with varying deer densities. As predicted, areas with fewer deer had fewer ticks, and fenced exclosures had dramatically fewer ticks in both large-scale forest and small-scale moorland plots. Fencing and reducing deer density were also associated with higher ground vegetation. The implications of these results on other hosts, pathogen prevalence, and disease risk are discussed. This study provides evidence of how traditional management methods of a keystone species can reduce a generalist parasite, with implications for disease risk mitigation.
Collapse
Affiliation(s)
- L Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 2012; 139:847-63. [PMID: 22336330 DOI: 10.1017/s0031182012000200] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The twin concepts of zooprophylaxis and the dilution effect originated with vector-borne diseases (malaria), were driven forward by studies on Lyme borreliosis and have now developed into the mantra "biodiversity protects against disease". The basic idea is that by diluting the assemblage of transmission-competent hosts with non-competent hosts, the probability of vectors feeding on transmission-competent hosts is reduced and so the abundance of infected vectors is lowered. The same principle has recently been applied to other infectious disease systems--tick-borne, insect-borne, indirectly transmitted via intermediate hosts, directly transmitted. It is claimed that the presence of extra species of various sorts, acting through a variety of distinct mechanisms, causes the prevalence of infectious agents to decrease. Examination of the theoretical and empirical evidence for this hypothesis reveals that it applies only in certain circumstances even amongst tick-borne diseases, and even less often if considering the correct metric--abundance rather than prevalence of infected vectors. Whether dilution or amplification occurs depends more on specific community composition than on biodiversity per se. We warn against raising a straw man, an untenable argument easily dismantled and dismissed. The intrinsic value of protecting biodiversity and ecosystem function outweighs this questionable utilitarian justification.
Collapse
|
49
|
Factors driving the abundance of ixodes ricinus ticks and the prevalence of zoonotic I. ricinus-borne pathogens in natural foci. Appl Environ Microbiol 2012; 78:2669-76. [PMID: 22286986 DOI: 10.1128/aem.06564-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance.
Collapse
|
50
|
Hancock PA, Brackley R, Palmer SCF. Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. Int J Parasitol 2011; 41:513-22. [PMID: 21295037 DOI: 10.1016/j.ijpara.2010.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 11/18/2022]
Abstract
Seasonal variation in temperature is known to drive annual patterns of tick activity and can influence the dynamics of tick-borne diseases. An age-structured model of the dynamics of Ixodes ricinus populations was developed to explore how changes in average temperature and different levels of temperature variability affect seasonal patterns of tick activity and the transmission of tick-borne diseases. The model produced seasonal patterns of tick emergence that are consistent with those observed throughout Great Britain. Varying average temperature across a continuous spectrum produced a systematic pattern in the times of peak emergence of questing ticks which depends on cumulative temperature over the year. Examination of the effects of between-year stochastic temperature variation on this pattern indicated that peak emergence times are more strongly affected by temperature stochasticity at certain levels of average temperature. Finally the model was extended to give a simple representation of the dynamics of a tick-borne disease. A threshold level of annual cumulative temperature was identified at which disease persistence is sensitive to stochastic temperature variation. In conclusion, the effect of changing patterns of temperature variation on the dynamics of I. ricinus ticks and the diseases they transmit may depend on the cumulative temperature over the year and will therefore vary across different locations. The results also indicate that diapause mechanisms have an important influence on seasonal patterns of tick activity and require further study.
Collapse
Affiliation(s)
- Penelope A Hancock
- Centre for Population Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK.
| | | | | |
Collapse
|