1
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Britton AP, Visser KA, Ongenae VMA, Zhang P, Wassink H, Doerksen TA, Welke CA, Lynch KH, van Belkum MJ, Dennis JJ, Yang X, Claessen D, Briegel A, Martin-Visscher LA. Characterization of Bacteriophage cd2, a Siphophage Infecting Carnobacterium divergens and a Representative Species of a New Genus of Phage. Microbiol Spectr 2023; 11:e0097323. [PMID: 37458599 PMCID: PMC10434151 DOI: 10.1128/spectrum.00973-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/24/2023] [Indexed: 08/19/2023] Open
Abstract
Carnobacterium divergens is frequently isolated from natural environments and is a predominant species found in refrigerated foods, particularly meat, seafood, and dairy. While there is substantial interest in using C. divergens as biopreservatives and/or probiotics, some strains are known to be fish pathogens, and the uncontrolled growth of C. divergens has been associated with food spoilage. Bacteriophages offer a selective approach to identify and control the growth of bacteria; however, to date, few phages targeting C. divergens have been reported. In this study, we characterize bacteriophage cd2, which we recently isolated from minced beef. A detailed host range study reveals that phage cd2 infects certain phylogenetic groups of C. divergens. This phage has a latent period of 60 min and a burst size of ~28 PFU/infected cell. The phage was found to be acid and heat sensitive, with a complete loss of phage activity when stored at pH 2 or heated to 60°C. Electron microscopy shows that phage cd2 is a siphophage, and while it shares the B3 morphotype with a unique cluster of Listeria and Enterococcus phages, a comparison of genomes reveals that phage cd2 comprises a new genus of phage, which we have termed as Carnodivirus. IMPORTANCE Currently, very little is known about phages that infect carnobacteria, an important genus of lactic acid bacteria with both beneficial and detrimental effects in the food and aquaculture industries. This report provides a detailed characterization of phage cd2, a novel siphophage that targets Carnobacterium divergens, and sets the groundwork for understanding the biology of these phages and their potential use in the detection and biocontrol of C. divergens isolates.
Collapse
Affiliation(s)
- Angelle P. Britton
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Kaitlyn A. Visser
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Véronique M. A. Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Peipei Zhang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Heather Wassink
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Thomas A. Doerksen
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Catherine A. Welke
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Karlene H. Lynch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
3
|
Lv R, Gao X, Zhang C, Lian W, Quan X, Guo S, Chen X. Characteristics and Whole-Genome Analysis of Limosilactobacillus fermentum Phage LFP02. Foods 2023; 12:2716. [PMID: 37509808 PMCID: PMC10379269 DOI: 10.3390/foods12142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Limosilactobacillus fermentum is a bacterium widely used in food production, medicine, and industrial fermentation. However, fermentation could fail due to phage contamination. L. fermentum bacteriophage LFP02 can be induced from L. fermentum IMAU 32579 using mitomycin C. To better understand the characteristics of this phage, its physiological and genomic characteristics were evaluated. The results showed that its optimal multiplicity of infection was 0.01, and the burst size was 148.03 ± 2.65 pfu/infective center. Compared to temperature, pH had a more obvious influence on phage viability, although its adsorption capacity was not affected by the divalent cations (Ca2+ and Mg2+) or chloramphenicol. Its genome size was 43,789 bp and the GC content was 46.06%, including 53 functional proteins. Compared to other L. fermentum phages, phage LFP02 had chromosome deletion, insertion, and inversion, which demonstrated that it was a novel phage. This study could expand the knowledge of the biological characteristics of L. fermentum bacteriophages and provide some theoretical basis for bacteriophage prevention during fermentation.
Collapse
Affiliation(s)
- Ruirui Lv
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Gao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Can Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weiqi Lian
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xingyu Quan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - She Guo
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xia Chen
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Zhu H, Guo S, Zhao J, Arbab Sakandar H, Lv R, Wen Q, Chen X. Whole Genome Sequence Analysis of Lactiplantibacillus plantarum Bacteriophage P2. Pol J Microbiol 2022; 71:421-428. [PMID: 36185020 PMCID: PMC9608156 DOI: 10.33073/pjm-2022-037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Phage P2 was isolated from failed fermentation broth carried out by Lactiplantibacillus plantarum IMAU10120. A previous study in our laboratory showed that this phage belonged to the Siphoviridae family. In this study, this phage's genomic characteristics were analyzed using whole-genome sequencing. It was revealed that phage P2 was 77.9 kb in length and had 39.28% G + C content. Its genome included 96 coding sequences (CDS) and two tRNA genes involved in the function of the structure, DNA replication, packaging, and regulation. Phage P2 had higher host specificity; many tested strains were not infected. Cell wall adsorption experiments showed that the adsorption receptor component of phage P2 might be a part of the cell wall peptidoglycan. This research might enrich the knowledge about genomic information of lactobacillus phages and provide some primary data to establish phage control measures.
