1
|
Sarnaik AP, Shinde S, Mhatre A, Jansen A, Jha AK, McKeown H, Davis R, Varman AM. Unravelling the hidden power of esterases for biomanufacturing of short-chain esters. Sci Rep 2023; 13:10766. [PMID: 37402758 DOI: 10.1038/s41598-023-37542-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Microbial production of esters has recently garnered wide attention, but the current production metrics are low. Evidently, the ester precursors (organic acids and alcohols) can be accumulated at higher titers by microbes like Escherichia coli. Hence, we hypothesized that their 'direct esterification' using esterases will be efficient. We engineered esterases from various microorganisms into E. coli, along with overexpression of ethanol and lactate pathway genes. High cell density fermentation exhibited the strains possessing esterase-A (SSL76) and carbohydrate esterase (SSL74) as the potent candidates. Fed-batch fermentation at pH 7 resulted in 80 mg/L of ethyl acetate and 10 mg/L of ethyl lactate accumulation by SSL76. At pH 6, the total ester titer improved by 2.5-fold, with SSL76 producing 225 mg/L of ethyl acetate, and 18.2 mg/L of ethyl lactate, the highest reported titer in E. coli. To our knowledge, this is the first successful demonstration of short-chain ester production by engineering 'esterases' in E. coli.
Collapse
Affiliation(s)
- Aditya P Sarnaik
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Somnath Shinde
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Haley McKeown
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Ryan Davis
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA.
| | - Arul M Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Moutsoglou DM, Tatah J, Prisco SZ, Prins KW, Staley C, Lopez S, Blake M, Teigen L, Kazmirczak F, Weir EK, Kabage AJ, Guan W, Khoruts A, Thenappan T. Pulmonary Arterial Hypertension Patients Have a Proinflammatory Gut Microbiome and Altered Circulating Microbial Metabolites. Am J Respir Crit Care Med 2023; 207:740-756. [PMID: 36343281 PMCID: PMC10037487 DOI: 10.1164/rccm.202203-0490oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: Inflammation drives pulmonary arterial hypertension (PAH). Gut dysbiosis causes immune dysregulation and systemic inflammation by altering circulating microbial metabolites; however, little is known about gut dysbiosis and microbial metabolites in PAH. Objectives: To characterize the gut microbiome and microbial metabolites in patients with PAH. Methods: We performed 16S ribosomal RNA gene and shotgun metagenomics sequencing on stool from patients with PAH, family control subjects, and healthy control subjects. We measured markers of inflammation, gut permeability, and microbial metabolites in plasma from patients with PAH, family control subjects, and healthy control subjects. Measurements and Main Results: The gut microbiome was less diverse in patients with PAH. Shannon diversity index correlated with measures of pulmonary vascular disease but not with right ventricular function. Patients with PAH had a distinct gut microbial signature at the phylogenetic level, with fewer copies of gut microbial genes that produce antiinflammatory short-chain fatty acids (SCFAs) and secondary bile acids and lower relative abundances of species encoding these genes. Consistent with the gut microbial changes, patients with PAH had relatively lower plasma concentrations of SCFAs and secondary bile acids. Patients with PAH also had enrichment of species with the microbial genes that encoded the proinflammatory microbial metabolite trimethylamine. The changes in the gut microbiome and circulating microbial metabolites between patients with PAH and family control subjects were not as substantial as the differences between patients with PAH and healthy control subjects. Conclusions: Patients with PAH have proinflammatory gut dysbiosis, in which lower circulating SCFAs and secondary bile acids may facilitate pulmonary vascular disease. These findings support investigating modulation of the gut microbiome as a potential treatment for PAH.
