1
|
Campanelli L, Galeano P, Prestia FA, Cuesta C, Dalmasso MC, Flores-López M, Gona C, Irureta N, Kairiyama C, Lisso J, López-Gambero AJ, Mintz I, Medel N, Campuzano KS, Muchnik C, Novack GV, Olivar N, Quiroga I, Requena-Ocaña N, Reyes-Bueno JA, Serrano-Castro P, Sevillano Z, Solis P, Suárez J, Villella I, Wukitsevits N, Castaño EM, Taragano F, Kochen S, Politis DG, Brusco LI, Rodríguez de Fonseca F, Morelli L. Blood levels of cytokines highlight the role of inflammation in Alzheimer's disease. Heliyon 2025; 11:e41725. [PMID: 39872450 PMCID: PMC11770505 DOI: 10.1016/j.heliyon.2025.e41725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammation and angiogenesis have been defined as potential mechanisms associated with clinical progression from a cognitively normal state to Alzheimer's disease (AD). In this observational case-control study, we aimed to determine plasma levels of cytokines as indicators of inflammation involved in cognitive decline. We measured 30 plasma proteins in 49 controls (CTL), 36 individuals with mild cognitive impairment (MCI) and 52 patients diagnosed with probable AD. After applying strict filters for quantification limits, only 13 analytes were included in the analysis. Kruskal-Wallis tests showed significant differences between diagnostic groups for nine cytokines (IL-16, IL-7, VEGF, IL-8, eotaxin, MCP-1, MCP-4, MDC and TARC). Non-parametric MANCOVA showed that sex and diagnosis affected cytokine levels in the blood. To determine the sensitivity and specificity of the markers, we performed receiver operating characteristic (ROC) curve analysis. Only those analytes that showed an area under the curve (AUC) ≥ 0.70 were included in the multivariate logistic regression models to better understand the contribution of cytokines to clinical status. Three models: 1) CTL vs. AD; 2) CTL vs. MCI, and 3) MCI vs. AD were developed, with sex and age as covariates. In each model, two cytokines remained significantly different (model 1: IL-16 and MDC; model 2: eotaxin and MDC and model 3: IL-7 and VEGF). Taken together, this report identifies a set of plasma markers of inflammation and strengthens the role of glial biology in different clinical stages of AD.
Collapse
Affiliation(s)
- Lorenzo Campanelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico A. Prestia
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Cuesta
- Hospital Interzonal General de Agudos (HIGA) Eva Perón, Av. 101 Dr. Ricardo Balbín 3200, Provincia de Buenos Aires, Buenos Aires, B1650NBN, Argentina
| | - Maria C. Dalmasso
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
| | - María Flores-López
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
| | - Cristian Gona
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nicolás Irureta
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Claudia Kairiyama
- Hospital Interzonal General de Agudos (HIGA) Eva Perón, Av. 101 Dr. Ricardo Balbín 3200, Provincia de Buenos Aires, Buenos Aires, B1650NBN, Argentina
| | - Julieta Lisso
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Antonio Jesús López-Gambero
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
| | - Ines Mintz
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nancy Medel
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Karen S. Campuzano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Muchnik
- Center of Neuropsychiatry and Behavior Neurology, School of Medicine, University of Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela V. Novack
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natividad Olivar
- Center of Neuropsychiatry and Behavior Neurology, School of Medicine, University of Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivana Quiroga
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nerea Requena-Ocaña
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
| | - Jose Antonio Reyes-Bueno
- Unidad de Neurología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Malaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
| | - Pedro Serrano-Castro
- Unidad de Neurología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Malaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
| | - Zulma Sevillano
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Patricia Solis
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Juan Suárez
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
- Departamento of Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, Av. Cervantes, 2, 2907, Málaga, Spain
| | - Ivana Villella
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nancy Wukitsevits
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Eduardo M. Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Taragano
- Neuropsychiatric Clinic Nuestra Señora de Las Nieves, Av. Álvarez Thomas 268, C1427CCP, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Kochen
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
| | - Daniel G. Politis
- Hospital Interzonal General de Agudos (HIGA) Eva Perón, Av. 101 Dr. Ricardo Balbín 3200, Provincia de Buenos Aires, Buenos Aires, B1650NBN, Argentina
| | - Luis I. Brusco
- Center of Neuropsychiatry and Behavior Neurology, School of Medicine, University of Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Neurología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Malaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Wang S, Ding X, Li Z, Rao F, Xu H, Lu J, Ma X, Zhang M, Xie Z. Comprehensive analyses identify potential biomarkers for encephalitis in HIV infection. Sci Rep 2023; 13:18418. [PMID: 37891420 PMCID: PMC10611703 DOI: 10.1038/s41598-023-45922-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
