1
|
Giontella A, Cardinali I, Sarti FM, Silvestrelli M, Lancioni H. Y-Chromosome Haplotype Report among Eight Italian Horse Breeds. Genes (Basel) 2023; 14:1602. [PMID: 37628653 PMCID: PMC10454838 DOI: 10.3390/genes14081602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Horse domestication and breed selection processes have profoundly influenced the development and transformation of human society and civilization over time. Therefore, their origin and history have always attracted much attention. In Italy, several local breeds have won prestigious awards thanks to their unique traits and socio-cultural peculiarities. Here, for the first time, we report the genetic variation of three loci of the male-specific region of the Y chromosome (MSY) of four local breeds and another one (Lipizzan, UNESCO) well-represented in the Italian Peninsula. The analysis also includes data from three Sardinian breeds and another forty-eight Eurasian and Mediterranean horse breeds retrieved from GenBank for comparison. Three haplotypes (HT1, HT2, and HT3) were found in Italian stallions, with different spatial distributions between breeds. HT1 (the ancestral haplotype) was frequent, especially in Bardigiano and Monterufolino, HT2 (Neapolitan/Oriental wave) was found in almost all local breeds, and HT3 (Thoroughbred wave) was detected in Maremmano and two Sardinian breeds (Sardinian Anglo-Arab and Sarcidano). This differential distribution is due to three paternal introgressions of imported stallions from foreign countries to improve local herds; however, further genetic analyses are essential to reconstruct the genetic history of native horse breeds, evaluate the impact of selection events, and enable conservation strategies.
Collapse
Affiliation(s)
- Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.G.); (M.S.)
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Maurizio Silvestrelli
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.G.); (M.S.)
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Musiał AD, Ropka-Molik K, Stefaniuk-Szmukier M, Myćka G, Bieniek A, Yasynetska N. Characteristic of Przewalski horses population from Askania-Nova reserve based on genetic markers. Mol Biol Rep 2023; 50:7121-7126. [PMID: 37365410 PMCID: PMC10374732 DOI: 10.1007/s11033-023-08581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Przewalski horses are considered the last living population of wild horses, however, they are secondarily feral offspring of herds domesticated ~ 5000 years ago by the Botai culture. After Przewalski horses were almost extinct at the beginning of the twentieth century, their population is about 2500 individuals worldwide, with one of the largest breeding centers in Askania-Nova Biosphere Reserve (Ukraine). The research aimed to establish the maternal variation of Przewalski horses population maintained in Askania-Nova Reserve based on mitochondrial DNA hypervariable 1 and hypervariable 2 regions profiling, as well as, analysis of Y chromosome single nucleotide polymorphism unique for Przewalski horses, and coat color markers: MC1R and TBX3. The mtDNA hypervariable regions analysis in 23 Przewalski horses allowed assigning them to three distinctly different haplotypes, showing the greatest similarity to the Equus caballus reference, the Equus przewalskii reference, and to extinct species-Haringtonhippus. The Y chromosome analysis using fluorescently labelled assays differentiated horses in terms of polymorphism (g731821T>C) characteristic of Equus przewalskii. All male individuals presented genotype C characteristics for Przewalski horses. The polymorphisms within the coat color genes indicated only native, wild genotypes. The Y chromosome and coat color analysis denied admixtures of the tested horses with other Equidae.
Collapse
Affiliation(s)
- Adrianna D Musiał
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland.
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - Grzegorz Myćka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - Agnieszka Bieniek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | | |
Collapse
|
3
|
Piras FM, Cappelletti E, Abdelgadir WA, Salamon G, Vignati S, Santagostino M, Sola L, Nergadze SG, Giulotto E. A Satellite-Free Centromere in Equus przewalskii Chromosome 10. Int J Mol Sci 2023; 24:4134. [PMID: 36835543 PMCID: PMC9961726 DOI: 10.3390/ijms24044134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In mammals, centromeres are epigenetically specified by the histone H3 variant CENP-A and are typically associated with satellite DNA. We previously described the first example of a natural satellite-free centromere on Equus caballus chromosome 11 (ECA11) and, subsequently, on several chromosomes in other species of the genus Equus. We discovered that these satellite-free neocentromeres arose recently during evolution through centromere repositioning and/or chromosomal fusion, after inactivation of the ancestral centromere, where, in many cases, blocks of satellite sequences were maintained. Here, we investigated by FISH the chromosomal distribution of satellite DNA families in Equus przewalskii (EPR), demonstrating a good degree of conservation of the localization of the major horse satellite families 37cen and 2PI with the domestic horse. Moreover, we demonstrated, by ChIP-seq, that 37cen is the satellite bound by CENP-A and that the centromere of EPR10, the ortholog of ECA11, is devoid of satellite sequences. Our results confirm that these two species are closely related and that the event of centromere repositioning which gave rise to EPR10/ECA11 centromeres occurred in the common ancestor, before the separation of the two horse lineages.
Collapse
Affiliation(s)
- Francesca M. Piras
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Wasma A. Abdelgadir
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Giulio Salamon
- Oasi di Sant’Alessio, Sant’Alessio con Vialone, 27016 Pavia, Italy
| | | | - Marco Santagostino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Sola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Solomon G. Nergadze
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Elena Giulotto
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Cardinali I, Giontella A, Tommasi A, Silvestrelli M, Lancioni H. Unlocking Horse Y Chromosome Diversity. Genes (Basel) 2022; 13:genes13122272. [PMID: 36553539 PMCID: PMC9777570 DOI: 10.3390/genes13122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Anna Tommasi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | | | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
5
|
Castaneda C, Radović L, Felkel S, Juras R, Davis BW, Cothran EG, Wallner B, Raudsepp T. Copy number variation of horse Y chromosome genes in normal equine populations and in horses with abnormal sex development and subfertility: relationship of copy number variations with Y haplogroups. G3 (BETHESDA, MD.) 2022; 12:jkac278. [PMID: 36227030 PMCID: PMC9713435 DOI: 10.1093/g3journal/jkac278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2023]
Abstract
Structural rearrangements like copy number variations in the male-specific Y chromosome have been associated with male fertility phenotypes in human and mouse but have been sparsely studied in other mammalian species. Here, we designed digital droplet PCR assays for 7 horse male-specific Y chromosome multicopy genes and SRY and evaluated their absolute copy numbers in 209 normal male horses of 22 breeds, 73 XY horses with disorders of sex development and/or infertility, 5 Przewalski's horses and 2 kulans. This established baseline copy number for these genes in horses. The TSPY gene showed the highest copy number and was the most copy number variable between individuals and breeds. SRY was a single-copy gene in most horses but had 2-3 copies in some indigenous breeds. Since SRY is flanked by 2 copies of RBMY, their copy number variations were interrelated and may lead to SRY-negative XY disorders of sex development. The Przewalski's horse and kulan had 1 copy of SRY and RBMY. TSPY and ETSTY2 showed significant copy number variations between cryptorchid and normal males (P < 0.05). No significant copy number variations were observed in subfertile/infertile males. Notably, copy number of TSPY and ETSTY5 differed between successive male generations and between cloned horses, indicating germline and somatic mechanisms for copy number variations. We observed no correlation between male-specific Y chromosome gene copy number variations and male-specific Y chromosome haplotypes. We conclude that the ampliconic male-specific Y chromosome reference assembly has deficiencies and further studies with an improved male-specific Y chromosome assembly are needed to determine selective constraints over horse male-specific Y chromosome gene copy number and their relation to stallion reproduction and male biology.
