1
|
Wang J, Tian S, Du J, Du S, Chen W, Liu Y. The hypothalamic estrogen receptor α pathway is involved in high-intensity interval training-induced visceral fat loss in premenopausal rats. Lipids Health Dis 2025; 24:118. [PMID: 40148843 PMCID: PMC11948781 DOI: 10.1186/s12944-025-02533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Visceral adipose tissue (VAT) is strongly associated with metabolic diseases. Both high-intensity interval training (HIT) and moderate-intensity training (MIT) reduce VAT effectively; however, HIT might mediate greater VAT loss in females. The estrogen receptor α (ERα) pathway may play a key role. The aim of the present study was to confirm the role of adipose/hypothalamic ERα in HIT/MIT-mediated VAT loss, as well as the associated hypothalamic electrophysiology and body catabolism changes in pre- and post-menopausal animal models. METHODS Ovariectomy (OVX) or sham surgeries were conducted to establish pre/postmenopausal female rat models. After distance-matched long-term HIT and MIT interventions, ERα expression in hypothalamic/VAT, as well as food intake, spontaneous physical activity (SPA), VAT mass and morphology, local field potential (LFPs) in paraventricular nuclei (PVN) and excessive post-exercise oxygen consumption (EPOC), were observed. A target chemical block during the post-exercise recovery period was executed to further verify the role of the hypothalamic ERα pathway. RESULTS HIT enhanced the expression of ERα in the hypothalamus rather than VAT in the pre-, but not the postmenopausal group, which was accompanied by elevated LFP power density in α and β bands, enhanced EPOC and larger VAT loss than MIT. Chemical blockade of ERα suppressed EPOC and VAT catabolism mediated by HIT. CONCLUSION During the post-exercise recovery period, the hypothalamic ERα pathway involved in HIT induced EPOC elevation and VAT reduction in premenopausal female rats.
Collapse
Affiliation(s)
- Juanjuan Wang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Shuai Tian
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Jinchan Du
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Sihao Du
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Wei Chen
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio- Information, Hebei Normal University, Shijiazhuang, China
| | - Yang Liu
- School of Physical Education, Hebei Normal University, Shijiazhuang, China.
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio- Information, Hebei Normal University, Shijiazhuang, China.
- School of Physical Education, Hebei Normal University, No. 20, South Second Ring Road East, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Cheng B, Du J, Tian S, Zhang Z, Chen W, Liu Y. High-intensity interval training or lactate administration combined with aerobic training enhances visceral fat loss while promoting VMH neuroplasticity in female rats. Lipids Health Dis 2024; 23:405. [PMID: 39696579 DOI: 10.1186/s12944-024-02397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND High-intensity interval training (HIT) does not burn fat during exercise. However, it significantly reduces visceral adipose after long-term training. The underlying mechanism may be related to the elevation of fat consumption during the post-exercise recovery period, which is regulated by the hypothalamus-adipose axis. Lactate is a hallmark metabolite of high-intensity exercise, which could mediate significant neuroplasticity through the brain-derived neurotrophic factor (BDNF) pathway. However, whether HIT could enhance hypothalamus activity and adipose catabolism in the recovery period remains to be elucidated. Also, it is worth exploring whether adding lactate administration to prolonged, continuous submaximal aerobic training (AT) could simulate HIT-induced neuroplastic effects and fat loss. METHODS First, we compared the influence of 4-week HIT and aerobic training (AT) on the electrophysiology of the ventromedial hypothalamus (VMH), which is deeply involved in the regulation of lipolysis, as well as the 24-hour excess post-exercise oxygen consumption (EPOC), the fat oxidation rate and lipolysis. To further confirm whether excess lactate during AT could reproduce the effect of HIT, we also observed the effects of lactate infusion during AT (AT + Lac) on neuroplasticity and metabolism. RESULTS Four-week HIT induced higher BDNF expression and a higher neuronal spike firing rate in VMH than AT, accompanied by elevated EPOC, fat oxidation and visceral fat lipolysis. AT + Lac and HITT could induce similar hypothalamic and metabolic changes. However, power spectral density analysis of local field potentials (LFPs) showed that the AT + Lac group was affected in fewer frequency bands than the HIT group. CONCLUSION HIT-induced reduction of visceral fat was accompanied by increased VMH activity. Adding lactate administration to AT could partially reproduce hypothalamic plasticity and the metabolic effects of HIT. However, different band changes of LFPs implied that the neuronal subpopulations or pathways influenced by these two methods were not entirely consistent.
Collapse
Affiliation(s)
- Baishuo Cheng
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Jinchan Du
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Shuai Tian
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zixiong Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, China
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio-Information, Hebei Normal University, No. 20, South Second Ring Road East, Shijiazhuang, Hebei, China
| | - Yang Liu
- Physical Education College, Hebei Normal University, Shijiazhuang, China.
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio-Information, Hebei Normal University, No. 20, South Second Ring Road East, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Katagiri M, Nakabayashi M, Matsuda Y, Ono Y, Ichinose M. Differential changes in blood flow and oxygen utilization in active muscles between voluntary exercise and electrical muscle stimulation in young adults. J Appl Physiol (1985) 2024; 136:1053-1064. [PMID: 38482573 DOI: 10.1152/japplphysiol.00863.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 04/24/2024] Open
Abstract
The physiological effects on blood flow and oxygen utilization in active muscles during and after involuntary contraction triggered by electrical muscle stimulation (EMS) remain unclear, particularly compared with those elicited by voluntary (VOL) contractions. Therefore, we used diffuse correlation and near-infrared spectroscopy (DCS-NIRS) to compare changes in local muscle blood flow and oxygen consumption during and after these two types of muscle contractions in humans. Overall, 24 healthy young adults participated in the study, and data were successfully obtained from 17 of them. Intermittent (2-s contraction, 2-s relaxation) isometric ankle dorsiflexion with a target tension of 20% of maximal VOL contraction was performed by EMS or VOL for 2 min, followed by a 6-min recovery period. DCS-NIRS probes were placed on the tibialis anterior muscle, and relative changes in local tissue blood flow index (rBFI), oxygen extraction fraction (rOEF), and metabolic rate of oxygen (rMRO2) were continuously derived. EMS induced more significant increases in rOEF and rMRO2 than VOL exercise but a comparable increase in rBFI. After EMS, rBFI and rMRO2 decreased more slowly than after VOL and remained significantly higher until the end of the recovery period. We concluded that EMS augments oxygen consumption in contracting muscles by enhancing oxygen extraction while increasing oxygen delivery at a rate similar to the VOL exercise. Under the conditions examined in this study, EMS demonstrated a more pronounced and/or prolonged enhancement in local muscle perfusion and aerobic metabolism compared with VOL exercise in healthy participants.NEW & NOTEWORTHY This is the first study to visualize continuous changes in blood flow and oxygen utilization within contracted muscles during and after electrical muscle stimulation (EMS) using combined diffuse correlation and near-infrared spectroscopy. We found that initiating EMS increases blood flow at a rate comparable to that during voluntary (VOL) exercise but enhances oxygen extraction, resulting in higher oxygen consumption. Furthermore, EMS increased postexercise muscle perfusion and oxygen consumption compared with that after VOL exercise.