Human immunodeficiency virus encephalitis (HIVE) is a severe neurological complication after HIV infection. Evidence shows that genetic factors play an important role in HIVE. The aim of the present study was to identify new potential therapeutic targets for HIVE. Differentially expressed gene (DEG), functional annotation and pathway, and protein-protein interaction analyses were performed to identify the hub genes associated with HIVE. Gene co-expression analysis was carried out to confirm the association between the hub genes and HIVE. Finally, the role of the hub genes in HIVE therapy was evaluated by conducting drug-gene interaction analysis. A total of 20 overlapping DEGs closely related to HIVE were identified. Functional annotation and pathway enrichment analysis indicated that the markedly enriched DEG terms included ion transport, type II interferon signaling, and synaptic signaling. Moreover, protein-protein interaction analysis revealed that 10 key HIVE-related genes were hub genes, including SCN8A, CDK5R2, GRM5, SCN2B, IFI44L, STAT1, SLC17A7, ISG15, FGF12, and FGF13. Furthermore, six hub genes were co-expressed with HIVE-associated host genes in human brain tissue. Finally, three hub genes (STAT1, ISG15, and SCN2B) interacted with several inflammation-associated drugs. These findings suggested that SCN8A, CDK5R2, GRM5, SCN2B, IFI44L, STAT1, SLC17A7, ISG15, FGF12, and FGF13 may be new targets for diagnosis and therapy of HIVE.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, China.
| | - Xiangqian Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zongyou Li
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Feng Rao
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Hui Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Jinghong Lu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Xuelu Ma
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Mengen Zhang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Zhenrong Xie
- The Medical Biobank, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
3
|
McMillan RE, Wang E, Carlin AF, Coufal NG. Human microglial models to study host-virus interactions. Exp Neurol 2023; 363:114375. [PMID: 36907350 PMCID: PMC10521930 DOI: 10.1016/j.expneurol.2023.114375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Microglia, the resident macrophage of the central nervous system, are increasingly recognized as contributing to diverse aspects of human development, health, and disease. In recent years, numerous studies in both mouse and human models have identified microglia as a "double edged sword" in the progression of neurotropic viral infections: protecting against viral replication and cell death in some contexts, while acting as viral reservoirs and promoting excess cellular stress and cytotoxicity in others. It is imperative to understand the diversity of human microglial responses in order to therapeutically modulate them; however, modeling human microglia has been historically challenging due to significant interspecies differences in innate immunity and rapid transformation upon in vitro culture. In this review, we discuss the contribution of microglia to the neuropathogenesis of key neurotropic viral infections: human immunodeficiency virus 1 (HIV-1), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We pay special attention to recent work with human stem cell-derived microglia and propose strategies to leverage these powerful models to further uncover species- and disease-specific microglial responses and novel therapeutic interventions for neurotropic viral infections.
Collapse
Affiliation(s)
- Rachel E McMillan
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, United States of America; Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Ellen Wang
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America
| | - Aaron F Carlin
- Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America.
| |
Collapse
|
4
|
An Investigation into Proteomic Constituents of Cerebrospinal Fluid in Patients with Chronic Peripheral Neuropathic Pain Medicated with Opioids- a Pilot Study. J Neuroimmune Pharmacol 2020; 16:634-650. [PMID: 33219474 DOI: 10.1007/s11481-020-09970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
The pharmacodynamics of opioids for chronic peripheral neuropathic pain are complex and likely extend beyond classical opioid receptor theory. Preclinical evidence of opioid modulation of central immune signalling has not been identified in vivo in humans. Examining the cerebrospinal fluid (CSF) of patients medicated with opioids is required to identify potential pharmacodynamic mechanisms. We compared CSF samples of chronic peripheral neuropathic pain patients receiving opioids (n = 7) versus chronic peripheral neuropathic pain patients not taking opioids (control group, n = 13). Baseline pain scores with demographics were recorded. Proteome analysis was performed using mass spectrometry and secreted neuropeptides were measured by enzyme-linked immunosorbent assay. Based on Gene Ontology analysis, proteins involved in the positive regulation of nervous system development and myeloid leukocyte activation were increased in patients taking opioids versus the control group. The largest decrease in protein expression in patients taking opioids were related to neutrophil mediated immunity. In addition, notably higher expression levels of neural proteins (85%) and receptors (80%) were detected in the opioid group compared to the control group. This study suggests modulation of CNS homeostasis, possibly attributable to opioids, thus highlighting potential mechanisms for the pharmacodynamics of opioids. We also provide new insights into the immunomodulatory functions of opioids in vivo.
