1
|
The IL-3, IL-5, and GM-CSF common receptor beta chain mediates oncogenic activity of FLT3-ITD-positive AML. Leukemia 2022; 36:701-711. [PMID: 34750506 PMCID: PMC8885422 DOI: 10.1038/s41375-021-01462-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022]
Abstract
FLT3-ITD is the most predominant mutation in AML being expressed in about one-third of AML patients and is associated with a poor prognosis. Efforts to better understand FLT3-ITD downstream signaling to possibly improve therapy response are needed. We have previously described FLT3-ITD-dependent phosphorylation of CSF2RB, the common receptor beta chain of IL-3, IL-5, and GM-CSF, and therefore examined its significance for FLT3-ITD-dependent oncogenic signaling and transformation. We discovered that FLT3-ITD directly binds to CSF2RB in AML cell lines and blasts isolated from AML patients. A knockdown of CSF2RB in FLT3-ITD positive AML cell lines as well as in a xenograft model decreased STAT5 phosphorylation, attenuated cell proliferation, and sensitized to FLT3 inhibition. Bone marrow from CSF2RB-deficient mice transfected with FLT3-ITD displayed decreased colony formation capacity and delayed disease onset together with increased survival upon transplantation into lethally irradiated mice. FLT3-ITD-dependent CSF2RB phosphorylation required phosphorylation of the FLT3 juxtamembrane domain at tyrosines 589 or 591, whereas the ITD insertion site and sequence were of no relevance. Our results demonstrate that CSF2RB participates in FLT3-ITD-dependent oncogenic signaling and transformation in vitro and in vivo. Thus, CSF2RB constitutes a rational treatment target in FLT3-ITD-positive AML.
Collapse
|
2
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
3
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
4
|
Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019; 50:796-811. [PMID: 30995500 DOI: 10.1016/j.immuni.2019.03.022] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
The β common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the β common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, MA, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Role of the β Common (βc) Family of Cytokines in Health and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028514. [PMID: 28716883 DOI: 10.1101/cshperspect.a028514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The β common ([βc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use βc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the βc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease. This review will focus on the emerging biological roles for the βc cytokines, our progress toward understanding the mechanisms of receptor assembly and signaling, and the application of this knowledge to develop exciting new therapeutic approaches against human disease.
Collapse
|
6
|
Lee JS, Tae SS, Kim DY, Han SK, Kim WK, Dhong ES. Do IL-3/GM-CSF effect on the myofibroblastic differentiation of human adipose derived stromal cells? Exp Cell Res 2017; 355:67-82. [PMID: 28377320 DOI: 10.1016/j.yexcr.2017.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Capsular contracture is an incurable complication after silicone-based implant surgery. Myofibroblast is the predominant cell in the contracted capsule. We hypothesized that human adipose derive stromal cells (hASCs) together with fibroblast may show a similar phenotypic characteristics of myofibroblast after the treatment of inflammatory cytokines in vitro. MATERIALS AND METHODS Interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) were treated in the culture of hASCs and HDFs. Lyn peptide inhibitor was applied as an inhibitor. The changes of cell surface markers (CD105, CD73, CD34, CD45, CD31, CD325 and CD146) were assessed. The expression of various cytokines related to wound contraction were tested such as TGF-β, α-SMA, HGF, FGF, ENT-1, and TSP-1. Myo-D, α-SMA, and glial fibrillary acidic protein (GFAP) were evaluated by blotting and immunocytochemical staining. The collagen-gel contraction assay was performed for the functional contraction of myofibroblastic phenotype. RESULTS The expression of α-SMA, Myo-D and GFAP after the treatment of IL-3/GM-CSF showed similar results in hASCs and HDFs. Enhanced expression of TGF- β was observed in HDFs and the increase of ENT-1 and TSP-1 was significant in hASCs. Collagen-gel with HDFs contracted significantly within 24h after the treatment of IL-3/GM-CSF, and the contraction was inhibited by Lyn peptide inhibitor. But in hASCs, the gel-contraction was not significant. CONCLUSION IL-3/ GM-CSF effected on the myofibroblastic differentiation of hASCs as well as it did on HDFs. But hASCs did not show the phenotypic gel-contraction within 24h.
