1
|
Aghavali R, Roberts EG, Kurokawa YK, Mak E, Chan MYC, Wong AOT, Li RA, Costa KD. Enhanced drug classification using machine learning with multiplexed cardiac contractility assays. Pharmacol Res 2024; 209:107459. [PMID: 39396765 DOI: 10.1016/j.phrs.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Cardiac screening of newly discovered drugs remains a longstanding challenge for the pharmaceutical industry. While therapeutic efficacy and cardiotoxicity are evaluated through preclinical biochemical and animal testing, 90 % of lead compounds fail to meet safety and efficacy benchmarks during human clinical trials. A preclinical model more representative of the human cardiac response is needed; heart tissue engineered from human pluripotent stem cell derived cardiomyocytes offers such a platform. In this study, three functionally distinct and independently validated engineered cardiac tissue assays are exposed to increasing concentrations of known compounds representing 5 classes of mechanistic action, creating a robust electrophysiology and contractility dataset. Combining results from six individual models, the resulting ensemble algorithm can classify the mechanistic action of unknown compounds with 86.2 % predictive accuracy. This outperforms single-assay models and offers a strategy to enhance future clinical trial success aligned with the recent FDA Modernization Act 2.0.
Collapse
Affiliation(s)
- Reza Aghavali
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | - Erin G Roberts
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | | | - Erica Mak
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | | | - Andy O T Wong
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | - Ronald A Li
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | - Kevin D Costa
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| |
Collapse
|
2
|
Drumm BT, Gupta N, Mircea A, Griffin CS. Cells and ionic conductances contributing to spontaneous activity in bladder and urethral smooth muscle. J Physiol 2024. [PMID: 39323077 DOI: 10.1113/jp284744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Smooth muscle organs of the lower urinary tract comprise the bladder detrusor and urethral wall, which have a reciprocal contractile relationship during urine storage and micturition. As the bladder fills with urine, detrusor smooth muscle cells (DSMCs) remain relaxed to accommodate increases in intravesical pressure while urethral smooth muscle cells (USMCs) sustain tone to occlude the urethral orifice, preventing leakage. While neither organ displays coordinated regular contractions as occurs in small intestine, lymphatics or renal pelvis, they do exhibit patterns of rhythmicity at cellular and tissue levels. In rabbit and guinea-pig urethra, electrical slow waves are recorded from USMCs. This activity is linked to cells expressing vimentin, c-kit and Ca2+-activated Cl- channels, like interstitial cells of Cajal in the gastrointestinal tract. In mouse, USMCs are rhythmically active (firing propagating Ca2+ waves linked to contraction), and this cellular rhythmicity is asynchronous across tissues and summates to form tone. Experiments in mice have failed to demonstrate a voltage-dependent mechanism for regulating this rhythmicity or contractions in vitro, suggesting that urethral tone results from an intrinsic ability of USMCs to 'pace' their own Ca2+ mobilization pathways required for contraction. DSMCs exhibit spontaneous transient contractions, increases in intracellular Ca2+ and action potentials. Consistent across numerous species, including humans, this activity relies on voltage-dependent Ca2+ influx in DSMCs. While interstitial cells are present in the bladder, they do not 'pace' the organ in an excitatory manner. Instead, specialized cells (PDGFRα+ interstitial cells) may 'negatively pace' DSMCs to prevent bladder overexcitability.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alexandru Mircea
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
3
|
Barrese V, Wehbe Z, Linden A, McDowell S, Forrester E, Povstyan O, McCloskey KD, Greenwood IA. Key role for Kv11.1 (ether-a-go-go related gene) channels in rat bladder contractility. Physiol Rep 2023; 11:e15583. [PMID: 36750122 PMCID: PMC9904964 DOI: 10.14814/phy2.15583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023] Open
Abstract
In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 μM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 μM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired β-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Zena Wehbe
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Alice Linden
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Sarah McDowell
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Elizabeth Forrester
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | | | - Karen D. McCloskey
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Iain A. Greenwood
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| |
Collapse
|
4
|
Ikeda M, Nakada A, Abukawa H, Yamazaki T, Maruyama I. Vibegron inhibits enhanced spontaneous contractions induced by anoxia/reoxygenation in isolated whole bladder from rats. Eur J Pharmacol 2022; 926:175017. [PMID: 35588870 DOI: 10.1016/j.ejphar.2022.175017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
It has been recently proposed that repeated bladder ischemia/reperfusion induced by chronic pelvic ischemia may lead to detrusor overactivity, followed by lower urinary tract symptoms. Vibegron is a selective β3-adrenoceptor agonist approved for the treatment of overactive bladder. Several studies have tested β3-adrenoceptor agonists using animal models with detrusor overactivity related to bladder ischemia/reperfusion. However, whether β3-adrenoceptor agonists directly affect ischemia/reperfusion-evoked detrusor overactivity is unclear. Therefore, we examined whether bladder anoxia/reoxygenation could enhance spontaneous bladder contractions (SBCs) and investigated the effect of vibegron on enhanced SBCs. Isolated whole bladders from rats were incubated with Krebs solution aerated with 95% N2 + 5% CO2 for 5 h (anoxia). Subsequently, the bathing solution was replaced with an oxygen-saturated solution (reoxygenation). Anoxia/reoxygenation caused enhancement of the amplitude but not the frequency of SBC compared with that before reoxygenation. Vibegron (0.3-30 μM) inhibited this increase in SBC amplitude, but not the frequency, in a dose-dependent manner. The inhibitory effect of vibegron was not affected by pretreatment with the adenylyl cyclase inhibitor SQ22536 (100 μM) or protein kinase A inhibitor KT5720 (1 μM) and was not accompanied by considerable changes in cyclic adenosine monophosphate (cAMP) content in the bladder. In contrast, the large conductance potassium channel inhibitor iberiotoxin (100 nM) suppressed the inhibitory effect of vibegron. These results suggest that bladder ischemia/reperfusion induces SBC enhancement and vibegron directly inhibits detrusor overactivity via the large conductance potassium channel, which involves β3-adrenoceptor, rather than the cAMP signaling pathway.
Collapse
Affiliation(s)
- Makoto Ikeda
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Akihiro Nakada
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | - Hayato Abukawa
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | - Takanobu Yamazaki
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | - Itaru Maruyama
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd, 4365-1, Kashiwabara, Hotaka, Azumino-city, Nagano, 399-8304, Japan.
| |
Collapse
|
5
|
The intracellular Ca 2+ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proc Natl Acad Sci U S A 2020; 117:30775-30786. [PMID: 33199609 PMCID: PMC7720193 DOI: 10.1073/pnas.2016959117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is localized to late endosomes and lysosomes. Here, we investigated the function of TRPML1 channels in regulating lower urinary tract (LUT) smooth muscle cell (SMC) contractility. We found that TRPML1 forms a stable signaling complex with ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR). We further showed that TRPML1 channels are important for initiating an essential Ca2+-signaling negative feedback mechanism between RyRs on SR membranes and K+ channels on the plasma membrane. Knockout of TRPML1 channels in mice impaired this pathway, resulting in LUT smooth muscle hypercontractility and symptoms of overactive bladder. Our findings demonstrate a critical role for TRPML1 in LUT function. TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-permeable, nonselective cation channel that is predominantly localized to the membranes of late endosomes and lysosomes (LELs). Intracellular release of Ca2+ through TRPML1 is thought to be pivotal for maintenance of intravesicular acidic pH as well as the maturation, fusion, and trafficking of LELs. Interestingly, genetic ablation of TRPML1 in mice (Mcoln1−/−) induces a hyperdistended/hypertrophic bladder phenotype. Here, we investigated this phenomenon further by exploring an unconventional role for TRPML1 channels in the regulation of Ca2+-signaling activity and contractility in bladder and urethral smooth muscle cells (SMCs). Four-dimensional (4D) lattice light-sheet live-cell imaging showed that the majority of LELs in freshly isolated bladder SMCs were essentially immobile. Superresolution microscopy revealed distinct nanoscale colocalization of LEL-expressing TRPML1 channels with ryanodine type 2 receptors (RyR2) in bladder SMCs. Spontaneous intracellular release of Ca2+ from the sarcoplasmic reticulum (SR) through RyR2 generates localized elevations of Ca2+ (“Ca2+ sparks”) that activate plasmalemmal large-conductance Ca2+-activated K+ (BK) channels, a critical negative feedback mechanism that regulates smooth muscle contractility. This mechanism was impaired in Mcoln1−/− mice, which showed diminished spontaneous Ca2+ sparks and BK channel activity in bladder and urethra SMCs. Additionally, ex vivo contractility experiments showed that loss of Ca2+ spark–BK channel signaling in Mcoln1−/− mice rendered both bladder and urethra smooth muscle hypercontractile. Voiding activity analyses revealed bladder overactivity in Mcoln1−/− mice. We conclude that TRPML1 is critically important for Ca2+ spark signaling, and thus regulation of contractility and function, in lower urinary tract SMCs.
