1
|
Thongdee N, Alaniz MM, Samatova E, Zhong A, Esnault C, Zhang H, Dale RK, Rodnina MV, Storz G. Modulation of protein activity by small RNA base pairing internal to coding sequences. Mol Cell 2025; 85:1824-1837.e7. [PMID: 40199319 PMCID: PMC12051397 DOI: 10.1016/j.molcel.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
Most characterized interactions between bacterial small RNAs (sRNAs) and their target mRNAs occur near ribosome binding sites, resulting in changes in translation initiation or target mRNA decay. To understand the consequences of sRNA pairing internal to coding sequences detected by global RNA-RNA interactome approaches, we examined the impact of sRNA overexpression on seven target proteins. Overexpression of the sRNA led to decreased target protein levels for two pairs, but there were no differences for the others. By further examining ArcZ-ligA and ArcZ-hemK, we discovered that ArcZ pairing with the mRNAs leads to translation pausing and increased protein activity. A ligA point mutation that eliminates sRNA pairing resulted in increased sensitivity to DNA damage, revealing the physiological consequences of the regulation. Thus, regulatory RNA pairing in coding sequences can locally slow translation elongation, likely impacting co-translational protein folding and allowing improved incorporation of co-factors or more optimal folding under specific conditions.
Collapse
Affiliation(s)
- Narumon Thongdee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Miranda M Alaniz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Ekaterina Samatova
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Aoshu Zhong
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Moutacharrif S, Haichar FEZ, Meyer S, Ribot C, Reverchon S, Nasser W, Hommais F. The Power Duo: How the Interplay Between Nucleoid-Associated Proteins and Small Noncoding RNAs Orchestrates the Cellular Regulatory Symphony. Mol Microbiol 2025. [PMID: 40186492 DOI: 10.1111/mmi.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
In bacteria, the regulation of gene expression involves complex networks that integrate both transcriptional and posttranscriptional mechanisms. At the transcriptional level, nucleoid-associated proteins (NAPs) such as H-NS, HU, Lrp, IHF, Fis and Hfq are key players as they not only compact bacterial DNA but also regulate transcription. Small noncoding RNAs (sRNAs), on the other hand, are known to affect bacterial gene expression posttranscriptionally by base pairing with the target mRNA, but they can also be involved in nucleoid condensation. Interestingly, certain NAPs also influence the function of sRNAs and, conversely, sRNAs themselves can modulate the activity of NAPs, creating a complex bidirectional regulatory network. Here, we summarise the current knowledge of the major NAPs, focusing on the specific role of Hfq. Examples of the regulation of NAPs by sRNAs, the regulation of sRNAs by NAPs and the role of sRNAs in nucleoid structuring are also discussed. This review focuses on the cross-talk between NAPs and sRNAs in an attempt to understand how this interplay works to orchestrate the functioning of the cell.
Collapse
Affiliation(s)
- Sara Moutacharrif
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Feth El Zahar Haichar
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sam Meyer
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Cecile Ribot
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sylvie Reverchon
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - William Nasser
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Florence Hommais
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Bloch S, Sinden RR, Wien F, Węgrzyn G, Arluison V. DNA Transactions in Bacteria and Membranes: A Place for the Hfq Protein? MEMBRANES 2025; 15:103. [PMID: 40277973 PMCID: PMC12029325 DOI: 10.3390/membranes15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
DNA metabolism consists of crucial processes occurring in all living cells. These processes include various transactions, such as DNA replication, genetic recombination, transposition, mutagenesis, and DNA repair. While it was initially assumed that these processes might occur in the cytoplasm of prokaryotic cells, subsequent reports indicated the importance of the cell membrane in various DNA transactions. Furthermore, newly identified factors play significant roles in regulating DNA-related cellular processes. One such factor is the Hfq protein, originally discovered as an RNA chaperone but later shown to be involved in several molecular mechanisms. These include DNA transactions and interaction with the cell membrane. Recent studies have suggested that Hfq plays a role in the regulation of DNA replication, mutagenesis, and recombination. In this narrative review, we will focus on the importance of membranes in DNA transactions and discuss the potential role of Hfq-mediated regulation of these processes in Escherichia coli, where the protein is the best characterized. Special attention is given to the affinity of this small protein for both DNA and membranes, which might help explain some of the findings from recent experiments.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Richard R. Sinden
- Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint Aubin, France;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
4
|
Corbella M, Moreira C, Bello‐Madruga R, Torrent Burgas M, Kamerlin SCL, Blair JMA, Sancho‐Vaello E. Targeting MarA N-terminal domain dynamics to prevent DNA binding. Protein Sci 2025; 34:e5258. [PMID: 39660948 PMCID: PMC11633057 DOI: 10.1002/pro.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Efflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitize bacterial pathogens to antibiotics. AcrAB-TolC is the main resistance-nodulation-division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, including acrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix is critical for recognition of the functional marboxes. By engineering two double cysteine variants of MarA that form a disulfide bond between the N-terminal helix and the hydrophobic core of one of the helices in direct DNA contact, and combining in vitro electrophoretic mobility assays, in vivo measurements of acrAB transcription using a GFP reporter system, and molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This inhibited conformation seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
| | - Roberto Bello‐Madruga
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Shina C. L. Kamerlin
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jessica M. A. Blair
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Enea Sancho‐Vaello
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
5
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
6
|
Schumacher MA, Singh RR, Salinas R. Structure of the E. coli nucleoid-associated protein YejK reveals a novel DNA binding clamp. Nucleic Acids Res 2024; 52:7354-7366. [PMID: 38832628 PMCID: PMC11229321 DOI: 10.1093/nar/gkae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleoid-associated proteins (NAPs) play central roles in bacterial chromosome organization and DNA processes. The Escherichia coli YejK protein is a highly abundant, yet poorly understood NAP. YejK proteins are conserved among Gram-negative bacteria but show no homology to any previously characterized DNA-binding protein. Hence, how YejK binds DNA is unknown. To gain insight into YejK structure and its DNA binding mechanism we performed biochemical and structural analyses on the E. coli YejK protein. Biochemical assays demonstrate that, unlike many NAPs, YejK does not show a preference for AT-rich DNA and binds non-sequence specifically. A crystal structure revealed YejK adopts a novel fold comprised of two domains. Strikingly, each of the domains harbors an extended arm that mediates dimerization, creating an asymmetric clamp with a 30 Å diameter pore. The lining of the pore is electropositive and mutagenesis combined with fluorescence polarization assays support DNA binding within the pore. Finally, our biochemical analyses on truncated YejK proteins suggest a mechanism for YejK clamp loading. Thus, these data reveal YejK contains a newly described DNA-binding motif that functions as a novel clamp.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Rajiv R Singh
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Humphrey ED, Sukhodolets MV. Isolation and Partial Characterization of Novel, Structurally Uniform (Hfq 6) n≥8 Assemblies Carrying Accessory Transcription and Translation Factors. Biochemistry 2024; 63:1647-1662. [PMID: 38869079 DOI: 10.1021/acs.biochem.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In growing E. coli cells, the transcription-translation complexes (TTCs) form characteristic foci; however, the exact molecular composition of these superstructures is not known with certainty. Herein, we report that, during our recently developed "fast" procedures for purification of E. coli RNA polymerase (RP), a fraction of the RP's α/RpoA subunits is displaced from the core RP complexes and copurifies with multiprotein superstructures carrying the nucleic acid-binding protein Hfq and the ribosomal protein S6. We show that the main components of these large multiprotein assemblies are fixed protein copy-number (Hfq6)n≥8 complexes; these complexes have a high level of structural uniformity and are distinctly unlike the previously described (Hfq6)n "head-to-tail" polymers. We describe purification of these novel, structurally uniform (Hfq6)n≥8 complexes to near homogeneity and show that they also contain small nonprotein molecules and accessory S6. We demonstrate that Hfq, S6, and RP have similar solubility profiles and present evidence pointing to a role of the Hfq C-termini in superstructure formation. Taken together, our data offer new insights into the composition of the macromolecular assemblies likely acting as scaffolds for transcription complexes and ribosomes during bacterial cells' active growth.
