1
|
Jain S, Oltman S, Rogers E, Ryckman K, Petersen M, Baer RJ, Rand L, Piao X, Jelliffe-Pawlowski L. Assessing for prenatal risk factors associated with infant neurologic morbidity using a multivariate analysis. J Perinatol 2023; 43:1486-1493. [PMID: 37950045 PMCID: PMC10716040 DOI: 10.1038/s41372-023-01820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To characterize the biochemical and demographic profiles of pregnant people with maternal immune activation (MIA) and identify the prenatal characteristics associated with neurologic morbidity in offspring. STUDY DESIGN This was a retrospective cohort study of 602 mother-infant dyads with births between 2009 and 2010 in California. Multivariable logistic regression was used to build a MIA vulnerability profile including mid-pregnancy biochemical markers and maternal demographic characteristics, and its relationship with infant neurologic morbidity was examined. RESULTS Of the 602 mother-infant dyads, 80 mothers and 61 infants had diagnoses suggestive of MIA and neurologic morbidity, respectively. Our model, including two demographic and seven biochemical characteristics, identified mothers with MIA with good performance (AUC:0.814; 95% CI:0.7-0.8). Three demographic and five inflammatory markers together identified 80% of infants with neurological morbidity (AUC:0.802, 95% CI:0.7-0.8). CONCLUSION Inflammatory environment in mothers with pre-existing risk factors like obesity, poverty, and prematurity renders offspring more susceptible to neurologic morbidities.
Collapse
Affiliation(s)
- Samhita Jain
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA.
| | - Scott Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Elizabeth Rogers
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelli Ryckman
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Mark Petersen
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rebecca J Baer
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Larry Rand
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Xianhua Piao
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
- Newborn Brain Research Institute, University of California, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Laura Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Kirschen GW, Hessami K, AlAshqar A, Afrin S, Lulseged B, Borahay M. Uterine Transcriptome: Understanding Physiology and Disease Processes. BIOLOGY 2023; 12:634. [PMID: 37106834 PMCID: PMC10136129 DOI: 10.3390/biology12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
In recent years, transcriptomics has enabled us to gain a deeper understanding of fundamental reproductive physiology, including the menstrual cycle, through a more precise molecular analysis. The endometrial mRNA transcript levels fluctuate during the normal menstrual cycle, indicating changes in the relative recruitment and abundance of inflammatory cells, as well as changes in the receptivity and remodeling of the endometrium. In addition to providing a more comprehensive understanding of the molecular underpinnings of pathological gynecological conditions such as endometriosis, leiomyomas, and adenomyosis through RNA sequencing, this has allowed researchers to create transcriptome profiles during both normal menstrual cycles and pathological gynecological conditions. Such insights could potentially lead to more targeted and personalized therapies for benign gynecological conditions. Here, we provide an overview of recent advances in transcriptome analysis of normal and pathological endometrium.
Collapse
Affiliation(s)
- Gregory W. Kirschen
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamran Hessami
- Maternal Fetal Care Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Mostafa Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Zhang T, Chen X, Wang CC, Li TC, Kwak-Kim J. Intrauterine infusion of human chorionic gonadotropin before embryo transfer in IVF/ET cycle: The critical review. Am J Reprod Immunol 2019; 81:e13077. [PMID: 30589989 DOI: 10.1111/aji.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Intrauterine infusion of human chorionic gonadotropin (IUI-hCG) has been proposed to improve the outcome of in vitro fertilization-embryo transfer (IVF-ET), since it plays a critical role in synchronizing endometrial and fetal development. As the early mediator from embryo, hCG promotes the decidualization, angiogenesis, maternal immune tolerance, and trophoblast invasion, favoring successful implantation of embryo. Although multiple clinical trials have been conducted to verify the efficacy of IUI-hCG on IVF-ET outcome in recent years, the findings remained controversial. The difference in study design and population might be the cause to the different consequences after administration of hCG. More importantly, the endometrial receptivity, which might affect the efficacy of IUI-hCG, has not been assessed in women receiving this intervention. Selecting the right population suitable for IUI-hCG based on known etiology would be crucial in enhancing its efficacy and minimize any possible complications. Investigation of optimal indications for IUI-hCG should be highlighted in the future.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.,Shenzhen Youshare Biotechnology Co. Ltd, Shenzhen, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Joanne Kwak-Kim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois.,Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, Illinois