Collapse
|
6
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
7
|
Kim HJ, La JH, Kim HM, Yang IS, Sung TS. Anti-diarrheal effect of Scutellaria baicalensis is associated with suppression of smooth muscle in the rat colon. Exp Ther Med 2019; 17:4748-4756. [PMID: 31105793 DOI: 10.3892/etm.2019.7469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis (S. baicalensis) has been used to manage diarrhea, and its anti-inflammatory effects are responsible for anti-diarrheal effects. However, there are no data concerning its direct effect on colonic motility. Therefore, the effects of the major components of S. baicalensis (baicalin, baicalein and wogonin) on colonic motility were investigated. A segment of the distal colon of rats was placed in Krebs solution to monitor spontaneous giant contractions (GCs). Changes in GCs were recorded after applying baicalin, baicalein or wogonin. After pretreatment with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), 1H-(1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ), tetradotoxin, w-conotoxin, apamin, and iberiotoxin, changes in GCs by wogonin were recorded and analyzed. The segment of the distal colon showed spontaneous GCs at a mean amplitude of 3.7±0.3 g with a frequency of 0.8±0.1/min. Baicalin, baicalein, and wogonin reduced both the amplitude and the frequency of GCs in a dose-dependent manner. Wogonin had the most potent inhibitory effect on GCs (IC50 was 14.6 µM in amplitude and 14.2 µM in frequency). Wogonin-induced GC reduction was not significantly affected by the inhibition of nitric oxide/cGMP pathways with L-NAME and ODQ. Blocking the enteric neurotransmission with tetradotoxin and ω-conotoxin was ineffective on the wogonin-induced reduction of GCs. Ca2+-activated K+ (KCa) channel blockers (apamin and iberiotoxin) significantly attenuated the inhibitory effects of wogonin on GCs (P<0.01). Wogonin was effective in inhibiting colonic motility, probably through the opening of KCa channels located in the smooth muscle apparatus. These findings suggest that wogonin may be a candidate drug for the management of dysmotility-related diarrhea.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hee Man Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0357, USA
| | - Il-Suk Yang
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Sik Sung
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0357, USA
| |
Collapse
|
8
|
Li N, Ding H, Li Z, Liu Y, Wang P. Effect of high-fat diet-induced obesity on the small-conductance Ca 2+-activated K + channel function affecting the contractility of rat detrusor smooth muscle. Int Urol Nephrol 2018; 51:61-72. [PMID: 30361965 DOI: 10.1007/s11255-018-2016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/19/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Obesity usually induces overactive bladder (OAB) associated with detrusor overactivity, which is related to increased contractility of the detrusor smooth muscle (DSM). Small-conductance Ca2+-activated K+ (SK) channels play a constitutive role in the regulation of DSM contractility. However, the role of SK channels in the DSM changes in obesity-related OAB is still unknown. Here, we tested the hypothesis that obesity-related OAB is associated with reduced expression and activity of SK channels in DSM and that SK channels activation is a potential treatment for OAB. METHODS Female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) and weighed after 12 weeks. Urodynamic studies, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and isometric tension recording were performed. RESULTS Increased average body weights and urodynamically demonstrated OAB were observed in HFD rats. qRT-PCR experiments revealed a decrease in the mRNA expression level of SK channel in DSM tissue of the HFD rats. Isometric tension recordings indicated an attenuated relaxation effect of NS309 on the spontaneous phasic and electrical field stimulation-induced contractions that occurred via SK channel activation in HFD DSM strips. CONCLUSIONS Reduced expression and activity of SK channels in the DSM contribute to obesity-related OAB, indicating that SK channels are a potential therapeutic target for OAB.
Collapse
Affiliation(s)
- Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Honglin Ding
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.,Department of Urology, Affiliated Hospital, Chifeng University, 42 Wangfu Street, Chifeng, Neimeng, China
| | - Zizheng Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Yili Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.
| | - Ping Wang
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Regulation of Spontaneous Contractions in Intact Rat Bladder Strips and the Effects of Hydrogen Peroxide. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2925985. [PMID: 29511675 PMCID: PMC5817331 DOI: 10.1155/2018/2925985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/01/2017] [Accepted: 12/31/2017] [Indexed: 01/07/2023]
Abstract
Enhanced spontaneous contractions are associated with overactive bladder. Elevated levels of reactive oxygen species might contribute to enhanced spontaneous contractions. We investigated the regulation of spontaneous contractions and the effects of hydrogen peroxide (H2O2) in intact rat bladder strips. The spontaneous contractions were measured using a tissue bath system. The vehicle or the specific activators/blockers were applied and followed by the application of 0.003 g% H2O2. The basal tension, amplitude, and frequency of spontaneous contractions were quantified. Nisoldipine and bisindolylmaleimide 1 had no effects on spontaneous contractions. SKF96365 and Y27632 decreased basal tension and amplitude. Ryanodine slightly increased frequency. Both iberiotoxin and NS-1619 increased amplitude. Apamin reduced frequency but increased amplitude. NS-309 inhibited both the amplitude and frequency. The basal tension and amplitude increased when H2O2 was applied. Pretreatment with NS-309 inhibited H2O2-elicited augmented amplitude and frequency, while pretreatment with Y-27632 inhibited the augmented basal tension. The combined application of NS-309 and Y27632 almost eliminated spontaneous contractions and its augmentation induced by H2O2. In conclusion, Ca2+ influx, Rho kinase activation, and SK channel inactivation play important roles in spontaneous contractions in intact bladder strips, whereas only latter two mechanisms may be involved in H2O2-elicited increased spontaneous contractions.
Collapse
|
10
|
Bravo G, Massa H, Rose'Meyer R, Chess-Williams R, McDermott C, Sellers DJ. Effect of short-term androgen deficiency on bladder contractility and urothelial mediator release. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:547-556. [PMID: 28190243 DOI: 10.1007/s00210-017-1355-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/31/2017] [Indexed: 01/23/2023]
Abstract
In men, testosterone levels decline by 1% per year after the age of 40. Reduced androgen levels may directly contribute to lower urinary tract symptoms and bladder dysfunction, although the mechanisms are unclear. This study examined the effect of low testosterone and testosterone replacement on key mechanisms involved in local bladder function. Intraluminal release of the mediators ATP and ACh in response to bladder distension was measured in whole bladders from rats 8 weeks following castration, whilst bladder contractility was assessed using isolated strips. Human urothelial cells were cultured under low, physiological and supra-physiological testosterone conditions for 24 h or 5 days, and stretch-induced release of ATP and ACh was measured. Phasic contractile activity of bladder strips, agonist-induced reponses to carbachol and isoprenaline and nerve-evoked contractions were unaffected by castration. The acetylcholinesterase inhibitor neostigmine significantly increased amplitude of phasic activity only in bladder strips following castration, and this was prevented by testosterone replacement. Intraluminal ACh release following bladder distension was significantly reduced following castration, whilst ATP release was unaffected. In contrast, stretch-induced ATP release from urothelial cells was significantly enhanced in low testosterone conditions, whilst ACh release was unaltered. Testosterone-replacement to physiological levels prevented these changes. Whilst androgen deficiency of 8 weeks does not directly affect contractility of bladder smooth muscle, urothelial mediator release is sensitive to changes in testosterone. These changes in mediator release may be an early effect of the decline in testosterone and could affect sensory pathways in the longer term, contributing to the urinary symptoms and bladder dysfunction seen in androgen-deficient men.
Collapse
Affiliation(s)
- Giselle Bravo
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
| | - Helen Massa
- School of Medical Science, Griffith University, Queensland, Australia
| | | | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia.
| |
Collapse
|
11
|
Sridharan B, Michael ST, Arya R, Mohana Roopan S, Ganesh RN, Viswanathan P. Beneficial effect of Citrus limon peel aqueous methanol extract on experimentally induced urolithic rats. PHARMACEUTICAL BIOLOGY 2015; 54:759-769. [PMID: 26452728 DOI: 10.3109/13880209.2015.1079724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Citrus limon (L.) Burm.f. (Rutaceace) is a commonly available fruit variety with high medicinal and industrial values. OBJECTIVE Lemon peel (LP) extract was studied as a potent preventive and curative agent for experimentally induced hyperoxaluric rats. MATERIALS AND METHODS Gas chromatography-mass spectrometry (GC-MS) analyses and toxicity study were performed for aqueous methanol LP extract. Twenty-four Wistar rats were segregated into four groups. Group 1: Control; Group 2: Urolithic (ethylene glycol (EG) - 0.75%); Group 3: Preventive study (EG + LP extract administration from 0th to 7th week); Group 4: Curative study (EG + LP extract administration from 4th to 7th week). Animals received LP extract daily by oral administration (100 mg/kg body weight) for 7 weeks. RESULTS AND DISCUSSION GC-MS analyses revealed that compound 6 was abundant in the LP extract (32%) followed by compound 1 (∼21%). The LD50 value of LP extract was found to be >5000 mg/kg of body weight. Urolithic rats showed significantly higher urinary calcium and oxalate (4.47 ± 0.44 and 18.86 ± 0.55 mg/24 h, respectively) excretion compared with control and experimental rats. Renal function parameters like urea (84 ± 8.5 and 96.1 ± 3.6 mg/dL), creatinine (1.92 ± 0.27 and 1.52 ± 0.22 mg/dL), and urinary protein (2.03 ± 0.02 and 2.13 ± 0.16 mg/24 h) were also reduced by LP extract (p < 0.001) and corroborated with tissue analyses (SOD, catalase, and MDA levels) and histological studies in normal and experimental animals. Immunohistochemical staining of THP and NF-κB in urolithic animals showed elevated expression than the control, while LP extract suppressed the expression of these proteins. CONCLUSION In conclusion, lemon peel is effective in curing kidney stone disease and also can be used to prevent the disease and its recurrence.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- a Renal Research Lab, Centre for Biomedical Research, School of Bio Sciences and Technology , VIT University , Vellore , Tamil Nadu , India
| | - Shiju T Michael
- a Renal Research Lab, Centre for Biomedical Research, School of Bio Sciences and Technology , VIT University , Vellore , Tamil Nadu , India
| | - Ramachandran Arya
- a Renal Research Lab, Centre for Biomedical Research, School of Bio Sciences and Technology , VIT University , Vellore , Tamil Nadu , India
| | - Selvaraj Mohana Roopan
- b Organic & Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences , VIT University , Vellore , Tamil Nadu , India , and
| | - Rajesh N Ganesh
- c Department of Pathology , Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) , Dhanvantri Nagar , Puducherry , India
| | - Pragasam Viswanathan
- a Renal Research Lab, Centre for Biomedical Research, School of Bio Sciences and Technology , VIT University , Vellore , Tamil Nadu , India
| |
Collapse
|
12
|
Bentzen BH, Olesen SP, Rønn LCB, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389. [PMID: 25346695 PMCID: PMC4191079 DOI: 10.3389/fphys.2014.00389] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.