Collapse
Affiliation(s)
- Hanfang Zhu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - She Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Hafiz Arbab Sakandar
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R.China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P.R.China
| |
Collapse
|
5
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|
6
|
Briggiler Marcó MB, Quiberoni A, Suárez V. Virulence of Leuconostoc phages: Influence of stress conditions associated to dairy processes on their host-phage interactions. Int J Food Microbiol 2019; 303:26-31. [PMID: 31128387 DOI: 10.1016/j.ijfoodmicro.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/15/2019] [Accepted: 05/12/2019] [Indexed: 01/17/2023]
Abstract
In this work, we assessed the impact of technological cell stress conditions, commonly present in industrial dairy processes, on the host strain-phage interactions in Leuconostoc. Adsorption and burst size of LDG (Leuconostoc pseudomesenteroides) and Ln-9 (Leuconostoc mesenteroides) phages were evaluated under the following conditions: i) MRS broth, 30 °C; ii) MRS broth at pH 5.5, 30 °C (acidic stress); iii) MRS broth added of NaCl at 4% w/v, 30 °C (osmotic stress) and iv) MRS broth, 10 °C (cold stress). Experiences were performed with the host strains growing both in MRS broth (30 °C) and under stress conditions. On the other hand, the effect of diverse levels of NaCl, KCl, saccharose and glucose on the adsorption for LDG phage was evaluated. Acidic and cold conditions did not significantly affect the adsorption rates for any phage. However, adsorption rate of phage LDG was highly reduced under osmotic stress (NaCl), except when the host strain previously grew in presence of the salt. LDG phage adsorption was not modified by addition of saccharides, but it drastically decreased in presence of salts. Acidic conditions did not affect the burst size for LDG phage, but Ln-9 phage diminished this parameter (61 phage particles/infected cell). Latency time showed a lengthening of 10 min for both phages, while the burst time remained unaltered for LDG and it was delayed 10 min for Ln-9. LDG phage did not propagate under osmotic conditions, but Ln-9 phage released phage particles with an important increase of its latent period and burst time. No phage particles were released within 90 min after the adsorption step under cold stress. This is the first report about this subject. Under certain conditions of technological stress (osmotic and cold) associated to dairy processes, phage infections on the two systems studied in this work could be delayed/inhibited.
Collapse
Affiliation(s)
- Mariángeles Briggiler Briggiler Marcó
- Instituto de Lactología Industrial, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina.
| | - Andrea Quiberoni
- Instituto de Lactología Industrial, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Viviana Suárez
- Instituto de Lactología Industrial, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| |
Collapse
|
7
|
Thanki AM, Taylor-Joyce G, Dowah A, Nale JY, Malik D, Clokie MRJ. Unravelling the Links between Phage Adsorption and Successful Infection in Clostridium difficile. Viruses 2018; 10:E411. [PMID: 30082660 PMCID: PMC6116197 DOI: 10.3390/v10080411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/23/2018] [Accepted: 08/05/2018] [Indexed: 01/02/2023] Open
Abstract
Bacteriophage (phage) therapy is a promising alternative to antibiotics for the treatment of bacterial pathogens, including Clostridiumdifficile. However, as for many species, in C. difficile the physical interactions between phages and bacterial cells have not been studied in detail. The initial interaction, known as phage adsorption, is initiated by the reversible attachment of phage tail fibers to bacterial cell surface receptors followed by an irreversible binding step. Therefore binding can dictate which strains are infected by the phage. In this study, we investigated the adsorption rates and irreversible binding of three C. difficile myoviruses: CDHM1, CDHM3 and CDHM6 to ten strains that represent ten prevalent C. difficile ribotypes, regardless of their ability to infect. CDHM1 and CDHM3 phage particles adsorbed by ~75% to some strains that they infected. The infection dynamics for CDHM6 are less clear and ~30% of the phage particles bound to all strains, irrespective of whether a successful infection was established. The data highlighted adsorption is phage-host specific. However, it was consistently observed that irreversible binding had to be above 80% for successful infection, which was also noted for another two C. difficile myoviruses. Furthermore, to understand if there is a relationship between infection, adsorption and phage tail fibers, the putative tail fiber protein sequences of CDHM1, CDHM3 and CDHM6 were compared. The putative tail fiber protein sequence of CDHM1 shares 45% homology at the amino acid level to CDHM3 and CDHM6, which are identical to each other. However, CDHM3 and CDHM6 display differences in adsorption, which highlights that there is no obvious relationship between putative tail fiber sequence and adsorption. The importance of adsorption and binding to successful infection is often overlooked, and this study provides useful insights into host-pathogen interactions within this phage-pathogen system.
Collapse
Affiliation(s)
- Anisha Mahendra Thanki
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK.
| | | | - Ahmed Dowah
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK.
| | - Janet Yakubu Nale
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK.
| | - Danish Malik
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, UK.
| | | |
Collapse
|
8
|
Nabergoj D, Modic P, Podgornik A. Effect of bacterial growth rate on bacteriophage population growth rate. Microbiologyopen 2018; 7:e00558. [PMID: 29195013 PMCID: PMC5911998 DOI: 10.1002/mbo3.558] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/15/2023] Open
Abstract
It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr-1 . It was found that the burst size increases linearly from 8 PFU·cell-1 to 89 PFU·cell-1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10-9 ml·min-1 and 80 min to reach limiting values of 0.5 × 10-9 ml·min-1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr-1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed.