Collapse
Affiliation(s)
- Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Lara Radović
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Sabine Felkel
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Biotechnology, Institute of Computational Biology, BOKU University of Life Sciences and Natural Resources, Vienna 1190, Austria
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Ernest Gus Cothran
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Barbara Wallner
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| |
Collapse
|
6
|
Turghan MA, Jiang Z, Niu Z. An Update on Status and Conservation of the Przewalski's Horse ( Equus ferus przewalskii): Captive Breeding and Reintroduction Projects. Animals (Basel) 2022; 12:ani12223158. [PMID: 36428386 PMCID: PMC9686875 DOI: 10.3390/ani12223158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
This review summarizes studies on Przewalski's horse since its extinction in the wild in the 1960s, with a focus on the reintroduction projects in Mongolia and China, with current population status. Historical and present distribution, population trends, ecology and habitats, genetics, behaviors, conservation measures, actual and potential threats are also reviewed. Captive breeding and reintroduction projects have already been implemented, but many others are still under considerations. The review may help to understand the complexity of problem and show the directions for effective practice in the future.
Collapse
Affiliation(s)
- Mardan Aghabey Turghan
- State Key Laboratory of Oasis and Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (M.A.T.); (Z.J.)
| | - Zhigang Jiang
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (M.A.T.); (Z.J.)
| | - Zhongze Niu
- College of Biology and Geography Sciences, Yili Normal University, Yining 835000, China
| |
Collapse
|
7
|
Evolution of the Family Equidae, Subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene. BIOLOGY 2022; 11:biology11091258. [PMID: 36138737 PMCID: PMC9495906 DOI: 10.3390/biology11091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Studies of horse evolution arose during the middle of the 19th century, and several hypotheses have been proposed for their taxonomy, paleobiogeography, paleoecology and evolution. The present contribution represents a collaboration of 19 multinational experts with the goal of providing an updated summary of Pliocene and Pleistocene North, Central and South American, Eurasian and African horses. At the present time, we recognize 114 valid species across these continents, plus 4 North African species in need of further investigation. Our biochronology and biogeography sections integrate Equinae taxonomic records with their chronologic and geographic ranges recognizing regional biochronologic frameworks. The paleoecology section provides insights into paleobotany and diet utilizing both the mesowear and light microscopic methods, along with calculation of body masses. We provide a temporal sequence of maps that render paleoclimatic conditions across these continents integrated with Equinae occurrences. These records reveal a succession of extinctions of primitive lineages and the rise and diversification of more modern taxa. Two recent morphological-based cladistic analyses are presented here as competing hypotheses, with reference to molecular-based phylogenies. Our contribution represents a state-of-the art understanding of Plio-Pleistocene Equus evolution, their biochronologic and biogeographic background and paleoecological and paleoclimatic contexts.
Collapse
|
8
|
From the Eurasian Steppes to the Roman Circuses: A Review of Early Development of Horse Breeding and Management. Animals (Basel) 2021; 11:ani11071859. [PMID: 34206575 PMCID: PMC8300240 DOI: 10.3390/ani11071859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Horses were domesticated later than any other major livestock species. Their role in shaping ancient civilizations cannot be overestimated. As a primary means of transportation, an essential asset in warfare, and later one of the key elements of circus entertainment, horses quickly became luxurious goods. Vast amounts of money were invested in the horse industry resulted resulting in the rapid development of horse breeding and husbandry. This review examines paleogenetic, archeological, and classical studies on managing horses in antiquity. Many ancient approaches and practices in horse management are still relevant today and some of them, now abandoned, are worth re-examination. Abstract The domestication of the horse began about 5500 years ago in the Eurasian steppes. In the following millennia horses spread across the ancient world, and their role in transportation and warfare affected every ancient culture. Ownership of horses became an indicator of wealth and social status. The importance of horses led to a growing interest in their breeding and management. Many phenotypic traits, such as height, behavior, and speed potential, have been proven to be a subject of selection; however, the details of ancient breeding practices remain mostly unknown. From the fourth millennium BP, through the Iron Age, many literature sources thoroughly describe horse training systems, as well as various aspects of husbandry, many of which are still in use today. The striking resemblance of ancient and modern equine practices leaves us wondering how much was accomplished through four thousand years of horse breeding.
Collapse
|
9
|
Liu S, Fu C, Yang Y, Zhang Y, Ma H, Xiong Z, Ling Y, Zhao C. Current genetic conservation of Chinese indigenous horses revealed with Y-chromosomal and mitochondrial DNA polymorphisms. G3 (BETHESDA, MD.) 2021; 11:jkab008. [PMID: 33604674 PMCID: PMC8022964 DOI: 10.1093/g3journal/jkab008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022]
Abstract
To investigate the genetic diversity of Chinese indigenous horses and determine the genetic status of extant horse breeds, novel Y chromosomal microsatellite markers and known Y chromosomal SNPs and mtDNA loop sequences, were employed to study the genetic diversity levels of 13 Chinese indigenous horse populations and four introduced breeds. Sixteen Y-chromosomal microsatellite markers, including seven newly identified loci, were used in the genotyping. The results showed that 4 out of the 16 loci were highly polymorphic in Chinese indigenous horse populations, in which the polymorphisms of 3 loci, ECAYP12, ECAYP13, and ECAYCAU3, were first reported in the present study. The polymorphic Y chromosomal microsatellite markers result in 19 haplotypes in the studied horses and formed 24 paternal lines when merged with the 14 Y chromosomal SNPs reported previously. The haplotypes CHT18 and SS24 harboring AMELY gene mutation were the ancestral haplotypes, and other haplotypes were derived from them by one or more mutation steps. The horse populations in mountainous and remote areas of southwestern China have the most ancient paternal lines, which suggests that ancient paternal lines preserved in local populations attributed to less human interventions. Our results also showed that the northern local breeds had higher mtDNA diversity than the southern ones in China. The frequency of haplogroup B, F, and G of mtDNA in Chinese indigenous horses has declined in recent years, and some breeds are in endangered status mainly due to small population sizes. Urgent actions should be taken to conserve the genetic diversity of the indigenous horse populations, especially the rare paternal lines. Our findings help to elucidate the genetic diversity and evolutionary history of Chinese domestic horses, which will facilitate the conservation of the indigenous horses in the future.
Collapse
Affiliation(s)
- Shuqin Liu
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Qingdao Agricultural University, Shandong, China
| | - Chunzheng Fu
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunzhou Yang
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongying Ma
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyao Xiong
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Ling
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing, China
| | - Chunjiang Zhao
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing, China
- National Engineering Laboratory for Animal Breeding. Beijing, China
| |
Collapse
|
10
|
Fornal A, Kowalska K, Zabek T, Piestrzynska-Kajtoch A, Musiał AD, Ropka-Molik K. Genetic Diversity and Population Structure of Polish Konik Horse Based on Individuals from All the Male Founder Lines and Microsatellite Markers. Animals (Basel) 2020; 10:E1569. [PMID: 32899310 PMCID: PMC7552212 DOI: 10.3390/ani10091569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
The Polish Konik horse is a primitive native breed included in the genetic resource conservation program in Poland. After World War II, intensive breeding work began, aimed at rebuilding this breed. Now, the whole Polish Konik population is represented by six male founder lines (Wicek, Myszak, Glejt I, Goraj, Chochlik and Liliput). Individuals representing all six paternal lineages were selected based on their breeding documentation. We performed a fragment analysis with 17 microsatellite markers (STRs) recommended by the International Society for Animal Genetics (ISAG). The genetic diversity and structure within the paternal lineages and the whole of the studied group were investigated. The average allelic richness was 6.497 for the whole studied group. The fixation index (FST; measure of population differentiation) was low (about 3%), the mean inbreeding coefficient (FIT) was low and close to 0, and the mean inbreeding index value (FIS) was negative. The mean expected heterozygosity was established at 0.7046 and was lower than the observed heterozygosity. The power of discrimination and power of exclusion were 99.9999%. The cumulative parentage exclusion probability equaled 99.9269% when one parental genotype was known and 99.9996% with both parents' genotypic information was available. About 3% of the genetic variation was caused by differences in the breed origin and about 97% was attributed to differences among individuals. Our analysis revealed that there has been no inbreeding in the Polish Konik breed for the studied population. The genetic diversity was high, and its parameters were similar to those calculated for native breeds from other countries reported in the literature. However, due to the small number of breed founders and paternal lineages with unknown representation, the population's genetic diversity and structure should be monitored regularly.