Collapse
Affiliation(s)
- Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark ; Acesion Pharma Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark
| | | | - Morten Grunnet
- Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark
| |
Collapse
|
13
|
Bijos DA, Drake MJ, Vahabi B. Anoctamin-1 in the juvenile rat urinary bladder. PLoS One 2014; 9:e106190. [PMID: 25181534 PMCID: PMC4152174 DOI: 10.1371/journal.pone.0106190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/01/2014] [Indexed: 01/21/2023] Open
Abstract
Purpose To investigate presence, location and functional role of calcium-activated chloride channel (CaCC) Anoctamin-1 (Ano1) in rat urinary bladder. Materials and Methods Bladders from 3 week old Wistar rats were studied. End-point PCR on total mRNA was used to assess the expression of Ano1. Immunofluorescent labelling of whole mount bladder tissue imaged with confocal microscope allowed localization of Ano1 and vimentin immunopositive cells. The effects of CaCC blockers: niflumic acid (NFA) (3,10,30 µM) and 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) (10, 30 µM) on spontaneous phasic contractile activity of intact (with mucosa) and denuded (without mucosa) detrusor strips were measured under isometric tension in organ baths (n = 141, N = 60). Results Ano1 expression was found at mRNA level in mucosa and detrusor layers. Confocal microscopy revealed presence of Ano1 immunopositive cells in mucosa and in detrusor layers; a subpopulation of vimentin positive cells expressed Ano1. Both chloride channel blockers reduced the amplitude and frequency of phasic contractions in denuded and intact strips. Conclusions Ano1 is expressed in rat urinary bladder and is present in cells sharing markers with interstitial cells. CaCC blockers reduced phasic activity of the bladder tissue. Ano1 is expressed in the bladder and plays a role in its spontaneous phasic contractile activity.
Collapse
Affiliation(s)
- Dominika A. Bijos
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, United Kingdom
| | - Marcus J. Drake
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, United Kingdom
- * E-mail:
| | - Bahareh Vahabi
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, United Kingdom
- Department of Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
14
|
Nausch B, Rode F, Jørgensen S, Nardi A, Korsgaard MPG, Hougaard C, Bonev AD, Brown WD, Dyhring T, Strøbæk D, Olesen SP, Christophersen P, Grunnet M, Nelson MT, Rønn LCB. NS19504: a novel BK channel activator with relaxing effect on bladder smooth muscle spontaneous phasic contractions. J Pharmacol Exp Ther 2014; 350:520-30. [PMID: 24951278 PMCID: PMC4152884 DOI: 10.1124/jpet.113.212662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 06/19/2014] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+) channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader-based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization was achieved in manual whole-cell and inside-out patch-clamp studies in human embryonic kidney 293 cells expressing hBK channels: NS19504 caused distinct activation from a concentration of 0.3 and 10 µM NS19504 left-shifted the voltage activation curve by 60 mV. Furthermore, whole-cell recording showed that NS19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µM) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K(+) concentration consistent with a K(+) channel-mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels in urinary bladder function. The pharmacologic profile of NS19504 indicates that this compound may have the potential to reduce nonvoiding contractions associated with spontaneous bladder overactivity while having a minimal effect on normal voiding.
Collapse
Affiliation(s)
- Bernhard Nausch
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Frederik Rode
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Susanne Jørgensen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Antonio Nardi
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Mads P G Korsgaard
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Charlotte Hougaard
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Adrian D Bonev
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - William D Brown
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Tino Dyhring
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Dorte Strøbæk
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Søren-Peter Olesen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Palle Christophersen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Morten Grunnet
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Mark T Nelson
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Lars C B Rønn
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| |
Collapse
|
15
|
Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 2014; 307:R571-84. [PMID: 24990859 DOI: 10.1152/ajpregu.00142.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca(2+)-activated K(+) (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K(+) channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K(+) channel that is activated by increases in both voltage and intracellular Ca(2+). The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca(2+) signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
16
|
Fernandes VS, Ribeiro ASF, Martínez-Sáenz A, Blaha I, Serrano-Margüello D, Recio P, Martínez AC, Bustamante S, Vázquez-Alba D, Carballido J, García-Sacristán A, Hernández M. Underlying mechanisms involved in progesterone-induced relaxation to the pig bladder neck. Eur J Pharmacol 2014; 723:246-52. [PMID: 24296318 DOI: 10.1016/j.ejphar.2013.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/12/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
Progesterone increases bladder capacity and improves the bladder compliance by its relaxant action on the detrusor. A poor information, however, exists concerning to the role of this steroid hormone on the bladder outflow region contractility. This study investigates the progesterone-induced action on the smooth muscle tension of the pig bladder neck. To this aim, urothelium-denuded bladder neck strips were mounted in myographs for isometric force recordings and for simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)]i) and tension. On phenylephrine (PhE)-precontracted strips, progesterone produced concentration-dependent relaxations only at high pharmacological concentrations. The blockade of progesterone receptors, nitric oxide (NO) synthase, guanylyl cyclase, large conductance Ca(2+)-activated K(+) (BKCa) or ATP-dependent K(+) (KATP) channels reduced the progesterone relaxations. The presence of the urothelium and the inhibition of cyclooxygenase (COX), intermediate- and small-conductance Ca(2+)-activated K(+) channels failed to modify these responses. In Ca(2+)-free potassium rich physiological saline solution, progesterone inhibited the contraction to CaCl2 and to the L-type voltage-operated Ca(2+) (VOC) channel activator BAY-K 8644. Relaxation induced by progesterone was accompanied by simultaneous decreases in smooth muscle [Ca(2+)]i. These results suggest that progesterone promotes relaxation of pig bladder neck through smooth muscle progesterone receptors via cGMP/NO pathway and involving the activation of BKCa and KATP channels and inhibition of the extracellular Ca(2+) entry through L-type VOC channels.
Collapse
Affiliation(s)
- Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana S F Ribeiro
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Martínez-Sáenz
- Unidad Experimental, Fundación de Investigación Biomédica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - Igor Blaha
- Departamento de Urología, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Daniel Serrano-Margüello
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paz Recio
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Cristina Martínez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Salvador Bustamante
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - David Vázquez-Alba
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Parajuli SP, Hristov KL, Soder RP, Kellett WF, Petkov GV. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels. Br J Pharmacol 2013; 168:1611-25. [PMID: 23145946 DOI: 10.1111/bph.12049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/30/2012] [Accepted: 10/25/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca(2+) -activated K(+) (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. EXPERIMENTAL APPROACH We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. KEY RESULTS We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. CONCLUSIONS AND IMPLICATIONS Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Pharmaceutical & Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
18
|
Phasic contractions in urinary bladder from juvenile versus adult pigs. PLoS One 2013; 8:e58611. [PMID: 23516515 PMCID: PMC3596269 DOI: 10.1371/journal.pone.0058611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/05/2013] [Indexed: 01/18/2023] Open
Abstract
Aims Alterations in properties of the bladder with maturation are relevant physiologically and pathophysiologically. The aim of this study was to investigate alterations in bladder properties with maturation in juvenile vs. adult pig, focussing on differences between layers of the bladder wall (mucosa vs. detrusor) and the presence and functional contribution of interstitial cells (ICs). Methods Basal and cholinergic-induced phasic contractions (PCs) in mucosal and denuded-detrusor strips from juvenile and adult pigs were assessed. Expression of c-kit, a marker of ICs, was investigated in the mucosa and the detrusor layers of the pig bladder. The functional role of ICs in mediating PCs was examined using imatinib. Results Mucosal strips from juvenile and adult pig bladders demonstrated basal PCs whilst denuded-detrusor strips did not. PCs of mucosal strips from juvenile pigs were significantly greater than those from adult bladders. Immunoreactivity for c-kit was detected in mucosa and detrusor layers of pig bladder. Histological studies demonstrated a distinct layer of smooth muscle between the urothelium and bladder detrusor, termed the muscularis mucosa. Imatinib was only effective in inhibiting PCs in mucosal strips from juvenile pigs. Imatinib inhibited the carbachol-induced PCs of both juvenile and adult denuded-detrusor strips, although strips from juvenile bladders demonstrated a trend towards being more sensitive to this inhibition. Conclusions We confirm the presence of c-kit positive ICs in pig urinary bladder. The enhanced PCs of mucosal strips from juvenile animals could be due to altered properties of ICs or the muscularis mucosa in the bladders of these animals.
Collapse
|
19
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
20
|
Aydin M, Wang HZ, Zhang X, Chua R, Downing K, Melman A, DiSanto ME. Large-conductance calcium-activated potassium channel activity, as determined by whole-cell patch clamp recording, is decreased in urinary bladder smooth muscle cells from male rats with partial urethral obstruction. BJU Int 2012; 110:E402-8. [PMID: 22520450 DOI: 10.1111/j.1464-410x.2012.11137.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To examine the effect of partial urethral obstruction (PUO) on bladder smooth muscle outward potassium current and the contribution of the large-conductance calcium-activated potassium (Maxi-K, BKCa) channel to this activity in smooth muscle cells isolated from bladders of sham-operated and PUO male rats using whole-cell patch clamp recording techniques. To determine the effect of PUO on the expression of the Maxi-K channel α and β1 subunits and in vitro detrusor contractility. MATERIALS AND METHODS Twenty adult male Sprague-Dawley rats were divided equally into two groups and subjected to surgical ligation of the urethra (PUO) or sham surgery (SHAM). After 2 weeks, the detrusors from PUO and SHAM rats were used for molecular analyses (mRNA and protein quantification of Maxi-K subunits) or organ bath contractility studies, or myocytes were isolated for conventional whole-cell patch clamp analyses. RESULTS PUO increased bladder mass 2.5-fold and detrusor strips exhibited a more tonic-type contraction and increased contractility compared with controls (SHAM). Iberiotoxin (300 nM) sensitive Maxi-K channel current comprised about 40% of the outward whole-cell current in SHAM bladders but only about 8% in PUO bladders. Expression of the α subunit of the Maxi-K channel was significantly decreased ~40% while the expression of the β1 subunit was increased ~2-fold at the mRNA level. The increase in β1 expression was confirmed by Western blotting. CONCLUSIONS Our findings show that obstruction of the rat bladder is associated with decreased Maxi-K channel activity of bladder smooth muscle cells, determined via direct current measurement. Increased expression of the β1 subunit points to a compensatory reaction to decreased Maxi-K channel activity. Maxi-K channel openers or gene therapy may therefore provide therapeutic benefit for the overactive bladder.
