1
|
Abstract
BACKGROUND This represents the first update of this review, which was published in 2012. Atorvastatin is one of the most widely prescribed drugs and the most widely prescribed statin in the world. It is therefore important to know the dose-related magnitude of effect of atorvastatin on blood lipids. OBJECTIVES Primary objective To quantify the effects of various doses of atorvastatin on serum total cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol and triglycerides in individuals with and without evidence of cardiovascular disease. The primary focus of this review was determination of the mean per cent change from baseline of LDL-cholesterol. Secondary objectives • To quantify the variability of effects of various doses of atorvastatin.• To quantify withdrawals due to adverse effects (WDAEs) in placebo-controlled randomised controlled trials (RCTs). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 11, 2013), MEDLINE (1966 to December Week 2 2013), EMBASE (1980 to December Week 2 2013), Web of Science (1899 to December Week 2 2013) and BIOSIS Previews (1969 to December Week 2 2013). We applied no language restrictions. SELECTION CRITERIA Randomised controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of atorvastatin on blood lipids over a duration of three to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility criteria for studies to be included and extracted data. We collected information on withdrawals due to adverse effects from placebo-controlled trials. MAIN RESULTS In this update, we found an additional 42 trials and added them to the original 254 studies. The update consists of 296 trials that evaluated dose-related efficacy of atorvastatin in 38,817 participants. Included are 242 before-and-after trials and 54 placebo-controlled RCTs. Log dose-response data from both trial designs revealed linear dose-related effects on blood total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides. The Summary of findings table 1 documents the effect of atorvastatin on LDL-cholesterol over the dose range of 10 to 80 mg/d, which is the range for which this systematic review acquired the greatest quantity of data. Over this range, blood LDL-cholesterol is decreased by 37.1% to 51.7% (Summary of findings table 1). The slope of dose-related effects on cholesterol and LDL-cholesterol was similar for atorvastatin and rosuvastatin, but rosuvastatin is about three-fold more potent. Subgroup analyses suggested that the atorvastatin effect was greater in females than in males and was greater in non-familial than in familial hypercholesterolaemia. Risk of bias for the outcome of withdrawals due to adverse effects (WDAEs) was high, but the mostly unclear risk of bias was judged unlikely to affect lipid measurements. Withdrawals due to adverse effects were not statistically significantly different between atorvastatin and placebo groups in these short-term trials (risk ratio 0.98, 95% confidence interval 0.68 to 1.40). AUTHORS' CONCLUSIONS This update resulted in no change to the main conclusions of the review but significantly increases the strength of the evidence. Studies show that atorvastatin decreases blood total cholesterol and LDL-cholesterol in a linear dose-related manner over the commonly prescribed dose range. New findings include that atorvastatin is more than three-fold less potent than rosuvastatin, and that the cholesterol-lowering effects of atorvastatin are greater in females than in males and greater in non-familial than in familial hypercholesterolaemia. This review update does not provide a good estimate of the incidence of harms associated with atorvastatin because included trials were of short duration and adverse effects were not reported in 37% of placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | - Michael Tsang
- McMaster UniversityDepartment of Internal Medicine, Internal Medicine Residency Office, Faculty of Medicine1200 Main Street WestHSC 3W10HamiltonONCanadaL8N 3N5
| | - James M Wright
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | | |
Collapse
|
2
|
Abstract