Collapse
Affiliation(s)
- Agnieszka Fornal
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Krakow, Poland; (K.K.); (T.Z.); (A.P.-K.); (A.D.M.); (K.R.-M.)
| | | | | | | | | | | |
Collapse
|
11
|
Norman AJ, Putnam AS, Ivy JA. Use of molecular data in zoo and aquarium collection management: Benefits, challenges, and best practices. Zoo Biol 2018; 38:106-118. [PMID: 30465726 DOI: 10.1002/zoo.21451] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 01/06/2023]
Abstract
The global zoo and aquarium community widely recognizes that its animal collections and cooperative breeding programs are facing a sustainability crisis. It has become commonly accepted that numerous priority species cannot be maintained unless new management strategies are adopted. While molecular data have the potential to greatly improve management across a range of scenarios, they have been generally underutilized by the zoo and aquarium community. This failure to effectively apply molecular data to collection management has been due, in part, to a paucity of resources within the community on which to base informed decisions about when the use of such data is appropriate and what steps are necessary to successfully integrate data into management. Here, we identify three broad areas of inquiry where molecular data can inform management: 1) taxonomic identification; 2) incomplete or unknown pedigrees; and 3) hereditary disease. Across these topics, we offer a discussion of the advantages, limitations, and considerations for applying molecular data to ex situ animal populations in a style accessible to zoo and aquarium professionals. Ultimately, we intend for this compiled information to serve as a resource for the community to help ensure that molecular projects directly and effectively benefit the long-term persistence of ex situ populations.
Collapse
Affiliation(s)
- Anita J Norman
- Department of Life Sciences, San Diego Zoo Global, San Diego, California
| | - Andrea S Putnam
- Department of Life Sciences, San Diego Zoo Global, San Diego, California
| | - Jamie A Ivy
- Department of Life Sciences, San Diego Zoo Global, San Diego, California
| |
Collapse
|
12
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
13
|
Wutke S, Sandoval-Castellanos E, Benecke N, Döhle HJ, Friederich S, Gonzalez J, Hofreiter M, Lõugas L, Magnell O, Malaspinas AS, Morales-Muñiz A, Orlando L, Reissmann M, Trinks A, Ludwig A. Decline of genetic diversity in ancient domestic stallions in Europe. SCIENCE ADVANCES 2018; 4:eaap9691. [PMID: 29675468 PMCID: PMC5906072 DOI: 10.1126/sciadv.aap9691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/01/2018] [Indexed: 05/12/2023]
Abstract
Present-day domestic horses are immensely diverse in their maternally inherited mitochondrial DNA, yet they show very little variation on their paternally inherited Y chromosome. Although it has recently been shown that Y chromosomal diversity in domestic horses was higher at least until the Iron Age, when and why this diversity disappeared remain controversial questions. We genotyped 16 recently discovered Y chromosomal single-nucleotide polymorphisms in 96 ancient Eurasian stallions spanning the early domestication stages (Copper and Bronze Age) to the Middle Ages. Using this Y chromosomal time series, which covers nearly the entire history of horse domestication, we reveal how Y chromosomal diversity changed over time. Our results also show that the lack of multiple stallion lineages in the extant domestic population is caused by neither a founder effect nor random demographic effects but instead is the result of artificial selection-initially during the Iron Age by nomadic people from the Eurasian steppes and later during the Roman period. Moreover, the modern domestic haplotype probably derived from another, already advantageous, haplotype, most likely after the beginning of the domestication. In line with recent findings indicating that the Przewalski and domestic horse lineages remained connected by gene flow after they diverged about 45,000 years ago, we present evidence for Y chromosomal introgression of Przewalski horses into the gene pool of European domestic horses at least until medieval times.
Collapse
Affiliation(s)
- Saskia Wutke
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | | | - Norbert Benecke
- Department of Natural Sciences, German Archaeological Institute, 14195 Berlin, Germany
| | - Hans-Jürgen Döhle
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt—Landesmuseum für Vorgeschichte, 06114 Halle (Saale), Germany
| | - Susanne Friederich
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt—Landesmuseum für Vorgeschichte, 06114 Halle (Saale), Germany
| | - Javier Gonzalez
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Michael Hofreiter
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Lembi Lõugas
- Archaeological Research Collection, Tallinn University, Rüütli 10, 10130 Tallinn, Estonia
| | - Ola Magnell
- National Historical Museums, Contract Archaeology, 226 60 Lund, Sweden
| | | | | | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350K Copenhagen, Denmark
- Université de Toulouse, Université Paul Sabatier, Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse, CNRS UMR 5288, Toulouse, France
| | - Monika Reissmann
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University Berlin, 10115 Berlin, Germany
| | - Alexandra Trinks
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Corresponding author.
| |
Collapse
|
14
|
Khaudov AD, Duduev AS, Kokov ZA, Amshokov KK, Zhekamukhov MK, Zaitsev AM, Reissmann M. Genetic analysis of maternal and paternal lineages in Kabardian horses by uniparental molecular markers. Open Vet J 2018; 8:40-46. [PMID: 29445620 PMCID: PMC5806666 DOI: 10.4314/ovj.v8i1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Studies of mitochondrial DNA (mtDNA) as well as the non-recombining part of the Y chromosome help to understand the origin and distribution of maternal and paternal lineages. The Kabardian horse from Northern Caucasia which is well-known for strength, stamina and endurance in distance riding has a large gap in its breeding documentation especially in the recent past. A 309 bp fragment of the mitochondrial D-loop (156 Kabardian horses) and six mutations in Y chromosome (49 Kabardian stallions), respectively, were analyzed to get a better insight into breeding history, phylogenetic relationship to related breeds, maternal and paternal diversity and genetic structure. We found a high mitochondrial diversity represented by 64 D-loop haplotypes out of 14 haplogroups. The most frequent haplogroups were G (19.5%), L (12.3%), Q (11.7%), and B (11.0%). Although these four haplogroups are also frequently found in Asian riding horses (e.g. Buryat, Kirghiz, Mongolian, Transbaikalian, Tuvinian) the percentage of the particular haplogroups varies sometimes remarkable. In contrast, the obtained haplogroup pattern from Kabardian horse was more similar to that of breeds reared in the Middle East. No specific haplotype cluster was observed in the phylogenetic tree for Kabardian horses. On Kabardian Y chromosome, two mutations were found leading to three haplotypes with a percentage of 36.7% (haplotype HT1), 38.8% (haplotype HT2) and 24.5% (haplotype HT3), respectively. The high mitochondrial and also remarkable paternal diversity of the Kabardian horse is caused by its long history with a widely spread maternal origin and the introduction of Arabian as well as Thoroughbred influenced stallions for improvement. This high genetic diversity provides a good situation for the ongoing breed development and performance selection as well as avoiding inbreeding.