Collapse
Affiliation(s)
- Memduh Aydin
- Department of Urology, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Fernandes VS, Barahona MV, Recio P, Martínez-Sáenz A, Ribeiro ASF, Contreras C, Martínez AC, Bustamante S, Carballido J, García-Sacristán A, Prieto D, Hernández M. Mechanisms involved in testosterone-induced relaxation to the pig urinary bladder neck. Steroids 2012; 77:394-402. [PMID: 22285851 DOI: 10.1016/j.steroids.2011.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Testosterone replacement therapy improves bladder capacity in urinary tract dysfunction. There is no information, however, about the role of this steroid hormone on the muscle tension of the bladder outflow region. The current study investigated the mechanisms underlying the testosterone-induced action in the pig bladder neck. METHODS Urothelium-denuded bladder neck strips were mounted in myographs for isometric force recordings and for simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension. The relaxations to testosterone, the non-aromatizable metabolite 4,5α-dihydrotestosterone (DHT) and electrical field stimulation (EFS) were carried out on phenylephrine (PhE)-precontracted strips. RESULTS Testosterone and DHT evoked similar concentration-dependent relaxations only at very high pharmacological concentrations. The presence of the urothelium and the inhibition of intracellular androgenic receptor (AR), aromatase, 5α-reductase, nitric oxide (NO) synthase, guanylyl cyclase, cyclooxygenase (COX), large-, intermediate- and small-Ca(2+)-activated K(+) channels or ATP-dependent K(+) channels failed to modify the testosterone relaxations. Neuronal voltage-gated Ca(2+) (VOC) channels and voltage-gated K(+) (K(V)) channel blockers potentiated these responses. EFS evoked frequency-dependent relaxations, which were not changed by threshold concentrations of testosterone. In Ca(2+)-free potassium rich physiological saline solution, testosterone inhibited the contractions induced by CaCl(2) and the L-type VOC channel activator (±)-BAY K 8644. Relaxations elicited by testosterone were accompanied by simultaneous decreases in smooth muscle [Ca(2+)](i). CONCLUSIONS Testosterone produces relaxation of the pig urinary bladder neck through mechanisms independent of urothelium, AR, aromatase, 5α-reductase, NO synthase, guanylyl cyclase, COX and K(+) channels. Testosterone-induced relaxation is produced via the inhibition of the extracellular Ca(2+) entry through L-type VOC channels.
Collapse
Affiliation(s)
- Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Parajuli SP, Soder RP, Hristov KL, Petkov GV. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility. J Pharmacol Exp Ther 2012; 340:114-23. [PMID: 22001258 PMCID: PMC3251021 DOI: 10.1124/jpet.111.186213] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/13/2011] [Indexed: 02/05/2023] Open
Abstract
Small conductance Ca²⁺-activated K⁺ (SK) and intermediate conductance Ca(2+)-activated K⁺ (IK) channels are thought to be involved in detrusor smooth muscle (DSM) excitability and contractility. Using naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a novel and highly specific SK/IK channel activator, we investigated whether pharmacological activation of SK/IK channels reduced guinea pig DSM excitability and contractility. We detected the expression of all known isoforms of SK (SK1-SK3) and IK channels at mRNA and protein levels in DSM by single-cell reverse transcription-polymerase chain reaction and Western blot. Using the perforated patch-clamp technique on freshly isolated DSM cells, we observed that SKA-31 (10 μM) increased SK currents, which were blocked by apamin (1 μM), a selective SK channel inhibitor. In current-clamp mode, SKA-31 (10 μM) hyperpolarized the cell resting membrane potential, which was blocked by apamin (1 μM) but not by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), a selective IK channel inhibitor. SKA-31 (10 nM-10 μM) significantly inhibited the spontaneous phasic contraction amplitude, frequency, duration, and muscle force in DSM isolated strips. The SKA-31 inhibitory effects on DSM contractility were blocked by apamin (1 μM) but not by TRAM-34 (1 μM), which did not per se significantly affect DSM spontaneous contractility. SK channel activation with SKA-31 reduced contractions evoked by electrical field stimulation. SKA-31 effects were reversible upon washout. In conclusion, SK channels, but not IK channels, mediate SKA-31 effects in guinea pig DSM. Pharmacological activation of SK channels reduces DSM excitability and contractility and therefore may provide a novel therapeutic approach for controlling bladder dysfunction.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
23
|
Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol 2011; 9:30-40. [PMID: 22158596 DOI: 10.1038/nrurol.2011.194] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K(+) channels, including voltage-gated K(+) (K(V)) channels, Ca(2+)-activated K(+) (K(Ca)) channels, inward-rectifying ATP-sensitive K(+) (K(ir), K(ATP)) channels, and two-pore-domain K(+) (K(2P)) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K(+) channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K(+) channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K(+) channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K(+) channels in DSM in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
24
|
Soder RP, Petkov GV. Large conductance Ca2+ -activated K+ channel activation with NS1619 decreases myogenic and neurogenic contractions of rat detrusor smooth muscle. Eur J Pharmacol 2011; 670:252-9. [PMID: 21914438 DOI: 10.1016/j.ejphar.2011.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/23/2011] [Accepted: 08/17/2011] [Indexed: 02/07/2023]
Abstract
Large conductance voltage- and Ca(2+)-activated K(+) (BK) channels are important in regulating detrusor smooth muscle (DSM) function. Here, we examined systematically how the BK channel pharmacological activation modulates DSM contractility. NS1619, a potent BK channel activator, was utilized as a pharmacological tool to investigate the effect of BK channel activation on rat DSM contractility. Isometric tension recordings of DSM strips isolated from rat urinary bladder were performed systematically under various experimental conditions. NS1619 (30 μM) substantially diminished DSM spontaneous contraction amplitude, muscle force integral, frequency, duration and muscle tone. This effect was blocked by iberiotoxin, a BK channel selective inhibitor. NS1619 inhibited the phasic and tonic contractions in DSM strips pre-contracted with either the cholinergic agonist, carbachol (0.1 μM), or the depolarizing agent, KCl (20mM). In the presence of elevated KCl (60 mM KCl), the inhibitory effect of NS1619 was significantly reduced, indicating that BK channel activation is the underlying mechanism of NS1619 action. BK channel activation with NS1619 dramatically decreased the amplitude of electrical field stimulation (EFS)-induced contractions under a range of stimulation frequencies (0.5-50 Hz). In the presence of specific neurotransmitter inhibitors, BK channel activation with NS1619 significantly decreased both cholinergic and purinergic components of EFS-induced contractions. We conclude that BK channel activation with NS1619 significantly inhibited spontaneous, pharmacologically induced and nerve-evoked DSM contractions. Targeting the BK channel with selective openers may offer a unique opportunity to control DSM contractile activity, including pathophysiological conditions such as overactive bladder and detrusor overactivity, regardless of the underlying cause.
Collapse
Affiliation(s)
- Rupal P Soder
- Pharmaceutical & Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
25
|
Vahabi B, Lawson K, McKay NG, Sellers DJ. Phasic activity of urinary bladder smooth muscle in the streptozotocin-induced diabetic rat: effect of potassium channel modulators. Eur J Pharmacol 2011; 660:431-437. [PMID: 21497590 DOI: 10.1016/j.ejphar.2011.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/09/2011] [Accepted: 03/28/2011] [Indexed: 02/07/2023]
Abstract
Increased phasic activity in the bladder smooth muscle of animal models and patients with detrusor overactivity has been suggested to underlie the pathophysiology of overactive bladder. Potassium (K+) channels are key regulators of bladder smooth muscle tone and thus may play a role in this altered phasic activity. In this study the effects of K+ channel modulators on the phasic activity of bladder strips from the streptozotocin-induced diabetic rat model of bladder dysfunction were investigated. Bladder strips from rats 1 week following streptozotocin administration and age-matched controls were mounted in tissue baths at 37 °C and the effects of K+ channel modulators on resting basal tension or phasic activity induced by a low concentration of carbachol (0.5 μM) were investigated. Activation of BKCa channels by NS1619 had a minor inhibitory effect on carbachol-induced phasic activity of bladder strips from control and diabetic rats, and significantly inhibited amplitude only at 30 μM. Activation of KATP channels by cromakalim inhibited the frequency of carbachol-induced phasic activity of bladder strips, although strips from diabetic rats showed a trend towards being less sensitive to cromakalim. The BKCa channel blocker iberiotoxin was able to induce phasic activity in resting tissues, with diabetic bladder strips demonstrating significantly enhanced phasic activity compared to controls. In contrast, inhibition of SKCa and KATP channels did not induce phasic activity in resting tissues. In conclusion, responses of diabetic rat bladder to BKCa and KATP channel modulators are altered, suggesting altered function and/or expression of channels which may contribute to bladder dysfunction in this model.