Collapse
Affiliation(s)
- Dominik Nabergoj
- Center of Excellence for BiosensorsInstrumentation and Process Control ‐ COBIKAjdovščinaSlovenia
| | - Petra Modic
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| | - Aleš Podgornik
- Center of Excellence for BiosensorsInstrumentation and Process Control ‐ COBIKAjdovščinaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
9
|
Shan J, Ramachandran A, Thanki AM, Vukusic FBI, Barylski J, Clokie MRJ. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep 2018; 8:5091. [PMID: 29572482 PMCID: PMC5865146 DOI: 10.1038/s41598-018-23418-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage therapeutic development will clearly benefit from understanding the fundamental dynamics of in vivo phage-bacteria interactions. Such information can inform animal and human trials, and much can be ascertained from human cell-line work. We have developed a human cell-based system using Clostridium difficile, a pernicious hospital pathogen with limited treatment options, and the phage phiCDHS1 that effectively kills this bacterium in liquid culture. The human colon tumorigenic cell line HT-29 was used because it simulates the colon environment where C. difficile infection occurs. Studies on the dynamics of phage-bacteria interactions revealed novel facets of phage biology, showing that phage can reduce C. difficile numbers more effectively in the presence of HT-29 cells than in vitro. Both planktonic and adhered Clostridial cell numbers were successfully reduced. We hypothesise and demonstrate that this observation is due to strong phage adsorption to the HT-29 cells, which likely promotes phage-bacteria interactions. The data also showed that the phage phiCDHS1 was not toxic to HT-29 cells, and phage-mediated bacterial lysis did not cause toxin release and cytotoxic effects. The use of human cell lines to understand phage-bacterial dynamics offers valuable insights into phage biology in vivo, and can provide informative data for human trials.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| | - Ananthi Ramachandran
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Anisha M Thanki
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Fatima B I Vukusic
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Martha R J Clokie
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
10
|
Sharaf A, Mercati F, Elmaghraby I, Elbaz RM, Marei EM. Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens. BMC Microbiol 2017; 17:51. [PMID: 28257628 PMCID: PMC5336643 DOI: 10.1186/s12866-017-0940-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Background Next Generation Sequencing (NGS) technologies provide exciting possibilities for whole genome sequencing of a plethora of organisms including bacterial strains and phages, with many possible applications in research and diagnostics. No Streptomyces flavovirens phages have been sequenced to date; there is therefore a lack in available information about S. flavovirens phage genomics. We report biological and physiochemical features and use NGS to provide the complete annotated genomes for two new strains (Sf1 and Sf3) of the virulent phage Streptomyces flavovirens, isolated from Egyptian soil samples. Results The S. flavovirens phages (Sf1 and Sf3) examined in this study show higher adsorption rates (82 and 85%, respectively) than other actinophages, indicating a strong specificity to their host, and latent periods (15 and 30 min.), followed by rise periods of 45 and 30 min. As expected for actinophages, their burst sizes were 1.95 and 2.49 virions per mL. Both phages were stable and, as reported in previous experiments, showed a significant increase in their activity after sodium chloride (NaCl) and magnesium chloride (MgCl2.6H2O) treatments, whereas after zinc chloride (ZnCl2) application both phages showed a significant decrease in infection. The sequenced phage genomes are parts of a singleton cluster with sizes of 43,150 bp and 60,934 bp, respectively. Bioinformatics analyses and functional characterizations enabled the assignment of possible functions to 19 and 28 putative identified ORFs, which included phage structural proteins, lysis components and metabolic proteins. Thirty phams were identified in both phages, 10 (33.3%) of them with known function, which can be used in cluster prediction. Comparative genomic analysis revealed significant homology between the two phages, showing the highest hits among Sf1, Sf3 and the closest Streptomyces phage (VWB phages) in a specific 13Kb region. However, the phylogenetic analysis using the Major Capsid Protein (MCP) sequences highlighted that the isolated phages belong to the BG Streptomyces phage group but are clearly separated, representing a novel sub-cluster. Conclusion The results of this study provide the first physiological and genomic information for S. flavovirens phages and will be useful for pharmaceutical industries based on S. flavovirens and future phage evolution studies.
Collapse
Affiliation(s)
- A Sharaf
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt. .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czechia.
| | - F Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129, Palermo, Italy
| | - I Elmaghraby
- Central Lab. of Organic Agriculture, Agricultural Research Center, Giza, 12619, Egypt
| | - R M Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11970, Egypt
| | - E M Marei
- Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| |
Collapse
|
11
|
Shen J, Zhou J, Fu H, Mu Y, Sun Y, Xu Y, Xiu Z. A Klebsiella pneumoniae bacteriophage and its effect on 1,3-propanediol fermentation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Hoai TD, Nishiki I, Yoshida T. Properties and genomic analysis of Lactococcus garvieae lysogenic bacteriophage PLgT-1, a new member of Siphoviridae , with homology to Lactococcus lactis phages. Virus Res 2016; 222:13-23. [DOI: 10.1016/j.virusres.2016.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
13
|
Guo T, Zhang C, Xin Y, Xin M, Kong J. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus. J Ind Microbiol Biotechnol 2016; 43:681-9. [PMID: 26831651 DOI: 10.1007/s10295-016-1739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022]
Abstract
Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.