| |
Collapse
|
5
|
Filges I, Manokhina I, Peñaherrera MS, McFadden DE, Louie K, Nosova E, Friedman JM, Robinson WP. Recurrent triploidy due to a failure to complete maternal meiosis II: whole-exome sequencing reveals candidate variants. Mol Hum Reprod 2014; 21:339-46. [PMID: 25504873 DOI: 10.1093/molehr/gau112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/05/2014] [Indexed: 01/16/2023] Open
Abstract
Triploidy is a relatively common cause of miscarriage; however, recurrent triploidy has rarely been reported. A healthy 34-year-old woman was ascertained because of 18 consecutive miscarriages with triploidy found in all 5 karyotyped losses. Molecular results in a sixth loss were also consistent with triploidy. Genotyping of markers near the centromere on multiple chromosomes suggested that all six triploid conceptuses occurred as a result of failure to complete meiosis II (MII). The proband's mother had also experienced recurrent miscarriage, with a total of 18 miscarriages. Based on the hypothesis that an inherited autosomal-dominant maternal predisposition would explain the phenotype, whole-exome sequencing of the proband and her parents was undertaken to identify potential candidate variants. After filtering for quality and rarity, potentially damaging variants shared between the proband and her mother were identified in 47 genes. Variants in genes coding for proteins implicated in oocyte maturation, oocyte activation or polar body extrusion were then prioritized. Eight of the most promising candidate variants were confirmed by Sanger sequencing. These included a novel change in the PLCD4 gene, and a rare variant in the OSBPL5 gene, which have been implicated in oocyte activation upon fertilization and completion of MII. Several variants in genes coding proteins playing a role in oocyte maturation and early embryonic development were also identified. The genes identified may be candidates for the study in other women experiencing recurrent triploidy or recurrent IVF failure.
Collapse
Affiliation(s)
- I Filges
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4 Medical Genetics, Department of Biomedicine, University Hospital Basel, Basel 4031, Switzerland
| | - I Manokhina
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - M S Peñaherrera
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - D E McFadden
- Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4 Department of Pathology, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | - K Louie
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - E Nosova
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4 Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - J M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - W P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4
| |
Collapse
|
6
|
Jones CV, Ricardo SD. Macrophages and CSF-1: implications for development and beyond. Organogenesis 2013; 9:249-60. [PMID: 23974218 DOI: 10.4161/org.25676] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent focus on the diversity of macrophage phenotype and function signifies that these trophic cells are no longer of exclusive interest to the field of immunology. As key orchestrators of organogenesis, the contribution of macrophages to fetal development is worthy of greater attention. This review summarizes the key functions of macrophages and their primary regulator, colony-stimulating factor (CSF)-1, during development; highlighting trophic mechanisms beyond phagocytosis and outlining their roles in a range of developing organ systems. Advances in the understanding of macrophage polarization and functional heterogeneity are discussed from a developmental perspective. In addition, this review highlights the relevance of CSF-1 as a pleiotropic developmental growth factor and summarizes recent experimental evidence and clinical advancements in the area of CSF-1 and macrophage manipulation in reproduction and organogenic settings. Interrogation of embryonic macrophages also has implications beyond development, with recent attention focused on yolk sac macrophage ontogeny and their role in homeostasis and mediating tissue regeneration. The regulatory networks that govern development involve a complex range of growth factors, signaling pathways and transcriptional regulators arising from epithelial, mesenchymal and stromal origins. A component of the organogenic milieu common to the majority of developing organs is the tissue macrophage. These hemopoietic cells are part of the mononuclear phagocyte system regulated primarily by colony-stimulating factor (CSF)-1 (1, 2). There is a resurgence in the field of CSF-1 and macrophage biology; where greater understanding of the heterogeneity of these cells is revealing contributions to tissue repair and regeneration beyond the phagocytic and inflammatory functions for which they were traditionally ascribed (3-6). The accumulation of macrophages during tissue injury is no longer viewed as simply a surrogate for disease severity, with macrophages now known to be vital in governing tissue regeneration in many settings (7-11). In particular it is the influence of CSF-1 in regulating an alternative macrophage activation state that is increasingly linked to organ repair in a range of disease models (12-17). With many similarities drawn between organogenesis and regeneration, it is pertinent to re-examine the role of CSF-1 and macrophages in organ development.
