1
|
Szczepańska-Sadowska E, Żera T. Vasopressin: a possible link between hypoxia and hypertension. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular and respiratory diseases are frequently associated with transient and prolonged hypoxia, whereas hypoxia exerts pro-hypertensive effects, through stimulation of the sympathetic system and release of pressor endocrine factors. This review is focused on the role of arginine vasopressin (AVP) in dysregulation of the cardiovascular system during hypoxia associated with cardiovascular disorders. AVP is synthesized mainly in the neuroendocrine neurons of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), which send axons to the posterior pituitary and various regions of the central nervous system (CNS). Vasopressinergic neurons are innervated by multiple neuronal projections releasing several neurotransmitters and other regulatory molecules. AVP interacts with V1a, V1b and V2 receptors that are present in the brain and peripheral organs, including the heart, vessels, lungs, and kidneys. Release of vasopressin is intensified during hypernatremia, hypovolemia, inflammation, stress, pain, and hypoxia which frequently occur in cardiovascular patients, and blood AVP concentration is markedly elevated in cardiovascular diseases associated with hypoxemia. There is evidence that hypoxia stimulates AVP release through stimulation of chemoreceptors. It is suggested that acting in the carotid bodies, AVP may fine-tune respiratory and hemodynamic responses to hypoxia and that this effect is intensified in hypertension. There is also evidence that during hypoxia, augmentation of pro-hypertensive effects of vasopressin may result from inappropriate interaction of this hormone with other compounds regulating the cardiovascular system (catecholamines, angiotensins, natriuretic peptides, steroids, nitric oxide). In conclusion, current literature indicates that abnormal mutual interactions between hypoxia and vasopressin may significantly contribute to pathogenesis of hypertension.
Collapse
Affiliation(s)
- Ewa Szczepańska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci 2021; 22:11465. [PMID: 34768894 PMCID: PMC8584236 DOI: 10.3390/ijms222111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (A.C.-J.); (T.Ż.)
| | | | | | | |
Collapse
|
3
|
Benabdesselam R, Rendon A, Dorbani-Mamine L, Hardin-Pouzet H. Effect of Dp71 deficiency on the oxytocin hypothalamic axis in osmoregulation function in mice. Acta Histochem 2019; 121:268-276. [PMID: 30642627 DOI: 10.1016/j.acthis.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/25/2022]
Abstract
Dp71 is the major form of dystrophins (Dp) in the supraoptic nucleus (SON) and in the neural lobe of hypophysis (NL/HP). Dp71-null mice exhibit a hypo-osmolar status attributed to an altered osmosensitivity of the SON and to a perturbed vasopressinergic axis. Because oxytocin (OT) is implicated in osmoregulation via natriuresis, this study explored the oxytocinergic axis in Dp71-null mice after salt-loading (SL). Under normosmolar conditions, OT-mRNA expression was higher in the Dp71-null SON compared to wild-type (wt) and the OT peptide level has not changed. Dp-immunostaining was localized in astrocytes end-feet surrounding vessels in wt SON. This distribution changed in Dp71-null SON, Dp being detected in OT-soma of MCNs. nNOS and NADPH-diaphorase levels increased in the OT area of the Dp71-null SON compared to wt. In the NL/HP, OT level reduced in Dp71-null mice and Dp localization changed from pituicytes end-feet in wt SON to OT terminals in Dp71-null SON. Salt-Loading resulted in an increase of OT-mRNA and peptide levels in wt SON but had no effect in Dp71-null SON. In the NL/HP, OT content was reduced after SL. For Dp71-null mice, OT level, already low in control, was not modified by SL. Dp level was not affected by SL in the SON nor in the NL/HP. Our data confirmed the importance of Dp71 for the SON functionality in osmoregulation. The localization of Dp71 at the glial-vascular interface could be associated with SON osmosensitivity, leading to an adequate OT synthesis in the SON and release from the NL/HP upon plasmatic hyperosmolality.