Collapse
Affiliation(s)
- Jae-Sun Lee
- Department of Plastic Surgery, Korea University, Guro Hospital, Seoul, Republic of Korea
| | - Son-Seung Tae
- Department of Plastic Surgery, Korea University, Guro Hospital, Seoul, Republic of Korea
| | - Deok-Yeol Kim
- Department of Plastic Surgery, Korea University, Guro Hospital, Seoul, Republic of Korea
| | - Seung-Kyu Han
- Department of Plastic Surgery, Korea University, Guro Hospital, Seoul, Republic of Korea
| | - Woo-Kyung Kim
- Department of Plastic Surgery, Korea University, Guro Hospital, Seoul, Republic of Korea
| | - Eun-Sang Dhong
- Department of Plastic Surgery, Korea University, Guro Hospital, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Waters M, Brooks A. JAK2 activation by growth hormone and other cytokines. Biochem J 2015; 466:1-11. [PMID: 25656053 PMCID: PMC4325515 DOI: 10.1042/bj20141293] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value.
Collapse
Key Words
- class i cytokine receptors
- cytokine receptor signalling
- growth hormone
- growth hormone receptor
- janus kinase 2 (jak2)
- srk family kinases
- cntf, ciliary neurotropic factor
- crh, cytokine receptor homology
- ct-1, cardiotropin-1
- ecd, extracellular domain
- epo, erythropoietin
- fniii, fibronectin iii-like
- gh, growth hormone
- gm-csf, granulocyte-macrophage colony-stimulating factor
- jak, janus kinase
- jm, juxtamembrane
- mab, monoclonal antibody
- osm, oncostatin-m
- pk, pseudokinase
- tmd, transmembrane domain
- tpo, thrombopoietin
Collapse
Affiliation(s)
- Michael J. Waters
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
| | - Andrew J. Brooks
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
- †The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD 4072, Australia
| |
Collapse
|
8
|
Burnham ME, Esnault S, Roti Roti EC, Bates ME, Bertics PJ, Denlinger LC. Cholesterol selectively regulates IL-5 induced mitogen activated protein kinase signaling in human eosinophils. PLoS One 2014; 9:e103122. [PMID: 25121926 PMCID: PMC4133209 DOI: 10.1371/journal.pone.0103122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/26/2014] [Indexed: 01/21/2023] Open
Abstract
Eosinophils function contributes to human allergic and autoimmune diseases, many of which currently lack curative treatment. Development of more effective treatments for eosinophil-related diseases requires expanded understanding of eosinophil signaling and biology. Cell signaling requires integration of extracellular signals with intracellular responses, and is organized in part by cholesterol rich membrane microdomains (CRMMs), commonly referred to as lipid rafts. Formation of these organizational membrane domains is in turn dependent upon the amount of available cholesterol, which can fluctuate widely with a variety of disease states. We tested the hypothesis that manipulating membrane cholesterol content in primary human peripheral blood eosinophils (PBEos) would selectively alter signaling pathways that depend upon membrane-anchored signaling proteins localized within CRMMs (e.g., mitogen activated protein kinase [MAPK] pathway), while not affecting pathways that signal through soluble proteins, like the Janus Kinase/Signal Transducer and Activator of Transcription [JAK/STAT] pathway. Cholesterol levels were increased or decreased utilizing cholesterol-chelating methyl-β-cyclodextrin (MβCD), which can either extract membrane cholesterol or add exogenous membrane cholesterol depending on whether MβCD is preloaded with cholesterol. Human PBEos were pretreated with MβCD (cholesterol removal) or MβCD+Cholesterol (MβCD+Chol; cholesterol delivery); subsequent IL-5-stimulated signaling and physiological endpoints were assessed. MβCD reduced membrane cholesterol in PBEos, and attenuated an IL-5-stimulated p38 and extracellular-regulated kinase 1/2 phosphorylation (p-p38, p-ERK1/2), and an IL-5-dependent increase in interleukin-1β (IL-1β) mRNA levels. In contrast, MβCD+Chol treatment elevated PBEos membrane cholesterol levels and basal p-p38, but did not alter IL-5-stimulated phosphorylation of ERK1/2, STAT5, or STAT3. Furthermore, MβCD+Chol pretreatment attenuated an IL-5-induced increase in cell survival at 48 hours, measured as total cellular metabolism. The reduction in cell survival following cholesterol addition despite unaltered STAT phosphorylation contradicts the current dogma in which JAK/STAT activation is sufficient to promote eosinophil survival, and suggests an additional, unidentified mechanism critically regulates IL-5-mediated human PBEos survival.