Collapse
Affiliation(s)
- Christina V Jones
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| |
Collapse
|
7
|
Wu ZM, Yang H, Li M, Yeh CC, Schatz F, Lockwood CJ, Di W, Huang SJ. Pro-inflammatory cytokine-stimulated first trimester decidual cells enhance macrophage-induced apoptosis of extravillous trophoblasts. Placenta 2011; 33:188-94. [PMID: 22212249 DOI: 10.1016/j.placenta.2011.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 01/13/2023]
Abstract
OBJECTIVE As human blastocyst-derived extravillous trophoblasts (EVTs) invade the early decidua, they are positioned to interact with immune cells and resident decidual cells, and remodel spiral arteries into high capacity vessels that increase blood flow to the developing fetal-placental unit. Shallow EVT invasion elicits incomplete vascular transformation and reduces uteroplacental blood flow that presages adverse pregnancy outcomes. Excess macrophages in the decidua induce EVT apoptosis via tumor necrosis factor-alpha (TNF-α) secretion. Our previous observation that pro-inflammatory cytokines enhance neutrophil and macrophage activator granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in first trimester decidual cells is now extended to include: (1) the specific macrophage activator M-CSF; (2) macrophage activation and subsequent enhancement of EVT apoptosis by both GM-CSF and M-CSF. STUDY DESIGN Quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay assessed M-CSF expression in first trimester decidual cells incubated with interleukin-1 beta (IL-1β) or TNF-α. Peripheral monocyte-derived macrophages pre-incubated with conditioned media from decidual cell cultures were co-cultured with a first trimester EVT cell line, HTR-8/SVneo cells. Macrophage activation was examined and EVT apoptosis evaluated by DNA fragmentation, caspase activation and cell membrane asymmetry. RESULTS IL-1β or TNF-α significantly enhanced M-CSF expression in first trimester decidual cells. The conditioned media from these cultures activates macrophages, which promote caspase 3/7-dependent EVT apoptosis with antibodies against GM-CSF or M-CSF blocking this effect. CONCLUSIONS Pro-inflammatory cytokines increases synthesis of M-CSF in first trimester decidual cells. Both GM-CSF and M-CSF activate macrophages, which initiate caspase-dependent EVT apoptosis.
Collapse
Affiliation(s)
- Z M Wu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, 333 Cedar St., P. O. Box 208063, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Diverse ability of maternal immune stimulation to reduce birth defects in mice exposed to teratogens: a review. J Dev Orig Health Dis 2011; 3:132-9. [DOI: 10.1017/s204017441100078x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
OSHIMA K, YOSHIHARA K, KOJIMA T, KOMATSU M, YAMAMOTO N. Concentration of Macrophage Colony-Stimulating Factor (M-CSF) in Bovine Peripheral Blood during Pregnancy. J Vet Med Sci 2008; 70:799-805. [DOI: 10.1292/jvms.70.799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Chaouat G, Dubanchet S, Ledée N. Cytokines: Important for implantation? J Assist Reprod Genet 2007; 24:491-505. [PMID: 18044017 PMCID: PMC3455031 DOI: 10.1007/s10815-007-9142-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Cytokines are obviously very important in an established pregnancy, but what about human embryo implantation? METHODS Literature review. RESULTS We first discuss the necessity and limits of animal models, and then review the few cytokines which have been demonstrated by knock-out methods to be absolutely necessary for embryo implantation using in animal models. We then review what is known or discussed about the role of other cytokines as deduced from quantitative and/or qualitative dysregulation in animals and in humans. CONCLUSIONS Cytokines are indeed involved in implantation as they are in ongoing pregnancy and delivery. Relevance to infertility and recurrent pregnancy loss is discussed.
Collapse
Affiliation(s)
- Gérard Chaouat
- U 782 INSERM, Equipe cytokines et dialogue cytokinique mère conceptus, Université Paris Sud et Hôpîtal Antoine Béclère, 32 rue des Carnets, Clamart Cedex, France.
| | | | | |
Collapse
|
11
|
Torchinsky A, Gongadze M, Zaslavsky Z, Savion S, Fein A, Toder V. Maternal Immunopotentiation Affects Caspase Activation and NF-kappaB DNA-binding Activity in Embryos Responding to an Embryopathic Stress. Am J Reprod Immunol 2006; 55:36-44. [PMID: 16364010 DOI: 10.1111/j.1600-0897.2005.00321.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Increased embryonic resistance to teratogenic stresses as a result of maternal immunopotentiation is associated with a decrease in the intensity of teratogen-induced apoptosis in target embryonic structures. These findings suggest that this effect of maternal immunopotentiation might be realized through modification of the expression of molecules regulating the teratogen-induced apoptotic process. To examine this possibility, we evaluated caspases 3, 8 and 9 activation as well as nuclear factor (NF)-kappaB DNA-binding activity in the embryos of immunopotentiated mice exposed to cyclophosphamide (CP). METHODS OF STUDY The rate of resorptions and the proportion of malformed fetuses in CP-treated mice were recorded on day 19 of pregnancy. Activity of caspases was tested in cytoplasmic extracts collected from the embryonic brain 24 hr after CP treatment using appropriate fluorometric kits, whereas NF-kappaB DNA-binding activity was evaluated in nuclear extracts using the electrophoretic mobility shift assay. RESULTS As in our previous studies, immunopotentiated CP-treated females exhibited a lower rate of resorptions or fetuses with open eyes than their non-immunopotentiated counterparts. In parallel, we observed that maternal immunopotentiation normalized the CP-induced activation of the tested caspases as well as the CP-induced suppression of NF-kappaB DNA-binding activity. CONCLUSIONS As caspases act as inducers of apoptosis, and NF-kappaB acts in CP-treated embryos as an apoptosis suppressor, the above results suggest that maternal immunopotentiation might affect embryonic sensitivity to embryopathic stresses via NF-kappaB- and caspases-associated pathways.