Collapse
Affiliation(s)
| | - Jasmine Tatah
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Kurt W. Prins
- Division of Cardiovascular Medicine, Department of Medicine
| | - Christopher Staley
- Division of Basic and Translational Research, Department of Surgery, and
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Madelyn Blake
- Division of Cardiovascular Medicine, Department of Medicine
| | - Levi Teigen
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | | | | | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
3
|
Tuccillo F, Wang Y, Edelmann M, Lampi AM, Coda R, Katina K. Fermentation Conditions Affect the Synthesis of Volatile Compounds, Dextran, and Organic Acids by Weissella confusa A16 in Faba Bean Protein Concentrate. Foods 2022; 11:3579. [PMID: 36429171 PMCID: PMC9689515 DOI: 10.3390/foods11223579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Fermentation with Weissella confusa A16 could improve the flavor of various plant-based sources. However, less is known about the influence of fermentation conditions on the profile of volatile compounds, dextran synthesis and acidity. The present work investigates the synthesis of potential flavor-active volatile compounds, dextran, acetic acid, and lactic acid, as well as the changes in viscosity, pH, and total titratable acidity, during fermentation of faba bean protein concentrate with W. confusa A16. A Response Surface Methodology was applied to study the effect of time, temperature, dough yield, and inoculum ratio on the aforementioned responses. Twenty-nine fermentations were carried out using a Central Composite Face design. A total of 39 volatile organic compounds were identified: 2 organic acids, 7 alcohols, 8 aldehydes, 2 alkanes, 12 esters, 3 ketones, 2 aromatic compounds, and 3 terpenes. Long fermentation time and high temperature caused the formation of ethanol and ethyl acetate and the reduction of hexanal, among other compounds linked to the beany flavor. Levels of dextran, acetic acid, and lactic acid increased with increasing temperature, time, and dough yield. Optimal points set for increased dextran and reduced acidity were found at low temperatures and high dough yield. Such conditions would result in hexanal, ethyl acetate and ethanol having a relative peak area of 35.9%, 7.4%, and 4.9%, respectively.
Collapse
Affiliation(s)
- Fabio Tuccillo
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Yaqin Wang
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anna-Maija Lampi
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Faculty of Agriculture and Forestry, University of Helsinki, FI-00100 Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
4
|
Caputo E, Meinardi CA, Mandrich L. Exogenous Enzymes in Cheese Making: An Overview. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220218111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The flavour in mature cheese results from a complex series of biochemical events that occur in the curd during ripening. More than 500 varieties of cheese are produced in the world, and each of them possesses its typical sensory characteristics. Flavour depends on milk variety, starter bacteria used in cheese-making and ripening.
Amino acids and free fatty acids (FFA) act mainly as precursors of a series of catabolic reactions, still not well understood. These reactions lead to the production of aroma compounds such as esters, fatty acids, aldehydes, alcohols, ketones, hydrocarbons, lactones, and sulphur.
Enzymes involved in all these processes are derived from milk, Lactic Acid Bacteria (LAB), Non-Starter Lactic Acid Bacteria (NSLAB), rennet, or fungi. In cheese industrial production, the milk pasteurization process leads to the removal of endogenous bacteria, therefore it is necessary to add exogenous enzymes to enrich and standardize cheeses flavour.
Here, we reviewed some exogenous enzymes used in industrial cheeses production, or which have interesting potential in cheese making and ripening.
Collapse
Affiliation(s)
- Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino, 111, 80131 Naples, Italy
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Carlos Alberto Meinardi
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET) Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina.