Collapse
Affiliation(s)
- Makoto Katagiri
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Mikie Nakabayashi
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yasuhiro Matsuda
- Faculty of Medical Science, Nippon Sport Science University, Kanagawa, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| |
Collapse
|
4
|
Pilon R, Matos-Santos L, Matlez MP, Rodrigues G, Amorim F, Lattari E, Farinatti P, Monteiro W. Effects of Isocaloric Resistance, Aerobic, and Concurrent Exercise on Excess Postexercise Oxygen Consumption in Older Adults. J Strength Cond Res 2024; 38:755-761. [PMID: 38513180 DOI: 10.1519/jsc.0000000000004683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Pilon, R, Matos-Santos, L, Matlez, MP, Rodrigues, G, Amorim, F, Lattari, E, Farinatti, P, and Monteiro, W. Effects of isocaloric resistance, aerobic, and concurrent exercise on excess postexercise oxygen consumption in older adults. J Strength Cond Res 38(4): 755-761, 2024-Excess postexercise oxygen consumption (EPOC) is a major determinant of exercise-related caloric expenditure and metabolic adaptations. Exercise modality may influence the EPOC, but this issue has not been investigated in older adults. This study compared the EPOC after isocaloric bouts of continuous aerobic exercise (AE), resistance exercise (RE), and concurrent exercise (CE) in older individuals. Ten subjects (5 men; 73 ± 6 years) had their cardiorespiratory data assessed during AE, RE, and CE and along 30-minute postexercise recovery. Total energy expenditure (EE) during exercise was similar (p > 0.05) in AE (126.0 ± 30.7 kcal), RE (123.9 ± 30.6 kcal), and CE (130.8 ± 32.6 kcal), with different times to achieve the targeted EE (RE: 61.4 ± 1.9 minutes > CE: 43.3 ± 5.6 minutes > AE: 26.6 ± 5.7 minutes; p < 0.001). Consistently, the relative intensity during exercise was superior (p < 0.05) in AE (74 ± 15% oxygen uptake reserve [VO2R]) vs. CE (43 ± 13% VO2R) vs. RE (24 ± 9% VO2R). Despite the isocaloric conditions, average EPOC and EE were approximately 45% greater (p < 0.001) in AE (8.0 ± 2.3 L; 40.1 ± 11.7 kcal) vs. RE (5.6 ± 1.2 L; 28.1 ± 5.8 kcal) and CE (5.4 ± 2.3 L; 26.9 ± 11.5 kcal). In conclusion, the EPOC was greater after isocaloric AE vs. RE and CE performed by older adults. Exercise intensity seemed to be a more important determinant of EPOC than volume reflected by EE during exercise bouts. Moderate-intensity continuous AE was more time-efficient than RE and CE to achieve a target EE. In older individuals, AE should be preferred over RE or CE when the purpose is to increase the daily caloric expenditure.
Collapse
Affiliation(s)
- Rui Pilon
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil; and
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, Brazil
| | - Lenifran Matos-Santos
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil; and
| | - Marcelle Passeri Matlez
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, Brazil
| | - Guilherme Rodrigues
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil; and
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, Brazil
| | - Felipe Amorim
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil; and
| | - Eduardo Lattari
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, Brazil
| | - Paulo Farinatti
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil; and
| | - Walace Monteiro
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil; and
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, Brazil
| |
Collapse
|
5
|
Mello-Silva BN, Protzen GV, Del Vecchio F. Inclusion of sprints during moderate-intensity continuous exercise enhances post-exercise fat oxidation in young males. Appl Physiol Nutr Metab 2021; 47:165-172. [PMID: 34637645 DOI: 10.1139/apnm-2021-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the physiological demand of including high-intensity efforts during continuous exercise, we designed a randomized crossover study, where 12 physically active young males executed three different exercises in random order: FATmax - continuous exercise at the highest fat oxidation zone (FATmax); 2min-130% - FATmax interspersed by a 2-min bout at 130% of the maximal oxygen uptake associated intensity (iV̇O2max); and 20s:10s-170% - FATmax interspersed by four 20-s bouts at 170%iV̇O2max interpolated by 10s of passive recovery. We measured oxygen uptake (V̇O2), blood lactate concentration ([LAC]), respiratory exchange rate (RER), fat and carbohydrate (CHO) oxidation. For statistical analyses, repeated measures ANOVA was applied. Although no differences were found for average V̇O2 or carbohydrate oxidation rate, the post-exercise fat oxidation rate was 37.5% and 50% higher during 2min-130% and 20s:10s-170%, respectively, compared to FATmax, which also presented lower values of RER during exercise compared to 2min-130% and 20s:10s-170% (p<0.001 in both), and higher values post-exercise (p=0.04 and p=0.002, respectively). The [LAC] was higher during exercise when high-intensity bouts were applied (p<0.001 for both) and higher post-exercise on the intermittent one compared to FATmax (p=0.016). The inclusion of high-intensity efforts during moderate-intensity continuous exercise promoted higher physiological demand and post-exercise fat oxidation. Novelty bullets • The inclusion of 2-min efforts modifies continuous exercise demands • Maximal efforts can increase post-exercise fat oxidation • 2-min maximal efforts, continuous or intermittent, presents similar demands.
Collapse
|
6
|
Strength Training Reduces Fat Accumulation and Improves Blood Lipid Profile Even in the Absence of Skeletal Muscle Hypertrophy in High-Fat Diet-Induced Obese Condition. J Obes 2020. [DOI: 10.1155/2020/8010784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aim was to investigate the effect of strength training on skeletal muscle morphology and metabolic adaptations in obese rats fed with unsaturated high-fat diet (HFD). The hypothesis was that strength training induces positive metabolic adaptations in obese rats despite impaired muscle hypertrophy. Male Wistar rats (n = 58) were randomized into two groups and fed a standard diet or a high-fat diet (HFD) containing 49.2% of fat. After induction and maintenance to obesity, the rats were divided into four groups: animals distributed in sedentary control (CS), control submitted to strength training protocol (CT), obese sedentary (ObS), and obese submitted to strength training protocol (ObT). The exercise protocol consisted of 10 weeks of training on a vertical ladder (three times a week) with a load attached to the animal’s tail. At the end of 10 weeks, strength training promoted positive changes in the body composition and metabolic parameters in obese animals. Specifically, ObT animals presented a reduction of 22.6% and 14.3% in body fat and adiposity index when compared to ObS, respectively. Furthermore, these rats had lower levels of triglycerides (ObT = 23.1 ± 9.5 vs. ObS = 30.4 ± 6.9 mg/dL) and leptin (ObT = 13.2 ± 7.2 vs. ObS = 20.5 ± 4.3 ng/mL). Training (ObT and CT) induced a greater strength gain when compared with the respective control groups. In addition, the weight of the flexor hallucis longus (FHL) muscle was higher in the ObT group than in the CT group, representing an increase of 26.1%. However, training did not promote hypertrophy as observed by a similar cross-sectional area of the FHL and plantar muscles. Based on these results, high-intensity strength training promoted an improvement of body composition and metabolic profile in obese rats that were fed a high-fat diet without skeletal muscle adaptations, becoming a relevant complementary strategy for the treatment of obesity.