Collapse
Affiliation(s)
- Arkady Torchinsky
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
12
|
Litwin S, Lagadari M, Barrientos G, Roux ME, Margni R, Miranda S. Comparative immunohistochemical study of M-CSF and G-CSF in feto-maternal interface in a multiparity mouse model. Am J Reprod Immunol 2005; 54:311-20. [PMID: 16212652 DOI: 10.1111/j.1600-0897.2005.00317.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PROBLEM Multiparity status has been found to bring beneficial effects both to the maintenance of pregnancy and to the offspring; however, these effects have not been fully explained. We have previously reported that placentae obtained from multiparous females belonging to a syngeneic mouse crossbreeding showed an important increase in the number of placental macrophages, suggesting that they might constitute a protective subpopulation. Taking into account that macrophage-colony stimulating factor (M-CSF) and granulocyte-colony stimulating factor (G-CSF) have proved to modulate macrophage activity and that both factors and/or their receptors have been found at feto-maternal interface, in this paper we analyzed the presence of M-CSF and G-CSF in placental tissue employing the same multiparity mouse model in order to investigate the influence of parity status on local immunoregulation factors of macrophage activity. METHOD OF STUDY Three groups of mice (CBA/J x CBA/J) were analyzed: Primiparous Young, 3.0 +/- 0.5 months old (PY); Primiparous Old, 8.5 +/- 0.5 months old (PO) and Multiparous Old, 8.5 +/- 0.5 months old, with three to four previous pregnancies (MO). The presence of M-CSF and G-CSF in placental tissue was analyzed by immunohistochemistry. Cytokeratin (CK) and vimentin (VIM) expression and PAS staining were also studied. RESULTS The three groups showed a similar immunostaining pattern for M-CSF in the whole placental trophoblast, while the expression of G-CSF was significantly higher only in the spongy zone in the MO group. Furthermore, all the MO placentae showed 5-11 layers of cells adjacent to the decidua, where G-CSF and M-CSF were highly detected. Conversely, they constituted a thin layer in PY and PO placentae. These cells were proved to be CK(+) and VIM(-) thus demonstrating their trophoblast origin. In addition, the layers closer to the decidua were also PAS+ suggesting that they could be interstitial cells, a type of invading trophoblast. CONCLUSIONS In our mouse model, we observed an increase in the expression of G-CSF in placental spongiotrophoblast cells in multiparous females, which have been previously proposed as progenitors of the interstitial cells. Furthermore, this is the first report that indicates that parity status increases trophoblast invasion inducing a proliferative effect of the invading cells on the maternal tissue. We suggest that M-CSF and G-CSF secreted by these invading cells could favor the recruitment of macrophages to the trophoblast and might modulate their activity inducing a switch to a protective, non-inflammatory population.