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET) Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems IRET-CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Espinosa-Gongora C, Jessen LR, Kieler IN, Damborg P, Bjørnvad CR, Gudeta DD, Pires Dos Santos T, Sablier-Gallis F, Sayah-Jeanne S, Corbel T, Nevière A, Hugon P, Saint-Lu N, de Gunzburg J, Guardabassi L. Impact of oral amoxicillin and amoxicillin/clavulanic acid treatment on bacterial diversity and β-lactam resistance in the canine faecal microbiota. J Antimicrob Chemother 2021; 75:351-361. [PMID: 31778166 DOI: 10.1093/jac/dkz458] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aminopenicillins with or without a β-lactamase inhibitor are widely used in both human and veterinary medicine. However, little is known about their differential impact on the gut microbiota and development of antimicrobial resistance. OBJECTIVES To investigate changes in the faecal microbiota of dogs treated with amoxicillin or amoxicillin/clavulanic acid. METHODS Faeces collected from 42 dogs (21 per treatment group) immediately before, during and 1 week after termination of oral treatment with amoxicillin or amoxicillin/clavulanic acid were analysed by culture and 16S rRNA gene sequence analysis. RESULTS In both groups, bacterial counts on ampicillin selective agar revealed an increase in the proportion of ampicillin-resistant Escherichia coli during treatment, and an increased occurrence and proportion of ampicillin-resistant enterococci during and after treatment. 16S rRNA gene analysis showed reductions in microbial richness and diversity during treatment followed by a return to pre-treatment conditions approximately 1 week after cessation of amoxicillin or amoxicillin/clavulanic acid treatment. While no significant differences were observed between the effects of amoxicillin and amoxicillin/clavulanic acid on microbial richness and diversity, treatment with amoxicillin/clavulanic acid reduced the abundance of taxa that are considered part of the beneficial microbiota (such as Roseburia, Dialister and Lachnospiraceae) and enriched Escherichia, although the latter result was not corroborated by phenotypic counts. CONCLUSIONS Our results suggest a limited effect of clavulanic acid on selection of antimicrobial resistance and microbial richness when administered orally in combination with amoxicillin. However, combination with this β-lactamase inhibitor appears to broaden the spectrum of amoxicillin, with potential negative consequences on gut health.
Collapse
Affiliation(s)
- Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK 1870, Frederiksberg C, Denmark
| | - Lisbeth Rem Jessen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, DK 1870, Frederiksberg C, Denmark
| | - Ida Nordang Kieler
- Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, DK 1870, Frederiksberg C, Denmark
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK 1870, Frederiksberg C, Denmark
| | - Charlotte Reinhard Bjørnvad
- Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, DK 1870, Frederiksberg C, Denmark
| | - Dereje Dadi Gudeta
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK 1870, Frederiksberg C, Denmark
| | - Teresa Pires Dos Santos
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK 1870, Frederiksberg C, Denmark
| | | | | | - Tanguy Corbel
- Da Volterra, 172 rue de Charonne, 75011 Paris, France
| | | | - Perrine Hugon
- Da Volterra, 172 rue de Charonne, 75011 Paris, France
| | | | | | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK 1870, Frederiksberg C, Denmark.,Department of Pathobiology & Population Sciences, Royal Veterinary College, Hawkhead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK
| |
Collapse
|
6
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Biomarkers associated with cheese quality uncovered by integrative multi-omic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Ruiz Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F. Diversity and Functional Properties of Lactic Acid Bacteria Isolated From Wild Fruits and Flowers Present in Northern Argentina. Front Microbiol 2019; 10:1091. [PMID: 31164879 PMCID: PMC6536596 DOI: 10.3389/fmicb.2019.01091] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/30/2019] [Indexed: 02/03/2023] Open
Abstract
Lactic acid bacteria (LAB) are capable of converting carbohydrate substrates into organic acids (mainly lactic acid) and producing a wide range of metabolites. Due to their interesting beneficial properties, LAB are widely used as starter cultures, as probiotics, and as microbial cell factories. Exploring LAB present in unknown niches may lead to the isolation of unique species or strains with relevant technological properties. Autochthonous rather than allochthonous starter cultures are preferred in the current industry of fermented food products, due to better adaptation and performance of autochthonous strains to the matrix they originate from. In this work, the lactic microbiota of eight different wild tropical types of fruits and four types of flowers were studied. The ability of the isolated strains to produce metabolites of interest to the food industry was evaluated. The presence of 21 species belonging to the genera Enterococcus, Fructobacillus, Lactobacillus, Lactococcus, Leuconostoc, and Weissella was evidenced by using culture-dependent techniques. The isolated LAB corresponded to 95 genotypically differentiated strains by applying rep-PCR and sequencing of the 16S rRNA gene; subsequently, representative strains of the different isolated species were studied for technological properties, such as fast growth rate and acidifying capacity; pectinolytic and cinnamoyl esterase activities, and absence of biogenic amine biosynthesis. Additionally, the strains' capacity to produce ethyl esters as well as mannitol was evaluated. The isolated fruit- and flower-origin LAB displayed functional properties that validate their potential use in the manufacture of fermented fruit-based products setting the background for the design of novel functional foods.