Collapse
|
7
|
Acute low- compared to high-load resistance training to failure results in greater energy expenditure during exercise in healthy young men. PLoS One 2019; 14:e0224801. [PMID: 31710635 PMCID: PMC6844472 DOI: 10.1371/journal.pone.0224801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to verify the energy expenditure (EE), energy system contributions and autonomic control during and after an acute low-load or high-load resistance training (RT) protocol to momentary failure (MF) in young adults. Eleven young men (22 ± 3 yrs, 71.8 ± 7.7 kg; 1.75 ± 0.06 m) underwent a randomized crossover design of three knee extension acute protocols: a low-load RT [30% of their maximal strength (1RM); RT30] or a high-load RT (80% of 1RM; RT80) protocol, with all sets being performed to MF; or a control session (Control) without exercise. Participants were measured for EE, energy system contributions, and cardiac autonomic control before, during, and after each exercise session. Exercise EE was significantly higher for RT30 as compared to RT80. Furthermore, post measurements of blood lactate levels and the anaerobic lactic system contribution were significantly greater for RT30 as compared to RT80. In addition, parasympathetic restoration was lower for RT30 as compared to RT80. In conclusion, a low-load (30% 1RM) RT session produced higher EE during exercise than a high-load (80% 1RM) RT session to MF, and may be a good option for fitness professionals, exercise physiologists, and practitioners when choosing the optimal RT protocol that provides more EE, especially for those who want or need to lose weight.
Collapse
|
8
|
Sahu B, Pani S, Swalsingh G, Bal NC. Non and Epigenetic Mechanisms in Regulation of Adaptive Thermogenesis in Skeletal Muscle. Front Endocrinol (Lausanne) 2019; 10:517. [PMID: 31456746 PMCID: PMC6700214 DOI: 10.3389/fendo.2019.00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
|
9
|
Kliszczewicz B, Williamson C, Bechke E, McKenzie M, Hoffstetter W. Autonomic response to a short and long bout of high-intensity functional training. J Sports Sci 2018; 36:1872-1879. [PMID: 29308709 DOI: 10.1080/02640414.2018.1423857] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The evaluation of Autonomic Nervous System (ANS) recovery following exercise provides insight into the transient stress placed on the cardiovascular system. High-Intensity Functional Training (HIFT) is a form of intense exercise that is prescribed in various modalities and durations; however, little is known about the influence of HIFT duration on ANS recovery. Ten apparently healthy males (28.1 ± 5.4 yrs) performed two HIFT sessions (<5-minute and 15-minute) in a crossover fashion. ANS activity was measured using plasma Epinephrine (E) and Norepineprine (NE); Heart Rate Variability markers of the log transformed Root Mean Square of Successive Differences (lnRMSSD) and High-Frequency power (lnHF). No trial dependent differences were observed in lnRMSSD (p = 0.822), lnHF (p = 0.886), E (p = 0.078), or NE (p = 0.194). A significant main time effect was observed in both trials with a depression in lnRMSSD and lnHF following the trials (p < 0.05) and recovering by 2-hours post (p = 0.141, p > 0.999) respectively. A trial dependent increase in E and NE occurred immediately post (p < 0.05) and recovered by 1-hour post (p > 0.999, p > 0.999) respectively. The HIFT bouts examined within this study demonstrated similar transient strain of the ANS.
Collapse
Affiliation(s)
- Brian Kliszczewicz
- a Department of Exercise Science and Sport Management , Kennesaw State University , Kennesaw , GA , USA
| | - Cassie Williamson
- a Department of Exercise Science and Sport Management , Kennesaw State University , Kennesaw , GA , USA
| | - Emily Bechke
- a Department of Exercise Science and Sport Management , Kennesaw State University , Kennesaw , GA , USA
| | - Michael McKenzie
- b Department of Exercise Science , Winston-Salem State University , Winston-Salem , NC , USA
| | - Wade Hoffstetter
- a Department of Exercise Science and Sport Management , Kennesaw State University , Kennesaw , GA , USA
| |
Collapse
|
10
|
Zhang H, Tong TK, Qiu W, Zhang X, Zhou S, Liu Y, He Y. Comparable Effects of High-Intensity Interval Training and Prolonged Continuous Exercise Training on Abdominal Visceral Fat Reduction in Obese Young Women. J Diabetes Res 2017; 2017:5071740. [PMID: 28116314 PMCID: PMC5237463 DOI: 10.1155/2017/5071740] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
This study compared the effect of prolonged moderate-intensity continuous training (MICT) on reducing abdominal visceral fat in obese young women with that of work-equivalent (300 kJ/training session) high-intensity interval training (HIIT). Forty-three participants received either HIIT (n = 15), MICT (n = 15), or no training (CON, n = 13) for 12 weeks. The abdominal visceral fat area (AVFA) and abdominal subcutaneous fat area (ASFA) of the participants were measured through computed tomography scans preintervention and postintervention. Total fat mass and the fat mass of the android, gynoid, and trunk regions were assessed through dual-energy X-ray absorptiometry. Following HIIT and MICT, comparable reductions in AVFA (-9.1, -9.2 cm2), ASFA (-35, -28.3 cm2), and combined AVFA and ASFA (-44.7, -37.5 cm2, p > 0.05) were observed. Similarly, reductions in fat percentage (-2.5%, -2.4%), total fat mass (-2.8, -2.8 kg), and fat mass of the android (-0.3, -0.3 kg), gynoid (-0.5, -0.7 kg), and trunk (-1.6, -1.2 kg, p > 0.05) regions did not differ between HIIT and MICT. No variable changed in CON. In conclusion, MICT consisting of prolonged sessions has no quantitative advantage, compared with that resulting from HIIT, in abdominal visceral fat reduction. HIIT appears to be the predominant strategy for controlling obesity because of its time efficiency.