Collapse
Affiliation(s)
- Silvana Litwin
- Instituto en Estudios en Inmunidad Humoral, CONICET-UBA, Buenis Aires, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
Laudermilch CL, Holladay SD, Sponenberg DP, Saunders GK, Ward DL, Prater MR. Placental improvement and reduced distal limb defects by maternal interferon-γ injection in methylnitrosourea-exposed mice. ACTA ACUST UNITED AC 2005; 73:597-604. [PMID: 16080182 DOI: 10.1002/bdra.20176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Methylnitrosourea (MNU), an alkylating agent derived from creatinine metabolism, is cytotoxic, genotoxic, and mutagenic. Mid-gestational exposure to MNU leads to distal limb defects in mice. Previous studies have shown that nonspecific maternal immune stimulation protects against MNU-induced teratogenesis. A role for immune-mediated placental improvement in this effect remains uncertain. METHODS The immune system of timed-pregnant C57BL/6N and CD-1 mice was stimulated by GD 7 intraperitoneal (IP) injection with the cytokine interferon-gamma (IFN-gamma). A teratogenic dose of MNU was then administered by IP injection on the morning of GD 9 to disrupt distal limb formation. Fetal limb length, body length, digital deformities, and placental integrity were evaluated on GD 14. RESULTS The incidence of syndactyly, polydactyly, and interdigital webbing in MNU-exposed mice was decreased by maternal IFN-gamma treatment. In C57BL/6N mice, these defects were reduced by 47, 100, and 63%, respectively, as compared to previous reports on CD-1 mice, by 39, 71, and 20%, respectively. Administration of IFN-gamma significantly diminished MNU-induced endothelial and trophoblast placental damage in both strains of mice. CONCLUSIONS These findings support a possible link between maternal immunity, placental integrity, and fetal distal limb development. Further, these results suggest that IFN-gamma might act through placental improvement to indirectly protect against MNU-induced fetal limb malformations.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/embryology
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/immunology
- Abnormalities, Drug-Induced/prevention & control
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Animals
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Female
- Gestational Age
- Immune System/drug effects
- Injections, Intraperitoneal
- Interferon-gamma/administration & dosage
- Interferon-gamma/immunology
- Interferon-gamma/therapeutic use
- Lower Extremity Deformities, Congenital/chemically induced
- Lower Extremity Deformities, Congenital/immunology
- Lower Extremity Deformities, Congenital/prevention & control
- Maternal-Fetal Exchange
- Methylnitrosourea/toxicity
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Placenta/immunology
- Pregnancy
- Random Allocation
- Teratogens/toxicity
- Time Factors
- Trophoblasts/drug effects
- Trophoblasts/immunology
- Trophoblasts/pathology
Collapse
Affiliation(s)
- Chelsea Lee Laudermilch
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
14
|
Matalon ST, Ornoy A, Lishner M. Review of the potential effects of three commonly used antineoplastic and immunosuppressive drugs (cyclophosphamide, azathioprine, doxorubicin on the embryo and placenta). Reprod Toxicol 2004; 18:219-30. [PMID: 15019720 DOI: 10.1016/j.reprotox.2003.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 10/08/2003] [Accepted: 10/24/2003] [Indexed: 01/10/2023]
|
15
|
Sharova LV, Sharov AA, Sura P, Gogal RM, Smith BJ, Holladay SD. Maternal immune stimulation reduces both placental morphologic damage and down-regulated placental growth-factor and cell cycle gene expression caused by urethane: are these events related to reduced teratogenesis? Int Immunopharmacol 2003; 3:945-55. [PMID: 12810352 DOI: 10.1016/s1567-5769(03)00093-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the maternal immune system in mice decreased cleft palate caused by the chemical teratogen, urethane. Direct and indirect mechanisms for this phenomenon have been suggested, including maternal macrophages that cross the placenta to find and eliminate pre-teratogenic cells, or maternal immune proteins (cytokines) that cross placenta to alleviate or partially alleviate toxicant-mediated effects in the developing fetus. A third mechanism to explain improved fetal developmental outcome in teratogen-challenged pregnant mice might involve beneficial effects of immune stimulation on the placenta. In the present experiments, urethane treatment altered placental morphology and impaired placental function, the latter indicated by down-regulated activity of cell cycle genes and of genes encoding cytokines and growth factors. Maternal immune stimulation with either Freund's complete adjuvant (FCA) or interferon-gamma (IFNgamma) reduced morphologic damage to the placenta caused by urethane and normalized expression of several genes that were down-regulated by urethane. Urethane treatment also shifted placental cytokine gene expression toward a T cell helper 1 (Th1) profile, while immunostimulation tended to restore a Th2 profile that may be more beneficial to pregnancy and fetal development. These data suggest that the beneficial effects of maternal immune stimulation on fetal development in teratogen-exposed mice may, in part, result from improved placental structure and function.