Collapse
Affiliation(s)
- Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Chenchen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Min Xin
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China.
| |
Collapse
|
14
|
Mahony J, McDonnell B, Casey E, van Sinderen D. Phage-Host Interactions of Cheese-Making Lactic Acid Bacteria. Annu Rev Food Sci Technol 2016; 7:267-85. [PMID: 26735798 DOI: 10.1146/annurev-food-041715-033322] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cheese production is a global biotechnological practice that is reliant on robust and technologically appropriate starter and adjunct starter cultures to acidify the milk and impart particular flavor and textural properties to specific cheeses. To this end, lactic acid bacteria, including Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus and Leuconostoc spp., are routinely employed. However, these bacteria are susceptible to infection by (bacterio)phages. Over the past decade in particular, significant advances have been achieved in defining the receptor molecules presented by lactococcal host bacteria and in the structural analysis of corresponding phage-encoded receptor-binding proteins. These lactococcal model systems are expanding toward understanding phage-host interactions of other LAB species. Ultimately, such scientific efforts will uncover the mechanistic (dis)similarities among these phages and define how these phages recognize and infect their hosts. This review presents the current status of the LAB-phage interactome, highlighting the most recent and significant developments in this active research field.
Collapse
Affiliation(s)
| | | | | | - Douwe van Sinderen
- School of Microbiology;,APC Microbiome Institute, University College Cork, Western Road, Cork, Ireland;
| |
Collapse
|
15
|
Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Appl Environ Microbiol 2016; 81:1319-26. [PMID: 25501478 DOI: 10.1128/aem.03413-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.
Collapse
|
16
|
Zhang X, Lan Y, Jiao W, Li Y, Tang L, Jiang Y, Cui W, Qiao X. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:333-341. [PMID: 26123178 DOI: 10.1007/s12560-015-9206-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75% ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca(2+) and Mg(2+) showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yu Lan
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wenchao Jiao
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yijing Li
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Lijie Tang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yanping Jiang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wen Cui
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
17
|
Mercanti DJ, Ackermann HW, Quiberoni A. Characterization of Two Temperate Lactobacillus paracasei Bacteriophages: Morphology, Kinetics and Adsorption. Intervirology 2015; 58:49-56. [DOI: 10.1159/000369207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/18/2014] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Adsorption and kinetic parameters, latent period, burst size and burst time, are characteristics of phage/host systems and can be affected by several environmental factors. As only few studies have focused on temperate dairy phages, we characterized these parameters on temperate Lactobacillus paracasei phages Φ iLp84 and Φ iLp1308, infective for probiotic strains. Methods: Phages were characterized by transmission electron microscopy and genomic DNA restriction. Adsorption under different environmental conditions, phage kinetics and efficiency of plating (EOP) were determined using the double-layer titration method. Results: Phages Φ iLp84 and Φ iLp1308 belong to the Siphoviridae family and have genome sizes of 38 and 34 kbp, respectively. Adsorption was affected by calcium concentration, pH, temperature and host viability, and reached a limit at very high multiplicity of infection. Latency, burst time and burst size were of 85 min, 131 min and 46 for Φ iLp84, and 51 min, 92 min and 28 for Φ iLp1308, respectively, at 37°C. A clear influence of temperature on phage kinetics was observed. Regarding EOP, Φ iLp84 produced plaques on only 1 out of 8 strains tested. Conclusion: Noticeable differences in adsorption, kinetics and EOP were found for two morphologically identical temperate L. paracasei phages of similar origin.