Collapse
Affiliation(s)
- Haifeng Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, China
- Provincial Key Lab of Measurement and Evaluation in Human Movement and Bio-Information, Hebei, China
| | - Tom K. Tong
- Department of Physical Education, Hong Kong Baptist University, Hong Kong
| | - Weifeng Qiu
- The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xu Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Yang Liu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Yuxiu He
- Physical Education College, Hebei Normal University, Shijiazhuang, China
- *Yuxiu He:
| |
Collapse
|
11
|
Mukaimoto T, Ohno M. Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise. J Sports Sci 2011; 30:79-90. [PMID: 22122530 DOI: 10.1080/02640414.2011.616950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.
Collapse
Affiliation(s)
- Takahiro Mukaimoto
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.
| | | |
Collapse
|
12
|
Cox GK, Sandblom E, Richards JG, Farrell AP. Anoxic survival of the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 2010; 181:361-71. [PMID: 21085970 DOI: 10.1007/s00360-010-0532-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/25/2010] [Accepted: 10/29/2010] [Indexed: 12/01/2022]
Abstract
It is not known how the Pacific hagfish (Eptatretus stoutii) can survive extended periods of anoxia. The present study used two experimental approaches to examine energy use during and following anoxic exposure periods of different durations (6, 24 and 36 h). By measuring oxygen consumption prior to anoxic exposure, we detected a circadian rhythm, with hagfish being active during night and showing a minimum routine oxygen consumption (RMR) during the daytime. By measuring the excess post-anoxic oxygen consumption (EPAOC) after 6 and 24 h it was possible to mathematically account for RMR being maintained even though heme stores of oxygen would have been depleted by the animal's metabolism during the first hours of anoxia. However, EPAOC after 36 h of anoxia could not account for RMR being maintained. Measurements of tissue glycogen disappearance and lactate appearance during anoxia showed that the degree of glycolysis and the timing of its activation varied among tissues. Yet, neither measurement could account for the RMR being maintained during even the 6-h anoxic period. Therefore, two independent analyses of the metabolic responses of hagfish to anoxia exposure suggest that hagfish utilize metabolic rate suppression as part of the strategy for longer-term anoxia survival.
Collapse
Affiliation(s)
- Georgina K Cox
- Department of Zoology, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
13
|
Hattori A, Mawatari K, Tsuzuki S, Yoshioka E, Toda S, Yoshida M, Yasui S, Furukawa H, Morishima M, Ono K, Ohnishi T, Nakano M, Harada N, Takahashi A, Nakaya Y. Beta-adrenergic-AMPK pathway phosphorylates acetyl-CoA carboxylase in a high-epinephrine rat model, SPORTS. Obesity (Silver Spring) 2010; 18:48-54. [PMID: 19444233 DOI: 10.1038/oby.2009.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We established a new animal model called SPORTS (Spontaneously-Running Tokushima-Shikoku) rats, which show high-epinephrine (Epi) levels. Recent reports show that Epi activates adenosine monophosphate (AMP)-activated protein kinase (AMPK) in adipocytes. Acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme in fatty acid synthesis, and the enzymatic activity is suppressed when its Ser-79 is phosphorylated by AMPK. The aim of this study was to investigate the in vivo effect of Epi on ACC and abdominal visceral fat accumulation. We divided both 6-week male control and SPORTS rats into two groups, which were fed either normal diet or high fat and sucrose (HFS) diet for 16 weeks. At the end of diet treatment, retroperitoneal fat was collected for western blotting and histological analysis. Food intake was not different among the groups, but SPORTS rats showed significantly lower weight gain than control rats in both diet groups. After 10 weeks of diet treatment, glucose tolerance tests (GTTs) revealed that SPORTS rats had increased insulin sensitivity. Furthermore, SPORTS rats had lower quantities of both abdominal fat and plasma triglyceride (TG). In abdominal fat, elevated ACC Ser-79 phosphorylation was observed in SPORTS rats and suppressed by an antagonist of beta-adrenergic receptor (AR), propranolol, or an inhibitor of AMPK, Compound C. From these results, high level of Epi induced ACC phosphorylation mediated through beta-AR and AMPK signaling pathways in abdominal visceral fat of SPORTS rats, which may contribute to reduce abdominal visceral fat accumulation and increase insulin sensitivity. Our results suggest that beta-AR-regulated ACC activity would be a target for treating lifestyle-related diseases, such as obesity.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lira FSD, Oliveira RDSFD, Julio UF, Franchini E. Consumo de oxigênio pós-exercícios de força e aeróbio: efeito da ordem de execução. REV BRAS MED ESPORTE 2007. [DOI: 10.1590/s1517-86922007000600009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O treinamento concorrente é uma estratégia que vem sendo utilizada na intenção de maximizar o gasto energético tanto durante quanto após o exercício por meio do EPOC (excesso do consumo de oxigênio pós-exercício). No entanto, pouco se sabe sobre a influência da ordem de execução sobre o EPOC. O objetivo do presente estudo foi verificar a influência do tipo (aeróbio, força e concorrente) e da ordem (aeróbio + força ou força + aeróbio) do exercício sobre o EPOC. A amostra foi constituída por oito homens (idade: 24 ± 2 anos; massa corporal: 75,4 ± 3,7kg; e estatura: 179 ± 3,0cm), voluntários, com experiência em treinamento de força e aeróbio. Os sujeitos foram submetidos a um teste para a determinação do VO2pico (57,0 ± 2,9ml/kg/min) e teste de 1-RM para os exercícios de supino reto (68 ± 2kg), puxador costas (64 ± 3kg), cadeira extensora (51 ± 3kg) e mesa flexora (38 ± 3kg). O treino aeróbio foi realizado durante 30 minutos a 90% da velocidade correspondente ao limiar anaeróbio (10,3 ± 2,2km). O treino de força foi realizado a 70% de 1RM, dividido em três séries de 12 movimentos. O consumo de oxigênio (VO2) foi medido em repouso (R) e após as seguintes sessões: aeróbio (A), força (F), aeróbio-força (A + F) e força-aeróbio (F + A), utilizando calorimetria indireta durante 30 minutos, os quais foram divididos em três intervalos de tempo: T1 (0 a 10 minutos), T2 (11 a 20 minutos) e T3 (21 a 30 minutos). A comparação do VO2 entre as diferentes situações (R, A, F, A + F e F + A) para cada um dos períodos de tempo (0-10, 11-20; 21-30 min) foi realizada a partir de uma ANOVA a um fator com medidas repetidas, seguida por teste de Tukey. Em T1, o VO2 das diferentes sessões foi maior que o de R. Durante T2, o VO2 das situações F, A + F e F + A foi superior ao de R. Em T3, somente A + F resultou em EPOC. Os resultados indicam que a ordem de execução influenciou o tempo de EPOC. Contudo, o gasto calórico decorrente do EPOC é bastante reduzido (≅ 15kcal).