Collapse
|
4
|
Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the Renin-Angiotensin System and the Vasopressinergic System Interactions in Cardiovascular Disorders. Curr Hypertens Rep 2018; 20:19. [PMID: 29556787 PMCID: PMC5859051 DOI: 10.1007/s11906-018-0823-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In many instances, the renin-angiotensin system (RAS) and the vasopressinergic system (VPS) are jointly activated by the same stimuli and engaged in the regulation of the same processes. Recent Findings Angiotensin II (Ang II) and arginine vasopressin (AVP), which are the main active compounds of the RAS and the VPS, interact at several levels. Firstly, Ang II, acting on AT1 receptors (AT1R), plays a significant role in the release of AVP from vasopressinergic neurons and AVP, stimulating V1a receptors (V1aR), regulates the release of renin in the kidney. Secondly, Ang II and AVP, acting on AT1R and V1aR, respectively, exert vasoconstriction, increase cardiac contractility, stimulate the sympathoadrenal system, and elevate blood pressure. At the same time, they act antagonistically in the regulation of blood pressure by baroreflex. Thirdly, the cooperative action of Ang II acting on AT1R and AVP stimulating both V1aR and V2 receptors in the kidney is necessary for the appropriate regulation of renal blood flow and the efficient resorption of sodium and water. Furthermore, both peptides enhance the release of aldosterone and potentiate its action in the renal tubules. Summary In this review, we (1) point attention to the role of the cooperative action of Ang II and AVP for the regulation of blood pressure and the water-electrolyte balance under physiological conditions, (2) present the subcellular mechanisms underlying interactions of these two peptides, and (3) provide evidence that dysregulation of the cooperative action of Ang II and AVP significantly contributes to the development of disturbances in the regulation of blood pressure and the water-electrolyte balance in cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
5
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Pedrino GR, Calderon AS, Andrade MA, Cravo SL, Toney GM. Discharge of RVLM vasomotor neurons is not increased in anesthetized angiotensin II-salt hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 305:H1781-9. [PMID: 24124187 DOI: 10.1152/ajpheart.00657.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurons of the rostral ventrolateral medulla (RVLM) are critical for generating and regulating sympathetic nerve activity (SNA). Systemic administration of ANG II combined with a high-salt diet induces hypertension that is postulated to involve elevated SNA. However, a functional role for RVLM vasomotor neurons in ANG II-salt hypertension has not been established. Here we tested the hypothesis that RVLM vasomotor neurons have exaggerated resting discharge in rats with ANG II-salt hypertension. Rats in the hypertensive (HT) group consumed a high-salt (2% NaCl) diet and received an infusion of ANG II (150 ng·kg(-1)·min(-1) sc) for 14 days. Rats in the normotensive (NT) group consumed a normal salt (0.4% NaCl) diet and were infused with normal saline. Telemetric recordings in conscious rats revealed that mean arterial pressure (MAP) was significantly increased in HT compared with NT rats (P < 0.001). Under anesthesia (urethane/chloralose), MAP remained elevated in HT compared with NT rats (P < 0.01). Extracellular single unit recordings in HT (n = 28) and NT (n = 22) rats revealed that barosensitive RVLM neurons in both groups (HT, 23 cells; NT, 34 cells) had similar cardiac rhythmicity and resting discharge. However, a greater (P < 0.01) increase of MAP was needed to silence discharge of neurons in HT (17 cells, 44 ± 5 mmHg) than in NT (28 cells, 29 ± 3 mmHg) rats. Maximum firing rates during arterial baroreceptor unloading were similar across groups. We conclude that heightened resting discharge of sympathoexcitatory RVLM neurons is not required for maintenance of neurogenic ANG II-salt hypertension.