Collapse
|
5
|
Ellis RJ, Peterson SN, Li Y, Schrier R, Iudicello J, Letendre S, Morgan E, Tang B, Grant I, Cherner M. Recent cannabis use in HIV is associated with reduced inflammatory markers in CSF and blood. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/5/e809. [PMID: 32554630 PMCID: PMC7309527 DOI: 10.1212/nxi.0000000000000809] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine whether cannabis may reduce HIV-related persistent inflammation, we evaluated the relationship of cannabis use in people with HIV (PWH) to inflammatory cytokines in CSF and blood plasma. METHODS We measured a panel of proinflammatory cytokines (interleukin [IL]-16, C-reactive protein [CRP], IL-6, interferon gamma-induced protein [IP]-10, soluble CD14, and soluble tumor necrosis factor receptor type II [sTNFRII]) in CSF and blood plasma in PWH and HIV- individuals who did or did not use cannabis at various levels of exposure. Participants in this observational cohort were recruited from community sources and underwent lumbar puncture and phlebotomy. Cannabis use parameters were characterized by self-report based on a semistructured timeline follow-back interview. Cytokines were measured using commercially available immunoassays. Data were analyzed using factor analysis. RESULTS Participants were 35 PWH and 21 HIV- individuals, mean (SD) age 45.4 (14.5) years, 41 cannabis ever users, and 15 never users. PWH and HIV- were not different in recency, cumulative months, grams, or density of cannabis use. A factor analysis using CSF biomarkers yielded a factor loading on CRP, IL-16, and sTNFRII that was significantly associated with recency of cannabis use (more recent use associated with lower factor 1 values, reflecting less inflammation; r = 0.331 [95% CI 0.0175, 0.586]). In particular, more recent cannabis use was related to lower IL-16 levels (r = 0.549 [0.282, 0.737]). Plasma biomarkers yielded a factor loading on sTNFRII and IP-10 that was associated with more recent cannabis use (more recent use related to less inflammation; r = 0.374 [0.0660, 0.617]). CONCLUSIONS Recent cannabis use was associated with lower levels of inflammatory biomarkers, both in CSF and blood, but in different patterns. These results are consistent with compartmentalization of immune effects of cannabis. The principal active components of cannabis are highly lipid soluble and sequestered in brain tissue; thus, our findings are consistent with specific anti-neuroinflammatory effects that may benefit HIV neurologic dysfunction.
Collapse
Affiliation(s)
- Ronald J Ellis
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego.
| | - Scott N Peterson
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Yueling Li
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego.
| | - Rachel Schrier
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Jenny Iudicello
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Scott Letendre
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Erin Morgan
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Bin Tang
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Igor Grant
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Mariana Cherner
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| |
Collapse
|
6
|
Grygorczuk S, Osada J, Toczyłowski K, Sulik A, Czupryna P, Moniuszko-Malinowska A, Kondrusik M, Świerzbińska R, Dunaj J, Pancewicz S, Dąbrowska M. The lymphocyte populations and their migration into the central nervous system in tick-borne encephalitis. Ticks Tick Borne Dis 2020; 11:101467. [PMID: 32723646 DOI: 10.1016/j.ttbdis.2020.101467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 01/29/2023]
Abstract
In tick-borne encephalitis (TBE) the cerebrospinal fluid (CSF) cytosis is dominated by T CD3+CD4+ and T CD3+CD8+ lymphocytes, but their pathogenetic roles and mechanisms of migration into central nervous system (CNS) are unclear. Currently, we have studied CSF lymphocyte subsets and chemotactic axes in TBE patients stratified according to the clinical presentation. Blood and CSF were obtained from 51 patients with TBE (presenting as meningitis in 30, meningoencephalitis in 18 and meningoencephalomyelitis in 3), 20 with non-TBE meningitis and 11 healthy controls. We have studied: (1) abundances of the main lymphocyte subsets and (2) CXCR3 and CCR5 expression on CD3+CD4+ and CD3+CD8+ lymphocytes cytometrically with fluorochrome-stained monoclonal antibodies; (3) concentrations of chemotactic cytokines: CCL5 (CCR5 ligand), CXCL10 (CXCR3 ligand), IL-16, CCL2, CCL20 and CXCL5 with ELISA. Cytokine concentrations were additionally studied in 8 pediatric TBE patients. Data were analyzed with non-parametric tests, p < 0.05 considered significant. The higher CSF lymphocyte counts were associated with symptoms of CNS involvement, especially with altered consciousness (B, Th and Tc cells) and focal neurologic deficits (B cells). The minor fraction of double-positive T CD4+CD8+ cells was unique in associating negatively with encephalitis and altered consciousness. CSF CD3+CD4+ and CD3+CD8+ lymphocyte population was enriched in CCR5-positive cells and CCL5 concentration in CSF was increased and associated with a milder presentation. Although CXCL10 was vividly up-regulated intrathecally and correlated with CSF T lymphocyte counts, the CXCR3 expression in CSF T lymphocytes was low. Serum and CSF concentrations of CCL2, CXCL5 and IL-16 were increased in adult TBE patients, CCL2 created a chemotactic gradient towards CSF and both CCL2 and IL-16 concentrations correlated positively with CSF lymphocyte counts. The particular lymphoid cell populations in CSF associate differently with the clinical presentation of TBE, suggesting their distinct roles in pathogenesis. CCR5/CCL5 axis probably contributes to T lymphocyte migration into CNS. CXCL10 mediates the intrathecal immune response, but is probably not directly responsible for T cell migration. Additional chemotactic factors must be involved, probably including CCL2 and IL-16.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Joanna Osada
- Department of Hematologic Diagnostics, Medical University in Białystok, ul. Waszyngtona 15A, 15-269 Białystok, Poland.