Collapse
Affiliation(s)
- Mandy E. Burnham
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, United States of America
| | - Stephane Esnault
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, United States of America
| | - Elon C. Roti Roti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, United States of America
| | - Mary E. Bates
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, United States of America
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, United States of America
| | - Loren C. Denlinger
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, United States of America
| |
Collapse
|
9
|
GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch Clin Exp Ophthalmol 2012; 250:699-712. [PMID: 22297538 DOI: 10.1007/s00417-012-1932-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND The term retinitis pigmentosa (RP) comprises a heterogeneous group of hereditary and sporadic human retinal degenerative diseases. The molecular and cellular events still remain obscure, thus hiding effective therapies. Granulocyte–macrophage colony-stimulating factor (GM-CSF) is a hematopoietic factor which plays a crucial role in protecting neuronal cells. Binding of GM-CSF to its receptor induces several intracellular signaling pathways and kinases. Here we examined whether GM-CSF has a neuroprotective effect on photoreceptor degeneration in Royal College of Surgeons (RCS) rats. METHODS GM-CSF was injected into the vitreous body of RCS rats either once at the onset of photoreceptor degeneration at day 21, or twice at day 21 and day 42. At day 84, when photoreceptor degeneration is completed, the rats were sacrificed, their eyes enucleated and processed for histological staining and counting the surviving photoreceptor nuclei. The expression of apoptosis-related factors, such as BAD, APAF1 and BCL-2 was examined by Western blot analysis. The expression of neurotrophins such as ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), and glia-derived neurotrophic actor (GDNF), as well as glial fibrillary acidic protein (GFAP) was analysed by Western blots and immunohistochemistry. The expression of JAK/STAT, ERK1/2 and SRC pathway proteins was assessed by Western blot analysis. RESULTS GM-CSF protects significantly against photoreceptor degeneration in comparison to control group. After a single injection of GM-CSF at P21, a 4-fold increase of photoreceptors was observed, whereas eyes which received a repeated injection of GM-CSF at P42 showed a 10-fold increase of photoreceptors. Western blot analysis revealed a decreased BAD and an increased pBAD and BCL-2 expression, indicating changed expression profiles of apoptosis-related proteins. Neurotrophic factors examined are up-regulated, whereas GFAP was also modulated. At cell signalling levels, GM-CSF activates SRC-dependent STAT3 which is independent of JAK2, while proteins of the ERK1/2 pathway are not affected. CONCLUSIONS The data suggest that GM-CSF is a potent therapeutic agent in photoreceptor degeneration caused by mutation of the receptor tyrosine kinase gene (Mertk), and may be also effective in other photoreceptor degeneration.