Collapse
Affiliation(s)
- Gustavo R Pedrino
- Department of Physiological Science, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | | |
Collapse
|
7
|
Rossi NF, Chen H, Maliszewska-Scislo M. Paraventricular nucleus control of blood pressure in two-kidney, one-clip rats: effects of exercise training and resting blood pressure. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1390-400. [PMID: 24089375 DOI: 10.1152/ajpregu.00546.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exercise-induced changes in γ-aminobutyric acid (GABA) or nitric oxide signaling within the paraventricular nucleus (PVN) have not been studied in renovascular hypertension. We tested whether exercise training decreases mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in two-kidney, one-clip (2K-1C) hypertensive rats due to enhanced nitric oxide or GABA signaling within PVN. Conscious, unrestrained male Sprague-Dawley rats with either sham (Sham) or right renal artery clipping (2K-1C) were assigned to sedentary (SED) or voluntary wheel running (ExT) for 6 or 12 wk. MAP and angiotensin II (ANG II) were elevated in 2K-1C SED rats. The 2K-1C ExT rats displayed lower MAP at 6 wk that did not decline further by 12 wk. Plasma ANG II was lower in 2K-1C ExT rats. Increases in MAP, heart rate, and RSNA to blockade of PVN nitric oxide in 2K-1C SED rats were attenuated compared with either Sham group. Exercise training restored the responses in 2K-1C ExT rats. The increase in MAP in response to bicuculline was inversely correlated with baseline MAP. The rise in MAP was lower in 2K-1C SED vs. either Sham group and was normalized in the 2K-1C ExT rats. Paradoxically, heart rate and RSNA responses were not diminished in 2K-1C SED rats but were significantly lower in the 2K-1C ExT rats. Thus the decrease in arterial pressure in 2K-1C hypertension associated with exercise training is likely due to diminished excitatory inputs to PVN because of lower ANG II and higher nitritergic tone rather than enhanced GABA inhibition of sympathetic output.
Collapse
Affiliation(s)
- Noreen F Rossi
- John D. Dingell Veterans Affairs Medical Center, Departments of Internal Medicine and Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
8
|
Jhamandas JH, Goncharuk V. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation. Front Endocrinol (Lausanne) 2013; 4:8. [PMID: 23404625 PMCID: PMC3566396 DOI: 10.3389/fendo.2013.00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/22/2013] [Indexed: 11/29/2022] Open
Abstract
Neuropeptide FF (NPFF) is an octapeptide belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain including central cardiovascular and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat and human brain. Herein, we review evidence for the role of NPFF in central regulation of blood pressure particularly within the brainstem and the hypothalamic paraventricular nucleus (PVN). At a cellular level, NPFF demonstrates distinct responses in magnocellular and parvocellular neurons of the PVN, which regulate the secretion of neurohypophyseal hormones and sympathetic outflow, respectively. Finally, the presence of NPFF system in the human brain and its alterations within the hypertensive brain are discussed.