Collapse
Affiliation(s)
- Bahareh Vahabi
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | | | | | | |
Collapse
|
26
|
Vahabi B, McKay NG, Lawson K, Sellers DJ. The role of c-kit-positive interstitial cells in mediating phasic contractions of bladder strips from streptozotocin-induced diabetic rats. BJU Int 2011; 107:1480-1487. [PMID: 20735390 DOI: 10.1111/j.1464-410x.2010.09507.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE • To investigate the role of c-kit-positive interstitial cells (ICCs) in mediating muscarinic receptor-induced phasic contractions of isolated bladder strips from streptozotocin(STZ)-induced diabetic rats and to confirm the expression and location of ICCs in the rat bladder. MATERIALS AND METHODS • Bladders were removed from STZ-induced diabetic rats at 1, 4 and 12 weeks after induction of diabetes and from age-matched controls. • To investigate the functional role of ICCs in mediating phasic contractions, bladder strips were isolated from control and diabetic rats and mounted in tissue baths. • Strips were stimulated with low concentrations of the muscarinic receptor agonist carbachol (CCH; 0.1 µm) to induce phasic contractions and the effect of increasing concentrations (1-50 µm) of imatinib (Glivec® or Gleevec®, formerly STI571), a c-kit tyrosine kinase inhibitor, was then investigated. • For molecular studies, to detect expression of the c-kit tyrosine kinase receptor (c-kit), total cellular RNA was extracted from rat bladders and reverse-transcribed to obtain complementary DNA (cDNA). • Reverse transcription-polymerase chain reaction (RT-PCR) was then performed using primers specific to the c-kit sequence and amplified products separated by agarose gel electrophoresis. • Amplified PCR products were excised from the gel, sequenced and compared with the known c-kit sequence to confirm their identity. • For immunohistochemical detection, whole mount preparations of control rat bladders were fixed in acetone and labelled using antibodies directed to the ICC marker c-kit. RESULTS • In functional studies, CCH induced phasic contractions in bladder strips from control and diabetic rats. Bladder strips from 1-week diabetic rats showed CCH-induced phasic contractions, which were greater in amplitude, but had lower frequency, than the controls, whilst no such differences were apparent at later time points of diabetes. • Imatinib decreased the amplitude and the frequency of the CCH-induced phasic contractions in both control and diabetic tissues in a concentration-dependent manner, although in diabetic tissues this effect was only seen at the higher concentrations of imatinib. RT-PCR of bladder cDNA yielded a single amplicon of 480 bp. • The sequence of this amplicon showed a 98% homology with the published c-kit sequence, thus confirming c-kit mRNA expression in both control and 1-week diabetic rat bladder. • Expression of c-kit protein was also detected in a network of cells on the edge of and between smooth muscle bundles of control rat bladders by positive immunoreactivity to c-kit specific antibodies. CONCLUSION • These data show the presence of c-kit-positive ICCs in rat urinary bladder and their importance in mediating muscarinic receptor-induced phasic contractions of bladder strips from control and diabetic rats. The role of these ICCs does not seem to be significantly altered by the diabetic state.
Collapse
Affiliation(s)
- Bahareh Vahabi
- Biomedical Sciences, Owen Building, Sheffield Hallam University, Sheffield, UK
| | | | | | | |
Collapse
|
27
|
Hidayat Santoso AG, Liang W. Bladder contractility is mediated by different K+ channels in the urothelium and detrusor smooth muscle. J Pharmacol Sci 2011; 115:127-134. [PMID: 21258177 DOI: 10.1254/jphs.10162fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022] Open
Abstract
The roles played by K(+) channels in the urothelium (UE) and detrusor smooth muscle (DSM) in regulating agonist-induced bladder contraction is not known at present. Thus, the effects in carbachol (CCh)-induced contraction in UE-intact (+UE) and UE-denuded (-UE) rat detrusor strips pretreated with K(+)-channel blockers were investigated here. The K(+)-channel blockers used were 4-aminopyridine (4-AP), glibenclamide (Glib), iberiotoxin (IbTx), charybdotoxin (ChTx), and apamin. In the absence of K(+)-channel blockers, control CCh-induced contractions were more potent in -UE than +UE strips. Treatment with IbTx and apamin resulted in more potent CCh-induced contractions in +UE strips. In -UE strips, CCh potency was increased by ChTx and Glib, but decreased by 4-AP. Different K(+) channels in the UE and DSM were thus involved in regulating bladder contractions. Contractile mediatory function of these channels, specific to the UE or DSM, may be potential drug targets in the management of bladder disorders.
Collapse
|
28
|
Oger S, Behr-Roussel D, Gorny D, Bernabé J, Comperat E, Chartier-Kastler E, Denys P, Giuliano F. Effects of potassium channel modulators on myogenic spontaneous phasic contractile activity in human detrusor from neurogenic patients. BJU Int 2010; 108:604-11. [PMID: 21166758 DOI: 10.1111/j.1464-410x.2010.09935.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To characterize the spontaneous contractile activity (SCA) developed by detrusor from patients with neurogenic detrusor overactivity (NDO) because the alteration of detrusor properties plays a critical role in the pathogenesis of detrusor overactivity, as well as to evaluate the role of K(ATP) and K(Ca) channels on this SCA because these channels regulate detrusor SCA in many species, including humans without overactive bladder (OAB). PATIENTS AND METHODS Human bladder samples were obtained from 44 patients undergoing cystectomy for bladder cancer with no known OAB symptoms and from 38 patients suffering from urodynamically diagnosed NDO. Detrusor strips with or without urothelium/suburothelium were mounted isometrically in organ baths filled with Krebs-HEPES (37 °C; 95% O(2) /5% CO(2) ). Strips were incubated with 10 µm pinacidil (K(ATP) opener) followed by 10 µm glibenclamide (K(ATP) blocker). In another set of experiments, strips were incubated with 30 µm NS-1619 (BK(Ca) opener) followed by 100 nm iberiotoxin (BK(Ca) blocker) or with 100 nm apamin (SK(Ca) blocker). RESULTS SCA occurred more frequently with larger amplitude and area under the curve in detrusor strips from NDO patients compared to control patients. The presence of urothelium/suburothelium did not significantly modify SCA in either patient population. Pinacidil markedly inhibited SCA of detrusor strips from control and NDO patients. This effect was reversed by glibenclamide. By contrast, NS-1619 followed by iberiotoxin did not elicit any significant changes in SCA from NDO patients, contrary to control patients. CONCLUSIONS K(ATP) and SK(Ca) channels regulate SCA of NDO patients' detrusor strips. By contrast, BK(Ca) channels are not involved in the regulation of detrusor SCA in NDO patients, whereas they regulate SCA in control patients. These results should be considered in the development of K(+) channels openers for the treatment of NDO. Moreover, SCA observed in vitro should be regarded as an in vitro modelling of human NDO.
Collapse
|
29
|
Büyüknacar HSG, Göçmen C, de Groat WC, Kumcu EK, Wu HY, Onder S. Differential effect of L-cysteine in isolated whole-bladder preparations from neonatal and adult rats. J Pharmacol Exp Ther 2010; 333:228-35. [PMID: 20051484 PMCID: PMC2846022 DOI: 10.1124/jpet.109.161661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/04/2010] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to compare the effects of the thiol reagents L-cysteine and (diazene dicarboxylic acid bis 5N,N-dimethylamide) diamide on contractile activity of neonatal and adult rat bladders. In vitro whole-bladder preparations from Wistar rats were used to study the modulation of spontaneous bladder contractions by thiol reagents. After blocking cholinergic and adrenergic transmission with atropine and guanethidine, L-cysteine facilitated spontaneous bladder contractions in neonatal rat bladders. The effect of L-cysteine was suppressed by diamide. Diamide alone did not change basal activity of the neonatal rat bladder. The facilitatory effects of L-cysteine were reduced by the L-type Ca2+ channel-blocking agent nifedipine and the calcium-activated K+ channel opener NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one]. ATP or suramin, a purinergic receptor antagonist, significantly inhibited the effect of L-cysteine in neonatal bladders, whereas the nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine was ineffective. L-cysteine did not elicit any detectable effects in the adult rat bladder; whereas diamide caused a large-amplitude sustained tonic contraction. The contraction induced by diamide in adult bladder did not occur when the preparation was pretreated with L-cysteine. Also, L-Cysteine administered during the diamide-evoked contraction completely inhibited the contraction to diamide. In conclusion, our results suggest that L-cysteine has markedly different effects in isolated whole-bladder preparations from neonatal and adult rats. Thus thiol-sensitive mechanisms may modulate contractility by regulation of Ca2+ and K+ channels and/or purinergic transmission in the neonatal bladder. The effects of L-cysteine and diamide were reversed in adult bladders, indicating that the regulation of bladder contractility by thiols is markedly altered during postnatal development.
Collapse
Affiliation(s)
- Hacer S G Büyüknacar
- Department of Pharmacology, School of Medicine, University of Cukurova, Adana, Turkey
| | | | | | | | | | | |
Collapse
|
30
|
Layne JJ, Nausch B, Olesen SP, Nelson MT. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle. Am J Physiol Regul Integr Comp Physiol 2009; 298:R378-84. [PMID: 19923353 DOI: 10.1152/ajpregu.00458.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P(o)) and whole cell BK channel currents. The frequency of spontaneous action potentials in UBSM strips was reduced by NS11021 from a control value of 20.9 + or - 5.9 to 10.9 + or - 3.7 per minute. NS11021 also reduced the force of UBSM spontaneous phasic contractions by approximately 50%, and this force reduction was blocked by pretreatment with the BK channel blocker iberiotoxin. NS11021 (3 microM) had no effect on contractions evoked by nerve stimulation. These findings indicate that activating BK channels reduces the force of UBSM spontaneous phasic contractions, principally through decreasing the frequency of spontaneous action potentials.
Collapse
Affiliation(s)
- Jeffrey J Layne
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
31
|
Boiko OV, Manukhin BN. The significance of extracellular Ca2+ in contractile responses of chick amnion. Russ J Dev Biol 2009. [DOI: 10.1134/s106236040904002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Layne JJ, Werner ME, Hill-Eubanks DC, Nelson MT. NFATc3 regulates BK channel function in murine urinary bladder smooth muscle. Am J Physiol Cell Physiol 2008; 295:C611-23. [PMID: 18579799 PMCID: PMC2544435 DOI: 10.1152/ajpcell.00435.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 06/22/2008] [Indexed: 11/22/2022]
Abstract
The nuclear factor of activated T-cells (NFAT) is a Ca(2+)-dependent transcription factor that has been reported to regulate the expression of smooth muscle contractile proteins and ion channels. Here we report that large conductance Ca(2+)-sensitive potassium (BK) channels and voltage-gated K(+) (K(V)) channels may be regulatory targets of NFATc3 in urinary bladder smooth muscle (UBSM). UBSM myocytes from NFATc3-null mice displayed a reduction in iberiotoxin (IBTX)-sensitive BK currents, a decrease in mRNA for the pore-forming alpha-subunit of the BK channel, and a reduction in BK channel density compared with myocytes from wild-type mice. Tetraethylammonium chloride-sensitive K(V) currents were elevated in UBSM myocytes from NFATc3-null mice, as was mRNA for the Shab family member K(V)2.1. Despite K(V) current upregulation, bladder strips from NFATc3-null mice displayed an elevated contractile response to electrical field stimulation relative to strips from wild-type mice, but this difference was abrogated in the presence of the BK channel blocker IBTX. These results support a role for the transcription factor NFATc3 in regulating UBSM contractility, primarily through an NFATc3-dependent increase in BK channel activity.