Collapse
Affiliation(s)
- Aliybek D. Khaudov
- Institute of Chemistry and Biology, Kabardino-Balkarian State University, Chernyshevskovo 173, 360004 Nalchik, Russia
| | - Astemir S. Duduev
- Institute of Chemistry and Biology, Kabardino-Balkarian State University, Chernyshevskovo 173, 360004 Nalchik, Russia
| | - Zaur A. Kokov
- Institute of Physics and Mathematics, Kabardino-Balkarian State University, Chernyshevskovo 173, 360004 Nalchik, Russia
| | - Khazhismel K. Amshokov
- Kabardino-Balkarian Research Institute of Agriculture, Kirova 224, 360004 Nalchik, Russia
| | | | - Alexander M. Zaitsev
- All-Russian Research Institute of Horse Breeding, Ryazan region, Rybnoye district, 391105 Divovo, Russia
| | - Monika Reissmann
- Abrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
15
|
Chen H, Ren Z, Zhao J, Zhang C, Yang X. Y-chromosome polymorphisms of the domestic Bactrian camel in China. J Genet 2018. [DOI: 10.1007/s12041-017-0852-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E, Druml T, Jagannathan V, Leeb T, Fries R, Tetens J, Thaller G, Metzger J, Distl O, Lindgren G, Rubin CJ, Andersson L, Schaefer R, McCue M, Neuditschko M, Rieder S, Schlötterer C, Brem G. Y Chromosome Uncovers the Recent Oriental Origin of Modern Stallions. Curr Biol 2017; 27:2029-2035.e5. [PMID: 28669755 DOI: 10.1016/j.cub.2017.05.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022]
Abstract
The Y chromosome directly reflects male genealogies, but the extremely low Y chromosome sequence diversity in horses has prevented the reconstruction of stallion genealogies [1, 2]. Here, we resolve the first Y chromosome genealogy of modern horses by screening 1.46 Mb of the male-specific region of the Y chromosome (MSY) in 52 horses from 21 breeds. Based on highly accurate pedigree data, we estimated the de novo mutation rate of the horse MSY and showed that various modern horse Y chromosome lineages split much later than the domestication of the species. Apart from few private northern European haplotypes, all modern horse breeds clustered together in a roughly 700-year-old haplogroup that was transmitted to Europe by the import of Oriental stallions. The Oriental horse group consisted of two major subclades: the Original Arabian lineage and the Turkoman horse lineage. We show that the English Thoroughbred MSY was derived from the Turkoman lineage and that English Thoroughbred sires are largely responsible for the predominance of this haplotype in modern horses.
Collapse
Affiliation(s)
- Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Nicola Palmieri
- Institut für Populationsgenetik, University of Veterinary Medicine Vienna, Vienna 1210, Austria; Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Elif Bozlak
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Thomas Druml
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising 85354, Germany
| | - Jens Tetens
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel 24098, Germany; Functional Breeding Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel 24098, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Leif Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4461, USA
| | - Robert Schaefer
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Stefan Rieder
- Agroscope, Swiss National Stud Farm, Avenches 1580, Switzerland
| | - Christian Schlötterer
- Institut für Populationsgenetik, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| |
Collapse
|
17
|
Burger PA. The history of Old World camelids in the light of molecular genetics. Trop Anim Health Prod 2016; 48:905-13. [PMID: 27048619 PMCID: PMC4884201 DOI: 10.1007/s11250-016-1032-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 01/19/2023]
Abstract
Old World camels have come into the focus as sustainable livestock species, unique in their morphological and physiological characteristics and capable of providing vital products even under extreme environmental conditions. The evolutionary history of dromedary and Bactrian camels traces back to the middle Eocene (around 40 million years ago, mya), when the ancestors of Camelus emerged on the North American continent. While the genetic status of the two domestic species has long been established, the wild two-humped camel has only recently been recognized as a separate species, Camelus ferus, based on molecular genetic data. The demographic history established from genome drafts of Old World camels shows the independent development of the three species over the last 100,000 years with severe bottlenecks occurring during the last glacial period and in the recent past. Ongoing studies involve the immune system, relevant production traits, and the global population structure and domestication of Old World camels. Based on the now available whole genome drafts, specific metabolic pathways have been described shedding new light on the camels' ability to adapt to desert environments. These new data will also be at the origin for genome-wide association studies to link economically relevant phenotypes to genotypes and to conserve the diverse genetic resources in Old World camelids.
Collapse
Affiliation(s)
- Pamela Anna Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
18
|
Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Bar-Gal GK, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafberg R, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, McCue M, Rieder S, Leeb T, Slatkin M, Orlando L. Evolutionary Genomics and Conservation of the Endangered Przewalski's Horse. Curr Biol 2015; 25:2577-83. [PMID: 26412128 DOI: 10.1016/j.cub.2015.08.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/06/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022]
Abstract
Przewalski's horses (PHs, Equus ferus ssp. przewalskii) were discovered in the Asian steppes in the 1870s and represent the last remaining true wild horses. PHs became extinct in the wild in the 1960s but survived in captivity, thanks to major conservation efforts. The current population is still endangered, with just 2,109 individuals, one-quarter of which are in Chinese and Mongolian reintroduction reserves [1]. These horses descend from a founding population of 12 wild-caught PHs and possibly up to four domesticated individuals [2-4]. With a stocky build, an erect mane, and stripped and short legs, they are phenotypically and behaviorally distinct from domesticated horses (DHs, Equus caballus). Here, we sequenced the complete genomes of 11 PHs, representing all founding lineages, and five historical specimens dated to 1878-1929 CE, including the Holotype. These were compared to the hitherto-most-extensive genome dataset characterized for horses, comprising 21 new genomes. We found that loci showing the most genetic differentiation with DHs were enriched in genes involved in metabolism, cardiac disorders, muscle contraction, reproduction, behavior, and signaling pathways. We also show that DH and PH populations split ∼45,000 years ago and have remained connected by gene-flow thereafter. Finally, we monitor the genomic impact of ∼110 years of captivity, revealing reduced heterozygosity, increased inbreeding, and variable introgression of domestic alleles, ranging from non-detectable to as much as 31.1%. This, together with the identification of ancestry informative markers and corrections to the International Studbook, establishes a framework for evaluating the persistence of genetic variation in future reintroduced populations.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Melinda A Yang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Matteo Fumagalli
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Hákon Jónsson
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Gila Kahila Bar-Gal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Koret School of Veterinary Medicine, The Hebrew University, Rehovot 76100, Israel
| | - Anders Albrechtsen
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen 2200N, Denmark
| | - Filipe G Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Bent Petersen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby 2800, Denmark
| | - Aurélien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Andaine Seguin-Orlando
- National High-Throughput DNA Sequencing Centre, University of Copenhagen, Copenhagen 1353K, Denmark
| | - Kim Magnussen
- National High-Throughput DNA Sequencing Centre, University of Copenhagen, Copenhagen 1353K, Denmark
| | - Antoine Fages
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Belen Lorente-Galdos
- ICREA at the Institut de Biologia Evolutiva (CSIC-University Pompeu Fabra), Barcelona 08003, Spain
| | - Sagi Polani
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Koret School of Veterinary Medicine, The Hebrew University, Rehovot 76100, Israel
| | - Cynthia Steiner
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
| | | | | | - Claudia Feh
- Station Biologique de la Tour du Valat, Arles 13200, France
| | - Charles L Greenblatt
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Natalia I Abramson
- Zoological Institute of the Russian Academy of Sciences, Saint-Petersburg 199034, Russia
| | | | - Renate Schafberg
- Martin-Luther-University Halle-Wittenberg, Museum of Domesticated Animals "Julius Kühn", Halle 06108, Germany
| | - Alexei Tikhonov
- Zoological Institute of the Russian Academy of Sciences, Saint-Petersburg 199034, Russia; Institute of Applied Ecology of the North, North-Eastern Federal University, Yakutsk 677980, Russia
| | - Thomas Sicheritz-Ponten
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby 2800, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark
| | - Tomas Marques-Bonet
- ICREA at the Institut de Biologia Evolutiva (CSIC-University Pompeu Fabra), Barcelona 08003, Spain; Centro Nacional de Analisis Genomico (CNAG-CRG), Barcelona 08023, Spain
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
| | - Molly McCue
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Stefan Rieder
- Agroscope, Swiss National Stud Farm, Avenches 1580, Switzerland
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350K, Denmark; Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, 37 Allées Jules Guesde, 31000 Toulouse, France.