Collapse
Affiliation(s)
- Elijah D Humphrey
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
| |
Collapse
|
8
|
Thappeta Y, Cañas-Duarte SJ, Kallem T, Fragasso A, Xiang Y, Gray W, Lee C, Cegelski L, Jacobs-Wagner C. Glycogen phase separation drives macromolecular rearrangement and asymmetric division in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590186. [PMID: 38659787 PMCID: PMC11042326 DOI: 10.1101/2024.04.19.590186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium Escherichia coli, little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase. These asymmetries were coupled with spatial reorganization of proteins, ribosomes, and RNAs to nucleoid-centric localizations. Results from live-cell imaging experiments, complemented with genetic and 13C whole-cell nuclear magnetic resonance spectroscopy studies, show that preferential accumulation of the storage polymer glycogen at the old cell pole leads to the observed rearrangements and asymmetric divisions. In vitro experiments suggest that these phenotypes are likely due to the propensity of glycogen to phase separate in crowded environments, as glycogen condensates exclude fluorescent proteins under physiological crowding conditions. Glycogen-associated differences in cell sizes between strains and future daughter cells suggest that glycogen phase separation allows cells to store large glucose reserves without counting them as cytoplasmic space.
Collapse
Affiliation(s)
- Yashna Thappeta
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Silvia J. Cañas-Duarte
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Till Kallem
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Alessio Fragasso
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yingjie Xiang
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - William Gray
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Cheyenne Lee
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | | | - Christine Jacobs-Wagner
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| |
Collapse
|
9
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
de Vasconcelos Junior AA, Tirado-Vélez JM, Martín-Galiano AJ, Megias D, Ferrándiz MJ, Hernández P, Amblar M, de la Campa AG. StaR Is a Positive Regulator of Topoisomerase I Activity Involved in Supercoiling Maintenance in Streptococcus pneumoniae. Int J Mol Sci 2023; 24:ijms24065973. [PMID: 36983048 PMCID: PMC10053502 DOI: 10.3390/ijms24065973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory novobiocin concentrations, which inhibit gyrase activity, higher doubling times were observed in a strain lacking staR, and in two strains in which StaR was over-expressed either under the control of the ZnSO4-inducible PZn promoter (strain ΔstaRPZnstaR) or of the maltose-inducible PMal promoter (strain ΔstaRpLS1ROMstaR). These results suggest that StaR has a direct role in novobiocin susceptibility and that the StaR level needs to be maintained within a narrow range. Treatment of ΔstaRPZnstaR with inhibitory novobiocin concentrations resulted in a change of the negative DNA supercoiling density (σ) in vivo, which was higher in the absence of StaR (σ = -0.049) than when StaR was overproduced (σ = -0.045). We have located this protein in the nucleoid by using super-resolution confocal microscopy. Through in vitro activity assays, we demonstrated that StaR stimulates TopoI relaxation activity, while it has no effect on gyrase activity. Interaction between TopoI and StaR was detected both in vitro and in vivo by co-immunoprecipitation. No alteration of the transcriptome was associated with StaR amount variation. The results suggest that StaR is a new streptococcal nucleoid-associated protein that activates topoisomerase I activity by direct protein-protein interaction.
Collapse
Affiliation(s)
| | - Jose M Tirado-Vélez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Antonio J Martín-Galiano
- Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - María-José Ferrándiz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pablo Hernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Mónica Amblar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Adela G de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
11
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
12
|
Wasim A, Gupta A, Bera P, Mondal J. Interpretation of organizational role of proteins on E. coli nucleoid via Hi-C integrated model. Biophys J 2023; 122:63-81. [PMID: 36435970 PMCID: PMC9822802 DOI: 10.1016/j.bpj.2022.11.2938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Several proteins in Escherichia coli work together to maintain the complex organization of its chromosome. However, the individual roles of these so-called nucleoid-associated proteins (NAPs) in chromosome architectures are not well characterized. Here, we quantitatively dissect the organizational roles of Heat Unstable (HU), a ubiquitous protein in E. coli and MatP, an NAP specifically binding to the Ter macrodomain of the chromosome. Toward this end, we employ a polymer physics-based computer model of wild-type chromosome and their HU- and MatP-devoid counterparts by incorporating their respective experimentally derived Hi-C contact matrix, cell dimensions, and replication status of the chromosome commensurate with corresponding growth conditions. Specifically, our model for the HU-devoid chromosome corroborates well with the microscopy observation of compaction of chromosome at short genomic range but diminished long-range interactions, justifying precedent hypothesis of segregation defect upon HU removal. Control simulations point out that the change in cell dimension and chromosome content in the process of HU removal holds the key to the observed differences in chromosome architecture between wild-type and HU-devoid cells. On the other hand, simulation of MatP-devoid chromosome led to locally enhanced contacts between Ter and its flanking macrodomains, consistent with previous recombination assay experiments and MatP's role in insulation of the Ter macrodomain from the rest of the chromosome. However, the simulation indicated no change in matS sites' localization. Rather, a set of designed control simulations showed that insulation of Ter is not caused by bridging of distant matS sites, also lending credence to a recent mobility experiment on various loci of the E. coli chromosome. Together, the investigations highlight the ability of an integrative model of the bacterial genome in elucidating the role of NAPs and in reconciling multiple experimental observations.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Ankit Gupta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Palash Bera
- Tata Institute of Fundamental Research, Hyderabad, India
| | | |
Collapse
|
13
|
Joyeux M. Organization of the bacterial nucleoid by DNA-bridging proteins and globular crowders. Front Microbiol 2023; 14:1116776. [PMID: 36925468 PMCID: PMC10011147 DOI: 10.3389/fmicb.2023.1116776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
The genomic DNA of bacteria occupies only a fraction of the cell called the nucleoid, although it is not bounded by any membrane and would occupy a volume hundreds of times larger than the cell in the absence of constraints. The two most important contributions to the compaction of the DNA coil are the cross-linking of the DNA by nucleoid proteins (like H-NS and StpA) and the demixing of DNA and other abundant globular macromolecules which do not bind to the DNA (like ribosomes). The present work deals with the interplay of DNA-bridging proteins and globular macromolecular crowders, with the goal of determining the extent to which they collaborate in organizing the nucleoid. In order to answer this question, a coarse-grained model was developed and its properties were investigated through Brownian dynamics simulations. These simulations reveal that the radius of gyration of the DNA coil decreases linearly with the effective volume ratio of globular crowders and the number of DNA bridges formed by nucleoid proteins in the whole range of physiological values. Moreover, simulations highlight the fact that the number of DNA bridges formed by nucleoid proteins depends crucially on their ability to self-associate (oligomerize). An explanation for this result is proposed in terms of the mean distance between DNA segments and the capacity of proteins to maintain DNA-bridging in spite of the thermal fluctuations of the DNA network. Finally, simulations indicate that non-associating proteins preserve a high mobility inside the nucleoid while contributing to its compaction, leading to a DNA/protein complex which looks like a liquid droplet. In contrast, self-associating proteins form a little deformable network which cross-links the DNA chain, with the consequence that the DNA/protein complex looks more like a gel.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, St Martin d'Hères, France
| |
Collapse
|
14
|
Cossa A, Trépout S, Wien F, Groen J, Le Brun E, Turbant F, Besse L, Pereiro E, Arluison V. Cryo soft X-ray tomography to explore Escherichia coli nucleoid remodeling by Hfq master regulator. J Struct Biol 2022; 214:107912. [PMID: 36283630 DOI: 10.1016/j.jsb.2022.107912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.