Collapse
|
10
|
Kuroda E, Antignano F, Ho VW, Hughes MR, Ruschmann J, Lam V, Kawakami T, Kerr WG, McNagny KM, Sly LM, Krystal G. SHIP Represses Th2 Skewing by Inhibiting IL-4 Production from Basophils. THE JOURNAL OF IMMUNOLOGY 2010; 186:323-32. [DOI: 10.4049/jimmunol.1002778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Zhu Y, Bertics PJ. Chemoattractant-induced signaling via the Ras-ERK and PI3K-Akt networks, along with leukotriene C4 release, is dependent on the tyrosine kinase Lyn in IL-5- and IL-3-primed human blood eosinophils. THE JOURNAL OF IMMUNOLOGY 2010; 186:516-26. [PMID: 21106848 DOI: 10.4049/jimmunol.1000955] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human blood eosinophils exhibit a hyperactive phenotype in response to chemotactic factors after cell "priming" with IL-5 family cytokines. Earlier work has identified ERK1/2 as molecular markers for IL-5 priming, and in this article, we show that IL-3, a member of the IL-5 family, also augments fMLP-stimulated ERK1/2 phosphorylation in primary eosinophils. Besides ERK1/2, we also observed an enhancement of chemotactic factor-induced Akt phosphorylation after IL-5 priming of human blood eosinophils. Administration of a peptide antagonist that targets the Src family member Lyn before cytokine (IL-5/IL-3) priming of blood eosinophils inhibited the synergistic increase of fMLP-induced activation of Ras, ERK1/2 and Akt, as well as the release of the proinflammatory factor leukotriene C(4). In this study, we also examined a human eosinophil-like cell line HL-60 clone-15 and observed that these cells exhibited significant surface expression of IL-3Rs and GM-CSFRs, as well as ERK1/2 phosphorylation in response to the addition of IL-5 family cytokines or the chemotactic factors fMLP, CCL5, and CCL11. Consistent with the surface profile of IL-5 family receptors, HL-60 clone-15 recapitulated the enhanced fMLP-induced ERK1/2 phosphorylation observed in primary blood eosinophils after priming with IL-3/GM-CSF, and small interfering RNA-mediated knockdown of Lyn expression completely abolished the synergistic effects of IL-3 priming on fMLP-induced ERK1/2 phosphorylation. Altogether, our data demonstrate a central role for Lyn in the mechanisms of IL-5 family priming and suggest that Lyn contributes to the upregulation of the Ras-ERK1/2 and PI3K-Akt cascades, as well as the increased leukotriene C(4) release observed in response to fMLP in "primed" eosinophils.
Collapse
Affiliation(s)
- Yiming Zhu
- Molecular and Cellular Pharmacology Program, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Kong L, Deng Z, Shen H, Zhang Y. Src family kinase inhibitor PP2 efficiently inhibits cervical cancer cell proliferation through down-regulating phospho-Src-Y416 and phospho-EGFR-Y1173. Mol Cell Biochem 2010; 348:11-9. [PMID: 21052789 DOI: 10.1007/s11010-010-0632-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/18/2010] [Indexed: 11/26/2022]
Abstract
Tyrosine (Y) kinases inhibitors have been approved for targeted treatment of cancer. However, their clinical use is limited to some cancers and the mechanism of their action remains unclear. Previous study has indicated that PP2, a selective inhibitor of the Src family of non-receptor tyrosine kinases (nRTK), efficiently repressed cervical cancer growth in vitro and in vivo. In this regard, our aims are to explore the mechanism of PP2 on cervical cancer cell growth inhibition by investigating the suppressive divergence among PP1, PP2, and a negative control compound PP3. MTT results showed that three compounds had different inhibitory effects on proliferation of two cervical cancer cells, HeLa and SiHa, and PP2 was most efficient in a time- and dose-dependent manner. Moreover, we found 10 μM PP2 down-regulated pSrc-Y416 (P < 0.05), pEGFR-Y845 (P < 0.05), and -Y1173 (P < 0.05) expression levels, while 10 μM PP1 down-regulated pSrc-Y416 (P < 0.05) and pEGFR-Y845 (P < 0.05), but not pEGFR-Y1173; 10 μM PP3 down-regulated only pEGFR-Y1173 (P < 0.05). PP2 could modulate cell cycle arrest by up-regulating p21(Cip1) and p27(Kip1) in both HeLa and SiHa cells and down-regulating expression of cyclin A, and cyclin dependent kinase-2, -4 (Cdk-2, -4) in HeLa and of cyclin B and Cdk-2 in SiHa. Our results indicate that Src pathway and EGFR pathway play different roles in the proliferation of cervical cancer cells and PP2 efficiently reduces cervical cancer cell proliferation by reduction of both Src and EGFR activity.