| | - Kacper Toczyłowski
- Department of Pediatric Infectious Diseases, Medical University in Białystok, ul. Waszyngtona 17, 15-274 Białystok, Poland.
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University in Białystok, ul. Waszyngtona 17, 15-274 Białystok, Poland.
| | - Piotr Czupryna
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Anna Moniuszko-Malinowska
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Maciej Kondrusik
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Renata Świerzbińska
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Justyna Dunaj
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Sławomir Pancewicz
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Milena Dąbrowska
- Department of Hematologic Diagnostics, Medical University in Białystok, ul. Waszyngtona 15A, 15-269 Białystok, Poland.
| |
Collapse
|
7
|
Croq F, Vizioli J, Tuzova M, Tahtouh M, Sautiere PE, Van Camp C, Salzet M, Cruikshank WW, Pestel J, Lefebvre C. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis. Glia 2011; 58:1649-62. [PMID: 20578037 DOI: 10.1002/glia.21036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In contrast to mammals, the medicinal leech Hirudo medicinalis can completely repair its central nervous system (CNS) after injury. This invertebrate model offers unique opportunities to study the molecular and cellular basis of the CNS repair processes. When the leech CNS is injured, microglial cells migrate and accumulate at the site of lesion, a phenomenon known to be essential for the usual sprouting of injured axons. In the present study, we demonstrate that a new molecule, designated HmIL-16, having functional homologies with human interleukin-16 (IL-16), has chemotactic activity on leech microglial cells as observed using a gradient of human IL-16. Preincubation of microglial cells either with an anti-human IL-16 antibody or with anti-HmIL-16 antibody significantly reduced microglia migration induced by leech-conditioned medium. Functional homology was demonstrated further by the ability of HmIL-16 to promote human CD4+ T cell migration which was inhibited by antibody against human IL-16, an IL-16 antagonist peptide or soluble CD4. Immunohistochemistry of leech CNS indicates that HmIL-16 protein present in the neurons is rapidly transported and stored along the axonal processes to promote the recruitment of microglial cells to the injured axons. To our knowledge, this is the first identification of a functional interleukin-16 homologue in invertebrate CNS. The ability of HmIL-16 to recruit microglial cells to sites of CNS injury suggests a role for HmIL-16 in the crosstalk between neurons and microglia in the leech CNS repair.