Collapse
Affiliation(s)
- Antoine Cossa
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Sylvain Trépout
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia.
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Johannes Groen
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Eva Pereiro
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Université Paris Cité, UFR Sciences du vivant, 75006 Paris cedex, France.
| |
Collapse
|
15
|
Sołtys K, Tarczewska A, Bystranowska D, Sozańska N. Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules. Biomolecules 2022; 12:907. [PMID: 35883463 PMCID: PMC9312465 DOI: 10.3390/biom12070907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/31/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules has emerged as a new paradigm in cell biology, and the process is one proposed mechanism for the formation of membraneless organelles (MLOs). Bacterial cells have only recently drawn strong interest in terms of studies on both liquid-to-liquid and liquid-to-solid phase transitions. It seems that these processes drive the formation of prokaryotic cellular condensates that resemble eukaryotic MLOs. In this review, we present an overview of the key microbial biomolecules that undergo LLPS, as well as the formation and organization of biomacromolecular condensates within the intracellular space. We also discuss the current challenges in investigating bacterial biomacromolecular condensates. Additionally, we highlight a summary of recent knowledge about the participation of bacterial biomolecules in a phase transition and provide some new in silico analyses that can be helpful for further investigations.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.T.); (D.B.); (N.S.)
| | | | | | | |
Collapse
|
16
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
17
|
Miah R, Siddiqa A, Chakraborty U, Tuli JF, Barman NK, Uddin A, Aziz T, Sharif N, Dey SK, Yamada M, Talukder AA. Development of high temperature simultaneous saccharification and fermentation by thermosensitive Saccharomyces cerevisiae and Bacillus amyloliquefaciens. Sci Rep 2022; 12:3630. [PMID: 35256663 PMCID: PMC8901927 DOI: 10.1038/s41598-022-07589-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Scarcity of energy and pollution are two major challenges that have become a threat to all living things worldwide. Bioethanol is a renewable, ecological-friendly clean energy that may be utilized to address these issues. This study aimed to develop simultaneous saccharification and fermentation (SSF) process through high temperature-substrate adaptation and co-cultivation of S. cerevisiae with other potential amylolytic strains. In this study, we adapted our previously screened thermosensitive Saccharomyces cerevisiae Dj-3 strain up-to 42 °C and also screened three potential thermotolerant amylolytic strains based on their starch utilization capability. We performed SSF fermentation at high temperature by adapted Dj-3 and amylolytic strains using 10.0% starch feedstock. Interestingly, we observed significant ethanol concentration [3.86% (v/v)] from high temperature simultaneous saccharification and fermentation (HSSF) of adapted Bacillus amyloliquefaciens (C-7) and Dj-3. We attribute the significant ethanol concentration from starch of this HSSF process to C-7’s high levels of glucoamylase activity (4.01 U/ml/min) after adaptation in starch (up-to 42 °C) as well as Dj-3's strong glucose fermentation capacity and also their ethanol stress tolerance capability. This study suggests the significant feasibility of our HSSF process.
Collapse
Affiliation(s)
- Roni Miah
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh.,Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan
| | - Ayesha Siddiqa
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh.,Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan
| | | | | | - Noyon Kumar Barman
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Aukhil Uddin
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Tareque Aziz
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mamoru Yamada
- Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh. .,Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan.
| |
Collapse
|
18
|
Facilitated Dissociation of Nucleoid Associated Proteins from DNA in the Bacterial Confinement. Biophys J 2022; 121:1119-1133. [PMID: 35257784 PMCID: PMC9034294 DOI: 10.1016/j.bpj.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription machinery depends on the temporal formation of protein-DNA complexes. Recent experiments demonstrated that not only the formation but also the lifetime of such complexes can affect the transcriptional machinery. In parallel, in vitro single-molecule studies showed that nucleoid-associated proteins (NAPs) leave the DNA rapidly as the bulk concentration of the protein increases via facilitated dissociation (FD). Nevertheless, whether such a concentration-dependent mechanism is functional in a bacterial cell, in which NAP levels and the 3d chromosomal structure are often coupled, is not clear a priori. Here, by using extensive coarse-grained molecular simulations, we model the unbinding of specific and nonspecific dimeric NAPs from a high-molecular-weight circular DNA molecule in a cylindrical structure mimicking the cellular confinement of a bacterial chromosome. Our simulations confirm that physiologically relevant peak protein levels (tens of micromolar) lead to highly compact chromosomal structures. This compaction results in rapid off rates (shorter DNA residence times) for specifically DNA-binding NAPs, such as the factor for inversion stimulation, which mostly dissociate via a segmental jump mechanism. Contrarily, for nonspecific NAPs, which are more prone to leave their binding sites via 1d sliding, the off rates decrease as the protein levels increase. The simulations with restrained chromosome models reveal that chromosome compaction is in favor of faster dissociation but only for specific proteins, and nonspecific proteins are not affected by the chromosome compaction. Overall, our results suggest that the cellular concentration level of a structural DNA-binding protein can be highly intermingled with its DNA residence time.
Collapse
|
19
|
Troung SF, Sukhodolets MV. The bacterial protein Hfq: Stable modifications and growth phase-dependent changes in SPAM profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122958. [PMID: 34628185 DOI: 10.1016/j.jchromb.2021.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
In bacteria transcription is coupled to translation, and while it is broadly accepted that transcription-translation complexes (TTCs) are formed in growing bacterial cells, the exact spatial organization of these macromolecular assemblies is not known with certainty. Recent studies indicated the formation of orderly cytosolic superstructures in growing E. coli cells. The bacterial nucleic acid (NA)-binding protein Hfq has been shown to function at the interface of RNA synthesis-degradation machinery; multiple, independent studies link Hfq to orderly cytosolic assemblies. In this work, using fast cell lysis/2D-PAGE and in vitro reconstitution analyses we studied the Hfq modifications and small protein-associated molecules (SPAM). We demonstrate that native Hfq carries stable modifications and simulate 2D patterns of native Hfq-SPAM complexes in reconstitution experiments with purified Hfq and synthetic NA probes. We also demonstrate that genetically engineered Hfq lacking the conserved arginine residues positioned near the rim of the disc formed by the subunits' N-terminal domains binds DNA with a reduced affinity in comparison with wild-type Hfq. These results are consistent with the proposed Hfq-mediated DNA remodeling and point to the involvement of this patch of conserved arginines in interactions with DNA.