Collapse
Affiliation(s)
- Jack H. Jhamandas
- Division of Neurology, Department of Medicine, Centre for Neuroscience, University of AlbertaEdmonton, AB, Canada
| | - Valeri Goncharuk
- Division of Neurology, Department of Medicine, Centre for Neuroscience, University of AlbertaEdmonton, AB, Canada
- Russian Cardiology Research CenterMoscow, Russia
| |
Collapse
|
9
|
Aguila FA, Oliveira-Pelegrin GR, Yao ST, Murphy D, Rocha MJA. Anteroventral third ventricle (AV3V) lesion affects hypothalamic neuronal nitric oxide synthase (nNOS) expression following water deprivation. Brain Res Bull 2011; 86:239-45. [PMID: 21840380 DOI: 10.1016/j.brainresbull.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) has been reported to be up-regulated in the hypothalamic supraoptic nucleus (SON) during dehydration which in turn could increase nitric oxide (NO) production and consequently affect arginine vasopressin (AVP) secretion. The anteroventral third ventricle (AV3V) region has strong afferent connections with the SON. Herein we describe our analysis of the effects of an AV3V lesion on AVP secretion, and c-fos and nNOS expression in the SON following dehydration. Male Wistar rats had their AV3V region electrolytically lesioned or were sham operated. After 21 days they were submitted to dehydration or left as controls (euhydrated). Two days later, one group was anaesthetized, perfused and the brains were processed for Fos protein and nNOS immunohistochemistry (IHC). Another group was decapitated, the blood collected for hematocrit, osmolality, serum sodium and AVP plasma level analysis. The brains were removed for measurement of neurohypophyseal AVP content, and the SON was punched out and processed for nNOS detection by western blotting. The AV3V lesion reduced AVP plasma levels and c-fos expression in the SON following dehydration (P<0.05). Western blotting revealed an up-regulation of nNOS in the SON of control animals following dehydration, whereas such up-regulation was not observed in AV3V-lesioned rats (P<0.05). We conclude that the AV3V region plays a role in regulating the expression of nNOS in the SON of rats submitted to dehydration, and thus may affect the local nitric oxide production and the secretion of vasopressin.
Collapse
Affiliation(s)
- Fábio Alves Aguila
- Departamento de Morfologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
10
|
Northcott CA, Watts S, Chen Y, Morris M, Chen A, Haywood JR. Adenoviral inhibition of AT1a receptors in the paraventricular nucleus inhibits acute increases in mean arterial blood pressure in the rat. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1202-11. [DOI: 10.1152/ajpregu.00764.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain and peripheral renin-angiotensin systems are important in blood pressure maintenance. Circulating ANG II stimulates brain RAS to contribute to the increase mean arterial pressure (MAP). This mechanism has not been fully clarified, so it was hypothesized that reducing angiotensin type 1a (AT1a) receptors (AT1aRs) in the paraventricular nucleus (PVN) would diminish intravenous ANG II-induced increases in MAP. Adenoviruses (Ad) encoding AT1a small hairpin RNA (shRNA) or Ad-LacZ (marker gene) were injected into the PVN [1 × 109 plaque-forming units/ml, bilateral (200 nl/site)] of male Sprague-Dawley rats instrumented with radiotelemetry transmitters for MAP and heart rate measurements and with venous catheters for drug administration. No differences in weight gain or basal MAP were observed. ANG II (30 ng·kg−1·min−1 iv, 15 μl/min for 60 min) was administered 3, 7, 10, and 14 days after PVN Ad injection to increase blood pressure. ANG II-induced elevations in MAP were significantly reduced in PVN Ad-AT1a shRNA rats compared with Ad-LacZ rats (32 ± 6 vs. 8 ± 9 mmHg at 7 days, 35 ± 6 vs. 10 ± 6 mmHg at 10 days, and 32 ± 2 vs. 1 ± 5 mmHg at 14 days; P < 0.05). These observations were confirmed by acute administration of losartan (20 nmol/l, 100 nl/site) in the PVN prior to short-term infusion of ANG II; the ANG II-pressor response was attenuated by 69%. In contrast, PVN Ad-AT1a shRNA treatment did not influence phenylephrine-induced increases in blood pressure (30 μg·kg−1·min−1 iv, 15 μl/min for 30 min). Importantly, PVN Ad-AT1a shRNA did not alter superior mesenteric arterial contractility to ANG II or norepinephrine; ACh-induced arterial relaxation was also unaltered. β-Galactosidase staining revealed PVN Ad transduction, and Western blot analyses revealed significant reductions of PVN AT1 protein. In conclusion, PVN-localized AT1Rs are critical for short-term circulating ANG II-mediated elevations of blood pressure. A sustained suppression of AT1aR expression by single administration of shRNA can interfere with short-term actions of ANG II.