Collapse
Affiliation(s)
- L V Sharova
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Phase II, Southgate Drive, Blacksburg, VA 24061-0442, USA
| | | | | | | | | | | |
Collapse
|
16
|
Toder V, Carp H, Fein A, Torchinsky A. The role of pro- and anti-apoptotic molecular interactions in embryonic maldevelopment. Am J Reprod Immunol 2002; 48:235-44. [PMID: 12516634 DOI: 10.1034/j.1600-0897.2002.01130.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM Pregnancy loss and the occurrence of inborn structural anomalies are often preceded by excessive apoptosis in targeted embryonic and extraembryonic tissues. Apoptogenic stimuli activate both death and survival, signaling cascades consisting of molecules acting as activators and effectors, or negative regulators of apoptosis. The interplay between these cascades determines whether the cell which is exposed to an apoptogenic stimulus dies or survives. This review summarizes the functioning of pro- and anti-apoptotic molecules in embryos responding to various teratogens. The effect of potentiation of the maternal immune system on these molecules is also discussed. METHODS OF STUDY The data on the functioning of various pro- and anti-apoptotic molecules in embryos exposed to various developmental toxicants, and embryos developing in a diabetic environment are reviewed. Techniques such as the TUNEL method, DNA fragmentation assay, electromobility shift assay (EMSA), fluorometric assay, immunohistochemistry, Western blot, In situ hybridization, have been used in our studies to detect apoptosis, and evaluate the functioning of molecules such as TNFalpha, caspases, NF-kappaB and IkappaB, p53, and bcl-2 in different embryonic and extraembryonic tissues. RESULTS Our and other data summarized in this review have demonstrated that the doses of developmental toxicants required to induce pregnancy loss and gross structural anomalies induce excessive apoptosis shortly after treatment. Depending on the intensity and type of targeted tissues, this apoptosis was accompanied by alterations in the activity of the molecules which act as activators and effectors (e.g. caspase 3, caspase 8, caspase 2, p53) or negative regulators (bcl-2, NF-kappaB) of apoptosis. Maternal immunopotentiation, which decreases the level of induced and spontaneous pregnancy loss and the incidence and severity of teratogen-induced structural anomalies has been shown to modulate the expression of these molecules both in embryonic tissues and at the feto-maternal interface. CONCLUSIONS The data presented in this review suggest that molecules such as TNFalpha, caspase 3, caspase 8, NF-kappaB, p53 and bcl-2, which are involved in the regulation of apoptosis, may also be involved in determining the sensitivity of the embryo to developmental toxicants. Maternal immunopotentiation may modulate the functioning of these molecules.
Collapse
Affiliation(s)
- V Toder
- Department of Embryology and Teratology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
17
|
Sharova LV, Gogal RM, Sharov AA, Chrisman MV, Holladay SD. Immune stimulation in urethane-exposed pregnant mice increases expression level of spleen leukocyte genes for TGFbeta3 GM-CSF and other cytokines that may play a role in reduced chemical-induced birth defects. Int Immunopharmacol 2002; 2:1477-89. [PMID: 12400877 DOI: 10.1016/s1567-5769(02)00094-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For unknown reasons, activation of the maternal immune system in mice reduces morphologic defects caused by diverse teratogenic agents. Such immune stimulation of the maternal animal has been correlated with altered cytokine mRNA transcripts in the placenta (e.g., TGFbeta2) as well as in fetal target tissues of the teratogen (e.g., TNFalpha in fetal heads of cyclophosphamide-exposed pregnant mice). The teratogen urethane was reported to down-regulate cell cycle and apoptotic regulatory genes in fetal mouse heads that displayed cleft palate, an effect that was also reversed by maternal immune stimulation. The molecular mediators of the above phenomena have not been identified, however proteins synthesized and released by activated maternal immune cells have been suggested. The present studies therefore evaluated the effects of maternal immune stimulation in urethane-exposed mice on thymus and spleen leukocyte populations, in an attempt to identify events that may correlate with protection against birth defects. Immune stimulation did not change the hypocellularity of the thymus nor the altered T cell differentiation caused by urethane. A limited and transient increase in splenic leukocyte number, including increased T and B lymphocytes and macrophages, was caused by immune stimulation and was not felt to play a significant role in reduced morphologic defects. Urethane treatment caused down-regulated expression of numerous genes involved in cell-cycle control, while maternal immune stimulation caused comparative up-regulation of many of these genes. Coordinate shifts in gene expression by treatment were evaluated using principal component analysis, which identified several growth factor genes that were differentially expressed in mice receiving urethane alone as compared to urethane plus immune stimulation. Up-regulated expression of TGFbeta3 and GM-CSF genes, in particular, was observed in leukocytes of urethane-exposed mice receiving immunostimulation. Interestingly, the cytokine products of these two genes were recently suggested as growth factors that may be related to reduction of fetal defects caused by teratogens. Genes for growth factors IGF-I, IGF-II and IL-2 were also identified as differentially expressed in urethane vs. urethane+immune stimulation mice, suggesting that these proteins should be considered for a potential contributing effect to reduced birth defects caused by immunostimulation.