Collapse
Affiliation(s)
- Lu Kong
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
13
|
Piazza TM, Lu JC, Carver KC, Schuler LA. SRC family kinases accelerate prolactin receptor internalization, modulating trafficking and signaling in breast cancer cells. Mol Endocrinol 2008; 23:202-12. [PMID: 19056863 DOI: 10.1210/me.2008-0341] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the growing body of evidence supporting prolactin (PRL) actions in human breast cancer, little is known regarding PRL regulation of its own receptor in these cells. Ligand-initiated endocytosis is a key process in the regulation of receptor availability and signaling cascades that may lead to oncogenic actions. Although exposure to exogenous PRL accelerates degradation of the long isoform of the PRL receptor (lPRLR), neither the signals initiated by PRL that lead to lPRLR internalization and subsequent down-regulation, nor the relationship to downstream pathways are understood in breast cancer cells. In this study, we showed that PRL-induced down-regulation of the lPRLR was reduced by inhibition of src family kinases (SFKs), but not Janus kinase 2, in MCF-7 cells. Inhibition of SFKs also resulted in accumulation of a PRL-induced PRLR fragment containing the extracellular domain, which appeared to be generated from newly synthesized PRLR. lPRLR was constitutively associated with SFKs in lipid rafts. PRL-induced SFK activation led to recruitment of the guanosine triphosphatase, dynamin-2, to an internalization complex, resulting in endocytosis. Inhibition of endocytosis by small interfering RNA-mediated knockdown of dynamin-2 blocked PRL-induced down-regulation of lPRLR, confirming that internalization is essential for this process. Endocytosis also was required for optimal phosphorylation of ERK1/2 and Akt, but not for Janus kinase 2 or signal transducer and activator of transcription 5, indicating that internalization selectively modulates signaling cascades. Together, these data indicate that SFKs are key mediators of ligand-initiated lPRLR internalization, down-regulation, and signal transduction in breast cancer cells, and underscore the importance of target cell context in receptor trafficking and signal transduction.
Collapse
Affiliation(s)
- Timothy M Piazza
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
14
|
Tortorella C, Simone O, Piazzolla G, Stella I, Antonaci S. Age-related impairment of GM-CSF-induced signalling in neutrophils: role of SHP-1 and SOCS proteins. Ageing Res Rev 2007; 6:81-93. [PMID: 17142110 DOI: 10.1016/j.arr.2006.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/20/2006] [Accepted: 10/28/2006] [Indexed: 11/23/2022]
Abstract
Functional activities of mature human neutrophils are strongly influenced by the pro-inflammatory cytokine granulocyte macrophage-colony stimulating factor (GM-CSF). Accordingly, a defective response to GM-CSF might have dramatic consequences for neutrophil functions and the host defence against infections. Such an event is most likely to occur in senescence. A number of studies have, in fact, reported an impairment of the GM-CSF capacity to prime and/or to activate respiratory burst, as well as to delay apoptotic events, in neutrophils from elderly individuals. In the last 2 decades many efforts have been made to explore at molecular levels the mechanism underlying these defects. Recent studies let us depict a scenario in which an increased activity of inhibitory molecules, such as Src homology domain-containing protein tyrosine phosphatase-1 (SHP-1) and suppressors of cytokine signalling (SOCS), is responsible for the age-related failure of GM-CSF to stimulate neutrophil functions via inhibition of Lyn-, phosphoinositide 3-kinase (PI3-K)/extracellular signal-regulated kinase (ERK)- and signal transducers and activators of transcription (STAT)-dependent pathways. The control of SHP-1 and/or SOCS activity might therefore be an important therapeutic target for the restoration of normal immune responses during senescence.