Collapse
|
15
|
Matsuura C, Meirelles CDM, Gomes PSC. Gasto energético e consumo de oxigênio pós-exercício contra-resistência. REV NUTR 2006. [DOI: 10.1590/s1415-52732006000600009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O aumento do gasto energético com a atividade física é reconhecido como um importante coadjuvante em programas para redução da massa corporal. Porém, o impacto do exercício contra-resistência, incluindo o consumo de oxigênio em excesso pós-exercício sobre o gasto energético ainda é questionável. O objetivo desta revisão foi discutir a influência das variáveis do exercício contra-resistência (isto é, intensidade, intervalo de recuperação, velocidade de execução, número de séries, e modo - circuito ou contínuo) sobre o gasto energético durante e após uma sessão de exercícios, envolvendo uma discussão sobre os possíveis mecanismos do consumo de oxigênio em excesso pós-exercício. As inúmeras possibilidades de combinação entre tais variáveis podem favorecer uma variabilidade bastante grande no gasto energético de uma sessão de exercício contra-resistência (aproximadamente de 3 a 10kcal.min-1). Contudo, o volume total de trabalho parece ser determinante no gasto energético da sessão. O consumo de oxigênio em excesso pós-exercício, por outro lado, parece ser afetado pela intensidade. A manipulação das variáveis do exercício contra-resistência pode afetar os processos metabólicos subjacentes ao consumo de oxigênio em excesso pós-exercício, o que inclui ressíntese dos estoques de fosfato de alta energia, ressaturação da oximioglobina e oxihemoglobina, efeitos termogênicos, remoção de lactato, aumento no turnover protéico, e processos desencadeados pela estimulação simpática. Conclui-se que, para indivíduos destreinados e com sobrepeso, a prescrição de escolha poderia ser a de sessões de baixa intensidade e alto volume. Contudo, para indivíduos treinados, o aumento do gasto energético, a partir da execução de sessões de exercício contra-resistência mais intensas, pode ser adequado, dada a influência da intensidade sobre o consumo de oxigênio em excesso pós-exercício. Dessa forma, para a prescrição dietética, o nutricionista deve considerar e se beneficiar dos efeitos do treinamento com exercício contra-resistência sobre o aumento do gasto energético.
Collapse
Affiliation(s)
| | - Cláudia de Mello Meirelles
- Universidade Gama Filho, Brasil; Centro Universitário Metodista Bennett, Brasil; Universidade Gama Filho, Brasil
| | | |
Collapse
|
16
|
Foureaux G, Pinto KMDC, Dâmaso A. Efeito do consumo excessivo de oxigênio após exercício e da taxa metabólica de repouso no gasto energético. REV BRAS MED ESPORTE 2006. [DOI: 10.1590/s1517-86922006000600018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A crescente prevalência de obesidade e sobrepeso ressalta a necessidade de intervenções para reverter esse quadro. Nesse contexto, a atividade física pode contribuir com um efeito duplo, por meio de mudanças fisiológicas agudas e crônicas: na primeira condição encontra-se o gasto energético do exercício e recuperação (EPOC - consumo excessivo de oxigênio após o exercício), e na segunda encontra-se a taxa metabólica de repouso (TMR). Dessa forma, o objetivo deste trabalho de revisão foi investigar o efeito do EPOC e da TMR como coadjuvantes nos programas de emagrecimento, buscando discutir os divergentes resultados encontrados na literatura, no que diz respeito à magnitude e duração do EPOC, bem como discutir o efeito do exercício na TMR. Os estudos demonstram, de forma geral, que o exercício de maior intensidade é capaz de promover maior EPOC, se comparado com um exercício de intensidade menor e, quando comparam o exercício resistido com o aeróbio, verifica-se maior EPOC no primeiro. Em relação às alterações da TMR, os resultados agudos mostram aumento significativo, porém os resultados em longo prazo são mais discrepantes, devido à dificuldade de mensurar essa variável, sem superestimá-la. Concluindo, a literatura aponta que a periodização de um treinamento que possa maximizar tanto o EPOC quanto a TMR podem ser importantes fatores para o emagrecimento e, embora, o custo energético dessas variáveis em uma sessão de exercício se mostre pequeno, em longo prazo poderá ser bastante significativo. No entanto, novos estudos deverão ser realizados com o intuito de confirmar essas evidências.
Collapse
Affiliation(s)
- Giselle Foureaux
- Centro Universitário de Belo Horizonte; Universidade Federal de São Paulo
| | | | | |
Collapse
|
17
|
Glaister M. Multiple sprint work : physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 2005; 35:757-77. [PMID: 16138786 DOI: 10.2165/00007256-200535090-00003] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The activity patterns of many sports (e.g. badminton, basketball, soccer and squash) are intermittent in nature, consisting of repeated bouts of brief (<or=6-second) maximal/near-maximal work interspersed with relatively short (<or=60-second) moderate/low-intensity recovery periods. Although this is a general description of the complex activity patterns experienced in such events, it currently provides the best means of directly assessing the physiological response to this type of exercise. During a single short (5- to 6-second) sprint, adenosine triphosphate (ATP) is resynthesised predominantly from anaerobic sources (phosphocreatine [PCr] degradation and glycolysis), with a small (<10%) contribution from aerobic metabolism. During recovery, oxygen uptake (V-O2) remains elevated to restore homeostasis via processes such as the replenishment of tissue oxygen stores, the resynthesis of PCr, the metabolism of lactate, and the removal of accumulated intracellular inorganic phosphate (Pi). If recovery periods are relatively short, V-O2 remains elevated prior to subsequent sprints and the aerobic contribution to ATP resynthesis increases. However, if the duration of the recovery periods is insufficient to restore the metabolic environment to resting conditions, performance during successive work bouts may be compromised. Although the precise mechanisms of fatigue during multiple sprint work are difficult to elucidate, evidence points to a lack of available PCr and an accumulation of intracellular Pi as the most likely causes. Moreover, the fact that both PCr resynthesis and the removal of accumulated intracellular Pi are oxygen-dependent processes has led several authors to propose a link between aerobic fitness and fatigue during multiple sprint work. However, whilst the theoretical basis for such a relationship is compelling, corroborative research is far from substantive. Despite years of investigation, limitations in analytical techniques combined with methodological differences between studies have left many issues regarding the physiological response to multiple sprint work unresolved. As such, multiple sprint work provides a rich area for future applied sports science research.