Collapse
Affiliation(s)
- Françoise Croq
- Université Lille Nord de France, Université Lille 1, Laboratoire de Neuroimmunologie des Annélides, Centre National de la Recherche Scientifique, FRE 3249, IFR 147, F59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kasten-Jolly J, Heo Y, Lawrence DA. Central nervous system cytokine gene expression: modulation by lead. J Biochem Mol Toxicol 2011; 25:41-54. [PMID: 21322097 DOI: 10.1002/jbt.20358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The environmental heavy metal toxicant, lead (Pb) has been shown to be more harmful to the central nervous system (CNS) of children than to adults, given that Pb exposure affects the neural system during development. Because growth factors and cytokines play very important roles in development of the CNS, we have examined the impact of Pb exposure on the expression of cytokines during CNS development. Cytokine expression was studied in post-natal-day 21 (pnd21) mice by microarray, real-time RT-PCR, Luminex, and ELISA methodologies. BALB/c mouse pups were exposed to Pb through the dam's drinking water (0.1 mM Pb acetate), from gestation-day 8 (gd8) to pnd21. Two cytokines, interleukin-6 (IL-6) and transforming growth factor-β1 (TGF-β1), displayed significantly changed transcript levels in the presence of Pb. IL-6 and TGF-β1 both have signal transduction cascades that can cooperatively turn on the gene for the astrocyte marker glial-fibrillary acidic protein (GFAP). Microarray results indicated that Pb exposure significantly increased expression of GFAP. Pb also modulated IL-6, TGF-β1, and IL-18 protein expression in select brain regions. The deleterious effects of Pb on learning and long-term memory are posited to result from excessive astrocyte growth and/or activation with concomitant interference with neural connections. Differential neural expression of cytokines in brain regions needs to be further investigated to mechanistically associate Pb and neuroinflammation with behavioral and cognitive changes.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Laboratory of Clinical and Experimental Endocrinology and Immunology, Wadsworth Center, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
9
|
Xia C, Luo D, Yu X, Jiang S, Liu S. HIV-associated dementia in the era of highly active antiretroviral therapy (HAART). Microbes Infect 2011; 13:419-25. [PMID: 21262373 DOI: 10.1016/j.micinf.2011.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Neurological complications associated with HIV-1 are being recognized as a common disorder in AIDS patients, especially patients with HIV-associated dementia (HAD). However, our knowledge of the complicated pathogenesis and clinical symptoms of HAD is limited by an incomplete understanding of the biology of HIV-1 in the nervous system. Therefore, this review focuses on the pathogenesis of HAD in the context of novel highly active antiretroviral therapy (HARRT) regimens.
Collapse
Affiliation(s)
- Chenglai Xia
- Pharmacy Department, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | | | | | | | | |
Collapse
|
10
|
Jana M, Pahan K. IL-12 p40 homodimer, but not IL-12 p70, induces the expression of IL-16 in microglia and macrophages. Mol Immunol 2009; 46:773-83. [PMID: 19100623 PMCID: PMC2660888 DOI: 10.1016/j.molimm.2008.10.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 12/19/2022]
Abstract
IL-16, a leukocyte chemoattractant factor (LCF), is involved in the disease process of multiple sclerosis and other autoimmune disorders. However, mechanisms by which this LCF is expressed are poorly understood. The present study underlines the importance of IL-12 p40 homodimer (p40(2)), the so-called biologically inactive molecule, in inducing the expression of IL-16 in primary mouse and human microglia, mouse BV-2 microglial cells, mouse peritoneal macrophages, and RAW264.7 cells. In contrast, IL-12 p70, the bioactive heterodimeric cytokine, was unable to induce the expression of IL-16 in any of these cell types. Similarly IL-12 p40(2) also induced the activation of IL-16 promoter in microglia. Among various stimuli tested, p40(2) was the most potent one followed by p40 monomer, IL-16 and IL-23 in inducing the activation of IL-16 promoter in microglial cells. Furthermore, induction of IL-16 mRNA expression by over-expression of p40, but not p35, cDNA and induction of IL-16 expression by p40(2) in microglia isolated from IL-12p35 (-/-) mice confirm that p40, but not p35, is responsible for the induction of IL-16. Finally, by using primary microglia isolated from IL-12Rbeta1 (-/-) and IL-12Rbeta2 (-/-) mice, we demonstrate that p40(2) induces the expression of this LCF via IL-12Rbeta1 but not IL-12Rbeta2. These results delineate a novel biological function of p40(2) and raise the possibility that biological function of IL-12 p40(2) may be different from IL-12 p70.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Cohn Research Building, Suite 320, 1735 West Harrison St., Chicago, IL 60612, United States
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Cohn Research Building, Suite 320, 1735 West Harrison St., Chicago, IL 60612, United States
| |
Collapse
|
11
|
Cosenza-Nashat M, Zhao ML, Marshall HD, Si Q, Morgello S, Lee SC. Human immunodeficiency virus infection inhibits granulocyte-macrophage colony-stimulating factor-induced microglial proliferation. J Neurovirol 2008; 13:536-48. [PMID: 18097885 DOI: 10.1080/13550280701549417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is well known that infection by the human immunodeficiency virus (HIV) dysregulates cell physiology, but little information is available on the consequences of HIV infection in primary macrophages and microglia. The authors examined the relationship between cell proliferation and HIV infection in primary cultures of microglia and in human central nervous system (CNS). In cultures infected with HIV (ADA and BaL), granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated cell proliferation was reduced in productively infected (p24+) cells as compared to p24- cells. The reduction was observed with both Ki67 and BrdU labeling, suggesting a G1/S block. The reduction was insignificant when microglia were infected with a Vpr- mutant virus. In human CNS, proliferating (Ki67+) cells were rare but were increased in the HIV+ and HIV encephalitis (HIVE) groups compared to the HIV- group. A positive correlation between GM-CSF immunoreactivity and Ki67 counts, implicating GM-CSF as a growth factor in human CNS was found. The relationship between total macrophage (CD68+) proliferation and infected macrophage (p24+) proliferation was assessed in HIVE by double labeling. Whereas 1.2% of total CD68+ cells were Ki67+, only 0.5% of HIV p24+ cells were Ki67+ (P < .05). Furthermore, staining for CD45RB (as opposed to CD68) facilitated the identification of Ki67+ microglia, indicating that CD68 could underestimate proliferating microglia. The authors conclude that although there is increased expression of GM-CSF and increased cell proliferation in the CNS of HIV-seropositive individuals, cell proliferation in the productively infected population is actually suppressed. These data suggest that there might be a viral gain in the suppressed host cell proliferation.