Collapse
Affiliation(s)
- Stanley F Troung
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, United States
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, United States.
| |
Collapse
|
20
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R, Lamot T, Laloux G. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707-3720.e5. [PMID: 34256020 PMCID: PMC8445325 DOI: 10.1016/j.cub.2021.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction. The Bdellovibrio chromosome is polarized, with ori located near the invasive pole The highly compacted nucleoid excludes cytosolic proteins in non-replicative cells Replication and segregation of chromosomes are uncoupled from cell division The centromeric protein ParB localizes at parS in a cell-cycle-dependent manner
Collapse
Affiliation(s)
- Jovana Kaljević
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Terrens N V Saaki
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sander K Govers
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ophélie Remy
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
22
|
Ishihama A, Shimada T. Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 2021; 45:6312496. [PMID: 34196371 DOI: 10.1093/femsre/fuab032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulation for genome expression determines growth and adaptation of single-cell bacteria that are directly exposed to environment. The transcriptional apparatus in Escherichia coli K-12 is composed of RNA polymerase core enzyme and two groups of its regulatory proteins, seven species of promoter-recognition subunit sigma and about 300 species of transcription factors. The identification of regulatory targets for all these regulatory proteins is critical toward understanding the genome regulation as a whole. For this purpose, we performed a systematic search in vitro of the whole set of binding sites for each factor by gSELEX system. This review summarizes the accumulated knowledge of regulatory targets for more than 150 TFs from E. coli K-12. Overall TFs could be classified into four families: nucleoid-associated bifunctional TFs; global regulators; local regulators; and single-target regulators, in which the regulatory functions remain uncharacterized for the nucleoid-associated TFs. Here we overview the regulatory targets of two nucleoid-associated TFs, H-NS and its paralog StpA, both together playing the silencing role of a set of non-essential genes. Participation of LeuO and other global regulators have been indicated for the anti-silencing. Finally, we propose the hierarchy of TF network as a key framework of the bacterial genome regulation.
Collapse
Affiliation(s)
- Akira Ishihama
- Hosei University, Research Institute for Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
23
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
24
|
Lekontseva NV, Stolboushkina EA, Nikulin AD. Diversity of LSM Family Proteins: Similarities and Differences. BIOCHEMISTRY (MOSCOW) 2021; 86:S38-S49. [PMID: 33827399 DOI: 10.1134/s0006297921140042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the Lsm protein family are found in all three domains of life: bacteria, archaea, and eukarya. They are involved in numerous processes associated with RNA processing and gene expression regulation. A common structural feature of all Lsm family proteins is the presence of the Sm fold consisting of a five-stranded β-sheet and an α-helix at the N-terminus. Heteroheptameric eukaryotic Sm and Lsm proteins participate in the formation of spliceosomes and mRNA decapping. Homohexameric bacterial Lsm protein, Hfq, is involved in the regulation of transcription of different mRNAs by facilitating their interactions with small regulatory RNAs. Furthermore, recently obtained data indicate a new role of Hfq as a ribosome biogenesis factor, as it mediates formation of the productive structure of the 17S rRNA 3'- and 5'-sequences, facilitating their further processing by RNases. Lsm archaeal proteins (SmAPs) form homoheptamers and likely interact with single-stranded uridine-rich RNA elements, although the role of these proteins in archaea is still poorly understood. In this review, we discuss the structural features of the Lsm family proteins from different life domains and their structure-function relationships.
Collapse
Affiliation(s)
- Natalia V Lekontseva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Elena A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
25
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Impact of Self-Association on the Architectural Properties of Bacterial Nucleoid Proteins. Biophys J 2020; 120:370-378. [PMID: 33340542 DOI: 10.1016/j.bpj.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The chromosomal DNA of bacteria is folded into a compact body called the nucleoid, which is composed essentially of DNA (∼80%), RNA (∼10%), and a number of different proteins (∼10%). These nucleoid proteins act as regulators of gene expression and influence the organization of the nucleoid by bridging, bending, or wrapping the DNA. These so-called architectural properties of nucleoid proteins are still poorly understood. For example, the reason why certain proteins compact the DNA coil in certain environments but make the DNA more rigid instead in other environments is the subject of ongoing debates. Here, we address the question of the impact of the self-association of nucleoid proteins on their architectural properties and try to determine whether differences in self-association are sufficient to induce large changes in the organization of the DNA coil. More specifically, we developed two coarse-grained models of proteins, which interact identically with the DNA but self-associate differently by forming either clusters or filaments in the absence of the DNA. We showed through Brownian dynamics simulations that self-association of the proteins dramatically increases their ability to shape the DNA coil. Moreover, we observed that cluster-forming proteins significantly compact the DNA coil (similar to the DNA-bridging mode of H-NS proteins), whereas filament-forming proteins significantly increase the stiffness of the DNA chain instead (similar to the DNA-stiffening mode of H-NS proteins). This work consequently suggests that the knowledge of the DNA-binding properties of the proteins is in itself not sufficient to understand their architectural properties. Rather, their self-association properties must also be investigated in detail because they might actually drive the formation of different DNA-protein complexes.
Collapse
|
27
|
Schellhorn HE. Function, Evolution, and Composition of the RpoS Regulon in Escherichia coli. Front Microbiol 2020; 11:560099. [PMID: 33042067 PMCID: PMC7527412 DOI: 10.3389/fmicb.2020.560099] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
For many bacteria, successful growth and survival depends on efficient adaptation to rapidly changing conditions. In Escherichia coli, the RpoS alternative sigma factor plays a central role in the adaptation to many suboptimal growth conditions by controlling the expression of many genes that protect the cell from stress and help the cell scavenge nutrients. Neither RpoS or the genes it controls are essential for growth and, as a result, the composition of the regulon and the nature of RpoS control in E. coli strains can be variable. RpoS controls many genetic systems, including those affecting pathogenesis, phenotypic traits including metabolic pathways and biofilm formation, and the expression of genes needed to survive nutrient deprivation. In this review, I review the origin of RpoS and assess recent transcriptomic and proteomic studies to identify features of the RpoS regulon in specific clades of E. coli to identify core functions of the regulon and to identify more specialized potential roles for the regulon in E. coli subgroups.
Collapse
|
28
|
Irastortza-Olaziregi M, Amster-Choder O. RNA localization in prokaryotes: Where, when, how, and why. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1615. [PMID: 32851805 DOI: 10.1002/wrna.1615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Only recently has it been recognized that the transcriptome of bacteria and archaea can be spatiotemporally regulated. All types of prokaryotic transcripts-rRNAs, tRNAs, mRNAs, and regulatory RNAs-may acquire specific localization and these patterns can be temporally regulated. In some cases bacterial RNAs reside in the vicinity of the transcription site, but in many others, transcripts show distinct localizations to the cytoplasm, the inner membrane, or the pole of rod-shaped species. This localization, which often overlaps with that of the encoded proteins, can be achieved either in a translation-dependent or translation-independent fashion. The latter implies that RNAs carry sequence-level features that determine their final localization with the aid of RNA-targeting factors. Localization of transcripts regulates their posttranscriptional fate by affecting their degradation and processing, translation efficiency, sRNA-mediated regulation, and/or propensity to undergo RNA modifications. By facilitating complex assembly and liquid-liquid phase separation, RNA localization is not only a consequence but also a driver of subcellular spatiotemporal complexity. We foresee that in the coming years the study of RNA localization in prokaryotes will produce important novel insights regarding the fundamental understanding of membrane-less subcellular organization and lead to practical outputs with biotechnological and therapeutic implications. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
29
|
El Hamoui O, Yadav I, Radiom M, Wien F, Berret JF, van der Maarel JRC, Arluison V. Interactions between DNA and the Hfq Amyloid-like Region Trigger a Viscoelastic Response. Biomacromolecules 2020; 21:3668-3677. [PMID: 32786728 DOI: 10.1021/acs.biomac.0c00747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Escherichia coli Hfq is reported, involved in controlling the flow of a DNA solution. A combination of experimental methodologies has been used to probe the interaction of Hfq with DNA and to measure the rheological properties of the complex. A physical gel with a temperature reversible elasticity modulus is formed due to the formation of noncovalent cross-links. The mechanical response of the complexes shows that they are inhomogeneous soft solids. Our experiments indicate that the Hfq C-terminal region could contribute to the genome's mechanical response. The reported viscoelasticity of the DNA-protein complex might have implications for cellular processes involving molecular transport of DNA or segments thereof.