Collapse
Affiliation(s)
- Mark Glaister
- School of Human Sciences, St Mary's College, a College of the University of Surrey, Strawberry Hill, Twickenham, UK.
| |
Collapse
|
18
|
Évolution des échanges gazeux respiratoires, de la fréquence cardiaque et de la lactatémie pendant et après la répétition d'exercices supramaximaux individualisés chez des sujets entraînés et chez des sédentaires. Sci Sports 2005. [DOI: 10.1016/j.scispo.2005.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gmada N, Bouhlel E, Debabi H, Tabka Z, Feki Y, Amri M. L'excès de consommation d'oxygène post-exercice supramaximal individualisé : influence du niveau d'aptitude physique. Sci Sports 2004. [DOI: 10.1016/j.scispo.2003.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Abstract
The direct effects of physical activity interventions on energy expenditure are relatively small when placed in the context of total daily energy demands. Hence, the suggestion has been made that exercise produces energetic benefits in other components of the daily energy budget, thus generating a net effect on energy balance much greater than the direct energy cost of the exercise alone. Resting metabolic rate (RMR) is the largest component of the daily energy budget in most human societies and, therefore, any increases in RMR in response to exercise interventions are potentially of great importance. Animal studies have generally shown that single exercise events and longer-term training produce increases in RMR. This effect is observed in longer-term interventions despite parallel decreases in body mass and fat mass. Flight is an exception, as both single flights and long-term flight training induce reductions in RMR. Studies in animals that measure the effect of voluntary exercise regimens on RMR are less commonly performed and do not show the same response as that to forced exercise. In particular, they indicate that exercise does not induce elevations in RMR. Many studies of human subjects indicate a short-term elevation in RMR in response to single exercise events (generally termed the excess post-exercise O2 consumption; EPOC). This EPOC appears to have two phases, one lasting < 2 h and a smaller much more prolonged effect lasting up to 48 h. Many studies have shown that long-term training increases RMR, but many other studies have failed to find such effects. Data concerning long-term effects of training are potentially confounded by some studies not leaving sufficient time after the last exercise bout for the termination of the long-term EPOC. Long-term effects of training include increases in RMR due to increases in lean muscle mass. Extreme interventions, however, may induce reductions in RMR, in spite of the increased lean tissue mass, similar to the changes observed in animals in response to flight.
Collapse
Affiliation(s)
- John R Speakman
- Aberdeen Centre for Energy Regulation and Obesity, Division of Energy Balance and Obesity, Rowett Research Institute, Aberdeen AB21 9SB, UK.
| | | |
Collapse
|
21
|
Mischler I, Vermorel M, Montaurier C, Mounier R, Pialoux V, Péquignot JM, Cottet-Emard JM, Coudert J, Fellmann N. Prolonged daytime exercise repeated over 4 days increases sleeping heart rate and metabolic rate. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 2003; 28:616-29. [PMID: 12904638 DOI: 10.1139/h03-047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the influence of prolonged exercise repeated for 4 days on sleeping heart rate (SHR) and metabolic rate (SMR). Eleven young untrained men exercised at moderate intensity 5 hrs daily for 4 days, alternately on a cycle ergometer (57.0 +/- 1.3% .VO2max) and a treadmill (64.7 +/- 1.6% .VO2max). They spent the night prior to the exercise period (control, C) and the 4 nights following exercise days (N1 to N4) in room calorimeters for the measurement of SHR, SMR, and respiratory quotient (RQ) from midnight until 6 a.m. Every morning, before the exercise bouts, plasma-free epinephrine (E) and norepinephrine (NE) levels were measured. After exercise, all SHR values were significantly higher than at C level (52 +/- 1 bpm, p < 0.001) and the highest value was observed on N2 (61 +/- 2 bpm). SMR increased by 11.2 +/- 1.5% from C to N1, p < 0.001, and then plateaued up to N4, whereas RQ decreased from C (0.833 +/- 0.009) to N2 (0.798 +/- 0.005) and then plateaued. Plasma NE levels were higher the morning after each day of exercise and peaked on N2, whereas no significant variations were found for E. Variations of SHR between C and N2, and N3 and N4 were correlated with changes of SMR. No significant relationships were found between morning plasma NE, and either SMR or SHR variations. To conclude, prolonged exercise repeated for 4 days was associated with increases in SHR and SMR during the night following each day of exercise concomitantly with an enhanced lipid oxidation. The sustained stimulation of the sympathetic nervous system may be partly responsible for these effects.
Collapse
Affiliation(s)
- Isabelle Mischler
- Laboratoire de Physiologie-Biologie du Sport, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Adriaens MPE, Schoffelen PFM, Westerterp KR. Intra-individual variation of basal metabolic rate and the influence of daily habitual physical activity before testing. Br J Nutr 2003; 90:419-23. [PMID: 12908903 DOI: 10.1079/bjn2003895] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study determined the intra-individual variation of BMR measurements, using a standard out-patient protocol, with the subjects transporting themselves to the laboratory for the BMR measurements after spending the night at home. The effect of a non-fasting state and variation in daily habitual physical activity the day before testing was evaluated. Eight male and eleven female subjects participated in three BMR measurements with 2-week intervals. Physical activity was estimated with a tri-axial accelerometer for movement registration, during the 3 d before each BMR measurement. There were no significant differences in estimated BMR (ANOVA repeated measures, P=0.88) and in physical activity (ANOVA repeated measures, P=0.21). Mean within-subject CV in BMR was found to be 3.3 (SD 2.1) %, ranging from 0.4 to 7.2 %. Differences between BMR measurements could not be explained by differences in physical activity the day before; however the mean within-subject CV in BMR changed from 5.7 to 5.2 % after correcting for within-machine variability and from 5.2 to 3.3 % after excluding five measurements because of non-compliance to the protocol including fasting. In conclusion, BMR values measured with a standard out-patient protocol are sufficiently reproducible for most practical purposes despite the within-subject variability in physical activity the day before the measurement. For this purpose, however, non-fasting subjects must be excluded and a regular function check of the ventilated-hood system is recommendable.
Collapse
Affiliation(s)
- Mirjam P E Adriaens
- Department of Human Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
23
|
Pinz I, Pörtner HO. Metabolic costs induced by lactate in the toad Bufo marinus: new mechanism behind oxygen debt? J Appl Physiol (1985) 2003; 94:1177-85. [PMID: 12433869 DOI: 10.1152/japplphysiol.00131.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of an increase in metabolic rate induced by lactate was investigated in the toad Bufo marinus. Oxygen consumption (Vo(2)) was analyzed in fully aerobic animals under hypoxic conditions (7% O(2) in air), accompanied by measurements of catecholamines in the plasma, and was measured in isolated hepatocytes in vitro under normoxia by using specific inhibitors of lactate proton symport [alpha-cyano-4-hydroxycinnamate (CHC)] and sodium proton exchange (EIPA). The rise in metabolic rate in vivo can be elicited by infusions of hyperosmotic (previous findings) or isosmotic sodium lactate solutions (this study). Despite previous findings of reduced metabolic stimulation under the effect of adrenergic blockers, the increase in Vo(2) in vivo was not associated with elevated plasma catecholamine levels, suggesting local release and effect. In addition to the possible in vivo effect via catecholamines, lactate induced a rise in Vo(2) of isolated hepatocytes, depending on the concentration present in a weakly buffered Ringer solution at pH 7.0. No increase was found at higher pH values (7.4 or 7.8) or in HEPES-buffered Ringer solution. Inhibition of the Lac(-)-H(+) transporter with alpha-CHC or of the Na(+)/H(+) exchanger with EIPA prevented the increase in metabolic rate. We conclude that increased Vo(2) at an elevated systemic lactate level may involve catecholamine action, but it is also caused by an increased energy demand of cellular acid-base regulation via stimulation of Na(+)/H(+) exchange and thereby Na(+)-K(+)-ATPase. The effect depends on entry of lactic acid into the cells via lactate proton symport, which is likely favored by low cellular surface pH. We suggest that these energetic costs should also be considered in other physiological phenomena, e.g., when lactate is present during excess, postexercise Vo(2).