Collapse
Affiliation(s)
- Carrie A. Northcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Stephanie Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Mariana Morris
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Alex Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph R. Haywood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
11
|
Reis WL, Saad WA, Camargo LA, Elias LL, Antunes-Rodrigues J. Central nitrergic system regulation of neuroendocrine secretion, fluid intake and blood pressure induced by angiotensin-II. Behav Brain Funct 2010; 6:64. [PMID: 20974001 PMCID: PMC2987978 DOI: 10.1186/1744-9081-6-64] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 10/25/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) synthesis has been described in several circumventricular and hypothalamic structures in the central nervous system that are implicated in mediating central angiotensin-II (ANG-II) actions during water deprivation and hypovolemia. Neuroendocrine and cardiovascular responses, drinking behavior, and urinary excretions were examined following central angiotensinergic stimulation in awake freely-moving rats pretreated with intracerebroventricular injections of Nω-nitro-L-arginine methyl ester (L-NAME, 40 μg), an inhibitor of NO synthase, and L-arginine (20 ug), a precursor of NO. RESULTS Injections of L-NAME or ANG-II produced an increase in plasma vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) levels, an increase in water and sodium intake, mean arterial blood pressure and sodium excretion, and a reduction of urinary volume. L-NAME pretreatment enhanced the ANG-II response, while L-arginine attenuated VP and OT release, thirst, appetite for sodium, antidiuresis, and natriuresis, as well as pressor responses induced by ANG-II. DISCUSSION AND CONCLUSION Thus, the central nitrergic system participates in the angiotensinergic responses evoked by water deprivation and hypovolemia to refrain neurohypophysial secretion, hydromineral balance, and blood pressure homeostasis.
Collapse
Affiliation(s)
- Wagner L Reis
- Department of Physiology, School of Dentistry, Paulista State University of Araraquara, UNESP Araraquara São Paulo, Brazil
| | | | | | | | | |
Collapse
|
12
|
Coleman CG, Anrather J, Iadecola C, Pickel VM. Angiotensin II type 2 receptors have a major somatodendritic distribution in vasopressin-containing neurons in the mouse hypothalamic paraventricular nucleus. Neuroscience 2009; 163:129-42. [PMID: 19539723 DOI: 10.1016/j.neuroscience.2009.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/21/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) and angiotensin II (AngII) play critical roles in cardiovascular and neurohumoral regulation ascribed in part to vasopressin (VP) release. The AngII actions in the PVN are mediated largely through angiotensin II type 1 (AT1) receptors. However, there is indirect evidence that the functionally elusive central angiotensin II type 2 (AT2) receptors are also mediators of AngII signaling in the PVN. We used electron microscopic dual immunolabeling of antisera recognizing the AT2 receptor and VP to test the hypothesis that mouse PVN neurons expressing VP are among the cellular sites where this receptor has a subcellular distribution conducive to local activation. Immunoreactivity for the AT2 receptor was detected in somatodendritic profiles, of which approximately 60% of the somata and approximately 28% of the dendrites also contained VP. In comparison with somata and dendrites, axons, axon terminals, and glia less frequently contained the AT2 receptor. Somatic labeling for the AT2 receptor was often seen in the cytoplasm near the Golgi lamellae and other endomembrane structures implicated in receptor trafficking. AT2 receptor immunoreactivity in dendrites was commonly localized to cytoplasmic endomembranes, but was occasionally observed on extra- or peri-synaptic portions of the plasma membrane apposed by astrocytic processes or by unlabeled axon terminals. The labeled dendritic plasmalemmal segments containing AT2 receptors received asymmetric excitatory-type or more rarely symmetric inhibitory-type contacts from unlabeled axon terminals containing dense core vesicles, many of which are known to store neuropeptides. These results provide the first ultrastructural evidence that AT2 receptors in PVN neurons expressing VP and other neuromodulators are strategically positioned for surface activation by AngII and/or intracellular trafficking.