Collapse
Affiliation(s)
- Luciana G Ruiz Rodríguez
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Florencia Mohamed
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Juliana Bleckwedel
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Roxana Medina
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elvira M Hebert
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Fernanda Mozzi
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
8
|
Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Gao P, Jiang Q, Xu Y, Xia W. Biosynthesis of acetate esters by dominate strains, isolated from Chinese traditional fermented fish (Suan yu). Food Chem 2018; 244:44-49. [DOI: 10.1016/j.foodchem.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
|
10
|
Blaya J, Barzideh Z, LaPointe G. Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the cheese environment. J Dairy Sci 2017; 101:3611-3629. [PMID: 29274982 DOI: 10.3168/jds.2017-13345] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
The microbiota of ripening cheese is dominated by lactic acid bacteria, which are either added as starters and adjunct cultures or originate from the production and processing environments (nonstarter or NSLAB). After curd formation and pressing, starters reach high numbers, but their viability then decreases due to lactose depletion, salt addition, and low pH and temperature. Starter autolysis releases cellular contents, including nutrients and enzymes, into the cheese matrix. During ripening, NSLAB may attain cell densities up to 8 log cfu per g after 3 to 9 mo. Depending on the species and strain, their metabolic activity may contribute to defects or inconsistency in cheese quality and to the development of typical cheese flavor. The availability of gene and genome sequences has enabled targeted detection of specific cheese microbes and their gene expression over the ripening period. Integrated systems biology is needed to combine the multiple perspectives of post-genomics technologies to elucidate the metabolic interactions among microorganisms. Future research should delve into the variation in cell physiology within the microbial populations, because spatial distribution within the cheese matrix will lead to microenvironments that could affect localized interactions of starters and NSLAB. Microbial community modeling can contribute to improving the efficiency and reduce the cost of food processes such as cheese ripening.
Collapse
Affiliation(s)
- J Blaya
- Department of Food Science, University of Guelph, Ontario, Canada N1G 2W1
| | - Z Barzideh
- Department of Food Science, University of Guelph, Ontario, Canada N1G 2W1
| | - G LaPointe
- Department of Food Science, University of Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
11
|
Cardoso P, Santos M, Freitas R, Rocha SM, Figueira E. Response of Rhizobium to Cd exposure: A volatile perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:802-811. [PMID: 28865386 DOI: 10.1016/j.envpol.2017.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
The volatile metabolome of Rhizobium sp. strain E20-8 exposed to three concentrations of cadmium (2.5, 5.0 and 7.5 μM) was screened using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-ToFMS), combined with headspace solid phase microextraction (HS-SPME). Cd exposure induced a global increase in the concentration of volatile organic compounds (VOCs) both intra and extracellularly. Peak areas of several linear alkanes, ketones, aldehydes, alcohols, terpenic and volatile sulfur compounds, and one ester (ethyl acetate), were especially increased when compared with the control condition (no Cd). These compounds might originate from the metabolization of toxic membrane peroxidation products, the proteolysis of oxidized proteins or the alteration of metabolic pathways, resulting from the oxidative stress imposed by Cd. Several VOCs are related to oxidative damage, but the production of VOCs involved in antioxidant response (menthol, α-pinene, dimethyl sulfide, disulfide and trisulfide, 1-butanol and 2-butanone) and in cell aggregation (2,3-butanedione, 3-methyl-1-butanol and 2-butanone) is also observed. These results bring new information that highlights the role of VOCs on bacteria response to Cd stress, identify a novel set of biomarkers related with metal stress and provide information to be applied in biotechnological and remediation contexts.
Collapse
Affiliation(s)
- Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Magda Santos
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Sílvia M Rocha
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal.