Collapse
Affiliation(s)
- Ilka Pinz
- Alfred-Wegener-Institute for Polar and Marine Research, 27568 Bremerhaven, Germany
| | | |
Collapse
|
24
|
Nonogaki K, Abdallah L, Goulding EH, Bonasera SJ, Tecott LH. Hyperactivity and reduced energy cost of physical activity in serotonin 5-HT(2C) receptor mutant mice. Diabetes 2003; 52:315-20. [PMID: 12540602 DOI: 10.2337/diabetes.52.2.315] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have observed late-onset obesity in mutant mice lacking the serotonin 5-HT(2C) receptor. Despite chronically elevated food intake, young adult mutants exhibit neither elevated adiposity nor altered glucose or fat homeostasis. However, obesity subsequently develops after 6 months of age without increases in their level of hyperphagia. In this study, we investigated determinants of energy expenditure in 5-HT(2C) receptor mutant mice. Young adult mutants displayed patterns of elevated activity levels that were enhanced by fasting and tightly associated with repeated visits to a food source. Surprisingly, subsequent obesity development occurred despite persisting locomotor hyperactivity and without age-related declines in resting metabolic rate. Rather, substantial reductions in the energy cost of locomotor activity (LA) were observed in 5-HT(2C) receptor mutant mice. Moreover, both mutant and wild-type mice displayed age-related declines in the energy cost of LA, indicating that this process may be regulated by both aging and serotonergic signaling. These results indicate that a mutation of the 5-HT(2C) receptor gene (htr2c) increases LA, which contributes to the maintenance of normal body composition in young adult mutants despite their hyperphagia. Moreover, age-dependent reductions in the energy cost of physical activity could contribute to the subsequent development of late-onset obesity in 5-HT(2C) receptor mutant mice.
Collapse
MESH Headings
- Animals
- Energy Metabolism/physiology
- Fasting
- Feeding Behavior
- Hyperkinesis/genetics
- Hyperkinesis/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/physiology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/physiopathology
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/deficiency
- Receptors, Serotonin/genetics
- Receptors, Serotonin/physiology
- X Chromosome
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Department of Psychiatry and Center for Neurobiology and Psychiatry, University of California, San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
25
|
THORNTON MKATHLEEN, POTTEIGER JEFFERYA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc 2002. [DOI: 10.1249/00005768-200204000-00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Thornton MK, Potteiger JA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc 2002; 34:715-22. [PMID: 11932584 DOI: 10.1097/00005768-200204000-00024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To compare the effect of low- and high-intensity resistance exercise of equal work output, on exercise and excess postexercise oxygen consumption (EPOC). METHODS Fourteen female subjects performed a no-exercise baseline control (CN), and nine exercises for two sets of 15 repetitions at 45% of their 8-RM during one session (LO) and two sets of 8 repetitions at 85% of their 8-RM during another session (HI). Measures for all three sessions included: heart rate (HR) and blood lactate (La) preexercise, immediately postexercise and 20 min, 60 min, and 120 min postexercise; and ventilation volume (VE), oxygen consumption (VO(2)), and respiratory exchange ratio (RER) during exercise and at intervals 0-20 min, 45-60 min, and 105-120 min postexercise. RESULTS Exercise .VO(2) was not significantly different between HI and LO, but VE, [La], and HR were significantly greater for HI compared with LO. Exercise RER for HI (1.07 +/- 0.03 and LO (1.05 +/- 0.02) were significantly higher than CN (0.86 +/- 0.02), but there were no differences among conditions postexercise. EPOC was greater for HI compared with low at 0-20 min (HI,1.72 +/- 0.70 LO(2); LO, 0.9 +/- 0.65, LO(2)), 45-60 min (HI, 0.35 +/- 0.25 LO(2); LO, 0.14 +/- 0.19 LO2), and 105-120 min (HI, 0.22 +/- 0.22 LO(2); LO, 0.05 +/- 0.11, LO(2)). CONCLUSION These data indicate that for resistance exercise bouts with an equated work volume, high-intensity exercise (85% 8-RM) will produce similar exercise oxygen consumption, with a greater EPOC magnitude and volume than low-intensity exercise (45% 8-RM).
Collapse
|
27
|
Steensberg A, Toft AD, Schjerling P, Halkjaer-Kristensen J, Pedersen BK. Plasma interleukin-6 during strenuous exercise: role of epinephrine. Am J Physiol Cell Physiol 2001; 281:C1001-4. [PMID: 11502577 DOI: 10.1152/ajpcell.2001.281.3.c1001] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise induces increased levels of plasma interleukin-6 (IL-6) as well as changes in the concentration of lymphocytes and neutrophils. The aim of this study was to investigate a possible role for epinephrine. Seven healthy men participated in an exercise experiment. One month later they received an epinephrine infusion. The exercise consisted of treadmill running at 75% of maximal O(2) consumption for 2.5 h. The infusion trial consisted of 2.5 h of epinephrine infusion calculated to reach the same plasma epinephrine levels seen during the exercise experiment. The plasma concentration of IL-6 increased 29-fold during exercise, with peak levels at the end of exercise. The increase in plasma IL-6 during epinephrine infusion was only sixfold, with the peak value at 1 h after infusion. The lymphocyte concentration increased to the same levels during exercise and epinephrine infusion. The lymphocyte count decreased more in the postexercise period than after epinephrine infusion. The neutrophil concentration was elevated threefold in response to exercise, whereas no change was found in response to epinephrine infusion. In conclusion, the exercise-induced increase in plasma IL-6 could not be mimicked by epinephrine infusion. However, epinephrine induced a small increase in IL-6 and may, therefore, partly influence the plasma levels of IL-6 during exercise. In addition, the results support the idea that epinephrine plays a role in exercise-induced changes in lymphocyte number, whereas epinephrine does not mediate exercise-induced neutrocytosis.