| |
Collapse
|
19
|
Kanthaswamy S. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges. Anim Genet 2015; 46:473-84. [DOI: 10.1111/age.12335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 01/09/2023]
Affiliation(s)
- S. Kanthaswamy
- School of Mathematical and Natural Sciences; Arizona State University (ASU) at the West Campus; 4701 W Thunderbird Road Glendale AZ 85306-4908 USA
- California National Primate Research Center; University of California; Davis CA 95616 USA
| |
Collapse
|
20
|
Han H, Zhang Q, Gao K, Yue X, Zhang T, Dang R, Lan X, Chen H, Lei C. Y-Single Nucleotide Polymorphisms Diversity in Chinese Indigenous Horse. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1066-74. [PMID: 26104513 PMCID: PMC4478473 DOI: 10.5713/ajas.14.0784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 11/27/2022]
Abstract
In contrast to high genetic diversity of mitochondrial DNA (mtDNA), equine Y chromosome shows extremely low variability, implying limited patrilines in the domesticated horse. In this study, we applied direct sequencing and restriction fragment length polymorphism (RFLP) methods to investigate the polymorphisms of 33 Y chromosome specific loci in 304 Chinese indigenous horses from 13 breeds. Consequently, two Y-single nucleotide polymorphisms (SNPs) (Y-45701/997 and Y-50869) and one Y-indel (Y-45288) were identified. Of those, the Y-50869 (T>A) revealed the highest variation frequency (24.67%), whereas it was only 3.29% and 1.97% in Y-45288 (T/-) and Y-45701/997 (G>T) locus, respectively. These three mutations accounted for 27.96% of the total samples and identified five Y-SNP haplotypes, demonstrating genetic diversity of Y chromosome in Chinese horses. In addition, all the five Y-SNP haplotypes were shared by different breeds. Among 13 horse breeds analyzed, Balikun horse displayed the highest nucleotide diversity (π = 5.6×10(-4)) and haplotype diversity (h = 0.527), while Ningqiang horse showed the lowest nucleotide diversity (π = 0.00000) and haplotype diversity (h = 0.000). The results also revealed that Chinese horses had a different polymorphic pattern of Y chromosome from European and American horses. In conclusion, Chinese horses revealed genetic diversity of Y chromosome, however more efforts should be made to better understand the domestication and paternal origin of Chinese indigenous horses.
Collapse
Affiliation(s)
- Haoyuan Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Gao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangpeng Yue
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhang
- Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Ruihua Dang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Genomic characterization of the Przewalski׳s horse inhabiting Mongolian steppe by whole genome re-sequencing. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Zhang T, Lu H, Chen C, Jiang H, Wu S. Genetic Diversity of mtDNA D-loop and Maternal Origin of Three Chinese Native Horse Breeds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:921-6. [PMID: 25049645 PMCID: PMC4092969 DOI: 10.5713/ajas.2011.11483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/04/2012] [Accepted: 02/16/2012] [Indexed: 11/27/2022]
Abstract
In order to protect the genetic resource of native horse breeds, the genetic diversity of mitochondrial DNA (mtDNA) D-loop of three native horse breeds in western China were investigated. Forty-three 600 bp mtDNA D-loop sequences were analyzed by PCR and sequencing techniques, 33 unique haplotypes with 70 polymorphic sites were detected in these horses, which account for 11.67% of 600 bp sequence analyzed, showing the abundant genetic diversity of the three native horse breeds in western China. The Neighbour-Joining (NJ) phylogenetic tree based on 247 bp of 43 D-loop sequences demonstrated the presence of seven major lineages (A to G), indicating that the three native horse breeds in western China originated from multiple maternal origins. Consistent with the front, the NJ phylogenetic tree based on 600 bp of mtDNA D-loop sequences of 43 Chinese western native horses and 81 sequences of six horse breeds from GenBank indicated that the three horse breeds had distributed into the seven major lineages (A to G). The structure of the phylogenic tree is often blurred because the variation in a short segment of the mitochondrial genome is often accompanied by high levels of recurrent mutations. Consequently, longer D-loop sequences are helpful in achieving a higher level of molecular resolution in horses.
Collapse
|
23
|
Abstract
Several studies based on a variety of genetic markers have attempted to establish the origins of horse domestication. Thus far a discrepancy between the results of mitochondrial DNA analysis, which show high levels of diversity, and results from the Y-chromosome, with almost no genetic variability, has been identified. Most previous work on the horse Y-chromosome has focused on widespread, popular breeds or local Asian breeds. It is possible that these breeds represent a reduced set of the genetic variation present in the species. Additional genetic variation may be present in local breeds and ancient feral populations, such as the Retuertas horse in Spain. In this study we analyzed the Y-chromosome of the Retuertas horse, a feral horse population on the Iberian Peninsula that is at least several hundred years old, and whose genetic diversity and morphology suggests that it has been reproductively isolated for a long time. Data from the Retuertas horse was compared to another 11 breeds from the region (Portugal, Spain and France) or likely of Iberian origin, and then to data from 15 more breeds from around the globe. We sequenced 31 introns, Zinc finger Y-chromosomal protein (ZFY) and anonymous Y-linked fragments and genotyped 6 microsatellite loci found on the Y-chromosome. We found no sequence variation among all individuals and all breeds studied. However, fifteen differences were discovered between our data set and reference sequences in GenBank. We show that these likely represent errors within the deposited sequences, and suggest that they should not be used as comparative data for future projects.
Collapse
|
24
|
Wallner B, Vogl C, Shukla P, Burgstaller JP, Druml T, Brem G. Identification of genetic variation on the horse y chromosome and the tracing of male founder lineages in modern breeds. PLoS One 2013; 8:e60015. [PMID: 23573227 PMCID: PMC3616054 DOI: 10.1371/journal.pone.0060015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT), all clearly distinct from the Przewalski horse (E. przewalskii). The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3) are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion “Eclipse” or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.
Collapse
Affiliation(s)
- Barbara Wallner
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
25
|
Vilstrup JT, Seguin-Orlando A, Stiller M, Ginolhac A, Raghavan M, Nielsen SCA, Weinstock J, Froese D, Vasiliev SK, Ovodov ND, Clary J, Helgen KM, Fleischer RC, Cooper A, Shapiro B, Orlando L. Mitochondrial phylogenomics of modern and ancient equids. PLoS One 2013; 8:e55950. [PMID: 23437078 PMCID: PMC3577844 DOI: 10.1371/journal.pone.0055950] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).