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
12
|
Parlapani FF, Mallouchos A, Haroutounian SA, Boziaris IS. Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. PLoS Pathog 2017; 13:e1006263. [PMID: 28257499 PMCID: PMC5352144 DOI: 10.1371/journal.ppat.1006263] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/15/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Pneumococcal neuraminidase is a key enzyme for sequential deglycosylation of host glycans, and plays an important role in host survival, colonization, and pathogenesis of infections caused by Streptococcus pneumoniae. One of the factors that can affect the activity of neuraminidase is the amount and position of acetylation present in its substrate sialic acid. We hypothesised that pneumococcal esterases potentiate neuraminidase activity by removing acetylation from sialic acid, and that will have a major effect on pneumococcal survival on mucin, colonization, and virulence. These hypotheses were tested using isogenic mutants and recombinant esterases in microbiological, biochemical and in vivo assays. We found that pneumococcal esterase activity is encoded by at least four genes, SPD_0534 (EstA) was found to be responsible for the main esterase activity, and the pneumococcal esterases are specific for short acyl chains. Assay of esterase activity by using natural substrates showed that both the Axe and EstA esterases could use acetylated xylan and Bovine Sub-maxillary Mucin (BSM), a highly acetylated substrate, but only EstA was active against tributyrin (triglyceride). Incubation of BSM with either Axe or EstA led to the acetate release in a time and concentration dependent manner, and pre-treatment of BSM with either enzyme increased sialic acid release on subsequent exposure to neuraminidase A. qRT-PCR results showed that the expression level of estA and axe increased when exposed to BSM and in respiratory tissues. Mutation of estA alone or in combination with nanA (codes for neuraminidase A), or the replacement of its putative serine active site to alanine, reduced the pneumococcal ability to utilise BSM as a sole carbon source, sialic acid release, colonization, and virulence in a mouse model of pneumococcal pneumonia.
Collapse
|
14
|
Kelleher P, Murphy J, Mahony J, van Sinderen D. Next-generation sequencing as an approach to dairy starter selection. DAIRY SCIENCE & TECHNOLOGY 2015; 95:545-568. [PMID: 26798445 PMCID: PMC4712225 DOI: 10.1007/s13594-015-0227-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Lactococcal and streptococcal starter strains are crucial ingredients to manufacture fermented dairy products. As commercial starter culture suppliers and dairy producers attempt to overcome issues of phage sensitivity and develop new product ranges, there is an ever increasing need to improve technologies for the rational selection of novel starter culture blends. Whole genome sequencing, spurred on by recent advances in next-generation sequencing platforms, is a promising approach to facilitate rapid identification and selection of such strains based on gene-trait matching. This review provides a comprehensive overview of the available methodologies to analyse the technological potential of candidate starter strains and highlights recent advances in the area of dairy starter genomics.
Collapse
Affiliation(s)
- Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | - James Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
|
16
|
Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation. Int J Food Microbiol 2014; 178:76-86. [PMID: 24674930 DOI: 10.1016/j.ijfoodmicro.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 01/17/2023]
Abstract
The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development.