Collapse
Affiliation(s)
- Melissa Cosenza-Nashat
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
12
|
Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. J Neuroimmune Pharmacol 2007; 1:138-51. [PMID: 18040780 DOI: 10.1007/s11481-006-9011-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Infection with the human immunodeficiency virus-1 (HIV-1) and acquired immunodeficiency syndrome (AIDS) are a persistent health problem worldwide. HIV-1 seems to enter the brain very soon after peripheral infection and can induce severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction, and frank dementia. Infected peripheral immune-competent cells, in particular macrophages, appear to infiltrate the CNS and provoke a neuropathological response involving all cell types in the brain. The course of HIV-1 disease is strongly influenced by viral and host factors, such as the viral strain and the response of the host's immune system. In addition, HIV-1-dependent disease processes in the periphery have a substantial effect on the pathological changes in the central nervous system (CNS), although the brain eventually harbors a distinctive viral population of its own. In the CNS, HIV-1 also incites activation of chemokine receptors, inflammatory mediators, extracellular matrix-degrading enzymes, and glutamate receptor-mediated excitotoxicity, all of which can initiate numerous downstream signaling pathways and disturb neuronal and glial function. Although there have been many major improvements in the control of viral infection in the periphery, an effective therapy for HIV-1-associated dementia (HAD) is still not available. This article addresses recently uncovered pathologic neuroimmune and degenerative mechanisms contributing to neuronal damage induced by HIV-1 and discusses experimental and potentially future therapeutic approaches.
Collapse
|
13
|
Cosenza‐Nashat MA, Kim M, Zhao M, Suh H, Lee SC. CD45 isoform expression in microglia and inflammatory cells in HIV-1 encephalitis. Brain Pathol 2007; 16:256-65. [PMID: 17107594 PMCID: PMC1804203 DOI: 10.1111/j.1750-3639.2006.00027.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CD45 is a membrane tyrosine phosphatase that modulates the function of the hematopoietic cells. In vitro, agonist antibodies to CD45RO or CD45RB isoforms have been shown to suppress microglial activation, but whether microglia in vivo express these isoforms in HIV encephalitis (HIVE) is unknown. Brain sections from control and HIVE were immunostained for CD45 isoforms using exon‐specific antibodies (RA, RB, RC and RO). RA and RC were limited to rare lymphocytes, while RB expression was robust in microglia and inflammatory cells. RO was low in control microglia, but increased in HIVE. RO was also localized to macrophages and CD8+ T cells. Targeting CD45 in vivo with isoform‐specific antibodies remains a therapeutic option for neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Mee‐Ohk Kim
- Department of Neurology, Massachusetts General Hospital, Boston, Mass
| | - Meng‐Liang Zhao
- Department of Pathology, Albert Einstein College of Medicine, Bronx, N.Y
| | - Hyeon‐Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, N.Y
| | - Sunhee C. Lee
- Department of Pathology, Albert Einstein College of Medicine, Bronx, N.Y
| |
Collapse
|
14
|
Agopian K, Wei BL, Garcia JV, Gabuzda D. CD4 and MHC-I downregulation are conserved in primary HIV-1 Nef alleles from brain and lymphoid tissues, but Pak2 activation is highly variable. Virology 2006; 358:119-35. [PMID: 16979207 PMCID: PMC1995023 DOI: 10.1016/j.virol.2006.07.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/06/2006] [Accepted: 07/27/2006] [Indexed: 01/06/2023]
Abstract
HIV-1 compartmentalization in the CNS has been demonstrated for gag, pol, and env genes. However, little is known about tissue compartmentalization of nef genes and their functional characteristics in brain. We have cloned 97 nef genes and characterized 10 Nef proteins from autopsy brain and lymphoid tissues from 2 patients with AIDS and HIV-1-associated dementia. Distinct compartmentalization of brain versus lymphoid nef genes was demonstrated within each patient. CD4 and MHC-I downregulation were conserved in all tissue-derived Nefs. However, MHC-I downregulation by brain-derived Nefs was weaker than downregulation by lymphoid-derived Nefs. The motifs KEEE- or EKEE- at the PACS-1 binding site represented brain-specific signature patterns in these 2 patients and contributed to the reduced MHC-I downregulation activity of brain-derived Nefs from these patients. Pak2 association was highly variable in Nefs from both patients. Three of 10 tissue-derived Nefs coimmunoprecipitated activated Pak2, with strong association demonstrated for only 2 Nefs. The ability of Nef to associate with activated Pak2 did not correlate with brain or lymphoid tissue origin. Nef genes from viruses isolated from brain by coculture with PBMC were not closely related to sequences amplified directly from brain tissue, suggesting that viral selection or adaptation occurred during coculture. This study of tissue-derived HIV-1 Nefs demonstrates that CD4 and MHC-I downregulation are highly conserved Nef functions, while Pak2 association is variable in late stage AIDS patients.