BACKGROUND Atorvastatin is one of the most widely prescribed drugs and the most widely prescribed statin in the world. It is therefore important to know the dose-related magnitude of effect of atorvastatin on blood lipids. OBJECTIVES To quantify the dose-related effects of atorvastatin on blood lipids and withdrawals due to adverse effects (WDAE). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) on The Cochrane Library Issue 4, 2011, MEDLINE (1966 to November 2011), EMBASE (1980 to November 2011), ISI Web of Science (1899 to November 2011) and BIOSIS Previews (1969 to November 2011). No language restrictions were applied. SELECTION CRITERIA Randomised controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of atorvastatin on blood lipids over a duration of 3 to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. WDAE information was collected from the placebo-controlled trials. MAIN RESULTS Two hundred fifty-four trials evaluated the dose-related efficacy of atorvastatin in 33,505 participants. Log dose-response data revealed linear dose-related effects on blood total cholesterol, low-density lipoprotein (LDL)-cholesterol and triglycerides. Combining all the trials using the generic inverse variance fixed-effect model for doses of 10 to 80 mg/day resulted in decreases of 36% to 53% for LDL-cholesterol. There was no significant dose-related effects of atorvastatin on blood high-density lipoprotein (HDL)-cholesterol. WDAE were not statistically different between atorvastatin and placebo for these short-term trials (risk ratio 0.99; 95% confidence interval 0.68 to 1.45). AUTHORS' CONCLUSIONS Blood total cholesterol, LDL-cholesterol and triglyceride lowering effect of atorvastatin was dependent on dose. Log dose-response data was linear over the commonly prescribed dose range. Manufacturer-recommended atorvastatin doses of 10 to 80 mg/day resulted in 36% to 53% decreases of LDL-cholesterol. The review did not provide a good estimate of the incidence of harms associated with atorvastatin because of the short duration of the trials and the lack of reporting of adverse effects in 37% of the placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver,
| | | | | |
Collapse
|
3
|
Haque T, Khan BV. Atorvastatin: a review of its pharmacological properties and use in familial hypercholesterolemia. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Bevilacqua M, Righini V, Barrella M, Vago T, Chebat E, Dominguez LJ. Effects of fluvastatin slow-release (XL 80 mg) versus simvastatin (20 mg) on the lipid triad in patients with type 2 diabetes. Adv Ther 2005; 22:527-42. [PMID: 16510370 DOI: 10.1007/bf02849947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lipid triad is the association of small, dense (sd) low-density lipoprotein (LDL), low high-density lipoprotein (HDL), and hypertriglyceridemia, all of which play a role in coronary artery disease in patients with type 2 diabetes. Although statins have demonstrated clear positive effects on cardiovascular morbidity/mortality in patients with diabetes and on single components of the lipid triad, it remains controversial whether they affect all components of the triad in these patients. Therefore, we performed a single-center, parallel-group, prospective, randomized, open-label, blinded-endpoint (PROBE)-type comparison of fluvastatin extended-release (XL) 80 mg (n=48) and simvastatin 20 mg (n=46), each given once daily for 2 months to patients with type 2 diabetes with the lipid triad, who were enrolled after a 1-month lifestyle modification and dietary intervention program. After fluvastatin therapy, LDL (-51%; P<.01), apolipoprotein B (ApoB; -33%; P<.01), intermediate-density LDL (idLDL) (-14.3%; P<.05), sdLDL (-45%; P<.01), and triglycerides (-38%; P<.01) were significantly decreased, and HDL (+14.3%; P<.05) and apolipoprotein A-I (ApoA-I; +7%; P<.05) were increased; large buoyant (lb) LDL did not change (P=NS). Simvastatin therapy decreased LDL (-55.1%; P<.01), ApoB (-46%; P<.01), lbLDL (-33.3%; P<.05), idLDL (-22.7%; P<.05), sdLDL (-33.3%; P<.05), and triglycerides (-47.9%; P<.01); HDL was not changed (P=NS) after simvastatin, but ApoA-I was increased (+11.3%; P<.01). HDL increases (P<.01) and sdLDL decreases (P<.01) were significantly greater after fluvastatin compared with simvastatin therapy; LDL, triglycerides, ApoB, and idLDL changes were similar after both therapies (P=NS), and lbLDL decreases were greater with simvastatin therapy (P<.05). With both treatments, classic mean LDL and ApoB target levels were achieved in most patients. We conclude that the lipid triad can be controlled with fluvastatin XL 80 mg in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Maurizio Bevilacqua