Collapse
Affiliation(s)
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Milad Radiom
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Jean-Francois Berret
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | | | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France.,Université de Paris, F-75006 Paris, France
| |
Collapse
|
30
|
Monteiro LMO, Sanches-Medeiros A, Westmann CA, Silva-Rocha R. Unraveling the Complex Interplay of Fis and IHF Through Synthetic Promoter Engineering. Front Bioeng Biotechnol 2020; 8:510. [PMID: 32626694 PMCID: PMC7314903 DOI: 10.3389/fbioe.2020.00510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 02/03/2023] Open
Abstract
Bacterial promoters are usually formed by multiple cis-regulatory elements recognized by a plethora of transcriptional factors (TFs). From those, global regulators are key elements since these TFs are responsible for the regulation of hundreds of genes in the bacterial genome. For instance, Fis and IHF are global regulators that play a major role in gene expression control in Escherichia coli, and usually, multiple cis-regulatory elements for these proteins are present at target promoters. Here, we investigated the relationship between the architecture of the cis-regulatory elements for Fis and IHF in E. coli. For this, we analyze 42 synthetic promoter variants harboring consensus cis-elements for Fis and IHF at different distances from the core -35/-10 region and in various numbers and combinations. We first demonstrated that although Fis preferentially recognizes its consensus cis-element, it can also recognize, to some extent, the consensus-binding site for IHF, and the same was true for IHF, which was also able to recognize Fis binding sites. However, changing the arrangement of the cis-elements (i.e., the position or number of sites) can completely abolish the non-specific binding of both TFs. More remarkably, we demonstrated that combining cis-elements for both TFs could result in Fis and IHF repressed or activated promoters depending on the final architecture of the promoters in an unpredictable way. Taken together, the data presented here demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications.
Collapse
Affiliation(s)
| | | | - Cauã Antunes Westmann
- Ribeirão Preto Medical School (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
31
|
Orans J, Kovach AR, Hoff KE, Horstmann NM, Brennan RG. Crystal structure of an Escherichia coli Hfq Core (residues 2-69)-DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res 2020; 48:3987-3997. [PMID: 32133526 PMCID: PMC7144919 DOI: 10.1093/nar/gkaa149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Hfq regulates bacterial gene expression post-transcriptionally by binding small RNAs and their target mRNAs, facilitating sRNA-mRNA annealing, typically resulting in translation inhibition and RNA turnover. Hfq is also found in the nucleoid and binds double-stranded (ds) DNA with a slight preference for A-tracts. Here, we present the crystal structure of the Escherichia coli Hfq Core bound to a 30 bp DNA, containing three 6 bp A-tracts. Although previously postulated to bind to the ‘distal’ face, three statistically disordered double stranded DNA molecules bind across the proximal face of the Hfq hexamer as parallel, straight rods with B-DNA like conformational properties. One DNA duplex spans the diameter of the hexamer and passes over the uridine-binding proximal-face pore, whereas the remaining DNA duplexes interact with the rims and serve as bridges between adjacent hexamers. Binding is sequence-independent with residues N13, R16, R17 and Q41 interacting exclusively with the DNA backbone. Atomic force microscopy data support the sequence-independent nature of the Hfq-DNA interaction and a role for Hfq in DNA compaction and nucleoid architecture. Our structure and nucleic acid-binding studies also provide insight into the mechanism of sequence-independent binding of Hfq to dsRNA stems, a function that is critical for proper riboregulation.
Collapse
Affiliation(s)
- Jillian Orans
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexander R Kovach
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kirsten E Hoff
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicola M Horstmann
- Department of Infectious Diseases, Infection Control Research, University of Texas MD Anderson Cancer Center, Houston TX 77054, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
32
|
Hołówka J, Zakrzewska-Czerwińska J. Nucleoid Associated Proteins: The Small Organizers That Help to Cope With Stress. Front Microbiol 2020; 11:590. [PMID: 32373086 PMCID: PMC7177045 DOI: 10.3389/fmicb.2020.00590] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The bacterial chromosome must be efficiently compacted to fit inside the small and crowded cell while remaining accessible for the protein complexes involved in replication, transcription, and DNA repair. The dynamic organization of the nucleoid is a consequence of both intracellular factors (i.e., simultaneously occurring cell processes) and extracellular factors (e.g., environmental conditions, stress agents). Recent studies have revealed that the bacterial chromosome undergoes profound topological changes under stress. Among the many DNA-binding proteins that shape the bacterial chromosome structure in response to various signals, NAPs (nucleoid associated proteins) are the most abundant. These small, basic proteins bind DNA with low specificity and can influence chromosome organization under changing environmental conditions (i.e., by coating the chromosome in response to stress) or regulate the transcription of specific genes (e.g., those involved in virulence).
Collapse
Affiliation(s)
- Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
33
|
Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S, Jacobs-Wagner C. Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria. Cell 2020; 177:1632-1648.e20. [PMID: 31150626 DOI: 10.1016/j.cell.2019.05.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023]
Abstract
The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.
Collapse
Affiliation(s)
- William T Gray
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yingjie Xiang
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sangjin Kim
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Park C, Jin Y, Kim YJ, Jeong H, Seong BL. RNA-binding as chaperones of DNA binding proteins from starved cells. Biochem Biophys Res Commun 2020; 524:484-489. [PMID: 32007271 DOI: 10.1016/j.bbrc.2020.01.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
DNA-binding proteins from starved cells (Dps) in Escherichia coli protects DNA from multiple stresses during the stationary phase by forming a stable Dps-DNA complex. In contrast, Dps cannot bind to DNA during the exponential phase and it has not been clear why Dps conditionally binds to DNA depending on the growth phase. In this study, we show that DNA-free Dps in the exponential phase can also bind to RNA and the preemptive binding of RNA precludes DNA from interacting with Dps. The critical role of RNA in modulating the stability and functional competence of Dps and their morphology, leads us to propose a two-state model of Dps in executing stress responses. In the exponential phase, Dps is present predominantly as ribonucleoprotein complex. Under starvation, RNAs are degraded by up-regulated RNases, activating Dps to bind with chromosomal DNAs protecting them from diverse stresses. A dual role of RNA as an inhibitor of DNA binding and chaperone to keep dynamic functional status of Dps would be crucial for operating an immediate protection of chromosomal DNAs on starvation. The holdase-type chaperoning role of RNA in Dps-mediated stress responses would shed light on the role of RNAs as chaperone (Chaperna).