Collapse
Affiliation(s)
- L V Sharova
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg 24061-0442, USA
| | | | | | | | | |
Collapse
|
18
|
Li G, Song YH, Wu KF, Lin YM, Cao ZY, Zheng GG. Clone and expression of mutant M-CSF and its receptor from human leukemic cell line J6-1. Leuk Res 2002; 26:377-82. [PMID: 11839381 DOI: 10.1016/s0145-2126(01)00139-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) plays important roles in hematopoietic and immunologic systems. Some isoforms or mutations have been demonstrated including membrane-bound and cellular M-CSF, which associated with some leukemia, lymphoma and other solid tumors. We previously reported that the M-CSF-like membrane-associated factor (MAF-J6-1) and its receptor was found from human leukemic cell line J6-1. In this report, the cDNA of MAF-J6-1 and its receptor were cloned. The cDNA sequence of MAF-J6-1 shows a 768bp open reading frame (ORF) with 99.2% homology to m-M-CSF, but six site mutations, including two synonymous mutations and four missense mutations. The cDNA of MAF-J6-1-R has a 2916bp ORF shared 99.6% homology with M-CSF-R, but 13 site mutations, including six synonymous mutations and seven missense mutations. At the same time, a 1662bp mutant s-M-CSF cDNA, which has 10 site mutations including three synonymous mutations and seven missense mutations, was cloned from J6-1 cells. The cDNAs of MAF-J6-1 and MAF-J6-1-R were inserted into a mammalian expression plasmid pTARGET and were expressed in COS-7 cells that demonstrated by their specific MAb. COS-7 cells transfected with MAF-J6-1-R show obvious protein tyrosine kinase (PTK) activity. Our present work shows that MAF-J6-1 and its receptor are mutations of M-CSF and its receptor.
Collapse
Affiliation(s)
- Ge Li
- National Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Holladay SD, Sharova LV, Punareewattana K, Hrubec TC, Gogal RM, Prater MR, Sharov AA. Maternal immune stimulation in mice decreases fetal malformations caused by teratogens. Int Immunopharmacol 2002; 2:325-32. [PMID: 11811935 DOI: 10.1016/s1567-5769(01)00183-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For unknown reasons, non-specific stimulation of the maternal immune system in pregnant mice has what appears to be a broad-spectrum efficacy for reducing birth defects. Immune stimulation by diverse procedures has proven effective, including footpad injection with Freund's complete adjuvant (FCA), intraperitoneal (IP) injection with inert particles to activate resident macrophages, IP injection with attenuated Bacillus Calmette-Guerin (BCG), and intrauterine injection with allogeneic or zenogeneic lymphocytes. Morphologic lesions that were significantly reduced included cleft palate and associated craniofacial defects, digit and limb defects, tail malformations, and neural tube defect (NTD). Teratogenic stimuli to induce these lesions included chemical agents (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD], ethyl carbamate [urethane], methylnitrosourea [MNU], cyclophosphamide [CP], and valproic acid [VA]), physical agents (X-rays, hyperthermia), and streptozocin (STZ)-induced diabetes mellitus. Limited information is available regarding mechanisms by which such immune stimulation reduced fetal dysmorphogenesis. The collective literature suggests the possibility that immunoregulatory cytokines of maternal origin may be the effector molecules in this phenomenon.
Collapse
Affiliation(s)
- S D Holladay
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blackshurg 24061-0442, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Holladay SD, Sharova L, Smith BJ, Gogal RM, Ward DL, Blaylock BL. Nonspecific stimulation of the maternal immune system. I. Effects On teratogen-induced fetal malformations. TERATOLOGY 2000; 62:413-9. [PMID: 11091363 DOI: 10.1002/1096-9926(200012)62:6<413::aid-tera8>3.0.co;2-b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Maternal immune stimulation has reported, but unconfirmed, efficacy for reducing chemical-induced morphologic defects in mice. METHODS Teratogenic chemicals (2,3,7, 8-tetrachlorodibenzo-p-dioxin [TCDD], ethyl carbamate [urethane], methylnitrosourea [MNU], or valproic acid [VA]) were given to pregnant mice to induce cleft palate (TCDD, urethane), digital defects (urethane, MNU), or exencephaly (VA). Before teratogen administration, the immune system of female mice was stimulated by intraperitoneal (IP) administration of pyran copolymer or attenuated bacillus Calmette Guérin (BCG), or by footpad injection with Freund's complete adjuvant (FCA). RESULTS Fetal defects caused by all four chemicals studied were reduced by maternal immunostimulation, sometimes dramatically. In addition to reducing VA-induced exencephaly, immunostimulation with FCA resulted in fetal mice displaying anury (absence of tails). Activated maternal immune cells could not be detected in fetal circulation using flow cytometry and a fluorescent cell-tracking probe. CONCLUSIONS For the chemicals tested, maternal immune stimulation has efficacy in reducing fetal defects. Immune protection against teratogenesis may be an indirect effect of maternal immune cell activation.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/embryology