- Endocrinology and Diabetes Unit and LORENZ Research Center, Department of Medicine, Luigi Sacco Hospital (Vialba)-University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Masaki N, Tatami R, Kumamoto T, Izawa A, Shimada Y, Takamatsu T, Katsushika S, Ishise S, Maruyama Y, Yoshimoto N. Ten-year Follow-up of Familial Hypercholesterolemia Patients After Intensive Cholesterol-lowering Therapy. Int Heart J 2005; 46:833-43. [PMID: 16272774 DOI: 10.1536/ihj.46.833] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To prevent coronary artery disease, it is necessary for patients with familial hyper-cholesterolemia (FH) to maintain a low cholesterol level. Recently a combination therapy of low-density lipoprotein (LDL) apheresis and statins has been used for FH patients, but their long-term prognosis over 10 years is unknown. In this single center prospective report, 18 FH patients with severe coronary stenosis received LDL apheresis every 2 or 4 weeks and statin therapy for 9.8 +/- 3.0 years. Probucol was given to 17 of the 18 patients. We observed their clinical events as well as coronary stenosis findings and ejection fractions for 10.7 +/- 2.6 years. Total and LDL cholesterol levels before therapy were 345 +/- 46 and 277 +/- 48 mg/dL, respectively. Immediately following LDL-apheresis, these levels decreased to 104 +/- 7.5 and 66 +/- 16 mg/dL, respectively. There were no cardiac deaths and 4 patients were free from any coronary events. There was one noncardiac death. Nonfatal myocardial in-farction occurred in 2 patients and coronary bypass surgery was required in one patient. Twelve patients received additional coronary angioplasty. There was little change in coronary stenosis and ejection fraction following 10 years of the combination therapy. Univariate Cox regression analysis revealed that the calculated mean LDL cholesterol level was the predictive value of treatment efficacy (mean LDL cholesterol < 140 mg/dL, hazard ratio 0.23, P = 0.028). The combination therapy of LDL-apheresis and antilipid drugs delayed the progression of coronary atherosclerosis and prevented a major cardiac event, although complete inhibition was limited to a small group. Additional coronary angioplasty is likely to be required for a favorable clinical outcome in FH patients.
Collapse
Affiliation(s)
- Nobuyuki Masaki
- Third Department of Internal Medicine, Saitama Medical Center, Saitama Medical School, Kamoda-Tsujidomachi, Kawagoe-shi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Higashikata T, Mabuchi H. Long-term effect of low-density lipoprotein apheresis in patients with heterozygous familial hypercholesterolemia. Ther Apher Dial 2003; 7:402-7. [PMID: 12887722 DOI: 10.1046/j.1526-0968.2003.00074.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clinical efficacy and safety of the therapeutic tool which directly removes LDL particles from circulation (LDL apheresis) have already been established in the treatment for refractory hypercholesterolemia in patients with familial hypercholesterolemia (FH). Two clinical studies with event-based assessment have demonstrated remarkably beneficial outcomes of long-term LDL apheresis using dextran sulfate cellulose columns plus adjunctive cholesterol-lowering drug therapy in the prevention of cardiovascular events in heterozygous FH with coronary artery disease. The results of several studies with angiographic and ultrasound-based assessment indicate a possible role for LDL apheresis in restructuring and stabilization of atherosclerotic lesions. These clinical improvements caused by LDL apheresis in heterozygous FH support the efficacy and importance of aggressive cholesterol-lowering therapy for secondary prevention of atherosclerotic cardiovascular disease in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Toshinori Higashikata
- The Second Department of Internal Medicine, School of Medicine, Kanazawa University, Kanazawa, Japan.