Collapse
Affiliation(s)
- Cosimo Tortorella
- Department of Internal Medicine, Immunology and Infectious Diseases, University of Bari Medical School, Policlinico, 70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
15
|
Abstract
The Lyn tyrosine kinase is a unique member of the Src family of non-receptor protein tyrosine kinases whose principal role is to regulate signals through inhibitory receptors thereby promoting signal attenuation. Lyn is renowned for its role in B cell antigen receptor and FcepsilonRI signaling; however, it is becoming increasingly apparent that Lyn also functions in signal transduction from growth factor receptors including the receptors for GM-CSF, IL-3, IL-5, SCF, erythropoietin, CSF-1, G-CSF, thrombopoietin and Flt3 ligand. Numerous studies have implicated Lyn in growth factor receptor signal amplification, while a number also suggest that Lyn participates in negative regulation of growth factor signaling. Indeed Lyn-deficient mice are hyper-responsive to myeloid growth factors and develop a myeloproliferative disorder that predisposes the mice to macrophage tumours, with loss of negative regulation through SHP-1 and SHIP-1 thought to be the major contributing factor to this phenotype. Developing a clear understanding of Lyn's role in establishing signaling thresholds in growth factor receptor signal amplification and signal inhibition may have important implications in the management of leukemias that may depend on Lyn activity.
Collapse
Affiliation(s)
- Margaret L Hibbs
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Vic., Australia. margaret.hibbs@
| | | |
Collapse
|
16
|
Suh HS, Kim MO, Lee SC. Inhibition of granulocyte-macrophage colony-stimulating factor signaling and microglial proliferation by anti-CD45RO: role of Hck tyrosine kinase and phosphatidylinositol 3-kinase/Akt. THE JOURNAL OF IMMUNOLOGY 2005; 174:2712-9. [PMID: 15728479 DOI: 10.4049/jimmunol.174.5.2712] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increasing evidence suggests that CD45, a transmembrane protein tyrosine phosphatase, is an important modulator of macrophage activation. Microglia, resident brain macrophages, express CD45 and proliferate under pathologic conditions. In this study, we examined the role of CD45 in modulating GM-CSF-induced proliferation and signal transduction in primary human microglial cultures. Soluble, but not immobilized anti-CD45RO induced tyrosine phosphatase activity and inhibited GM-CSF-induced microglial proliferation. Microglial proliferation was also inhibited by PP2 (Src inhibitor), LY294002 (PI3K inhibitor), and U0126 (MEK inhibitor). GM-CSF induced phosphorylation of Jak2, Stat5, Hck (the myeloid-restricted Src kinase), Akt, Stat3, and Erk MAPKs in microglia. Of these, anti-CD45RO inhibited phosphorylation of Hck and Akt, and PP2 inhibited phosphorylation of Hck and Akt. In a macrophage cell line stably overexpressing wild-type or kinase-inactive Hck, GM-CSF increased proliferation of the control (empty vector) and wild-type but not kinase-inactive cells, and this was inhibited by anti-CD45RO. Together, these results demonstrate that, in macrophages, Hck tyrosine kinase is activated by GM-CSF, and that Hck plays a pivotal role in cell proliferation and survival by activating the PI3K/Akt pathway. Ab-mediated activation of macrophage and microglial CD45 tyrosine phosphatase may have therapeutic implications for CNS inflammatory diseases.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
17
|
Warby TJ, Crowe SM, Jaworowski A. Human immunodeficiency virus type 1 infection inhibits granulocyte-macrophage colony-stimulating factor-induced activation of STAT5A in human monocyte-derived macrophages. J Virol 2003; 77:12630-8. [PMID: 14610185 PMCID: PMC262552 DOI: 10.1128/jvi.77.23.12630-12638.