Collapse
Affiliation(s)
- Chan Park
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Department of Biomaterials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoontae Jin
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Jun Kim
- Life Science and Biotechnology Department, Underwood Division, Underwood International College, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik L Seong
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Department of Biomaterials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
35
|
Wien F, Martinez D, Le Brun E, Jones NC, Vrønning Hoffmann S, Waeytens J, Berbon M, Habenstein B, Arluison V. The Bacterial Amyloid-Like Hfq Promotes In Vitro DNA Alignment. Microorganisms 2019; 7:microorganisms7120639. [PMID: 31816864 PMCID: PMC6956100 DOI: 10.3390/microorganisms7120639] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The Hfq protein is reported to be involved in environmental adaptation and virulence of several bacteria. In Gram-negative bacteria, Hfq mediates the interaction between regulatory noncoding RNAs and their target mRNAs. Besides these RNA-related functions, Hfq is also associated with DNA and is a part of the bacterial chromatin. Its precise role in DNA structuration is, however, unclear and whether Hfq plays a direct role in DNA-related processes such as replication or recombination is controversial. In previous works, we showed that Escherichia coli Hfq, or more precisely its amyloid-like C-terminal region (CTR), induces DNA compaction into a condensed form. In this paper, we evidence a new property for Hfq; precisely we show that its CTR influences double helix structure and base tilting, resulting in a strong local alignment of nucleoprotein Hfq:DNA fibers. The significance of this alignment is discussed in terms of chromatin structuration and possible functional consequences on evolutionary processes and adaptation to environment.
Collapse
Affiliation(s)
- Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Nykola C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, B1050 Bruxelles, Belgique;
- Laboratoire de Chimie Physique d’Orsay, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay 91400 Orsay, France
| | - Melanie Berbon
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- Université de Paris, UFR Sciences du vivant, 35 rue Hélène Brion, 75205 Paris cedex, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| |
Collapse
|
36
|
Park S, Reyer MA, McLean EL, Liu W, Fei J. An Improved Method for Bacterial Immunofluorescence Staining To Eliminate Antibody Exclusion from the Fixed Nucleoid. Biochemistry 2019; 58:4457-4465. [DOI: 10.1021/acs.biochem.9b00724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Joyeux M. Preferential Localization of the Bacterial Nucleoid. Microorganisms 2019; 7:E204. [PMID: 31331025 PMCID: PMC6680996 DOI: 10.3390/microorganisms7070204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes do not make use of a nucleus membrane to segregate their genetic material from the cytoplasm, so that their nucleoid is potentially free to explore the whole volume of the cell. Nonetheless, high resolution images of bacteria with very compact nucleoids show that such spherical nucleoids are invariably positioned at the center of mononucleoid cells. The present work aims to determine whether such preferential localization results from generic (entropic) interactions between the nucleoid and the cell membrane or instead requires some specific mechanism, like the tethering of DNA at mid-cell or periodic fluctuations of the concentration gradient of given chemical species. To this end, we performed numerical simulations using a coarse-grained model based on the assumption that the formation of the nucleoid results from a segregative phase separation mechanism driven by the de-mixing of the DNA and non-binding globular macromolecules. These simulations show that the abrupt compaction of the DNA coil, which takes place at large crowder density, close to the jamming threshold, is accompanied by the re-localization of the DNA coil close to the regions of the bounding wall with the largest curvature, like the hemispherical caps of rod-like cells, as if the DNA coil were suddenly acquiring the localization properties of a solid sphere. This work therefore supports the hypothesis that the localization of compact nucleoids at regular cell positions involves either some anchoring of the DNA to the cell membrane or some dynamical localization mechanism.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, 38400 Grenoble, France.
| |
Collapse
|
38
|
Kim J, Goñi‐Moreno A, Calles B, de Lorenzo V. Spatial organization of the gene expression hardware in
Pseudomonas putida. Environ Microbiol 2019; 21:1645-1658. [DOI: 10.1111/1462-2920.14544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/09/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Belén Calles
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC, Campus de Cantoblanco Madrid, 28049 Spain
| | - Víctor de Lorenzo
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC, Campus de Cantoblanco Madrid, 28049 Spain
| |
Collapse
|
39
|
Talukder AA, Adnan N, Siddiqa A, Miah R, Tuli JF, Khan ST, Dey SK, Lertwattanasakul N, Yamada M. Fuel ethanol production using xylose assimilating and high ethanol producing thermosensitive Saccharomyces cerevisiae isolated from date palm juice in Bangladesh. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Abstract
Diverse mechanisms and functions of posttranscriptional regulation by small regulatory RNAs and RNA-binding proteins have been described in bacteria. In contrast, little is known about the spatial organization of RNAs in bacterial cells. In eukaryotes, subcellular localization and transport of RNAs play important roles in diverse physiological processes, such as embryonic patterning, asymmetric cell division, epithelial polarity, and neuronal plasticity. It is now clear that bacterial RNAs also can accumulate at distinct sites in the cell. However, due to the small size of bacterial cells, RNA localization and localization-associated functions are more challenging to study in bacterial cells, and the underlying molecular mechanisms of transcript localization are less understood. Here, we review the emerging examples of RNAs localized to specific subcellular locations in bacteria, with indications that subcellular localization of transcripts might be important for gene expression and regulatory processes. Diverse mechanisms for bacterial RNA localization have been suggested, including close association to their genomic site of transcription, or to the localizations of their protein products in translation-dependent or -independent processes. We also provide an overview of the state of the art of technologies to visualize and track bacterial RNAs, ranging from hybridization-based approaches in fixed cells to in vivo imaging approaches using fluorescent protein reporters and/or RNA aptamers in single living bacterial cells. We conclude with a discussion of open questions in the field and ongoing technological developments regarding RNA imaging in eukaryotic systems that might likewise provide novel insights into RNA localization in bacteria.
Collapse
|
41
|
Malabirade A, Partouche D, El Hamoui O, Turbant F, Geinguenaud F, Recouvreux P, Bizien T, Busi F, Wien F, Arluison V. Revised role for Hfq bacterial regulator on DNA topology. Sci Rep 2018; 8:16792. [PMID: 30429520 PMCID: PMC6235962 DOI: 10.1038/s41598-018-35060-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNA. Besides these RNA-related functions, Hfq has also been described as one of the nucleoid associated proteins shaping the bacterial chromosome. Therefore, Hfq appears as a versatile nucleic acid-binding protein, which functions are probably even more numerous than those initially suggested. For instance, E. coli Hfq, and more precisely its C-terminal region (CTR), has been shown to induce DNA compaction into a condensed form. In this paper, we establish that DNA induces Hfq-CTR amyloidogenesis, resulting in a change of DNA local conformation. Furthermore, we clarify the effect of Hfq on DNA topology. Our results evidence that, even if the protein has a strong propensity to compact DNA thanks to its amyloid region, it does not affect overall DNA topology. We confirm however that hfq gene disruption influences plasmid supercoiling in vivo, indicating that the effect on DNA topology in former reports was indirect. Most likely, this effect is related to small regulatory sRNA-Hfq-based regulation of another protein that influences DNA supercoiling, possibly a nucleoid associated protein such as H-NS or Dps. Finally, we hypothesise that this indirect effect on DNA topology explains, at least partially, the previously reported effect of Hfq on plasmid replication efficiency.