Collapse
Affiliation(s)
- J J Layne
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
33
|
Wray S, Burdyga T, Noble K. Calcium signalling in smooth muscle. Cell Calcium 2008; 38:397-407. [PMID: 16137762 DOI: 10.1016/j.ceca.2005.06.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/26/2022]
Abstract
Calcium signalling in smooth muscles is complex, but our understanding of it has increased markedly in recent years. Thus, progress has been made in relating global Ca2+ signals to changes in force in smooth muscles and understanding the biochemical and molecular mechanisms involved in Ca2+ sensitization, i.e. altering the relation between Ca2+ and force. Attention is now focussed more on the role of the internal Ca2+ store, the sarcoplasmic reticulum (SR), global Ca2+ signals and control of excitability. Modern imaging techniques have shown the elaborate SR network in smooth muscles, along with the expression of IP3 and ryanodine receptors. The role and cross-talk between these two Ca(2+) release mechanisms, as well as possible compartmentalization of the SR Ca2+ store are discussed. The close proximity between SR and surface membrane has long been known but the details of this special region to Ca2+ signalling and the role of local sub-membrane Ca2+ concentrations and membrane microdomains are only now emerging. The activation of K+ and Cl- channels by local Ca2+ signals, can have profound effects on excitability and hence contraction. We examine the evidence for both Ca2+ sparks and puffs in controlling ion channel activity, as well as a fundamental role for Ca2+ sparks in governing the period of inexcitability in smooth muscle, i.e. the refractory period. Finally, the relation between different Ca2+ signals, e.g. sparks, waves and transients, to smooth muscle activity in health and disease is becoming clearer and will be discussed.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, The University of Liverpool, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
34
|
Rocha ML, Bendhack LM. Aortas Isolated from Sinoaortic-Denervated Rats Exhibit Rhythmic Contractions That Are Regulated by Pharmacologically Distinct Calcium Sources. Basic Clin Pharmacol Toxicol 2008; 102:352-9. [DOI: 10.1111/j.1742-7843.2008.00212.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Thorneloe KS, Knorn AM, Doetsch PE, Lashinger ESR, Liu AX, Bond CT, Adelman JP, Nelson MT. Small-conductance, Ca(2+) -activated K+ channel 2 is the key functional component of SK channels in mouse urinary bladder. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1737-43. [PMID: 18353877 DOI: 10.1152/ajpregu.00840.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Small-conductance Ca(2+)-activated K(+) (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing beta-galactosidase (beta-gal) under the direction of the SK2 promoter (SK2 beta-gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2(-/-) mice) to assess SK2 function. In SK2 beta-gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2(+/+)) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC(50) = 0.16 nM), whereas phasic contractions of SK2(-/-) strips were unaffected. Nerve-mediated contractions of SK2(+/+) UBSM strips were also increased by apamin, an effect absent in SK2(-/-) strips. Apamin increased the sensitivity of SK2(+/+) UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 +/- 4 Hz, n = 6; apamin, 12 +/- 2 Hz, n = 7; P < 0.05). In contrast, the sensitivity of SK2(-/-) UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility.
Collapse
Affiliation(s)
- K S Thorneloe
- Department of Pharmacology, University of Vermont, Burlington, VT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hernández M, Barahona MV, Recio P, Navarro-Dorado J, Bustamante S, Benedito S, García-Sacristán A, Prieto D, Orensanz LM. Role of neuronal voltage-gated K(+) channels in the modulation of the nitrergic neurotransmission of the pig urinary bladder neck. Br J Pharmacol 2008; 153:1251-8. [PMID: 18223671 DOI: 10.1038/sj.bjp.0707669] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE As nitric oxide (NO) plays an essential role in the inhibitory neurotransmission of the bladder neck of several species, the current study investigates the mechanisms underlying the NO-induced relaxations in the pig urinary bladder neck. EXPERIMENTAL APPROACH Urothelium-denuded bladder neck strips were dissected and mounted in isolated organ baths containing a physiological saline solution at 37 degrees C and continuously gassed with 5% CO(2) and 95% O(2), for isometric force recording. The relaxations to transmural nerve stimulation (EFS), or to exogenously applied acidified NaNO(2) solution were carried out on strips pre-contracted with phenylephrine, and treated with guanethidine and atropine, to block noradrenergic neurotransmission and muscarinic receptors, respectively. KEY RESULTS EFS (0.2-1 Hz) and addition of acidified NaNO(2) solution (1 microM-1 mM) evoked frequency- and concentration-dependent relaxations, respectively. These responses were potently reduced by the blockade of guanylate cyclase and were not modified by the K(+) channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The voltage-gated K(+) (Kv) channels inhibitor 4-aminopyridine, greatly enhanced the nitrergic relaxations evoked by EFS, but did not affect the NaNO(2) solution-induced relaxations. CONCLUSIONS AND IMPLICATIONS NO, whose release is modulated by pre-junctional Kv channels, relaxes the pig urinary bladder neck through a mechanism dependent on the activation of guanylate cyclase, in which post-junctional K(+) channels do not seem to be involved. Modulation of Kv channels could be useful in the therapy of the urinary incontinence produced by intrinsic sphincteric deficiency.
Collapse
Affiliation(s)
- M Hernández
- Departamento de Fisiología (Fisiología Animal), Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mewe M, Wulfsen I, Schuster AME, Middendorff R, Glassmeier G, Schwarz JR, Bauer CK. Erg K+ channels modulate contractile activity in the bovine epididymal duct. Am J Physiol Regul Integr Comp Physiol 2008; 294:R895-904. [PMID: 18184764 DOI: 10.1152/ajpregu.00521.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression and functional role of ether-à-go-go-related gene (erg) K+ channels were examined in the bovine epididymal duct. Sperm transit through the epididymal duct relies on spontaneous phasic contractions (SC) of the peritubular smooth muscle wall. Isometric tension studies revealed SC-enhancing effects of the erg channel blockers E-4031, dofetilide, cisapride, and haloperidol and SC-suppressing effects of the activator NS-1643. In the corpus epididymidis, EC50 values of 32 nM and 8.3 microM were determined for E-4031 and NS-1643, respectively. E-4031 was also able to elicit contraction in epithelium-denuded corpus segments, which lacked SC. In the cauda region, E-4031 and NS-1643 exerted effects on agonist-induced contraction similar to those observed in the proximal duct. Experiments with nifedipine and thapsigargin suggested that the excitatory effects of E-4031 depended mainly on external calcium influx and not on intracellular calcium release. Western blot and RT-PCR assays revealed the expression of both, erg1a and erg1b, in all duct regions. Because erg1b appears to predominate in the epididymal duct, patch-clamp experiments were performed on heterologously expressed erg1b channels to investigate the sensitivity of this splice variant to NS-1643. In contrast to its effects on erg1a, NS-1643 induced a concentration-dependent current increase mainly due to a marked leftward shift in erg1b channel activation by approximately 30 mV at 10 microM, explaining the inhibitory effect of the drug on epididymal SC. In summary, these data provide strong evidence for a physiological role of erg1 channels in regulating epididymal motility patterns.
Collapse
Affiliation(s)
- Marco Mewe
- Institute of Vegetative Physiology and Pathophysiology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Rocha ML, Bendhack LM. Effects of K+ channel modulators on oscillatory contractions in sinoaortic denervated rat aortas. Biol Pharm Bull 2007; 30:2098-104. [PMID: 17978483 DOI: 10.1248/bpb.30.2098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sinoaortic denervated (SAD) rats present arterial pressure lability without sustained hypertension. We investigated the relation between sinoaortic denervation and the occurrence of oscillatory contractions in SAD rat aortas, as well as the effect of various K(+) channel modulators on these oscillations. Aortas were removed and concentration-effect curves to phenylephrine (0.01 to 10 muM) were constructed in arteries from SAD and Sham-operated rats in order to verify the occurrence of oscillations. We also evaluated the effects of various K(+) channel modulators on these oscillations. Only SAD rat aortas exhibited oscillatory contractions. Tetraethylammonium increased the frequency (28.5+/-3.5 to 41.5+/-4.5 counts/5 min) and amplitude (0.435+/-0.07 to 0.630+/-0.09 g) of the oscillations. Apamin and 4-aminopyridine did not alter the oscillations. Barium chloride converted the oscillatory contractions to a tonic contraction. Pinacidil rapidly blocked the oscillatory contractions and glibenclamide evoked reduction in amplitude from 0.410+/-0.07 to 0.180+/-0.06 g. Iberiotoxin increased the frequency of oscillatory contractions (from 28.0+/-3.5 to 51.5+/-7.5 counts/5 min) but decreased the amplitude (from 0.410+/-0.08 to 0.195+/-0.2 g). Our results demonstrate that SAD rat aortas exhibit oscillatory contractions and K(+) channels, mainly K(ATP) and BK(Ca), play a dominant role in these oscillations.
Collapse
Affiliation(s)
- Matheus Lavorenti Rocha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
39
|
Rocha ML, Bendhack LM. Endothelial Nitric Oxide Has Inhibitory Effects on Rhythmic Contractions in the Aortas of Sinoaortic Deafferented Rats. J Cardiovasc Pharmacol 2007; 50:510-8. [DOI: 10.1097/fjc.0b013e31813c112f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Ng YK, de Groat WC, Wu HY. Smooth muscle and neural mechanisms contributing to the downregulation of neonatal rat spontaneous bladder contractions during postnatal development. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2100-12. [PMID: 17234952 PMCID: PMC3111975 DOI: 10.1152/ajpregu.00779.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneous bladder contractions (SBCs) in the neonatal rat urinary bladder change from a high-amplitude, low-frequency pattern to a low-amplitude, high-frequency pattern during the first 6 wk of life. Understanding the mechanism of this developmental change may provide insights into the causes of bladder overactivity in adults. In vitro whole bladder preparations from Sprague-Dawley rats were used to study the modulation of SBCs by calcium-activated potassium channels (K(Ca)) and electrical field stimulation from 3 days to 6 wk of life. SBCs in 3-day-old bladders were unmasked by treatment with iberiotoxin (100 nM), an inhibitor of large conductance K(Ca) (BK) channels, or apamin (100 nM), an inhibitor of small conductance K(Ca) (SK) channels. Iberiotoxin significantly increased the magnitude of SBCs at 2-3 wk, whereas apamin was only effective at 6 wk. In 1-2 wk bladders, exposure to room temperature Krebs solution decreased SBCs. This decrease was reversed by activating intramural nerves with electrical field stimulation. The effect of electrical field stimulation was inhibited by atropine (1 microM), suramin (10 microM), or pretreatment with tetrodotoxin (1 microM) but was not reversed by tetrodotoxin applied after electrical field stimulation. BK-alpha mRNA increased threefold, and BK-alpha protein increased fivefold from 3 days to 6 wk. These data suggest that BK channels play an important role in the regulation of SBCs in the neonatal bladder and that both increased BK channel activity, as well as changes in smooth muscle sensitivity to locally released neurotransmitters contribute to the downregulation of SBCs during early postnatal development.