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 08/29/2003] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects cells of the monocyte/macrophage lineage. While infection of macrophages by HIV-1 is generally not cytopathic, it does impair macrophage function. In this study, we examined the effect of HIV-1 infection on intracellular signaling in human monocyte-derived macrophages (MDM) stimulated with the growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF is an important growth factor for cells of both the macrophage and granulocyte lineages and enhances effector functions of these cells via the heterodimeric GM-CSF receptor (GM-CSFR). A major pathway which mediates the effects of GM-CSF on macrophages involves activation of the latent transcription factor STAT5A via a Janus kinase 2 (JAK2)-dependent pathway. We demonstrate that GM-CSF-induced activation of STAT5A is inhibited in MDM after infection in vitro with the laboratory-adapted R5 strain of HIV-1, HIV-1(Ba-L), but not after infection with adenovirus. HIV-1 infection of MDM did not decrease the STAT5A or JAK2 mRNA level or STAT5A protein level or result in increased constitutive activation of STAT5A. Surface expression of either the alpha-chain or common beta(c)-chain of GM-CSFR was also unaffected. We conclude that HIV-1 inhibits GM-CSF activation of STAT5A without affecting expression of the known components of the signaling pathway. These data provide further evidence of disruption of cellular signaling pathways after HIV-1 infection, which may contribute to immune dysfunction and HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Tammra J Warby
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, 3004 Victoria, Australia
| | | | | |
Collapse
|
18
|
Tatton L, Morley GM, Chopra R, Khwaja A. The Src-selective kinase inhibitor PP1 also inhibits Kit and Bcr-Abl tyrosine kinases. J Biol Chem 2003; 278:4847-53. [PMID: 12475982 DOI: 10.1074/jbc.m209321200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]- pyrimidine (PP1) was identified as an Src-selective tyrosine kinase inhibitor and has been used extensively to investigate signaling pathways involving Src kinases, including events downstream of the stem cell factor (SCF) receptor c-Kit. While investigating the role of Src kinases in SCF signaling, we found that PP1 completely abrogated the proliferation of M07e cells in response to SCF. PP1 inhibited SCF-induced c-Kit autophosphorylation in intact cells and blocked the activation of mitogen-activated protein kinase and Akt. In vitro kinase assays using immunoprecipitated c-Kit confirmed direct inhibition by PP1. SCF-induced c-Kit phosphorylation was also inhibited by the related inhibitor 4-amino-5- (4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP2) and by STI571 but not by the Src inhibitor SU6656. PP1 inhibited the activity of mutant constitutively active forms of c-Kit (D814V and D814Y) found in mast cell disorders, and triggered apoptosis in the rat basophilic leukemia cell line RBL-2H3 that expresses mutant c-Kit. In addition, PP1 (and PP2) inhibited the in vitro kinase activity and autophosphorylation in whole cells of p210 Bcr-Abl. PP1 reduced the constitutive activation of signal transducer and activators of transcription 5 and mitogen-activated protein kinase and triggered apoptosis in FDCP1 cells expressing Bcr-Abl. These results have implications for the use of PP1 in investigating intracellular signaling and suggest that PP1 or related compounds may be useful in the treatment of malignant diseases associated with dysregulated c-Kit or Abl tyrosine kinase activity.
Collapse
Affiliation(s)
- Louise Tatton
- Department of Haematology, Royal Free and University College Medical School, 98 Chenies Mews, London WC1E 6HX, United Kingdom
| | | | | | | |
Collapse
|
19
|
Bache KG, Raiborg C, Mehlum A, Madshus IH, Stenmark H. Phosphorylation of Hrs downstream of the epidermal growth factor receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3881-7. [PMID: 12180964 DOI: 10.1046/j.1432-1033.2002.03046.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The hepatocyte growth factor-regulated tyrosine kinase substrate Hrs is an early endosomal protein that is thought to play a regulatory role in the trafficking of growth factor/receptor complexes through early endosomes. Stimulation of cells with epidermal growth factor (EGF) rapidly leads to phosphorylation of Hrs, raising the question whether the receptor tyrosine kinase phosphorylates Hrs directly. Here, we present evidence that a downstream kinase, rather than the active receptor kinase is responsible. We show that the nonreceptor tyrosine kinase Src is able to phosphorylate Hrs in vitro and in vivo, but that Hrs is nevertheless phosphorylated in Src-, Yes- and Fyn-negative cells. Moreover, we show that only 10-20% of Hrs is phosphorylated following EGF stimulation, and that phosphorylation occurs at multiple tyrosines located in different parts of Hrs. These results suggest that Hrs is a substrate for several kinases downstream of the EGF receptor.