Collapse
Affiliation(s)
- Antoine Malabirade
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Omar El Hamoui
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | | | | | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florent Busi
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Université Paris Diderot, 75013, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France. .,Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France.
| |
Collapse
|
42
|
Guttula D, Liu F, van Kan JA, Arluison V, van der Maarel JRC. Effect of HU protein on the conformation and compaction of DNA in a nanochannel. SOFT MATTER 2018; 14:2322-2328. [PMID: 29457176 DOI: 10.1039/c7sm02118f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of the heat unstable nucleoid structuring protein HU on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. Pre-incubated DNA molecules contract in the longitudinal direction of the channel with increasing concentration of HU. This contraction is mainly due to HU-mediated bridging of distal DNA segments and is controlled by channel diameter as well as ionic composition and strength of the buffer. For over-threshold concentrations of HU, the DNA molecules compact into an condensed form. Divalent magnesium ions facilitate, but are not required for bridging nor condensation. The conformational response following exposure to HU was investigated with a nanofluidic device that allows an in situ change in environmental solution conditions. The stretch of the nucleoprotein complex first increases, reaches an apex in ∼20 min, and subsequently decreases to an equilibrium value pertaining to pre-incubated DNA molecules after ∼2 h. This observation is rationalised in terms of a time-dependent bending rigidity by structural rearrangement of bound HU protein followed by compaction through bridging interaction. Results are discussed in regard to previous results obtained for nucleoid associated proteins H-NS and Hfq, with important implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Durgarao Guttula
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Fan Liu
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France and Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
43
|
Ferrándiz MJ, Carreño D, Ayora S, de la Campa AG. HU of Streptococcus pneumoniae Is Essential for the Preservation of DNA Supercoiling. Front Microbiol 2018; 9:493. [PMID: 29662473 PMCID: PMC5890176 DOI: 10.3389/fmicb.2018.00493] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 01/11/2023] Open
Abstract
The histone-like protein HU is a conserved nucleoid-associated protein that is involved in the maintenance of the bacterial chromosome architecture. It is the only known nucleoid-associated protein in Streptococcus pneumoniae, but it has not been studied. The pneumococcal gene encoding this protein, hlp, is shown herein to be essential for cell viability. Its disruption was only possible either when it was duplicated in the chromosome and its expression induced from the P Zn promoter, or when hlp was cloned into a plasmid under the control of the inducible P mal promoter. In vitro assays indicated that pneumococcal HU shows a preference for binding to supercoiled DNA rather than to linear or nicked DNA. In vivo experiments in which the amount of HU was manipulated showed a relationship between the amount of HU and the level of DNA supercoiling. A twofold reduction in the amount of HU triggered a 21% increase in DNA relaxation in untreated cells. However, in cells treated with novobiocin, a drug that relaxes DNA by inhibiting DNA gyrase, a 35% increase in DNA relaxation was observed, instead of the expected 20% in cells with a constitutive HU amount. Conversely, a fourfold HU increase caused only 14% of DNA relaxation in the presence of novobiocin. Taken together, these results support an essential role for HU in the maintenance of DNA supercoiling in S. pneumoniae.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
44
|
Malabirade A, Jiang K, Kubiak K, Diaz-Mendoza A, Liu F, van Kan JA, Berret JF, Arluison V, van der Maarel JRC. Compaction and condensation of DNA mediated by the C-terminal domain of Hfq. Nucleic Acids Res 2017; 45:7299-7308. [PMID: 28521053 PMCID: PMC5499573 DOI: 10.1093/nar/gkx431] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022] Open
Abstract
Hfq is a bacterial protein that is involved in several aspects of nucleic acids metabolism. It has been described as one of the nucleoid associated proteins shaping the bacterial chromosome, although it is better known to influence translation and turnover of cellular RNAs. Here, we explore the role of Escherichia coli Hfq's C-terminal domain in the compaction of double stranded DNA. Various experimental methodologies, including fluorescence microscopy imaging of single DNA molecules confined inside nanofluidic channels, atomic force microscopy, isothermal titration microcalorimetry and electrophoretic mobility assays have been used to follow the assembly of the C-terminal and N-terminal regions of Hfq on DNA. Results highlight the role of Hfq's C-terminal arms in DNA binding, change in mechanical properties of the double helix and compaction of DNA into a condensed form. The propensity for bridging and compaction of DNA by the C-terminal domain might be related to aggregation of bound protein and may have implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Antoine Malabirade
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France
| | - Kai Jiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Krzysztof Kubiak
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France.,Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Fan Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | | | - Véronique Arluison
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France.,Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
45
|
Ushijima Y, Ohniwa RL, Morikawa K. Identification of nucleoid associated proteins (NAPs) under oxidative stress in Staphylococcus aureus. BMC Microbiol 2017; 17:207. [PMID: 28969590 PMCID: PMC5625760 DOI: 10.1186/s12866-017-1114-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background Bacterial nucleoid consists of genome DNA, RNA, and hundreds of nucleoid-associated proteins (NAPs). Escherichia coli nucleoid is compacted towards the stationary phase, replacing most log-phase NAPs with the major stationary-phase nucleoid protein, Dps. In contrast, Staphylococcus aureus nucleoid sustains the fiber structures throughout the growth. Instead, the Dps homologue, MrgA, expresses under oxidative stress conditions to clump the nucleoid, but the composition of the clumped nucleoid was elusive. Results The staphylococcal nucleoid under oxidative stress was isolated by sucrose gradient centrifugation, and the proteins were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). We identified 299 proteins in the nucleoid under oxidative stress, including 113 csNAPs (contaminant-subtracted NAPs). Comparison with the previously identified csNAPs in log- and stationary phase indicated that one fifth of the csNAPs under oxidative stress were the constitutive nucleoid components; importantly, several factors including HU, SarA, FabZ, and ribosomes were sustained under oxidative stress. Some factors (e.g. SA1663 and SA0092/SA0093) with unknown functions were included in the csNAPs list specifically under oxidative stress condition. Conclusion Nucleoid constitutively holds Hu, SarA, FabG, and ribosomal proteins even under the oxidative stress, reflecting the active functions of the clumped nucleoid, unlikely to the dormant E. coli nucleoid compacted in the stationary phase or starvation. Electronic supplementary material The online version of this article (10.1186/s12866-017-1114-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuri Ushijima
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,Present address: Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | - Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| |
Collapse
|
46
|
Malabirade A, Morgado-Brajones J, Trépout S, Wien F, Marquez I, Seguin J, Marco S, Velez M, Arluison V. Membrane association of the bacterial riboregulator Hfq and functional perspectives. Sci Rep 2017; 7:10724. [PMID: 28878270 PMCID: PMC5587644 DOI: 10.1038/s41598-017-11157-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022] Open
Abstract
Hfq is a bacterial RNA binding protein that carries out several roles in genetic expression regulation, mainly at the post-transcriptional level. Previous studies have shown its importance in growth and virulence of bacteria. Here, we provide the direct observation of its ability to interact with membranes. This was established by co-sedimentation assay, cryo-transmission electron (cryo-TEM) and atomic force (AFM) microscopies. Furthermore, our results suggest a role for its C-terminus amyloidogenic domain in membrane disruption. Precisely, AFM images of lipid bilayers in contact with Hfq C-terminus fibrils show the emergence of holes with a size dependent on the time of interaction. Cryo-TEM observations also show that liposomes are in contact with clusters of fibrils, with occasional deformation of the vesicles and afterward the apparition of a multitude of tiny vesicles in the proximity of the fibrils, suggesting peptide-induced breakage of the liposomes. Finally, circular dichroism spectroscopy demonstrated a change in the secondary structure of Hfq C-terminus upon interaction with liposomes. Altogether, these results show an unexpected property of Hfq and suggest a possible new role for the protein, exporting sRNA outside of the bacterial cell.