Collapse
Affiliation(s)
- Yuen-Keng Ng
- Department of Surgery, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - William C. de Groat
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hsi-Yang Wu
- Department of Pediatric Urology, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Lamarca V, Grasa L, Fagundes DS, Arruebo MP, Plaza MA, Murillo MD. K+ channels involved in contractility of rabbit small intestine. J Physiol Biochem 2006; 62:227-36. [PMID: 17615948 DOI: 10.1007/bf03165751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most excitable cells, including gastrointestinal smooth muscle cells, express several types of K+ channels. The aim of this study was to examine the types of K' channels involved in the contractility of longitudinal smooth muscle of rabbit small intestine in vitro. Spontaneous contractions and KCl-stimulated contractions were reduced by atropine, phentolamine, propranolol, suramin, tetrodotoxin and indomethacin. The amplitude and tone of spontaneous contractions were increased by apamin, charybdotoxin, iberiotoxin, E4031, tetraetylammonium (TEA) and BaCl2. The frequency of contractions was reduced in the presence of apamin and TEA and increased by charybdotoxin. It was found that 4-aminopyridine increased the tone of spontaneous contractions and reduced the amplitude and frequency of contractions. Glibenclamide did not modify the amplitude, frequency or tone of contractions. KCl-stimulated contractions were increased by E4031, were not modified by apamin, glibenclamide, NS1619 or diazoxide, and were reduced by charybdotoxin, TEA, 4-aminopyridine or BaCl2. These results suggest that both Ca2+-activated K+ channels of small and high conductance, and HERG K+ channels and inward rectifier K+ channels participate in spontaneous contractions of small intestine. On the other hand, voltage-dependent K+ channels, HERG K+ channels, inward rectifier K+ channels and high conductance Ca2+-activated K+ channels are involved in KCl-stimulated contractions.
Collapse
Affiliation(s)
- V Lamarca
- Departamento de Farmacología y Fisiologia (Fisiologia), Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Darblade B, Behr-Roussel D, Oger S, Hieble JP, Lebret T, Gorny D, Benoit G, Alexandre L, Giuliano F. Effects of potassium channel modulators on human detrusor smooth muscle myogenic phasic contractile activity: potential therapeutic targets for overactive bladder. Urology 2006; 68:442-8. [PMID: 16904481 DOI: 10.1016/j.urology.2006.03.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/17/2006] [Accepted: 03/21/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Increased urinary bladder detrusor smooth muscle phasic contractility has been suggested to be associated with idiopathic bladder overactivity (OAB). We examined the role of voltage-dependent L-type calcium channels, adenosine triphosphate-sensitive potassium (K(ATP)) channels, and calcium-activated potassium (BK(Ca) and SK(Ca)) channels in the regulation of human detrusor phasic contractile activity. METHODS Isolated human bladder strip phasic contractions were measured and quantified as the mean area under the force-time curve, amplitude, and frequency of phasic contractions in 22 bladder samples. RESULTS Human detrusor strips displayed myogenic phasic contractions in the presence of atropine (10(-6) M), phentolamine (10(-6) M), propranolol (10(-6) M), suramin (10(-5) M), and tetrodotoxin (10(-6) M). The L-type calcium channel inhibitor nifedipine (300 nM) abolished the contractile activity. Blockade of K(ATP) channels by glibenclamide (1 and 10 microM) did not alter myogenic contractions. In contrast, the K(ATP) channel opener pinacidil (10 microM) markedly inhibited phasic contractility. Iberiotoxin (100 nM) and apamin (100 nM), potent and selective inhibitors of BK(Ca) and SK(Ca) channels, respectively, significantly increased the area under the force-time curve and the amplitude of contractions. CONCLUSIONS Phasic contractions of human detrusor are dependent on calcium entry through L-type calcium channels. BK(Ca) and SK(Ca) channels play a key role in the modulation of human detrusor smooth muscle phasic contractility. Furthermore, these observations support the concept that increasing conductance through K(ATP), BK(Ca), and SK(Ca) channels may represent attractive pharmacologic targets for decreasing phasic contractions of detrusor smooth muscle in OAB.
Collapse
|
43
|
Ng YK, de Groat WC, Wu HY. Muscarinic regulation of neonatal rat bladder spontaneous contractions. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1049-59. [PMID: 16709645 PMCID: PMC3111964 DOI: 10.1152/ajpregu.00236.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro preparations of whole urinary bladders of neonatal rats exhibit prominent myogenic spontaneous contractions, the amplitude and frequency of which can be increased by muscarinic agonists. The muscarinic receptor subtype responsible for this facilitation was examined in the present experiments. Basal spontaneous contractions in bladders from 1- to 2-wk-old Sprague-Dawley rats were not affected by M2 or M3 receptor antagonists. However, administration of 0.5 microM physostigmine, an anticholinesterase agent that increases the levels of endogenous acetylcholine, or 50-100 nM carbachol, a cholinergic agonist at low concentrations, which did not cause tonic contractions, significantly augmented the frequency and amplitude of spontaneous contractions. Blockade of M2 receptors with 0.1 microM AF-DX 116 or 1 microM methoctramine or blockade of M3 receptors with 50 nM 4-diphenylacetoxy-N-methylpiperidine methiodide or 0.1 microM 4-diphenylacetoxy-N-(2-chloroethyl)piperidine hydrochloride (4-DAMP mustard) reversed the physostigmine and carbachol responses. M2 and M3 receptor blockade did not alter the facilitation of spontaneous contractions induced by 10 nM BAY K 8644, an L-type Ca2+ channel opener, or 0.1 microM iberiotoxin, a large-conductance Ca2+-activated K+ channel blocker. NS-1619 (30 microM), a large-conductance Ca2+-activated K+ channel opener, decreased carbachol-augmented spontaneous contractions. These results suggest that spontaneous contractions in the neonatal rat bladder are enhanced by activation of M2 and M3 receptors by endogenous acetylcholine released in the presence of an anticholinesterase agent or a cholinergic receptor agonist.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Newborn
- Calcium Channel Agonists/pharmacology
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Cholinesterase Inhibitors/pharmacology
- Diamines/pharmacology
- Electric Stimulation
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Hypertonia/physiopathology
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Parasympatholytics/pharmacology
- Peptides/pharmacology
- Physostigmine/pharmacology
- Piperidines/pharmacology
- Pirenzepine/analogs & derivatives
- Pirenzepine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/antagonists & inhibitors
- Receptor, Muscarinic M3/physiology
- Urinary Bladder/innervation
- Urinary Bladder/physiology
Collapse
Affiliation(s)
- Yuen-Keng Ng
- Department of Surgery, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
44
|
Mora TC, Suarez-Kurtz G. Effects of NS1608, a BK(Ca) channel agonist, on the contractility of guinea-pig urinary bladder in vitro. Br J Pharmacol 2005; 144:636-41. [PMID: 15678097 PMCID: PMC1576041 DOI: 10.1038/sj.bjp.0706034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/27/2004] [Accepted: 09/28/2004] [Indexed: 11/08/2022] Open
Abstract
1. The functional effects of NS1608 ((N-(3-(trifluoromethyl)phenyl)-N'-(2-hydroxy-5-chlorophenyl)urea), an opener of the large conductance, Ca2+-activated K+ (BK(Ca)) channel, on the contractility of guinea-pig urinary bladder muscle are described. 2. NS1608 (0.3-30 microM) had no significant effect on the integrated myogenic activity (tension integral) or the electrically evoked twitches of detrusor muscle strips. Possible mechanisms for the discrepancy between the lack of functional effects of NS1608 per se on detrusor contractility and this drug's agonistic effect on BK(Ca) currents in isolated bladder myocytes are discussed. 3. 4-Aminopyridine (1 mM), a blocker of voltage-gated K+ (K(V)) channels, increased the tension integral 2.7-fold, on average. NS1608 (30 microM) counteracted this effect. 4. Apamin (100 nM), a selective blocker of the small conductance, Ca2+-activated K+ (SK(Ca)) channel, increased the tension integral 1.7-fold, on average. This effect was reversed by NS1608 (30 microM). 5. Ryanodine (10 microM), a modulator of the sarcoplasmic reticulum (SR) Ca2+-release channel, increased the tension integral 1.9-fold, on average. This effect was reversed by NS1608 (30 microM). 6. Iberiotoxin (IbTX, 50 nM), a selective blocker of the BK(Ca) channel, caused additional increases in the tension integral of detrusor strips pretreated with apamin or ryanodine and prevented the inhibitory effects of NS1608 (30 microM) in detrusor contractility. 7. The present study shows that blockade of repolarizing currents carried by, respectively apamin- and 4-aminopyridine-sensitive K+ channels unmasks an activation of BK(Ca) in guinea-pig urinary bladder smooth muscle strips.