| | | |
Collapse
|
7
|
Amano Y, Nishimoto T, Tozawa RI, Ishikawa E, Imura Y, Sugiyama Y. Lipid-lowering effects of TAK-475, a squalene synthase inhibitor, in animal models of familial hypercholesterolemia. Eur J Pharmacol 2003; 466:155-61. [PMID: 12679152 DOI: 10.1016/s0014-2999(03)01549-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The lipid-lowering effects of 1-[2-[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-1,2,3,5-tetrahydro-2-oxo-5-(2,3-dimethoxyphenyl)-4,1-benzoxazepine-3-yl] acetyl] piperidin-4-acetic acid (TAK-475), a novel squalene synthase inhibitor, were examined in two models of familial hypercholesterolemia, low-density lipoprotein (LDL) receptor knockout mice and Watanabe heritable hyperlipidemic (WHHL) rabbits. Two weeks of treatment with TAK-475 in a diet admixture (0.02% and 0.07%; approximately 30 and 110 mg/kg/day, respectively) significantly lowered plasma non-high-density lipoprotein (HDL) cholesterol levels by 19% and 41%, respectively, in homozygous LDL receptor knockout mice. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, simvastatin and atorvastatin (in 0.02% and 0.07% admixtures), also reduced plasma levels of non-HDL cholesterol. In homozygous WHHL rabbits, 4 weeks of treatment with TAK-475 (0.27%; approximately 100 mg/kg/day) lowered plasma total cholesterol, triglyceride and phospholipid levels by 17%, 52% and 26%, respectively. In Triton WR-1339-treated rabbits, TAK-475 inhibited to the same extent the rate of secretion from the liver of the cholesterol, triglyceride and phospholipid components of very-low-density lipoprotein (VLDL). These results suggest that the lipid-lowering effects of TAK-475 in WHHL rabbits are based partially on the inhibition of secretion of VLDL from the liver. TAK-475 had no effect on plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the squalene synthase inhibitor TAK-475 revealed lipid-lowering effects in both LDL receptor knockout mice and WHHL rabbits.
Collapse
Affiliation(s)
- Yuichiro Amano
- Pharmacology Research Laboratories II, Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., 2-17-85, Juso-Honmachi, Osaka 532-8686, Yodogawa, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Palcoux JB, Meyer M, Jouanel P, Vanlieferinghen P, Malpuech G. Comparison of different treatment regimens in a case of homozygous familial hypercholesterolemia. Ther Apher Dial 2002; 6:136-9. [PMID: 11982954 DOI: 10.1046/j.1526-0968.2002.00345.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The laboratory results of five periods of different treatment regimens were compared in a 19-year-old girl with homozygous familial hypercholesterolemia (FH): weekly low-density lipoprotein (LDL) apheresis sessions with dextran sulfate columns (LA 15, Kaneka Corporation, Osaka, Japan) without statin administration; weekly LDL apheresis with polyacrylate columns (DALI, Fresenius Adsorber Technology, Bad Homburg, Germany) without statin; LDL apheresis as in Period 2 with 40 mg atorvastatin daily; LDL apheresis as in Period 2 with 80 mg atorvastatin daily; and fortnightly LDL apheresis sessions with polyacrilate and administration of 80 mg atorvastatin daily. The five treatments were given in the above order, and each lasted at least 2 months. To compare the effectiveness of the different methods, the blood levels of total cholesterol, LDL-cholesterol and high-density lipoprotein (HDL)-cholesterol were measured before each session, and the percentage decreases in the blood levels of total cholesterol and LDL-cholesterol were recorded during sessions in Periods 1 and 2. In Periods 1 and 2, the biological effectiveness of LDL apheresis was comparable. Atorvastatin (40 mg daily) improved the blood levels of total cholesterol and LDL-cholesterol, but lowered HDL-cholesterol values. Increasing the daily dose of atorvastatin from 40 mg to 80 mg did not significantly improve LDL-cholesterol levels. When the time between two sessions was longer (Period 5), the total cholesterol and LDL-cholesterol values worsened and were comparable to those of Period 2 during which there was no atorvastatin treatment. In this case of homozygous FH, weekly sessions of LDL apheresis in association with atorvastatin at dose of 40 mg per day gave the best results.