Collapse
Affiliation(s)
- Kristin Agopian
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Bangdong L. Wei
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - J. Victor Garcia
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- *Corresponding Author. Mailing Address: Dana-Farber Cancer Institute, JFB 816 44 Binney St. Boston, MA 02115 Phone: (617) 632-2154 Fax: (617) 632 3113 E-mail:
| |
Collapse
|
15
|
Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 2006; 12 Suppl 1:878-92. [PMID: 15832177 DOI: 10.1038/sj.cdd.4401623] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Infection with the human immunodeficiency virus-1 (HIV-1) can induce severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction and frank dementia. After infiltrating peripheral immune competent cells, in particular macrophages, HIV-1 provokes a neuropathological response involving all cell types in the brain. HIV-1 also incites activation of chemokine receptors, inflammatory mediators, extracellular matrix-degrading enzymes and glutamate receptor-mediated excitotoxicity, all of which can trigger numerous downstream signaling pathways and disrupt neuronal and glial function. This review will discuss recently uncovered pathologic neuroimmune and degenerative mechanisms contributing to neuronal damage induced by HIV-1 and potential approaches for development of future therapeutic intervention.
Collapse
Affiliation(s)
- M Kaul
- Center for Neuroscience and Aging Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
16
|
Mueller CA, Schluesener HJ, Conrad S, Pietsch T, Schwab JM. Spinal cord injury-induced expression of the immune-regulatory chemokine interleukin-16 caused by activated microglia/macrophages and CD8+ cells. J Neurosurg Spine 2006; 4:233-40. [PMID: 16572623 DOI: 10.3171/spi.2006.4.3.233] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Spinal cord injury (SCI) elicits a strong inflammatory response that readily participates in lipid oxygenation, edema formation, apoptotic cell death, and tissue remodeling. Because cytokines determine the postinjury inflammatory milieu, the authors analyzed the expression of the immunomodulatory chemokine interleukin- 16 (IL- 16) after SCI. METHODS The authors detected a highly significant, persistent, lesional accumulation of parenchymal IL-16+ microglia/macrophages, which reached a maximal level 3 days postinjury compared with control rats. The majority of cells that demonstrated positive labeling for IL-16 also had positive labeling for ED1 (> 70%) and OX-8/CD8; these cells exhibited the morphological hallmarks of activated microglia/macrophages and pronounced MHC Class II expression. In contrast to IL-16+ED1+ cells, IL-16+ microglia/macrophages that coexpressed OX-8 were exclusively seen in the pannecrotic lesion core. In addition, clustering of IL-16+ cells was observed in perivascular Virchow-Robin-like spaces in areas of the primary injury (lesion core) and in immediately adjacent areas of secondary injury. Furthermore, on Day 3 postinjury, IL-16+ microglia/macrophages were frequently observed in a perineuronal position. CONCLUSIONS The early lesional accumulation of IL-16+ microglia/macrophages suggests a role for IL-16 in the early postinjury immune response such as recruitment and activation of immune cells, leading to microvessel clustering and secondary damage progression.