Collapse
|
18
|
Mahony J, Ainsworth S, Stockdale S, van Sinderen D. Phages of lactic acid bacteria: the role of genetics in understanding phage-host interactions and their co-evolutionary processes. Virology 2012; 434:143-50. [PMID: 23089252 DOI: 10.1016/j.virol.2012.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/12/2012] [Accepted: 10/01/2012] [Indexed: 12/26/2022]
Abstract
Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | | | | | | |
Collapse
|
19
|
Augustine J, Louis L, Varghese SM, Bhat SG, Kishore A. Isolation and partial characterization of ΦSP-1, a Salmonella specific lytic phage from intestinal content of broiler chicken. J Basic Microbiol 2012; 53:111-20. [PMID: 22733367 DOI: 10.1002/jobm.201100319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 01/29/2012] [Indexed: 11/06/2022]
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis is a major causative agent of gastroenteritis with contaminated eggs and chicken meat being the major source of infection. Phages are seriously being considered as a safe and cheaper alternative to antibiotics. The intestinal content of chicken was used as source for isolating phages. Phage designated as ΦSP-1 was selected for the study. Transmission electron microscopy (TEM) of phage ΦSP-1 revealed that it belonged to family Podoviridae. The optimal multiplicity of infection (MOI) was 5 phages/cell. Latent and rise period were calculated to be 30 and 55 minutes respectively, while burst size was 44 phages/bacterial cell. The genome size of ΦSP-1 was estimated to be 86 kb from pulsed-field gel electrophoresis analysis (PFGE). The effect of different physical and chemical parameters like temperature, pH, salinity and CaCl₂ were analyzed to optimize the conditions for large scale production of phages and to check the viability of ΦSP-1 under different physiochemical conditions. A temperature of 40 °C, pH 8 and 0.25 M NaCl were found to be optimum for phage adsorption and it was able to survive up to a temperature of 50 °C for 3 min. Capability to survive under hostile environmental conditions, absence of virulence genes in genome and genus specificity suggest suitability of ΦSP-1 to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Jeena Augustine
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | | | | | | | | |
Collapse
|
20
|
Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni ADL. Review: efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front Microbiol 2012; 2:282. [PMID: 22275912 PMCID: PMC3257867 DOI: 10.3389/fmicb.2011.00282] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/28/2011] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages can cause great economic losses due to fermentation failure in dairy plants. Hence, physical and chemical treatments of raw material and/or equipment are mandatory to maintain phage levels as low as possible. Regarding thermal treatments used to kill pathogenic bacteria or achieve longer shelf-life of dairy products, neither low temperature long time nor high temperature short time pasteurization were able to inactivate most lactic acid bacteria (LAB) phages. Even though most phages did not survive 90°C for 2 min, there were some that resisted 90°C for more than 15 min (conditions suggested by the International Dairy Federation, for complete phage destruction). Among biocides tested, ethanol showed variable effectiveness in phage inactivation, since only phages infecting dairy cocci and Lactobacillus helveticus were reasonably inactivated by this alcohol, whereas isopropanol was in all cases highly ineffective. In turn, peracetic acid has consistently proved to be very fast and efficient to inactivate dairy phages, whereas efficiency of sodium hypochlorite was variable, even among different phages infecting the same LAB species. Both alkaline chloride foam and ethoxylated non-ylphenol with phosphoric acid were remarkably efficient, trait probably related to their highly alkaline or acidic pH values in solution, respectively. Photocatalysis using UV light and TiO2 has been recently reported as a feasible option to industrially inactivate phages infecting diverse LAB species. Processes involving high pressure were barely used for phage inactivation, but until now most studied phages revealed high resistance to these treatments. To conclude, and given the great phage diversity found on dairies, it is always advisable to combine different anti-phage treatments (biocides, heat, high pressure, photocatalysis), rather than using them separately at extreme conditions.
Collapse
Affiliation(s)
- Daniela M Guglielmotti
- Instituto de Lactología Industrial, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Argentina
| | | | | | | |
Collapse
|
21
|
Knezevic P, Obreht D, Curcin S, Petrusic M, Aleksic V, Kostanjsek R, Petrovic O. Phages of Pseudomonas aeruginosa: response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. J Appl Microbiol 2011; 111:245-54. [PMID: 21554503 DOI: 10.1111/j.1365-2672.2011.05043.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIMS To examine effects of various environmental factors on adsorption and inactivation of Pseudomonas aeruginosa-specific phages: δ (family Podoviridae), J-1, σ-1 and 001A (family Siphoviridae) and their ability to inhibit bacterial growth and biofilm formation. METHODS AND RESULTS The phages examined in the study were clonally different, as revealed by RFLP. The temperature in the range 7-44°C had no influence on the adsorption of Podoviridae, but did affect Siphoviridae adsorption, particularly 001A. All phages were significantly stable at pH 5-9, and phages δ and 001A even at pH 3. Most of the examined carbohydrates and exopolysaccharides of the original host efficiently inactivated phage δ, while phages σ-1 and J-1 were inactivated considerably only by the amino acid alanine. Silver nitrate efficiently inactivated all the phages, while Siphoviridae were more resistant to povidone-iodine. Serum of nonimmunized rats had no influence on phage inactivation and adsorption. Only phage δ showed ability to effectively inhibit in vitro bacterial growth and biofilm formation. CONCLUSIONS The examined environmental parameters can significantly influence the adsorption and viability of Ps. aeruginosa-specific phages. The phage δ is a good candidate for biocontrol of Ps. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides important data on Ps. aeruginosa-specific phage adsorption, inactivation and in vitro lytic efficacy.
Collapse
Affiliation(s)
- P Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Vojvodina, Serbia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Trucco V, Reinheimer J, Quiberoni A, Suárez V. Adsorption of temperate phages ofLactobacillus delbrueckiistrains and phage resistance linked to their cell diversity. J Appl Microbiol 2011; 110:935-42. [DOI: 10.1111/j.1365-2672.2011.04945.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Schmidt MT, Olejnik-Schmidt AK, Zaręba A, Pezacki M, Wojewoda I, Grajek W. Induction of Loci Mutation duringLactococcus lactisSpontaneous Conversion to Bacteriophage-Insensitive Phenotype. FOOD BIOTECHNOL 2010. [DOI: 10.1080/08905436.2010.524470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
|
25
|
Lactobacillus plantarum bacteriophages isolated from Kefir grains: phenotypic and molecular characterization. J DAIRY RES 2009; 77:7-12. [PMID: 19785909 DOI: 10.1017/s0022029909990203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two greatly related Lactobacillus plantarum bacteriophages (named FAGK1 and FAGK2) were isolated from Kefir grains of different origins. Both phages belonged to the Siphoviridae family (morphotype B1) and showed similar dimensions for head and tail sizes. The host range of the two phages, using 36 strains as potential host strains, differed only in the phage reactivity against one of them. The phages showed latent periods of 30 min, burst periods of 80+/-10 min and burst size values of 11.0+/-1.0 PFU per infected cell as mean value. Identical DNA restriction patterns were obtained for both phages with PvuI, SalI, HindIII and MluI. The viral DNA apparently did not present extremes cos and the structural protein patterns presented four major bands (32.9, 35.7, 43.0 and 66.2 kDa). This study reports the first isolation of bacteriophages of Lb. plantarum from Kefir grains and adds further knowledge regarding the complex microbial community of this fermented milk.