Collapse
Affiliation(s)
- Jean-Bernard Palcoux
- Pediatrics Department and Biochemistry Laboratory, Hôtel-Dieu, Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
9
|
Malhotra HS, Goa KL. Atorvastatin: an updated review of its pharmacological properties and use in dyslipidaemia. Drugs 2002; 61:1835-81. [PMID: 11693468 DOI: 10.2165/00003495-200161120-00012] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
UNLABELLED Atorvastatin is a synthetic hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. In dosages of 10 to 80 mg/day, atorvastatin reduces levels of total cholesterol, low-density lipoprotein (LDL)-cholesterol, triglyceride and very low-density lipoprotein (VLDL)-cholesterol and increases high-density lipoprotein (HDL)-cholesterol in patients with a wide variety of dyslipidaemias. In large long-term trials in patients with primary hypercholesterolaemia. atorvastatin produced greater reductions in total cholesterol. LDL-cholesterol and triglyceride levels than other HMG-CoA reductase inhibitors. In patients with coronary heart disease (CHD), atorvastatin was more efficacious than lovastatin, pravastatin. fluvastatin and simvastatin in achieving target LDL-cholesterol levels and, in high doses, produced very low LDL-cholesterol levels. Aggressive reduction of serum LDL-cholesterol to 1.9 mmol/L with atorvastatin 80 mg/day for 16 weeks in patients with acute coronary syndromes significantly reduced the incidence of the combined primary end-point events and the secondary end-point of recurrent ischaemic events requiring rehospitalisation in the large. well-designed MIRACL trial. In the AVERT trial, aggressive lipid-lowering therapy with atorvastatin 80 mg/ day for 18 months was at least as effective as coronary angioplasty and usual care in reducing the incidence of ischaemic events in low-risk patients with stable CHD. Long-term studies are currently investigating the effects of atorvastatin on serious cardiac events and mortality in patients with CHD. Pharmacoeconomic studies have shown lipid-lowering with atorvastatin to be cost effective in patients with CHD, men with at least one risk factor for CHD and women with multiple risk factors for CHD. In available studies atorvastatin was more cost effective than most other HMG-CoA reductase inhibitors in achieving target LDL-cholesterol levels. Atorvastatin is well tolerated and adverse events are usually mild and transient. The tolerability profile of atorvastatin is similar to that of other available HMG-CoA reductase inhibitors and to placebo. Elevations of liver transaminases and creatine phosphokinase are infrequent. There have been rare case reports of rhabdomyolysis occurring with concomitant use of atorvastatin and other drugs. CONCLUSION Atorvastatin is an appropriate first-line lipid-lowering therapy in numerous groups of patients at low to high risk of CHD. Additionally it has a definite role in treating patients requiring greater decreases in LDL-cholesterol levels. Long-term studies are under way to determine whether achieving very low LDL-cholesterol levels with atorvastatin is likely to show additional benefits on morbidity and mortality in patients with CHD.
Collapse
Affiliation(s)
- H S Malhotra
- Adis International Limited, Mairangi Bay, Auckland, New Zealand
| | | |
Collapse
|
10
|
Banyai S, Banyai M, Falger J, Jansen M, Alt E, Derfler K, Koppensteiner R. Atorvastatin improves blood rheology in patients with familial hypercholesterolemia (FH) on long-term LDL apheresis treatment. Atherosclerosis 2001; 159:513-9. [PMID: 11730833 DOI: 10.1016/s0021-9150(01)00532-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the effect of atorvastatin on blood rheology in patients with familial hypercholesterolemia (FH) on regular LDL apheresis, we prospectively studied the rheological variables fibrinogen, plasma viscosity, red cell aggregation, whole blood viscosity, hematocrit and platelet aggregation in 12 patients (two homozygous, ten heterozygous) before and during treatment with atorvastatin. Baseline values of red cell aggregation and whole blood viscosity were increased in FH patients on regular LDL apheresis compared with healthy controls (P<0.05), whereas fibrinogen, plasma viscosity and hematocrit were similar in the two groups. Treatment with atorvastatin reduced red cell aggregation (P<0.01), whole blood viscosity (P<0.01), plasma viscosity (P<0.01) and platelet aggregation (P<0.05), but caused a slight increase in plasma fibrinogen (by 5%; P<0.01). Our findings suggest that atorvastatin improves blood rheology in patients with FH on regular LDL-apheresis. This improvement in blood flow properties may contribute to the well-known beneficial effects of atorvastatin on cardiovascular risk in patients with severe hyperlipidemia and atherosclerotic vascular disease.