Collapse
Affiliation(s)
- A Steensberg
- Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
28
|
Christmass MA, Dawson B, Goodman C, Arthur PG. Brief intense exercise followed by passive recovery modifies the pattern of fuel use in humans during subsequent sustained intermittent exercise. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 172:39-52. [PMID: 11437738 DOI: 10.1046/j.1365-201x.2001.00814.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of work period duration as the principal factor influencing carbohydrate metabolism during intermittent exercise has been investigated. Fuel oxidation rates and muscle glycogen and free carnitine content were compared between two protocols of sustained intermittent intense exercise with identical treadmill speed and total work duration. In the first experiment subjects (n=6) completed 40 min of intermittent treadmill running involving a work : recovery cycle of 6 : 9 s or 24 : 36 s on separate days. With 24 : 36 s exercise a higher rate of carbohydrate oxidation approached significance (P=0.057), whilst fat oxidation rate was lower (P < or = 0.01) and plasma lactate concentration higher (P < or = 0.01). Muscle glycogen was lower post-exercise with 24 : 36 s (P < or = 0.05). Muscle free carnitine decreased (P < or = 0.05), but there was no difference between protocols. In the second experiment a separate group of subjects (n=5) repeated the intermittent exercise protocols with the addition of a 10-min bout of intense exercise, followed by 43 +/- 5 min passive recovery, prior to sustained (40 min) intermittent exercise. For this experiment the difference in fuel use observed previously between 6 : 9 s and 24 : 36 s was abolished. Carbohydrate and fat oxidation, plasma lactate and muscle glycogen levels were similar in 6 : 9 s and 24 : 36 s. When compared with the first experiment, this result was because of reduced carbohydrate oxidation in 24 : 36 s (P < or = 0.05). There was no difference, and no change, in muscle free carnitine between protocols. A 10-min bout of intense exercise, followed by 43 +/- 5 min of passive recovery, substantially modifies fuel use during subsequent intermittent intense exercise.
Collapse
Affiliation(s)
- M A Christmass
- Department of Biochemistry, The University of Western Australia, Nedlands, Australia
| | | | | | | |
Collapse
|
29
|
Starling RD, Liu X, Sullivan DH. Influence of sibutramine on energy expenditure in African American women. OBESITY RESEARCH 2001; 9:251-6. [PMID: 11331428 DOI: 10.1038/oby.2001.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE African American women have a high prevalence of obesity, which partially may be explained by their lower rates of resting energy expenditure (REE). The aim of this study was to examine the influence of acute sibutramine administration on REE and post-exercise energy expenditure in African American women. RESEARCH METHODS AND PROCEDURES A total of 15 premenopausal, African American women (age, 29 +/- 5 years; body fat, 38 +/- 7%) completed a randomized, double-blind cross-over design with a 30-mg ingestion of sibutramine or a placebo. Each trial was completed a month apart in the follicular phase and included a 30-minute measurement of REE 2.5 hours after sibutramine or placebo administration. This was followed by 40 minutes of cycling at approximately 70% of peak aerobic capacity and a subsequent 2-hour measurement of post-cycling energy expenditure. RESULTS There was no difference (p > 0.05) in REE (23.70 +/- 2.81 vs. 23.69 +/- 2.95 kcal/30 min), exercise oxygen consumption (1.22 +/- 0.15 vs. 1.25 +/- 0.15 liter/min), and post-cycling energy expenditure (104.2 +/- 12.7 vs. 104.9 +/- 11.4 kcal/120 min) between the sibutramine and placebo trials, respectively. Cycling heart rate was significantly higher (p = 0.01) during the sibutramine (158 +/- 14 beats/min) vs. placebo (150 +/- 12 beats/min) trials. DISCUSSION These data demonstrate that acute sibutramine ingestion does not increase REE or post-exercise energy expenditures but does increase exercising heart rate in overweight African American women. Sibutramine may, therefore, impact weight loss through energy intake and not energy expenditure mechanisms.
Collapse
Affiliation(s)
- R D Starling
- Department of Geriatricsm University of Arkansas for Medical Sciences, Little Rock 72205, USA.
| | | | | |
Collapse
|
30
|
Abstract
The peripheral sympathetic nervous system is a key factor in the regulation of energy balance in humans. Differences in sympathetic nervous system activity may contribute to variations in 24 h energy expenditure between individuals. beta-Adrenoceptors play a more important role than alpha-adrenoceptors in this regulation. The involvement of both beta 1- and beta 2-adrenoceptor subtypes has been demonstrated, the role of the beta 3-adrenoceptor subtype is not yet clear. Normal or increased levels of sympathetic nervous system activity and reduced reactivity appear to be present in established obesity. Furthermore, the sensitivity for beta-adrenoceptor stimulation is impaired in obesity. The blunted reactivity and sensitivity may contribute to the maintenance of the obese state. There are data to suggest that they may also play a role in the aetiology of obesity, because the impairments often remain after weight reduction. Furthermore, a negative correlation between baseline sympathetic nervous system activity and weight gain during follow-up has been found in Pima Indians. Recently, genetic evidence about the involvement of adrenoceptors in obesity has become available. Although the results of association and linkage studies on polymorphisms in the beta 2-, beta 3- and alpha 2-adrenoceptor genes are inconsistent, the functional correlates of some of these polymorphisms (changes in agonist-promoted down-regulation, protein expression levels, lipolytic sensitivity, basal metabolic rate, sympathetic nervous system activity) suggest that they may be important in the aetiology of obesity.
Collapse
Affiliation(s)
- M A van Baak
- Department of Human Biology, Maastricht University, P O Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
31
|
|
32
|
Bangsbo J, Hellsten Y. Muscle blood flow and oxygen uptake in recovery from exercise. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 162:305-12. [PMID: 9578376 DOI: 10.1046/j.1365-201x.1998.0331e.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The metabolic and muscle blood flow response in recovery from exercise is dependent on the type and the duration of the exercise. Immediately after both intense static and dynamical exercise blood flow to the exercised muscles increases suggesting that blood flow is mechanically hindered by muscle contraction. After the initial rise (seconds) muscle blood flow decreases at a moderate rate and the time to reach resting flow levels varies from seconds to more than 30 min. It is unclear as to what causes the elevated blood flow during recovery. A mismatch between the time course of changes in blood flow and oxygen uptake suggests that the blood flow is not directly regulated by the need of oxygen in the exercised muscles. The hyperaemic response may be linked to locally released factors, such as ions and metabolites. However, the signal by which the blood flow is elevated remains unknown. After exercise both pulmonary and muscle oxygen uptake decrease rapidly, but can remain above resting levels for several hours. Resynthesis of substrates such as CP, ATP and glycogen cannot account for the entire excessive post-exercise oxygen uptake (EPOC) in the exercised muscles and the cause of the elevated muscle oxygen uptake in recovery from exercise remains to be assessed.
Collapse
Affiliation(s)
- J Bangsbo
- Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark
| | | |
Collapse
|