Collapse
|
17
|
Sumby KM, Jiranek V, Grbin PR. Ester synthesis and hydrolysis in an aqueous environment, and strain specific changes during malolactic fermentation in wine with Oenococcus oeni. Food Chem 2013; 141:1673-80. [DOI: 10.1016/j.foodchem.2013.03.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/21/2013] [Accepted: 03/26/2013] [Indexed: 11/25/2022]
|
18
|
Costello PJ, Siebert TE, Solomon MR, Bartowsky EJ. Synthesis of fruity ethyl esters by acyl coenzyme A: alcohol acyltransferase and reverse esterase activities in Oenococcus oeni and Lactobacillus plantarum. J Appl Microbiol 2013; 114:797-806. [PMID: 23216623 DOI: 10.1111/jam.12098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/22/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023]
Abstract
AIMS To assess the abilities of commercial wine lactic acid bacteria (LAB) to synthesize potentially flavour active fatty acid ethyl esters and determine mechanisms involved in their production. METHODS AND RESULTS Oenococcus oeni AWRI B551 produced significant levels of ethyl hexanoate and ethyl octanoate following growth in an ethanolic test medium, and ester formation generally increased with increasing pH (4.5 > 3.5), anaerobiosis and precursor supplementation. Cell-free extracts of commercial O. oeni strains and Lactobacillus plantarum AWRI B740 were also tested for ester-synthesizing capabilities in a phosphate buffer via: (i) acyl coenzyme A: alcohol acyltransferase (AcoAAAT) activity and (ii) reverse esterase activity. For both ester-synthesizing activities, strain-dependent variation was observed, with AcoAAAT activity generally greater than reverse esterase. Reverse esterase in O. oeni AWRI B551 also esterified 1-propanol to produce propyl octanoate, and deuterated substrates ([(2)H(6)]ethanol and [(2)H(15)]octanoic acid) to produce the fully deuterated ester, [(2)H(5)]ethyl [(2)H(15)]octanoate. CONCLUSIONS Wine LAB exhibit ethyl ester-synthesizing capability and possess two different ester-synthesizing activities, one of which is associated with an acyl coenzyme A: alcohol acyltransferase. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that wine LAB exhibit enzyme activities that can augment the ethyl ester content of wine. This knowledge will facilitate greater control over the impacts of malolactic fermentation on the fruity sensory properties and quality of wine.
Collapse
Affiliation(s)
- P J Costello
- The Australian Wine Research Institute, Glen Osmond, SA, Australia
| | | | | | | |
Collapse
|
19
|
Navarro-González I, Sánchez-Ferrer Á, García-Carmona F. Molecular characterization of a novel arylesterase from the wine-associated acetic acid bacterium Gluconobacter oxidans 621H. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10789-10795. [PMID: 23003572 DOI: 10.1021/jf3024968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An arylesterase from the wine-making acetic acid bacterium, Gluconobacter oxidans, was cloned and expressed into Escherichia coli. The soluble 76.8 kDa dimeric enzyme obtained, Est0881, was purified in only two steps with a 3.1-fold purification, 43% recovery, and a specific activity of 214 U/mg for the hydrolysis of p-nitrophenyl acetate. The optimum pH and temperature were 7.0 and 40 °C, respectively. The substrate specificity of this arylesterase was higher toward short chain p-nitrophenyl esters (C(2) to C(4)) and also toward aromatic esters, such as phenyl acetate. The deduced amino acid sequence shares high identity with esterases of the HSL family. The inhibition results obtained showed that the enzyme was a serine esterase, belonging to the A-esterases (arylesterases) and contains a catalytic triad composed of Ser163, Asp263, and His293 in the active site. Est0881 retained significant activity under conditions simulating those of wine-making (75% activity at 20% ethanol), making it a promising biocatalyst for modulating the final aroma of wine.
Collapse
Affiliation(s)
- Inmaculada Navarro-González
- Faculty of Biology, Department of Biochemistry and Molecular Biology-A, University of Murcia, Campus Espinardo, E-30100 Murcia, Spain
| | | | | |
Collapse
|
20
|
Abstract
Strains of lactic acid bacteria, yeasts, and molds have been selected over thousands of years based on the unique sensory attributes they provide to food fermentations. Over the centuries they have evolved to their domesticated roles, leading to genome decay, loss of pathways, acquisition of genomic elements, and beneficial mutations that provide an advantage in their nutrient-rich food environments. This review highlights the evolutionary traits influenced by the domestication process as these microbes adapted to nutrient-rich foods developed by humans.