Collapse
|
26
|
Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii. J DAIRY RES 2009; 76:433-40. [PMID: 19640327 DOI: 10.1017/s0022029909990112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The bacteriophages Cb1/204 and Cb1/342 were obtained by induction from the commercial strain Lactobacillus delbrueckii subsp. lactis Cb1, and propagated on Lactobacillus delbrueckii subsp. lactis 204 (Lb.l 204) and Lactobacillus delbrueckii subsp. bulgaricus 342 (Lb.b 342), respectively. By cross sensitivity, it was possible to detect a delay in the lysis of Lb.l 204 with Cb1/342 phage, while the adsorption rate was high (99.5%). Modified and unmodified phages were isolated using phage Cb1/342 and strain Lb.l 204. The EOP (Efficiency of Plaquing) values for the four phages (Cb1/204, Cb1/342, Cb1/342modified and Cb1/342unmodified) suggested that an R/M system modified the original temperate phage, and the BglII-DNA restriction patterns of these phages might point out the presence of a Type II R/M system. Also, the existence of a Type I R/M system was demonstrated by PCR and nucleotide sequence, being the percentages of alignment homology with Type I R/M systems reported previously higher than 95%. In this study it was possible to demonstrate that the native phage resistant mechanisms and the occurrence of prophages in commercial host strains, contribute strongly to diversify the phage population in a factory environment.
Collapse
|
27
|
Molecular characterization and lytic activities of Streptococcus agalactiae bacteriophages and determination of lysogenic-strain features. J Bacteriol 2009; 191:4776-85. [PMID: 19465660 DOI: 10.1128/jb.00426-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of mitomycin C induction to 114 genetically diverse Streptococcus agalactiae strains generated 36 phage suspensions. On electron microscopy of the phage suspensions, it was possible to assign the phages to the Siphoviridae family, with three different morphotypes (A, B, and C). Phage genetic diversity was evaluated by a PCR-based multilocus typing method targeting key modules located in the packaging, structural, host lysis, lysogeny, replication, and transcriptional regulation clusters and in the integrase genes and by DNA digestion with EcoRI, HindIII, and ClaI. Thirty-three phages clustering in six distantly related molecular phage groups (I to VI) were identified. Each molecular group was morphotype specific except for morphotype A phages, which were found in five of the six phage groups. The various phage groups defined on the basis of molecular group and morphotype had specific lytic activities, suggesting that each recognized particular host cell targets and had particular lytic mechanisms. Comparison of the characteristics of lysogenic and propagating strains showed no difference in the serotype or clonal complex (CC) identified by multilocus sequence typing. However, all the lysogenic CC17 and CC19 strains presented catabolic losses due to a lack of catabolic decay of dl-alpha-glycerol-phosphate substrates (CC17) and of alpha-d-glucose-1-phosphate (CC19). Moreover, the phages from CC17 lysogenic strains displayed lytic replication in bacterial hosts from all S. agalactiae phylogenetic lineages other than CC23, whereas phages obtained from non-CC17 lysogenic strains lysed bacteria of similar evolutionary origin. Our findings suggest that the adaptive evolution of S. agalactiae exposed the bacteria of this species to various phage-mediated horizontal gene transfers, which may have affected the fitness of the more virulent clones.
Collapse
|
28
|
Capra ML, Patrignani F, Quiberoni ADL, Reinheimer JA, Lanciotti R, Guerzoni ME. Effect of high pressure homogenization on lactic acid bacteria phages and probiotic bacteria phages. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2008.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Capra M, Binetti A, Mercanti D, Quiberoni A, Reinheimer J. Diversity among Lactobacillus paracasei phages isolated from a probiotic dairy product plant. J Appl Microbiol 2009; 107:1350-7. [DOI: 10.1111/j.1365-2672.2009.04313.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Suárez V, Zago M, Quiberoni A, Carminati D, Giraffa G, Reinheimer J. Lysogeny in Lactobacillus delbrueckii strains and characterization of two new temperate prolate-headed bacteriophages. J Appl Microbiol 2008; 105:1402-11. [PMID: 18713281 DOI: 10.1111/j.1365-2672.2008.03876.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Frequency of lysogeny in Lactobacillus delbrueckii strains (from commercial and natural starters) and preliminary characterization of temperate bacteriophages isolated from them. METHODS AND RESULTS Induction of strains (a total of 16) was made using mitomycin C (MC) (0.5 mug ml(-1)). For 37% of the MC-treated supernatants, it was possible to detect phage particles or presence of killing activity, but only two active bacteriophages were isolated. The two temperate phages isolated were prolate-headed phages which belonged to group c of Lact. delbrueckii bacteriophages classification. Different DNA restriction patterns were obtained for each phage, while the structural protein profiles and packaging sites were identical. Distinctive one-step growth curves were exhibited by each phage. An influence of calcium ions was observed for their lysis in broth but not on the adsorption levels. CONCLUSIONS Our study showed that lysogeny is also present in Lact. delbrueckii strains, including commercial strains. SIGNIFICANCE AND IMPACT OF THE STUDY Commercial strains could be lysogenic and this fact has a great practical importance since they could contribute to the dissemination of active-phage particles in industrial environments.