Collapse
Affiliation(s)
- S Banyai
- Division of Angiology, Department of Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zachoval R, Gerbes AL, Schwandt P, Parhofer KG. Short-term effects of statin therapy in patients with hyperlipoproteinemia after liver transplantation: results of a randomized cross-over trial. J Hepatol 2001; 35:86-91. [PMID: 11495047 DOI: 10.1016/s0168-8278(01)00044-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hyperlipoproteinemia is frequent following liver transplantation and may lead to atherosclerosis. Lipid-lowering agents may be useful, but could interfere with the function of the transplanted organ and with immunosuppression. We therefore evaluated in a prospective, randomized, open-labeled cross-over trial the effect of two frequently used 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (pravastatin 10 mg d(-1) and cerivastatin 0.1 mg d(-1)) in hyperlipoproteinemic patients after liver transplantation. METHODS Sixteen patients (6.3 +/- 2.0 years post-transplantation, cyclosporine n = 11, tacrolimus n = 5) with hyperlipoproteinemia (cholesterol 246 +/- 42, triglycerides 191 +/- 87, low-density lipoprotein (LDL)-cholesterol 161 +/- 35, high-density lipoprotein (HDL)-cholesterol 44 +/- 11 mg d(-1)) were included. Treatment periods of 6 weeks were separated by a 4-week washout period. RESULTS Both medications were tolerated well, no effects on serum concentrations of liver enzymes or immunosuppressive agents were observed. Cerivastatin and pravastatin decreased (P < 0.001) cholesterol by 21 +/- 10% and 15 +/- 10%, LDL-cholesterol by 27 +/- 14% and 17 +/- 15%, respectively, while triglyceride and HDL-cholesterol concentrations did not change significantly. LDL/HDL-cholesterol markedly improved (P < 0.001) by 29 +/- 16% (cerivastatin) and 16 +/- 16% (pravastatin). Cerivastatin was more potent than pravastatin in patients receiving cyclosporine A, while there was no significant difference in patients receiving tacrolimus. CONCLUSIONS Low-dose cerivastatin and pravastatin significantly improve lipid profiles following liver transplantation without affecting liver function or immunosuppression.
Collapse
Affiliation(s)
- R Zachoval
- Medical Department II, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
12
|
Drmanac S, Heilbron DC, Pullinger CR, Jafari M, Gietzen D, Ukrainczyk T, Cho MH, Frost PH, Siradze K, Drmanac RT, Kane JP, Malloy MJ. Elevated baseline triglyceride levels modulate effects of HMGCoA reductase inhibitors on plasma lipoproteins. J Cardiovasc Pharmacol Ther 2001; 6:47-56. [PMID: 11452336 DOI: 10.1177/107424840100600106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The response in levels of very-low-density (VLDL) and low-density (LDL) lipoproteins varies substantially among hyperlipidemic patients during treatment with HMGCoA reductase inhibitors. Apolipoprotein E genotype and gender are known to contribute to the regulation of steady state levels of plasma lipoproteins. This study explores the effect of these and other potential determinants of the response of VLDL and LDL to treatment with reductase inhibitors. METHODS Using mixed linear statistical models, the response of lipoprotein lipid values was studied in 142 hyperlipidemic individuals who were treated with reductase inhibitors. Patients received one or more of the following drugs individually for a total of 623 treatment observations: lovastatin, pravastatin, simvastatin, or atorvastatin. For evaluation of the effects of treatment in the aggregate, actual doses were expressed as equivalent doses of atorvastatin, using factors based on random assignment comparisons in 16 reported studies. The analysis factors considered were apolipoprotein E genotype, baseline average triglycerides >170 mg/dL (vs less), and gender. RESULTS Presence of an apo epsilon4 allele was associated with a trend toward greater reduction of triglyceride levels and a diminished ability of the reductase inhibitors to reduce LDL cholesterol levels. Gender had only minimal effect on the response of either LDL cholesterol or triglycerides. However, the effect of elevated baseline triglycerides on the response of both triglycerides and LDL cholesterol was striking and was exerted in opposite directions. The triglyceride-lowering effect of reductase inhibitors was greater in patients with initial triglyceride levels above 170 mg/dL (P=0.0001). The effect was even greater in patients with initial triglyceride levels over 250 mg/dL (P=0.015). Conversely, for LDL cholesterol levels, elevated baseline triglycerides were associated with a significantly decreased response to the drugs (P=0.0015). CONCLUSIONS These findings indicate that baseline triglyceride levels are an important predictor of response of plasma lipoproteins to HMGCoA reductase inhibitors, perhaps reflecting fundamental differences in mechanism underlying the hyperlipidemic phenotype.