Collapse
Affiliation(s)
- Ticiana Camila Mora
- Divisão de Farmacologia, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Rua André Cavalcanti, 37, Rio de Janeiro, RJ 20231-050, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Farmacologia, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Rua André Cavalcanti, 37, Rio de Janeiro, RJ 20231-050, Brazil
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
45
|
Nakahara T, Mitani A, Kubota Y, Maruko T, Sakamoto K, Tanaka Y, Koike K, Shigenobu K, Ishii K. MaxiK channel-triggered negative feedback system is preserved in the urinary bladder smooth muscle from streptozotocin-induced diabetic rats. J Smooth Muscle Res 2005; 40:97-109. [PMID: 15353864 DOI: 10.1540/jsmr.40.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MaxiK channel, the large-conductance Ca2+-sensitive K+ channel, facilitates a negative feedback mechanism to oppose excitation and contraction in various types of smooth muscles including urinary bladder smooth muscle (UBSM). In this study, we investigated how the contribution of MaxiK channel to the regulation of basal UBSM mechanical activity is altered in streptozotocin-induced diabetic rats. Although the urinary bladder preparations from both control and diabetic rats were almost quiescent in their basal mechanical activities, they generated spontaneous rhythmic contractions in response to a MaxiK channel blocker, iberiotoxin (IbTx). The effect of IbTx on the mechanical activity was significantly greater in diabetic rat than in control animal. Similarly, the basal mechanical activity was increased with apamin, an inhibitor for some types of small conductance Ca2+-sensitive K+ channels, and this effect was more pronounced for diabetic rat. However, in both control and diabetic animals, IbTx action was stronger than that of apamin. Diabetes also enhanced the responses to BayK 8644, an L-type Ca2+ channel agonist. The extent of this enhancement in diabetic bladder vs. control was, however, almost the same as that attained with IbTx. Expression levels for MaxiK channel as well as apamin-sensitive K+ channels and L-type Ca2+ channel were not altered by diabetes, when determined as their corresponding mRNA levels. These results indicate that diabetes can potentially increase the basal UBSM mechanical activity. However, in diabetic UBSM, the main negative-feedback system triggered by MaxiK channel is still preserved enough to counteract the possible enhancement of this smooth muscle mechanical activity.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Apamin/pharmacology
- Base Sequence
- Biomechanical Phenomena
- Calcium Channels, L-Type/genetics
- DNA, Complementary/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Feedback
- In Vitro Techniques
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits
- Large-Conductance Calcium-Activated Potassium Channels
- Male
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth/physiopathology
- Peptides/pharmacology
- Potassium Channels, Calcium-Activated/genetics
- Potassium Channels, Calcium-Activated/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Small-Conductance Calcium-Activated Potassium Channels
- Urinary Bladder/physiopathology
Collapse
Affiliation(s)
- Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004; 84:935-86. [PMID: 15269341 DOI: 10.1152/physrev.00038.2003] [Citation(s) in RCA: 637] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detrusor smooth muscle is the main muscle component of the urinary bladder wall. Its ability to contract over a large length interval and to relax determines the bladder function during filling and micturition. These processes are regulated by several external nervous and hormonal control systems, and the detrusor contains multiple receptors and signaling pathways. Functional changes of the detrusor can be found in several clinically important conditions, e.g., lower urinary tract symptoms (LUTS) and bladder outlet obstruction. The aim of this review is to summarize and synthesize basic information and recent advances in the understanding of the properties of the detrusor smooth muscle, its contractile system, cellular signaling, membrane properties, and cellular receptors. Alterations in these systems in pathological conditions of the bladder wall are described, and some areas for future research are suggested.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Dept. of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
47
|
Sánchez JC, Wilkins RJ. Effects of hypotonic shock on intracellular pH in bovine articular chondrocytes. Comp Biochem Physiol A Mol Integr Physiol 2003; 135:575-83. [PMID: 12890547 DOI: 10.1016/s1095-6433(03)00138-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chondrocytes inhabit an unusual environment, in which they are repeatedly subjected to osmotic challenges as fluid is expressed from the extracellular matrix during static joint loading. In the present study, the effects of hypotonic shock on intracellular pH, pH(i), have been studied in isolated bovine articular chondrocytes using the pH-sensitive fluroprobe BCECF. Cells subjected to a 50% dilution rapidly alkalinised, by approximately 0.2 pH units, a sustained plateau being achieved within 300 s. The effect was not altered by inhibitors of pH regulators, such as amiloride, bafilomycin and SITS, but was absent when cells were subjected to hypotonic shocks in solutions in which Na(+) ions were replaced by NMDG(+). The response was found to be sensitive to Gd(3+) ions, blockers of stretch-activated cation channels. Alkalinisation was also inhibited by treatment with Zn(2+) ions, at a concentration reported to block voltage-activated H(+) channels (VAHC). Depolarisation using high K(+) solutions supplemented with valinomycin also induced intracellular alkalinisation. Measurements using a membrane potential (E(m)) fluorescent dye showed that E(m) was approximately -44 mV, but was depolarised by over 50 mV following HTS. The depolarisation was also inhibited by Na(+) substitution with NMDG(+) or treatment with Gd(3+). We conclude that in response to HTS the opening of a stretch-activated cation channel leads to Na(+) influx, which results in a membrane depolarisation. Subsequent activation of VAHC permits H(+) ion efflux along the prevailing electrochemcial gradient, leading to the alkalinisation, which we record.
Collapse
Affiliation(s)
- J C Sánchez
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford, UK
| | | |
Collapse
|
48
|
Tanaka Y, Okamoto T, Imai T, Horinouchi T, Tanaka H, Shigenobu K, Koike K. Phospholipase C inhibitors suppress spontaneous mechanical activity of guinea pig urinary bladder smooth muscle. Biol Pharm Bull 2003; 26:1192-4. [PMID: 12913276 DOI: 10.1248/bpb.26.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urinary bladder smooth muscle (UBSM) exhibits spontaneous rhythmic contraction. This spontaneous mechanical activity is generated in the presence of neuronal blockade and thus is myogenic in origin. The spontaneous myogenic contraction of UBSM may be the fundamental determinant of the physiological functions of the urinary bladder to store and excrete urine. Although the mechanisms by which UBSM generates spontaneous contraction have not been completely ascertained, its induction has been suggested to be intimately associated with smooth muscle cell action potentials to enhance extracellular Ca(2+) influx through voltage-gated L-type Ca(2+) channels. However, the alteration of membrane electrical activity does not seem to be the exclusive trigger mechanism for the generation of the spontaneous contraction. In the present study, we show that spontaneous mechanical activity of guinea pig UBSM is substantially diminished by an inhibitor of phospholipase C (PLC), U-73122, but is not affected by its inactive form, U-73343. Significant attenuation of the mechanical activity can be also obtained with another PLC inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate. Our present findings suggest a significant role for the activation of PLC and subsequent inositol 1,4,5-trisphosphate-induced Ca(2+) release mechanism as an alternative triggering system for inducing spontaneous mechanical activity of UBSM. The present results support the idea that the action potential is not the sole pacemaker mechanism by which spontaneous contraction is induced in UBSM.
Collapse
Affiliation(s)
- Yoshio Tanaka
- Department of Chemical Pharmacology, Toho University School of Pharmaceutical Sciences, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Nakamura T, Kimura J, Yamaguchi O. Muscarinic M2 receptors inhibit Ca2+-activated K+ channels in rat bladder smooth muscle. Int J Urol 2002; 9:689-96. [PMID: 12492954 DOI: 10.1046/j.1442-2042.2002.00548.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To clarify the functional relationship between M2 muscarinic receptor and Ca2+-activated K+ channel, we investigated the effect of carbachol (CCh) on the membrane current of rat bladder smooth muscle cells. METHODS Rat bladder single smooth muscle cells were patch clamped with whole-cell configuration. RESULTS CCh (10 micro mol/L) transiently induced an outward current in the presence of K+ in the pipette solution. A high Ca2+ concentration in the pipette solution persistently induced an outward current, which was inhibited by CCh. In the presence of M2 inhibitor, AFDX-384, CCh induced the outward current persistently, indicating that M2 was involved in the current inhibition. In pertussis toxin pretreated cells, CCh did not apparently inhibit the outward current. The CCh-induced outward current was inhibited by iberiotoxin, a selective inhibitor of large-conductance Ca2+-activated K+ channels (BKCa). CONCLUSION CCh induces BKCa, which is inhibited by M2- and Gi-mediated signal transduction pathway. This M2-mediated pathway may enhance contraction which is initiated by M3-stimulation in rat bladder smooth muscle.
Collapse
Affiliation(s)
- Takayuki Nakamura
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | | | | |
Collapse
|
50
|
Imai T, Tanaka Y, Okamoto T, Yamamoto Y, Horinouchi T, Tanaka H, Koike K, Shigenobu K. Evidence that action potential generation is not the exclusive determinant to trigger spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 176:57-63. [PMID: 12193219 DOI: 10.1046/j.1365-201x.2002.01009.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Urinary bladder smooth muscle (UBSM) exhibits spontaneous contraction. This spontaneous mechanical activity is myogenic and can be closely related to the UBSM cell action potential to facilitate Ca2+ influx through voltage-gated Ca2+ channels. In the present study, to know whether this membrane electrical event is the exclusive mechanism to trigger spontaneous smooth muscle contraction, we compared the inhibitory effects of Ca2+ channel blockers on the spontaneous action potential and mechanical activity in the isolated guinea-pig UBSM. Both action potential and rhythmic contraction were generated spontaneously in the presence of atropine (1 microM), phentolamine (1 microM), propranolol (1 microM), suramin (10 microM) and tetrodotoxin (1 microM), which suggest that both phenomena were myogenic in origin. Nisoldipine (100 nM) and diltiazem (10 microM) completely eliminated the generation of action potential whereas its frequency was dramatically increased by a dihydropyridine Ca2+ agonist, BayK 8644 (1 microM). In contrast to disappearance of action potential in the presence of Ca2+ channel blockers, spontaneous contraction of UBSM was inhibited only partly by nisoldipine or diltiazem and most of the mechanical components persisted in these channel blockers. These results indicate that spontaneous action potential in UBSM cell is generated through the activation of L-type voltage-gated Ca2+ channels. The subsequent elevation of intracellular Ca2+ concentrations during a burst of action potentials can be partly responsible for the induction of UBSM mechanical activity. In addition, the present study provides evidence that UBSM spontaneous mechanical activity is also attributable to the mechanism(s) other than the generation of Ca2+ spike.
Collapse
Affiliation(s)
- T Imai
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Miyama, Funabashi-City, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|