Collapse
Affiliation(s)
- V Suárez
- Instituto de Lactología Industrial (INLAIN), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | | | | | | | | | | |
Collapse
|
31
|
Rodríguez C, Van der Meulen R, Vaningelgem F, Font de Valdez G, Raya R, De Vuyst L, Mozzi F. Sensitivity of capsular-producing Streptococcus thermophilus strains to bacteriophage adsorption. Lett Appl Microbiol 2008; 46:462-8. [DOI: 10.1111/j.1472-765x.2008.02341.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Guglielmotti D, Marcó MB, Vinderola C, de Los Reyes Gavilán C, Reinheimer J, Quiberoni A. Spontaneous Lactobacillus delbrueckii phage-resistant mutants with acquired bile tolerance. Int J Food Microbiol 2007; 119:236-42. [PMID: 17869363 DOI: 10.1016/j.ijfoodmicro.2007.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/03/2007] [Accepted: 08/07/2007] [Indexed: 11/19/2022]
Abstract
Three commercial phage-sensitive strains of Lactobacillus delbrueckii (strains Ab(1), YSD V and Ib(3)) and four spontaneous phage-resistant mutants (strains A(7), A(17), V(2) and I(39)) isolated from them, all with a probiotic potential previously demonstrated were studied for their tolerance of bile salts (ox gall). Minimal Inhibitory Concentrations (MICs) ranged from 0.30% to 0.35% (w/v) of ox gall. These strains were exposed to gradually increasing concentrations of ox gall with the aim of isolating bile resistant derivatives. Stable derivatives able to tolerate up to 0.9% of ox gall were obtained from L. delbrueckii Ab(1), as well as from its spontaneous phage-resistant mutants A(7) and A(17). Random Amplified Polymorphic DNA (RAPD-PCR) analysis revealed a strong genetic homology between the ox gall-tolerant derivatives and their respective non-adapted original strains. These derivatives maintained, in general, the phage resistance phenotype of the non-adapted strains, with only one exception (phage-resistant mutant A(7)). After progressive ox gall adaptation, the phage-resistant mutant A(7) also exhibited progressive reversion of the phage resistance phenotype. The derivative with the highest ox gall-acquired tolerance (A(7)(0.9)) became sensitive to the phage, but derivatives with low (A(7)(0.3)) and intermediate (A(7)(0.6)) ox gall-acquired tolerance retained phage resistance. The technological properties of ox gall derivatives were comparable to those of their respective parent strains. However, the cells of the former were smaller than those of the original strains. Finally, the tolerant derivatives grew faster in the presence of ox gall than the parent strains. Our results demonstrated that it was possible to obtain, by a natural selection strategy, probiotic strains with acquired ox gall-tolerance from three (L. delbrueckii Ab(1) and their phage-resistant mutants A(7) and A(17)) of seven tested strains. Since such derivatives keep both phage resistance and other useful technological properties, they could be used for production of functional foods.
Collapse
Affiliation(s)
- Daniela Guglielmotti
- Instituto de Lactología Industrial (INLAIN), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina.
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
del Rio B, Binetti AG, Martín MC, Fernández M, Magadán AH, Alvarez MA. Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiol 2007; 24:75-81. [PMID: 16943097 DOI: 10.1016/j.fm.2006.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/07/2006] [Accepted: 03/10/2006] [Indexed: 11/20/2022]
Abstract
Bacteriophage infections of starter lactic acid bacteria are a serious risk in the dairy industry. Phage infection can lead to slow lactic acid production or even the total failure of fermentation. The associated economic losses can be substantial. Rapid and sensitive methods are therefore required to detect and identify phages at all stages of the manufacture of fermented dairy products. This study describes a simple and rapid multiplex PCR method that, in a single reaction, detects the presence of bacteriophages infecting Streptococcus thermophilus and Lactobacillus delbrueckii, plus three genetically distinct 'species' of Lactococcus lactis phages commonly found in dairy plants (P335, 936 and c2). Available bacteriophage genome sequences were examined and the conserved regions used to design five pairs of primers, one for each of the above bacteriophage species. These primers were designed to generate specific fragments of different size depending on the species. Since this method can detect the above phages in untreated milk and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms or for use in those that involve phage-deactivating conditions.