Collapse
Affiliation(s)
- Julia T. Vilstrup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Stiller
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Aurelien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Sandra C. A. Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Jacobo Weinstock
- Faculty of Humanities, University of Southampton, Southampton, United Kingdom
| | - Duane Froese
- Department of Earth and Atmospheric Sciences, University of Alberta, Alberta, Canada
| | - Sergei K. Vasiliev
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolai D. Ovodov
- Laboratory of Archaeology and Paleogeography of Central Siberia, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Joel Clary
- Centre de Conservation et d’Étude des Collections, Musée des Confluences, Lyon, France
| | - Kristofer M. Helgen
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America
| | - Robert C. Fleischer
- Center for Conservation and Evolutionary Genetics, Smithsonian National Zoological Park, Smithsonian Institution, Washington D.C., United States of America
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, The University of Adelaide, South Australia, Australia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
26
|
Molecular phylogeny of extant equids and effects of ancestral polymorphism in resolving species-level phylogenies. Mol Phylogenet Evol 2012; 65:573-81. [DOI: 10.1016/j.ympev.2012.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/18/2012] [Accepted: 07/14/2012] [Indexed: 11/19/2022]
|
27
|
Prystupa JM, Hind P, Cothran EG, Plante Y. Maternal lineages in native Canadian equine populations and their relationship to the Nordic and Mountain and Moorland pony breeds. J Hered 2012; 103:380-90. [PMID: 22504109 DOI: 10.1093/jhered/ess003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A 378-bp section of the mitochondrial displacement loop was used to estimate genetic diversity in the native Canadian equine populations. The inclusion of 10 Mountain and Moorland, 3 Nordic pony breeds, 2 feral populations, and 5 horse breeds were also investigated as they may have influenced the development (or rejuvenation) of the native Canadian populations. A total of 281 samples were sequenced, which produced 75 haplotypes derived from 54 informative sites. On further investigation, 36 of these 75 haplotypes were found to be previously unreported. Overall, total diversity was lowest in the feral Sable Island population with a haplotype diversity (0.27 ± 0.12), nucleotide diversity (0.0007 ± 0.0004), and pairwise difference of 0.286 ± 0.317. This is not surprising due to the geographic isolation of this population. Haplotype diversity was highest (1.00 ± 0.13) in the New Forest population, pairwise difference was highest (8.061 ± 4.028) in the Icelandic breed, whereas nucleotide diversity was highest in the Exmoor breed (0.0209 ± 0.0025). Within the Canadian populations, haplotype diversity was highest in the Newfoundland pony (0.96 ± 0.08), whereas pairwise difference and nucleotide diversity was highest in the Canadian horse (7.090 ± 3.581 and 0.0188 ± 0.0042, respectively). Three different estimates of genetic distances were used to examine the phylogenetic relationships amongst these populations. All 3 estimates produced similar topologies. In general, the native Canadian populations were highly represented in the D clade, with particular emphasis in the D1 and D2 clades. This is an important factor when considering the phylogenetic conservation of these Canadian equine populations.
Collapse
Affiliation(s)
- Jaclyn Mercedes Prystupa
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8.
| | | | | | | |
Collapse
|
28
|
|
29
|
Koban E, Denizci M, Aslan O, Aktoprakligil D, Aksu S, Bower M, Balcioglu BK, Ozdemir Bahadir A, Bilgin R, Erdag B, Bagis H, Arat S. High microsatellite and mitochondrial diversity in Anatolian native horse breeds shows Anatolia as a genetic conduit between Europe and Asia. Anim Genet 2011; 43:401-9. [PMID: 22497212 DOI: 10.1111/j.1365-2052.2011.02285.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The horse has been a food source, but more importantly, it has been a means for transport. Its domestication was one of the crucial steps in the history of human civilization. Despite the archaeological and molecular studies carried out on the history of horse domestication, which would contribute to conservation of the breeds, the details of the domestication of horses still remain to be resolved. We employed 21 microsatellite loci and mitochondrial control region partial sequences to analyse genetic variability within and among four Anatolian native horse breeds, Ayvacık Pony, Malakan Horse, Hınıs Horse and Canik Horse, as well as samples from indigenous horses of unknown breed ancestry. The aims of the study were twofold: first, to produce data from the prehistorically and historically important land bridge, Anatolia, in order to assess its role in horse domestication and second, to analyse the data from a conservation perspective to help the ministry improve conservation and management strategies regarding native horse breeds. Even though the microsatellite data revealed a high allelic diversity, 98% of the genetic variation partitioned within groups. Genetic structure did not correlate with a breed or geographic origin. High diversity was also detected in mtDNA control region sequence analysis. Frequencies of two haplogroups (HC and HF) revealed a cline between Asia and Europe, suggesting Anatolia as a probable connection route between the two continents. This first detailed genetic study on Anatolian horse breeds revealed high diversity among horse mtDNA haplogroups in Anatolia and suggested Anatolia's role as a conduit between the two continents. The study also provides an important basis for conservation practices in Turkey.
Collapse
Affiliation(s)
- E Koban
- TUBITAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, Kocaeli, Turkey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lippold S, Knapp M, Kuznetsova T, Leonard JA, Benecke N, Ludwig A, Rasmussen M, Cooper A, Weinstock J, Willerslev E, Shapiro B, Hofreiter M. Discovery of lost diversity of paternal horse lineages using ancient DNA. Nat Commun 2011; 2:450. [PMID: 21863017 DOI: 10.1038/ncomms1447] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/20/2011] [Indexed: 11/09/2022] Open
Abstract
Modern domestic horses display abundant genetic diversity within female-inherited mitochondrial DNA, but practically no sequence diversity on the male-inherited Y chromosome. Several hypotheses have been proposed to explain this discrepancy, but can only be tested through knowledge of the diversity in both the ancestral (pre-domestication) maternal and paternal lineages. As wild horses are practically extinct, ancient DNA studies offer the only means to assess this ancestral diversity. Here we show considerable ancestral diversity in ancient male horses by sequencing 4 kb of Y chromosomal DNA from eight ancient wild horses and one 2,800-year-old domesticated horse. Both ancient and modern domestic horses form a separate branch from the ancient wild horses, with the Przewalski horse at its base. Our methodology establishes the feasibility of re-sequencing long ancient nuclear DNA fragments and demonstrates the power of ancient Y chromosome DNA sequence data to provide insights into the evolutionary history of populations.
Collapse
Affiliation(s)
- Sebastian Lippold
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Goto H, Ryder OA, Fisher AR, Schultz B, Kosakovsky Pond SL, Nekrutenko A, Makova KD. A massively parallel sequencing approach uncovers ancient origins and high genetic variability of endangered Przewalski's horses. Genome Biol Evol 2011; 3:1096-106. [PMID: 21803766 PMCID: PMC3194890 DOI: 10.1093/gbe/evr067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The endangered Przewalski's horse is the closest relative of the domestic horse and is the only true wild horse species surviving today. The question of whether Przewalski's horse is the direct progenitor of domestic horse has been hotly debated. Studies of DNA diversity within Przewalski's horses have been sparse but are urgently needed to ensure their successful reintroduction to the wild. In an attempt to resolve the controversy surrounding the phylogenetic position and genetic diversity of Przewalski's horses, we used massively parallel sequencing technology to decipher the complete mitochondrial and partial nuclear genomes for all four surviving maternal lineages of Przewalski's horses. Unlike single-nucleotide polymorphism (SNP) typing usually affected by ascertainment bias, the present method is expected to be largely unbiased. Three mitochondrial haplotypes were discovered—two similar ones, haplotypes I/II, and one substantially divergent from the other two, haplotype III. Haplotypes I/II versus III did not cluster together on a phylogenetic tree, rejecting the monophyly of Przewalski's horse maternal lineages, and were estimated to split 0.117–0.186 Ma, significantly preceding horse domestication. In the phylogeny based on autosomal sequences, Przewalski's horses formed a monophyletic clade, separate from the Thoroughbred domestic horse lineage. Our results suggest that Przewalski's horses have ancient origins and are not the direct progenitors of domestic horses. The analysis of the vast amount of sequence data presented here suggests that Przewalski's and domestic horse lineages diverged at least 0.117 Ma but since then have retained ancestral genetic polymorphism and/or experienced gene flow.