Collapse
Affiliation(s)
- Grace L Douglas
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
21
|
Sumby KM, Grbin PR, Jiranek V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.12.004] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Hernández I, Barrón LJR, Virto M, Pérez-Elortondo FJ, Flanagan C, Rozas U, Nájera AI, Albisu M, Vicente MS, de Renobales M. Lipolysis, proteolysis and sensory properties of ewe’s raw milk cheese (Idiazabal) made with lipase addition. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Liu M, Nauta A, Francke C, Siezen RJ. Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 2008; 74:4590-600. [PMID: 18539796 PMCID: PMC2519355 DOI: 10.1128/aem.00150-08] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mengjin Liu
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Harbaum B, Hubbermann EM, Zhu Z, Schwarz K. Impact of fermentation on phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea coss). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:148-157. [PMID: 18078315 DOI: 10.1021/jf072428o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four different cultivars of Chinese Brassica vegetables (two pak choi cultivars and two Chinese leaf mustard cultivars) were fermented according to a traditional Chinese method called pickling. The plant material was investigated before and after the fermentation procedure to determine the qualitative and quantitative changes in its polyphenols. A detailed description of the identified phenolic compounds of leaf mustard by HPLC-ESI-MS(n) is presented here for the first time, including hydroxycinnamic acid mono- and diglycosides (gentiobioses) and flavonoid tetraglycosides. Flavonoid derivatives with a lower molecular mass (di- and triglycosides) and aglycones of flavonoids and hydroxycinnamic acids were detected in fermented cabbages compared to the main compounds detected in nonfermented cabbages (tri- and tetraglycosides of flavonoids and hydroxycinnamic acid derivatives of malic acid, glycoside, and quinic acid). During the fermentation process, contents of flavonoid derivatives and some hydroxycinnamic acid derivatives were found to decrease. Some marginal losses of polyphenols were observed even in the kneading step of the plant material prior to the fermentation procedure. The antioxidative potential of fermented cabbages was much higher compared to that of nonfermented cabbages in the TEAC assay, but not observable in the DPPH assay. The increase of the antioxidative potential detected in the TEAC assay was attributed to the qualitative changes of polyphenols as well as other reductones potentially present.
Collapse
Affiliation(s)
- Britta Harbaum
- Department of Food Technology, Institute of Human Nutrition and Food Science, University of Kiel, Heinrich-Hecht-Platz 10, 24118, Kiel, Germany.
| | | | | | | |
Collapse
|
25
|
Bettelheim KA. The non-O157 shiga-toxigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol 2007; 33:67-87. [PMID: 17453930 DOI: 10.1080/10408410601172172] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Following a brief review of the ecology of Escherichia coli in general, the role of Shiga-Toxigenic (Verocytotoxigenic) E. coli (STEC) as pathogens is addressed. While STEC belonging to the serogroup O157 have been extensively studied and shown to be involved in many cases and outbreaks of human disease, the importance of STEC belonging to other serogroups has not been recognized as much. This review addresses the problems associated with these pathogens, demonstrating that increasing the awareness of them is a major part of the problem. This review then demonstrates how widespread isolations especially from food animals and human disease have been, discussing in particular STEC belonging to serogroups O8, O26, O103, O111, O113 and O128. The animal host-specificity of these STEC is also reviewed. In conclusion some methods of improving isolation of these pathogens is addressed.
Collapse
|
26
|
Hernández I, Molenaar D, Beekwilder J, Bouwmeester H, van Hylckama Vlieg JET. Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microbiol 2007; 73:1544-52. [PMID: 17209074 PMCID: PMC1828780 DOI: 10.1128/aem.01870-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h-1 mg protein-1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 microM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.