Collapse
Affiliation(s)
- B del Rio
- Instituto de Productos Lácteos de Asturias (CSIC), Apdo. de Correos 85, 33300, Villaviciosa, Asturias, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Vinderola G, Marcó MB, Guglielmotti DM, Perdigón G, Giraffa G, Reinheimer J, Quiberoni A. Phage-resistant mutants of Lactobacillus delbrueckii may have functional properties that differ from those of parent strains. Int J Food Microbiol 2007; 116:96-102. [PMID: 17307269 DOI: 10.1016/j.ijfoodmicro.2006.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/09/2006] [Accepted: 12/11/2006] [Indexed: 11/20/2022]
Abstract
Three commercial phage sensitive Lactobacillus delbrueckii strains (identified as Ab(1), YSD V and Ib(3)), and four spontaneous phage-resistant mutants isolated from them were tested for their capacity to activate the gut mucosal immune response in mice, as indicated by the numbers of IgA-producing cells. Random Amplified Polymorphic DNA (RAPD) analysis revealed a strong genetic homology between the sensitive strains and their respective derivatives. The phage-resistant mutants exhibited high levels of phage resistance, elevated stability of this phenotype and technological properties comparable to those of their respective parent strains. The tolerance to acidic conditions, bile salts and lysozyme was strain dependent and total cell viability losses as a result of exposure to all three stresses ranged from 2.0 to 3.7 log units. All the strains were highly resistant to a simulated gastric solution of pH 3, while significant additional losses in cell viability were observed when acid treated cells were exposed to bile salts and lysozyme. BALB/c mice received pure cultures of Lb. delbrueckii sensitive and phage-resistant strains for 2, 5 or 7 consecutive days. The ability of the parent strains to activate the small intestine immune response was preserved or enhanced in phage-resistant mutants. The maximal proliferation of IgA(+) cells was observed at day 5 or 7, depending on the strain. Mutants isolated in this study using natural selection strategies had improved phage resistance, adequate technological properties and satisfactory gut mucosal immunostimulation ability, and so would be good candidates for industrial applications in functional foods.
Collapse
Affiliation(s)
- Gabriel Vinderola
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, 4000 San Miguel de Tucumán, Argentina
| | | | | | | | | | | | | |
Collapse
|
36
|
Guglielmotti DM, Reinheimer JA, Binetti AG, Giraffa G, Carminati D, Quiberoni A. Characterization of spontaneous phage-resistant derivatives of Lactobacillus delbrueckii commercial strains. Int J Food Microbiol 2006; 111:126-33. [DOI: 10.1016/j.ijfoodmicro.2006.04.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/16/2006] [Accepted: 04/27/2006] [Indexed: 11/26/2022]
|
37
|
Mozzi F, Vaningelgem F, Hébert EM, Van der Meulen R, Foulquié Moreno MR, Font de Valdez G, De Vuyst L. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl Environ Microbiol 2006; 72:4431-5. [PMID: 16751563 PMCID: PMC1489642 DOI: 10.1128/aem.02780-05] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thirty-one lactic acid bacterial strains from different species were evaluated for exopolysaccharide (EPS) production in milk. Thermophilic strains produced more EPS than mesophilic ones, but EPS yields were generally low. Ropiness or capsular polysaccharide formation was strain dependent. Six strains produced high-molecular-mass EPS. Polymers were classified into nine groups on the basis of their monomer composition. EPS from Enterococcus strains were isolated and characterized.
Collapse
Affiliation(s)
- Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| | | | | | | | | | | | | |
Collapse
|
38
|
Geller BL, Ngo HT, Mooney DT, Su P, Dunn N. Lactococcal 936-Species Phage Attachment to Surface of Lactococcus lactis. J Dairy Sci 2005; 88:900-7. [PMID: 15738223 DOI: 10.3168/jds.s0022-0302(05)72756-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interactions of the 936-species phages sk1, jj50, and 64 with the cell surface of Lactococcus lactis LM0230 were analyzed. Cell envelopes (walls + plasma membrane), cell wall, or plasma membrane from L. lactis ssp. lactis LM0230 each inactivated the phages in vitro. However, other 936-species phages kh and P008, which do not infect strain LM0230, were not inactivated by any of the subcellular fractions. Treating cell walls or plasma membrane with the cell wall hydrolase mutanolysin eliminated inactivation of phage sk1. This suggested that intact cell wall fragments were required for inactivation. A role for plasma membrane in phage sk1 inactivation was further investigated. Boiling, washing in 2 M KCl, 8 M urea, or 0.1 M Na(2)CO(3)/pH 11, or treating the plasma membrane with proteases did not reduce adsorption or inactivation of phage. Adding lipoteichoic acid or antibodies to lipoteichoic acid did not reduce inactivation of phage in a mixture with membrane, suggesting that lipoteichoic acid was not involved. Inactivation by envelopes or cell wall correlated with ejection of DNA from the phage sk1 capsid. Although calcium is required for plaque formation, it was not required for adsorption, inactivation, or ejection of phage DNA by envelopes or cell wall. The results suggest that at least for phages sk1, jj50, and 64, adsorption and phage DNA injection into the host does not require a host membrane protein or lipoteichoic acid, and that cell wall components are sufficient for these initial steps of phage infection.
Collapse
Affiliation(s)
- B L Geller
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|