Collapse
Affiliation(s)
- Hiroki Goto
- Department of Biology, The Pennsylvania State University, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Xu H, Han W, Zhao C, Manglai D. A suspect horse excluded by analysis of species- and male-specific DNA and mtDNA. Forensic Sci Int 2011; 207:e66-8. [PMID: 21376488 DOI: 10.1016/j.forsciint.2011.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 12/29/2010] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
|
33
|
Ling Y, Ma Y, Guan W, Cheng Y, Wang Y, Han J, Jin D, Mang L, Mahmut H. Identification of Y chromosome genetic variations in Chinese indigenous horse breeds. ACTA ACUST UNITED AC 2010; 101:639-43. [PMID: 20497969 DOI: 10.1093/jhered/esq047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Y chromosome acts as a single nonrecombining unit that is male specific and in effect haploid, thus ensuring the preservation of mutational events as a single haplotype via male lines. In this study, 6 Y chromosome-specific microsatellites (SSR) were tested for the patrilineal genetic variations of 573 male samples from Chinese domestic horse (30 breeds), Przewalski's horse, and donkey. All the 6 loci appeared as a haplotype block in Przewalski's horse and the domestic donkey. There were notable differences, however, at Y chromosome markers between horse and donkey. There were 2 haplotypes of Eca.YA16 in the domestic horse breeds, Haplotype A (Allele A: 156 bp) and Haplotype B (Allele B: 152 bp). Allele A was the common allele among 30 horse breeds, and Allele B was found in 11 horse breeds. This is the first description of a Y chromosome variant for horses. The 2 haplotypes of Y chromosome discovered in the domestic horse breeds in China could be helpful in unveiling their intricate genetic genealogy.
Collapse
Affiliation(s)
- Yinghui Ling
- Animal Genetic Resources Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mamuris Z, Moutou KA, Stamatis C, Sarafidou T, Suchentrunk F. Y DNA and mitochondrial lineages in European and Asian populations of the brown hare (Lepus europaeus). Mamm Biol 2010. [DOI: 10.1016/j.mambio.2009.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Trujillo RG, Patton JC, Schlitter DA, Bickham JW. Molecular Phylogenetics of the Bat GenusScotophilus(Chiroptera: vespertilionidae): Perspectives from Paternally and Maternally Inherited Genomes. J Mammal 2009. [DOI: 10.1644/08-mamm-a-239r2.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Lau AN, Peng L, Goto H, Chemnick L, Ryder OA, Makova KD. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences. Mol Biol Evol 2008; 26:199-208. [PMID: 18931383 DOI: 10.1093/molbev/msn239] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite their ability to interbreed and produce fertile offspring, there is continued disagreement about the genetic relationship of the domestic horse (Equus caballus) to its endangered wild relative, Przewalski's horse (Equus przewalskii). Analyses have differed as to whether or not Przewalski's horse is placed phylogenetically as a separate sister group to domestic horses. Because Przewalski's horse and domestic horse are so closely related, genetic data can also be used to infer domestication-specific differences between the two. To investigate the genetic relationship of Przewalski's horse to the domestic horse and to address whether evolution of the domestic horse is driven by males or females, five homologous introns (a total of approximately 3 kb) were sequenced on the X and Y chromosomes in two Przewalski's horses and three breeds of domestic horses: Arabian horse, Mongolian domestic horse, and Dartmoor pony. Five autosomal introns (a total of approximately 6 kb) were sequenced for these horses as well. The sequences of sex chromosomal and autosomal introns were used to determine nucleotide diversity and the forces driving evolution in these species. As a result, X chromosomal and autosomal data do not place Przewalski's horses in a separate clade within phylogenetic trees for horses, suggesting a close relationship between domestic and Przewalski's horses. It was also found that there was a lack of nucleotide diversity on the Y chromosome and higher nucleotide diversity than expected on the X chromosome in domestic horses as compared with the Y chromosome and autosomes. This supports the hypothesis that very few male horses along with numerous female horses founded the various domestic horse breeds. Patterns of nucleotide diversity among different types of chromosomes were distinct for Przewalski's in contrast to domestic horses, supporting unique evolutionary histories of the two species.
Collapse
Affiliation(s)
- Allison N Lau
- Department of Biology, The Pennsylvania State University, University Park, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kavar T, Dovč P. Domestication of the horse: Genetic relationships between domestic and wild horses. Livest Sci 2008. [DOI: 10.1016/j.livsci.2008.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Nishida S, Goto M, Pastene LA, Kanda N, Koike H. Phylogenetic relationships among cetaceans revealed by Y-chromosome sequences. Zoolog Sci 2008; 24:723-32. [PMID: 17824780 DOI: 10.2108/zsj.24.723] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 03/10/2007] [Indexed: 11/17/2022]
Abstract
The Y chromosome has recently come into the spotlight as a new and efficient genetic marker for tracing paternal lineages. We reconstructed cetacean phylogeny using a 1.7-kbp fragment of the non-recombining Y chromosome (NRY), including the SRY gene and a flanking non-coding region. The topology of the Y-chromosome tree is robust to various methods of analysis and exhibits high branch-support values, possibly due to the absence of recombination, small effective population size, and low homoplasy. The Y-chromosome tree indicates monophyly of each suborder, Mysticeti and Odontoceti, with high branch support values (BS> or =86%; PP> or =98%). In the Odontoceti clade, three superfamilies, Physeteroidea, Ziphioidea, and Delphinoidea, diverged soon after the split between Mysticeti and Odontoceti. Our analysis allows resolution of this rapid radiation and indicates that Physeteroidea is basal in the Odontoceti clade (BS, 99%; PP, 100%; MBS, 61%). The major split within the superfamily Delphinoidea is between the Delphinidae clade and the Monodontidae+ Phocoenidae clade. The phylogenetic relationships among delphinid species are ambiguous, probably because of the rapid radiation of this family. In the Mysticeti clade, the first major split is between Balaenidae and Balaenopteridae; within Balaenopteridae, a Balaenoptera acutorostrata+B. bonaerensis (minke whales) clade forms a sister clade with the other balaenopterid species. Megaptera novaeangliae is nested within Balaenoptera, making the latter paraphyletic. The low homoplasy exhibited by the Y-chromosome data presented here suggests that an extended data set incorporating longer sequences would provide better resolution of cetacean lower-level pylogeny.
Collapse
Affiliation(s)
- Shin Nishida
- Department of Biodiversity, Graduate School of Social and Cultural Studies, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
39
|
Zhao CJ, Qin YH, Lee XH, Wu C. Molecular and cytogenetic paternity testing of a male offspring of a hinny. J Anim Breed Genet 2006; 123:403-5. [PMID: 17177697 DOI: 10.1111/j.1439-0388.2006.00615.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An alleged male foal of a female mule, whose sire and grandparents were unknown, was identified for its pedigree. Parentage testing was conducted by comparing polymorphism of 12 microsatellite DNA sites and mitochondrial D-loop sequences of the male foal and the female mule. Both the sequence analysis of species-specific DNA fragments and a cytogenetic analysis were performed to identify the species of the foal and its parents. The results showed that the alleged female mule is actually a hinny, and the male foal, which possesses 62 chromosomes, qualifies as an offspring of the female hinny and a jack donkey.