Collapse
Affiliation(s)
- Igor Hernández
- NIZO food research, P.O. Box 20, 6710 BA Ede, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Mandrich L, Manco G, Rossi M, Floris E, Jansen-van den Bosch T, Smit G, Wouters JA. Alicyclobacillus acidocaldarius thermophilic esterase EST2's activity in milk and cheese models. Appl Environ Microbiol 2006; 72:3191-7. [PMID: 16672457 PMCID: PMC1472309 DOI: 10.1128/aem.72.5.3191-3197.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this work was to investigate the behavior of thermophilic esterase EST2 from Alicyclobacillus acidocaldarius in milk and cheese models. The pure enzyme was used to compare the EST2 hydrolytic activity to the activity of endogenous esterase EstA from Lactococcus lactis. The results indicate that EST2 exhibits 30-fold-higher esterase activity than EstA. As EstA has thioesterase activity, EST2 was assayed for this activity under the optimal conditions determined for EstA (namely, 30 degrees C and pH 7.5). Although it is a thermophilic enzyme, EST2 exhibited eightfold-higher thioesterase activity than EstA with S-methyl thiobutanoate. The abilities of EST2 and EstA to synthesize short-chain fatty acid esters were compared. Two methods were developed to do this. In the first method a spectrophotometric assay was used to monitor the synthesis of esters by the pure enzymes using p-nitrophenol as the alcohol substrate. The synthetic activities were also evaluated under conditions that mimicked those present in milk and/or cheese. The second method involved evaluation of the synthetic abilities of the enzymes when they were directly added to a model cheese matrix. Substantial ester synthesis by EST2 was observed under both conditions. Finally, esterase and thioesterase activities were evaluated in milk using the purified EST2 enzyme and in the model cheese matrix using a strain of L. lactis NZ9000 harboring the EST2 gene and thus overproducing EST2. Both the esterase and thioesterase activities measured in milk and in the cheese matrix were much greater than the activities of the controls.
Collapse
Affiliation(s)
- Luigi Mandrich
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Smit G, Smit BA, Engels WJ. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.002] [Citation(s) in RCA: 514] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Pérez-Gilabert M, Morte A, Avila-González R, García-Carmona F. Characterization and histochemical localization of nonspecific esterase from ascocarps of desert truffle (Terfezia claveryi Chatin). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:5754-9. [PMID: 15998144 DOI: 10.1021/jf050334d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An esterase activity from Terfezia claveryi Chatin ascocarps, a mycorrhizal hypogeous fungus, is described for the first time. The enzyme was partially purified using phase partitioning in Triton X-114 (TX-114), achieving a reduction of 87% in the triglyceride content and the removal of 63% of phenols. The enzyme showed maximum activity toward short-chain p-nitrophenyl esters, and no interfacial activation was observed, indicating that the enzyme responsible for this activity is an esterase and not a lipase. This esterase presented its maximum activity at pH 7.4 and 60 degrees C. The values obtained for Km at pH 7.4 were 0.3 mM for p-nitrophenyl butyrate and 0.6 mM for p-nitrophenyl acetate with catalytic efficiencies (Vmax/Km) of 0.23 and 0.32, respectively. T. claveryi esterase was inhibited by phenylboric acid, indicating that serine residues were involved in the enzyme activity. This activity was localized only in the hypothecium and was absent from the peridium and gleba.
Collapse
Affiliation(s)
- Manuela Pérez-Gilabert
- Departamento de Bioquímica y Biología Molecular-A and Departamento de Biología Vegetal, Facultad de Biología Universidad de Murcia, Campus de Espinardo, E-30071 Murcia, Spain.
| | | | | | | |
Collapse
|
30
|
Holland R, Liu SQ, Crow V, Delabre ML, Lubbers M, Bennett M, Norris G. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. Int Dairy J 2005. [DOI: 10.1016/j.idairyj.2004.09.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
|
32
|
Liu SQ, Baker K, Bennett M, Holland R, Norris G, Crow V. Characterisation of esterases of Streptococcus thermophilus ST1 and Lactococcus lactis subsp. cremoris B1079 as alcohol acyltransferases. Int Dairy J 2004. [DOI: 10.1016/j.idairyj.2004.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
|
34
|
Lawrence R, Gilles J, Creamer L, Crow V, Heap H, Honoré C, Johnston K, Samal P. Cheddar cheese and related dry-salted cheese varieties. MAJOR CHEESE GROUPS 2004. [DOI: 10.1016/s1874-558x(04)80040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 2003; 69:5228-37. [PMID: 12957907 PMCID: PMC194970 DOI: 10.1128/aem.69.9.5228-5237.2003] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Delta atf2Delta double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.
Collapse
Affiliation(s)
- Kevin J Verstrepen
- Centre for Malting and Brewing Science, Department of Food and Microbial Technology, Katholieke Universiteit Leuven, B-3001 Louvain (Heverlee), Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|