Collapse
|
13
|
Otto C, Geiss HC, Donner MG, Parhofer KG, Schwandt P. Influence of atorvastatin versus simvastatin on fibrinogen and other hemorheological parameters in patients with severe hypercholesterolemia treated with regular low-density lipoprotein immunoadsorption apheresis. THERAPEUTIC APHERESIS : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR APHERESIS AND THE JAPANESE SOCIETY FOR APHERESIS 2000; 4:244-8. [PMID: 10910028 DOI: 10.1046/j.1526-0968.2000.00213.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Low-density lipoprotein (LDL) apheresis is a treatment option in patients with coronary artery disease and elevated LDL cholesterol concentrations if maximal drug therapy fails to achieve adequate LDL cholesterol reduction. This therapy is more effective when combined with strong lipid-lowering drugs, such as atorvastatin. However, conflicting data have been published concerning the effect of atorvastatin on fibrinogen concentration. Therefore, we investigated the effect of atorvastatin compared to simvastatin on fibrinogen concentration and other hemorheological parameters in patients treated by weekly LDL apheresis. Hemorheological parameters were, studied twice in 9 patients (4 female, 5 male, 54.0+/-8.9 years) with coronary artery disease treated by weekly LDL immunoadsorption, once during concomitant simvastatin therapy (40 mg daily) and once during atorvastatin therapy (40 mg daily). Fibrinogen concentration, plasma and blood viscosity at different shear rates, parameters of red cell aggregation at stasis and shear rate 3/s, and erythrocyte filterability were determined 7 days after the last LDL apheresis after each drug had been given for a minimum for 8 weeks. Fibrinogen concentration did not show any statistically significant difference during therapy with atorvastatin (3.09+/-0.36 g/L) compared to simvastatin (3.13+/-0.77 g/L). Plasma and blood viscosity as well as erythrocyte filterability were also unchanged. The increase in red cell aggregation at stasis during atorvastatin treatment (5.82+/-1.00 U versus 4.89+/-0.48 U during simvastatin; p < 0.05) was inversely correlated with a lower high-density liprotein (HDL) cholesterol concentration (1.17+/-0.21 mmol/L versus 1.31+/-0.30 mmol/L during simvastatin; p < 0.05). LDL cholesterol showed a strong trend to lower concentrations during atorvastatin (4.14+/-0.61 mmol/L versus 4.56+/-0.66 mmol/L during simvastatin; p = 0.07), despite a reduced plasma volume treated (3,547+/-1,239 ml during atorvastatin versus 3,888+/-1,206 mL during simvastatin; p < 0.05). In conclusion, fibrinogen concentration and other hemorheological parameters were unchanged during atorvastatin compared to simvastatin therapy with the exception of a higher red cell aggregation at stasis. Therefore, with respect to hemorheology, we conclude that atorvastatin should not be withheld from hypercholesterolemic patients regularly treated with LDL immunoadsorption.
Collapse
Affiliation(s)
- C Otto
- Medical Department II, Klinikum Grosshadern, University of Munich, Germany.
| | | | | | | | | |
Collapse
|
14
|
Abstract
The efficacy and safety of the therapeutic tool which directly removes LDL particles from circulation (LDL apheresis) has already been established for cholesterol-lowering in patients with refractory hypercholesterolemia, such as homozygous familial hypercholesterolemia. Several angiographic studies have demonstrated that regular LDL apheresis therapy had favorable effects on the progression of coronary atherosclerosis. Recently, two clinical reports described excellent long-term follow-up results for patients with coronary artery disease who had been treated with LDL apheresis using dextran sulfate cellulose columns plus adjunctive cholesterol-lowering drug therapy. In addition, there is increasing evidence that LDL apheresis is effective for the prevention of extra-coronary atherosclerotic disease, and it is also reported to have the potential to improve microvascular disorders. Since the mechanisms of clinical improvement caused by LDL apheresis extend beyond simple and drastic reduction of LDL cholesterol, further investigation based on recent vascular biological evidence is needed.
Collapse
Affiliation(s)
- K Kajinami
- Second Department of Internal Medicine, School of Medicine, Kanazawa University, Japan.
| | | |
Collapse
|