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/prevention & control
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/etiology
- Abnormalities, Multiple/prevention & control
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Animals
- BCG Vaccine/administration & dosage
- BCG Vaccine/immunology
- BCG Vaccine/therapeutic use
- Cleft Palate/chemically induced
- Cleft Palate/prevention & control
- Crosses, Genetic
- Female
- Fetal Blood/cytology
- Flow Cytometry
- Foot
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Freund's Adjuvant/therapeutic use
- Injections
- Injections, Intraperitoneal
- Limb Deformities, Congenital/chemically induced
- Limb Deformities, Congenital/prevention & control
- Maternal-Fetal Exchange
- Methylnitrosourea/toxicity
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Neural Tube Defects/chemically induced
- Neural Tube Defects/prevention & control
- Polychlorinated Dibenzodioxins/toxicity
- Pregnancy/immunology
- Pyran Copolymer/administration & dosage
- Pyran Copolymer/therapeutic use
- Teratogens/toxicity
- Urethane/toxicity
- Valproic Acid/toxicity
Collapse
Affiliation(s)
- S D Holladay
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0442, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Sharova L, Sura P, Smith BJ, Gogal RM, Sharov AA, Ward DL, Holladay SD. Nonspecific stimulation of the maternal immune system. II. Effects on gene expression in the fetus. TERATOLOGY 2000; 62:420-8. [PMID: 11091364 DOI: 10.1002/1096-9926(200012)62:6<420::aid-tera9>3.0.co;2-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Maternal immune stimulation reduces malformations caused by chemical teratogens. Mechanisms for this effect are not known. Altered expression of regulatory molecules (e.g., transforming growth factor [TGF-beta], tumor necrosis factor-alpha [TNF-alpha]) has been reported in fetuses from immunostimulated mice, which may affect gene expression. Expression of selected genes that function to control proliferation, differentiation, or apoptosis was evaluated in chemical-exposed fetuses, with or without maternal immunostimulation. METHODS Ethyl carbamate (urethane) was given to pregnant ICR mice on day 10 of gestation to induce cleft palate. Before teratogen administration, the immune system of the female mice was stimulated by footpad injection with Freund's complete adjuvant (FCA) or by intraperitoneal injection with interferon-gamma (IFN-gamma). RESULTS Maternal immunostimulation with interferon-gamma (IFN-gamma) decreased severity of the cleft palate lesion caused by urethane, while FCA decreased both incidence and severity of cleft palate. Gestation day 14 fetuses from urethane-exposed mothers displayed decreased expression of cell cycle/apoptotic genes bcl2alpha, bcl2beta, pkCalpha, and p53 in fetal heads. Immune stimulation with IFN-gamma-normalized expression of bcl2alpha, bcl2beta, and pkCalpha to control levels. Urethane also decreased the ratio of expression of bclalpha/p53, bclbeta/p53, and pkCalpha/p53, while maternal injection with IFN-gamma restored these expression ratios to control levels. Maternal immunization with FCA also significantly increased bcl2alpha/p53, bcl2beta/p53, and pkCalpha/p53 gene expression ratios. CONCLUSIONS These results suggest that (1) the maternal immune system may possess heretofore unrecognized regulatory activity in fetal development, and (2) protection against urethane-induced cleft palate may be mediated through maternal immune regulation of fetal gene expression.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/genetics
- Abnormalities, Drug-Induced/prevention & control
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Apoptosis/genetics
- Cell Cycle/genetics
- Cleft Palate/chemically induced
- Cleft Palate/embryology
- Cleft Palate/prevention & control
- Embryonic and Fetal Development/drug effects
- Embryonic and Fetal Development/genetics
- Female
- Fetal Proteins/genetics
- Foot
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/pharmacology
- Freund's Adjuvant/therapeutic use
- Gene Expression Regulation, Developmental/drug effects
- Genes, bcl-2
- Genes, p53
- Injections
- Injections, Intraperitoneal
- Interferon-gamma/administration & dosage
- Interferon-gamma/pharmacology
- Interferon-gamma/therapeutic use
- Isoenzymes/genetics
- Male
- Mice
- Mice, Inbred ICR
- Pregnancy/immunology
- Protein Kinase C/genetics
- Protein Kinase C-alpha
- RNA, Messenger/analysis
- Receptors, Retinoic Acid/genetics
- Retinoid X Receptors
- Teratogens/toxicity
- Transcription Factors/genetics
- Urethane/toxicity
Collapse
Affiliation(s)
- L Sharova
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0442, USA.
| | | | | | | | | | | | | |
Collapse
|