Collapse
Affiliation(s)
- Christian A Mueller
- Institute of Brain Research, University of Tübingen Medical School, Germany.
| | | | | | | | | |
Collapse
|
17
|
Wen W, Chen S, Cao Y, Zhu Y, Yamamoto Y. HIV-1 infection initiates changes in the expression of a wide array of genes in U937 promonocytes and HUT78 T cells. Virus Res 2005; 113:26-35. [PMID: 15885842 DOI: 10.1016/j.virusres.2005.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/28/2005] [Accepted: 04/05/2005] [Indexed: 01/12/2023]
Abstract
Human monocytes/macrophages (M/M) are the major targets for human immunodeficiency virus type 1 (HIV-1) infection. To characterize the global effects of acute HIV-1 infection on gene expression in M/M, the expression levels of 550 host cell RNA transcripts in U937 human promonocytes at 2-3 days after HIV-1 infection were assessed using cDNA microarray analysis and were compared to those in the infected HUT78, a CD4+ T cell line. Confirmed by semiquantitative RT-PCR, our results showed that 12 genes were up-regulated and 26 genes were down-regulated in the infected U937 cells at 2-3 days post-infection, whereas 8 genes were up-regulated and 20 genes were down-regulated in the infected HUT78 cells at 2-3 days post-infection. These genes encode a host of proteins with divergent functions in a variety of cellular processes including apoptosis (FAS, Fas ligand, PIN, HSP90beta, bcl-2, bcl-x), cell signal transduction (Ras, RGS1, IRF-1, STAT3), receptor-mediated signaling transduction (CD71, CD69, CD3delta), cell cycle and growth (c-myc, cytokines, kinase), transcriptional regulation (EWS, CREB-2), and chemotaxis (beta-chemokines, RANTES), supporting the general effects of HIV-1 infection on cells of different origin. Although most identified genes were regulated similarly in both infected cell lines, differences in gene regulation, such as c-myc, CD71, CD69, and beta-chemokines, between the two infected cell lines were also identified in this study. These differences may further our understanding of the pathogenicity of HIV and enable the discovery of novel therapeutic approach for AIDS.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Apoptosis/genetics
- CD4-Positive T-Lymphocytes/virology
- Cell Cycle/genetics
- Cell Line, Tumor
- Chemokines, CC/genetics
- Chemotaxis/genetics
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Profiling
- Gene Expression Regulation
- Genes, myc
- HIV Core Protein p24/analysis
- HIV-1/physiology
- Humans
- Lectins, C-Type
- Monocytes/virology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
- Receptors, Transferrin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Wangrong Wen
- Center of Clinical Laboratory Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
18
|
Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005; 76:77-98. [PMID: 16081203 DOI: 10.1016/j.pneurobio.2005.06.004] [Citation(s) in RCA: 1191] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/21/2005] [Accepted: 06/28/2005] [Indexed: 12/21/2022]
Abstract
Inflammation, a common denominator among the diverse list of neurodegenerative diseases, has recently been implicated as a critical mechanism responsible for the progressive nature of neurodegeneration. Microglia are the resident innate immune cells in the central nervous system and produce a barrage of factors (IL-1, TNFalpha, NO, PGE2, superoxide) that are toxic to neurons. Evidence supports that the unregulated activation of microglia in response to environmental toxins, endogenous proteins, and neuronal death results in the production of toxic factors that propagate neuronal injury. In the following review, we discuss the common thread of microglial activation across numerous neurodegenerative diseases, define current perceptions of how microglia are damaging neurons, and explain how the microglial response to neuronal damage results in a self-propelling cycle of neuron death.
Collapse
Affiliation(s)
- Michelle L Block
- Neuropharmacology Section, MD F1-01, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
19
|
Meeuwsen S, Bsibsi M, Persoon-Deen C, Ravid R, van Noort JM. Cultured human adult microglia from different donors display stable cytokine, chemokine and growth factor gene profiles but respond differently to a pro-inflammatory stimulus. Neuroimmunomodulation 2005; 12:235-45. [PMID: 15990454 DOI: 10.1159/000085655] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/22/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Brain microglia are highly responsive cells in the central nervous system that exert key functions in host defense as well as in neuroprotection and regeneration. In this study the gene expression profiles for 268 cytokines, chemokines, growth factors and their receptors were examined in cultures of purified human adult microglia, using cDNA array profiling. METHODS Microglia from 9 different donors were compared, also following challenge of such microglia with the pro-inflammatory cytokines TNF-alpha and IFN-gamma. RESULTS A stable pattern was observed of genes abundantly expressed in the different cultures under standard conditions. Genes abundantly expressed in all microglia cultures include CCL2 (MCP-1), thymosin beta-10, migration-inhibitory factor-related protein 8 (MRP8), MRP14, corticotropin-releasing factor receptor 1 and endothelin 2. Abundant gene products novel to microglia were neuromodulin (GAP43) and Flt3 ligand. Yet, treatment with TNF-alpha and IFN-gamma led to widely different response profiles among the different cultures. CONCLUSION These data show a surprising level of heterogeneity among human adult microglia cultures in their response to a pro-inflammatory stimulus despite the standardized methodology to examine this response.
Collapse
Affiliation(s)
- Sonja Meeuwsen
- Division Biomedical Research, TNO Prevention and Health, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|