Collapse
Affiliation(s)
- Kristi G Bache
- Department of Biochemistry, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
20
|
Grishin AV, Azhipa O, Semenov I, Corey SJ. Interaction between growth arrest-DNA damage protein 34 and Src kinase Lyn negatively regulates genotoxic apoptosis. Proc Natl Acad Sci U S A 2001; 98:10172-7. [PMID: 11517336 PMCID: PMC56934 DOI: 10.1073/pnas.191130798] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genotoxic stresses activate intracellular signaling molecules, which lead to growth arrest, DNA repair, and/or apoptosis. Among these molecules are the growth arrest and DNA damage protein 34 (GADD34) and the Src-related protein tyrosine kinase Lyn. Here, we report that these two proteins physically and functionally interact to regulate DNA damage-induced apoptosis. Multiple isolates of GADD34 and the related murine protein MyD116 were identified as binding partners of Lyn in a yeast two-hybrid screen. The specific interaction was confirmed by in vitro association of GADD34 with glutathione S-transferase fusion proteins containing the Src Homology 3 (SH3) domain of Lyn, as well as coimmunoprecipitation of GADD34 and Lyn from mammalian cells. GADD34 was tyrosine-phosphorylated in vivo in a Lyn-dependent manner. Lyn efficiently phosphorylated affinity-purified GADD34 in vitro. Lyn negatively regulated the proapoptotic function of GADD34 in a kinase-dependent manner. Expression of wild-type, but not kinase-inactive, Lyn weakened promotion of apoptosis by GADD34 following treatment with methyl-methanesulfonate or ionizing radiation in HEK293 and HeLa cells. In contrast, pretreatment of cells with the Src-specific tyrosine kinase inhibitor PP1 strengthened promotion of apoptosis by GADD34. We propose that Lyn regulates the proapoptotic function of GADD34 by binding and phosphorylating it.
Collapse
Affiliation(s)
- A V Grishin
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
21
|
Adachi T, Stafford S, Sur S, Alam R. A Novel Lyn-Binding Peptide Inhibitor Blocks Eosinophil Differentiation, Survival, and Airway Eosinophilic Inflammation1, 2. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Receptor antagonists block all receptor-coupled signaling pathways indiscriminately. We introduce a novel class of peptide inhibitors that is designed to block a specific signal from a receptor while keeping other signals intact. This concept was tested in the model of IL-5 signaling via Lyn kinase. We have previously mapped the Lyn-binding site of the IL-5/GM-CSF receptor common β (βc) subunit. In the present study, we designed a peptide inhibitor using the Lyn-binding sequence. The peptide was N-stearated to enable cellular internalization. The stearated peptide blocked the binding of Lyn to the βc receptor and the activation of Lyn. The lipopeptide did not affect the activation of Janus kinase 2 or its association with βc. The inhibitor blocked the Lyn-dependent functions of IL-5 in vitro (e.g., eosinophil differentiation from stem cells and eosinophil survival). It did not affect eosinophil degranulation. When applied in vivo, the Lyn-binding peptide significantly inhibited airway eosinophil influx in a mouse model of asthma. The lipopeptide had no effect on basophil histamine release or on the proliferation of B cells and T cells. To our knowledge, this is the first report on an inhibitor of IL-5 that blocks eosinophil differentiation, survival, and airway eosinophilic inflammation. This novel strategy to develop peptide inhibitors can be applied to other receptors.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Susan Stafford
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Sanjiv Sur
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rafeul Alam
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|