Collapse
Affiliation(s)
- Antoine Malabirade
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Javier Morgado-Brajones
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France.,Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie, 2, Cantoblanco, E-28049, Madrid, Spain
| | - Sylvain Trépout
- Institut Curie, Research Center, PSL Research University, Chemistry, Modelisation and Imaging for Biology (CMIB) Bât 110-112, Centre Universitaire, 91405, Orsay, France.,INSERM U 1196, CNRS UMR 9187, Université Paris Saclay, Université Paris-Sud, Bât 110-112, Centre Universitaire, Rue Henri Becquerel, 91405, Orsay, France
| | - Frank Wien
- DISCO Beamline, Synchrotron SOLEIL, 91192, Gif-sur-Yvette, France
| | - Ileana Marquez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie, 2, Cantoblanco, E-28049, Madrid, Spain
| | - Jérôme Seguin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, Cedex, France
| | - Sergio Marco
- Institut Curie, Research Center, PSL Research University, Chemistry, Modelisation and Imaging for Biology (CMIB) Bât 110-112, Centre Universitaire, 91405, Orsay, France.,INSERM U 1196, CNRS UMR 9187, Université Paris Saclay, Université Paris-Sud, Bât 110-112, Centre Universitaire, Rue Henri Becquerel, 91405, Orsay, France
| | - Marisela Velez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie, 2, Cantoblanco, E-28049, Madrid, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France. .,Université Paris Diderot, 75013, Paris, France.
| |
Collapse
|
47
|
Antipov SS, Tutukina MN, Preobrazhenskaya EV, Kondrashov FA, Patrushev MV, Toshchakov SV, Dominova I, Shvyreva US, Vrublevskaya VV, Morenkov OS, Sukharicheva NA, Panyukov VV, Ozoline ON. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner. PLoS One 2017; 12:e0182800. [PMID: 28800583 PMCID: PMC5553809 DOI: 10.1371/journal.pone.0182800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Dps is a multifunctional homododecameric protein that oxidizes Fe2+ ions accumulating them in the form of Fe2O3 within its protein cavity, interacts with DNA tightly condensing bacterial nucleoid upon starvation and performs some other functions. During the last two decades from discovery of this protein, its ferroxidase activity became rather well studied, but the mechanism of Dps interaction with DNA still remains enigmatic. The crucial role of lysine residues in the unstructured N-terminal tails led to the conventional point of view that Dps binds DNA without sequence or structural specificity. However, deletion of dps changed the profile of proteins in starved cells, SELEX screen revealed genomic regions preferentially bound in vitro and certain affinity of Dps for artificial branched molecules was detected by atomic force microscopy. Here we report a non-random distribution of Dps binding sites across the bacterial chromosome in exponentially growing cells and show their enrichment with inverted repeats prone to form secondary structures. We found that the Dps-bound regions overlap with sites occupied by other nucleoid proteins, and contain overrepresented motifs typical for their consensus sequences. Of the two types of genomic domains with extensive protein occupancy, which can be highly expressed or transcriptionally silent only those that are enriched with RNA polymerase molecules were preferentially occupied by Dps. In the dps-null mutant we, therefore, observed a differentially altered expression of several targeted genes and found suppressed transcription from the dps promoter. In most cases this can be explained by the relieved interference with Dps for nucleoid proteins exploiting sequence-specific modes of DNA binding. Thus, protecting bacterial cells from different stresses during exponential growth, Dps can modulate transcriptional integrity of the bacterial chromosome hampering RNA biosynthesis from some genes via competition with RNA polymerase or, vice versa, competing with inhibitors to activate transcription.
Collapse
Affiliation(s)
- S. S. Antipov
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Biophysics and Biotechnology, Voronezh State University, Voronezh, Russian Federation
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - M. N. Tutukina
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - E. V. Preobrazhenskaya
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - F. A. Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, Barcelona, Spain
| | - M. V. Patrushev
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - S. V. Toshchakov
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - I. Dominova
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - U. S. Shvyreva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Vrublevskaya
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. S. Morenkov
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - N. A. Sukharicheva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Panyukov
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Bioinformatics, Institute of Mathematical Problems of Biology—the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. N. Ozoline
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| |
Collapse
|
48
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
49
|
Nillegoda NB, Stank A, Malinverni D, Alberts N, Szlachcic A, Barducci A, De Los Rios P, Wade RC, Bukau B. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. eLife 2017; 6. [PMID: 28504929 PMCID: PMC5542770 DOI: 10.7554/elife.24560] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes. DOI:http://dx.doi.org/10.7554/eLife.24560.001 All cells must maintain their proteins in a correctly folded shape to survive. The task of sustaining a healthy set of proteins has increased with the rise of complex life from prokaryotes (such as bacteria) that form simple single-celled organisms to eukaryotes (such as yeast, plants and multicellular animals). As a result of organisms ageing or acquiring genetic mutations, or under stressful conditions such as high temperature, proteins can lose their normal shape and clump together to form “aggregates”. These aggregates are potentially toxic to cells and have been linked to many human diseases including neurodegeneration and cancer. Cells contain molecular machines that help break down aggregates and subsequently recycle or rescue trapped proteins. Some of these machines are based around a protein called Hsp70, which can perform a wide range of protein folding processes. So-called J-proteins help Hsp70 to select aggregates to be targeted for break down. It used to be thought that different classes of J-proteins interacted with Hsp70 separately. However, in 2015, researchers showed that in humans, two different classes of J-proteins can bind to each other to form a “complex”, which has distinct aggregate selection properties. Now, Nillegoda et al. – including several of the researchers involved in the 2015 study – have examined the evolutionary history of these J-protein complexes. This revealed that different classes (A and B) of J-proteins first cooperated after prokaryotes and eukaryotes diverged from each other. In particular, the molecular machinery that breaks down aggregates in yeast cells – but not the machinery found in bacteria – depends on complexes formed from the two classes of J-proteins. Further investigation revealed that in humans, J-proteins have structural features that ensure they pair up correctly to perform unique activities. Furthermore, Nillegoda et al. suggest that cooperation between J-proteins may have enabled organisms such as humans – which contain over 40 distinct J-proteins – to carry out further specialized protein-folding tasks that do not occur in prokaryotes. Overall, the findings presented by Nillegoda et al. reveal another important layer to protein quality control in eukaryotic cells. The next step is to understand the possible roles of different J-protein complexes play in J-protein associated cellular protein quality control processes such as preventing protein aggregation, refolding or recycling abnormal proteins. This knowledge could ultimately be used to develop treatments for diseases and disorders in which protein aggregates form. DOI:http://dx.doi.org/10.7554/eLife.24560.002
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany.,DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Stank
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, Heidelberg, Germany
| | - Duccio Malinverni
- Laboratory of Statistical Biophysics, School of Basic Sciences, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Niels Alberts
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Anna Szlachcic
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Alessandro Barducci
- Inserm, U1054, Montpellier, France.,CNRS, UMR 5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, School of Basic Sciences, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rebecca C Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany.,DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Pelletier J, Jun S. Isolation and Characterization of Bacterial Nucleoids in Microfluidic Devices. Methods Mol Biol 2017; 1624:311-322. [PMID: 28842892 DOI: 10.1007/978-1-4939-7098-8_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report methods for isolation of Escherichia coli nucleoids in microfluidic devices, allowing characterization of nucleoids during a controlled in vivo to in vitro transition. Biochemically, nucleoids are isolated by gentle osmotic lysis, which minimally perturbs nucleoid-associated proteins (NAPs). Biophysically, nucleoids are isolated in microfluidic chambers, which mimic confinement within the cell, as well as facilitate diffusive buffer exchange around nucleoids without subjecting them to flow. These methods can be used to characterize interactions between NAPs and whole nucleoids, and to investigate nucleoid structure and dynamics in confinement. We present protocols for isolation, quantification, and perturbation of nucleoids in microfluidic confinement.
Collapse
Affiliation(s)
- James Pelletier
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Suckjoon Jun
- UCSD Physics and Molecular Biology, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|