Collapse
Affiliation(s)
- C J Zhao
- Equine Center, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
40
|
Krüger K, Gaillard C, Stranzinger G, Rieder S. Phylogenetic analysis and species allocation of individual equids using microsatellite data. J Anim Breed Genet 2005; 122 Suppl 1:78-86. [PMID: 16130461 DOI: 10.1111/j.1439-0388.2005.00505.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The taxonomic status of all equid species is not completely unravelled. This is of practical relevance for conservation initiatives of endangered, fragmented equid populations, such as the Asiatic wild asses (in particular Equus hemionus onager and E. hemionus kulan). In this study, a marker panel consisting of 31 microsatellite loci was used to assess species demarcation and phylogeny, as well as allocation of individuals (n = 120) to specific populations of origin (n = 11). Phylogenetic analysis revealed coalescence times comparable with those previously published from fossil records and mtDNA data. Using Bayesian approaches, it was possible to distinguish between the studied equids, although individual assignment levels varied. The observed results support the maintenance of separate captive conservation herds for E. hemionus onager and E. hemionus kulan. The first molecular genetic results for E. hemionus luteus remained contradictory, as they unexpectedly indicated a closer genetic relationship between E. hemionus luteus and E. kiang holderi compared with the other hemiones.
Collapse
Affiliation(s)
- K Krüger
- Institute of Animal Science, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | |
Collapse
|
41
|
Royo LJ, Alvarez I, Beja-Pereira A, Molina A, Fernández I, Jordana J, Gómez E, Gutiérrez JP, Goyache F. The origins of Iberian horses assessed via mitochondrial DNA. ACTA ACUST UNITED AC 2005; 96:663-9. [PMID: 16251517 DOI: 10.1093/jhered/esi116] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite a number of recent studies that have focused on the origin of domestic horses, genetic relationships between major geographical clusters still remain poorly understood. In this study we analyzed a 296 bp mtDNA fragment from the HVI region of 171 horses representing 11 native Iberian, Barb, and Exmoor breeds to assess the maternal phylogeography of Iberian horses. The mtDNA haplogroup with a CCG motif (nucleotide position 15,494 to 15,496) was the most frequent in Iberian and Barb breeds (0.42 and 0.57, respectively), regardless of geographic location or group of breeds. This finding supports the close genetic relationship between the ancestral mare populations of the Iberian Peninsula and Northern Africa. Phenotypic differences among the Northern and Southern Iberian groups of breeds are not explained by population subdivision based on maternal lineages. Our results also suggest that Northern Iberian ponies--which are phenotypically close to British ponies, especially Exmoor--are the result of an introgression rather than population replacement.
Collapse
Affiliation(s)
- L J Royo
- Area de Genética y Reproducción Animal, SERIDA, E-33203 Gijón, Asturias, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Budowle B, Garofano P, Hellman A, Ketchum M, Kanthaswamy S, Parson W, van Haeringen W, Fain S, Broad T. Recommendations for animal DNA forensic and identity testing. Int J Legal Med 2005; 119:295-302. [PMID: 15834735 DOI: 10.1007/s00414-005-0545-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/29/2005] [Indexed: 11/25/2022]
Abstract
Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.
Collapse
Affiliation(s)
- Bruce Budowle
- FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ahrens E, Stranzinger G. Comparative chromosomal studies of E. caballus (ECA) and E. przewalskii (EPR) in a female F1 hybrid. J Anim Breed Genet 2005; 122 Suppl 1:97-102. [PMID: 16130463 DOI: 10.1111/j.1439-0388.2005.00494.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous research revealed that the karyotypes of Equus przewalskii (2n = 66) and Equus caballus (2n = 64) differ by one pair of metacentric chromosomes, present in ECA but not in EPR, and two pairs of acrocentric chromosomes found only in the EPR karyotype. The formation of a trivalent during meiosis in a male F1 hybrid and the homologies in G-banding patterns suggest that ECA 5 corresponds to two acrocentric EPR chromosomes resulting from a Robertsonian fusion or fission event. Chromosomal investigations of a female interspecies F1 hybrid including banded karyograms and fluorescence in situ hybridization (FISH) studies focusing on the p and q arm of ECA 5 were conducted. Q- and G-banding patterns of E. caballus, E. przewalskii and the hybrid revealed interspecies homology between all chromosome pairs except for ECA 5, EPR 23 and EPR 24, which were unique for that particular species. Furthermore, they indicated homology between ECA 5p and EPR 23 as well as between ECA 5q and EPR 24. FISH revealed hybridization of the BACs laminin beta 3 (LAM B3) and laminin gamma 2 (LAM C2) to ECA 5p and EPR 23. However, nuclear factor I (NFIA) and immunoglobulin lambda (IGL@), primarily assigned to ECA 5q, mapped to ECA 7 and EPR 6 respectively. Thus the karyotypes of E. caballus and E. przewalskii differ solely by one Robertsonian translocation (ECA 5 =EPR 23 + EPR 24).
Collapse
Affiliation(s)
- E Ahrens
- Department of Animal Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
44
|
Raudsepp T, Santani A, Wallner B, Kata SR, Ren C, Zhang HB, Womack JE, Skow LC, Chowdhary BP. A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci U S A 2004; 101:9321-6. [PMID: 15197257 PMCID: PMC438975 DOI: 10.1073/pnas.0403011101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We herein report a detailed physical map of the horse Y chromosome. The euchromatic region of the chromosome comprises approximately 15 megabases (Mb) of the total 45- to 50-Mb size and lies in the distal one-third of the long arm, where the pseudoautosomal region (PAR) is located terminally. The rest of the chromosome is predominantly heterochromatic. Because of the unusual organization of the chromosome (common to all mammalian Y chromosomes), a number of approaches were used to crossvalidate the results. Analysis of the 5,000-rad horse x hamster radiation hybrid panel produced a map spanning 88 centirays with 8 genes and 15 sequence-tagged site (STS) markers. The map was verified by several fluorescence in situ hybridization approaches. Isolation of bacterial artificial chromosome (BAC) clones for the radiation hybrid-mapped markers, end sequencing of the BACs, STS development, and bidirectional chromosome walking yielded 109 markers (100 STS and 9 genes) contained in 73 BACs. STS content mapping grouped the BACs into seven physically ordered contigs (of which one is predominantly ampliconic) that were verified by metaphase-, interphase-, and fiber-fluorescence in situ hybridization and also BAC fingerprinting. The map spans almost the entire euchromatic region of the chromosome, of which 20-25% (approximately 4 Mb) is covered by isolated BACs. The map is presently the most informative among Y chromosome maps in domesticated species, third only to the human and mouse maps. The foundation laid through the map will be critical in obtaining complete sequence of the euchromatic region of the horse Y chromosome, with an aim to identify Y specific factors governing male infertility and phenotypic sex variation.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lindgren G, Backström N, Swinburne J, Hellborg L, Einarsson A, Sandberg K, Cothran G, Vilà C, Binns M, Ellegren H. Limited number of patrilines in horse domestication. Nat Genet 2004; 36:335-6. [PMID: 15034578 DOI: 10.1038/ng1326] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/12/2004] [Indexed: 11/08/2022]
Abstract
Genetic studies using mitochondrial DNA (mtDNA) have identified extensive matrilinear diversity among domestic horses. Here, we show that this high degree of polymorphism is not matched by a corresponding patrilinear diversity of the male-specific Y chromosome. In fact, a screening for single-nucleotide polymorphisms (SNPs) in 14.3 kb of noncoding Y chromosome sequence among 52 male horses of 15 different breeds did not identify a single segregation site. These observations are consistent with a strong sex-bias in the domestication process, with few stallions contributing genetically to the domestic horse.
Collapse
Affiliation(s)
- Gabriella Lindgren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|