Collapse
Affiliation(s)
- C G Coleman
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, 407 E 61st Street, New York, NY, USA.
| | | | | | | |
Collapse
|
13
|
Zhang L, Tong M, Xiao M, Li L, Ding J. Nitric oxide mediates feedback inhibition in angiotensin II-induced upregulation of vasopressin mRNA. Peptides 2009; 30:913-7. [PMID: 19428769 DOI: 10.1016/j.peptides.2009.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 11/30/2022]
Abstract
Angiotensin II (Ang II) stimulates hypothalamic magnocellular neurons to release arginine vasopressin (AVP) via Ang II type 1 (AT1) receptors during chronic hyperosmotic condition. On the other hand, endogenous nitric oxide (NO) tonically inhibits the activity of AVP producing neurons; and system infusion of Ang II elicits the activity of NO producing neurons in the hypothalamus. These studies suggest that NO may mediate feedback inhibition in Ang II modulation of AVP neuronal excitability. To confirm this hypothesis, we first investigated colocalization of neuronal NO synthase (nNOS) and AT1 receptors in the hypothalamic magnocellular nuclei of adult male rats by using double immunofluorescence. We found that 60% and 65% of AT1 receptors immunoreactive neurons coexpressed nNOS in the hypothalamic paraventricular nucleus and supraoptic nucleus, respectively. We then demonstrated that intracerebroventricular administration of nNOS inhibitor N-omega-nitro-l-arginine methyl ester further enhanced upregulation of AVP mRNA level but totally abolished upregulation of nNOS mRNA level in the paraventricular and supraoptic nuclei of anesthetized rats induced by a prior administration of Ang II. Theses morphological and pharmacological data demonstrate that NO mediates negative feedback regulation of Ang II-induced upregulation of AVP mRNA.
Collapse
Affiliation(s)
- Luqing Zhang
- Department of Anatomy, Histology & Embryology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | |
Collapse
|
14
|
Maria Pavan de Arruda Camargo G, Antônio de Arruda Camargo L, Saad WA. Vasopressin and angiotensin receptors of the medial septal area of the brain in the control of thirst and salt appetite induced by vasopressin in water-deprived and sodium-depleted rats. Pharmacol Biochem Behav 2007; 87:393-9. [PMID: 17573101 DOI: 10.1016/j.pbb.2007.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
In this study we investigated the influence of d(CH(2))(5)-Tyr (Me)-AVP (A(1)AVP) and [Adamanteanacatyl(1),D-ET-D-Tyr(2), Val(4), aminobutyril(6),A(8,9)]-AVP (A(2)AVP), antagonists of V(1) and V(2) arginine(8)-vasopressin (AVP) receptors, respectively, as well as the effects of losartan and CGP42112A, antagonists of angiotensin II (ANGII) AT(1) and AT(2,) receptors, respectively, on water and 0.3 M sodium intake induced by water deprivation or sodium depletion (furosemide treatment) and enhanced by AVP injected into the medial septal area (MSA). A stainless steel cannula was implanted into the medial septal area (MSA) of male Holtzman rats AVP injection enhanced water and sodium intake in a dose-dependent manner. Pretreatment with V(1) antagonist injected into the MSA produced a dose-dependent reduction, whereas prior injection of V(2) antagonist increased, in a dose-dependent manner, the water and sodium responses elicited by the administration of AVP. Both AT(1) and AT(2) antagonists administered into the MSA elicited a concentration-dependent decrease in water and sodium intake induced by AVP, while simultaneous injection of the two antagonists was more effective in decreasing AVP responses. These results also indicate that the increase in water and sodium intake induced by AVP was mediated primarily by MSA AT(1) receptors.
Collapse
Affiliation(s)
- Gabriela Maria Pavan de Arruda Camargo
- Department of Clinical Analysis, School of Pharmacy, São Paulo State University, UNESP, Rua Expedicionários do Brasil, 1621, Araraquara, SP, 14801-902, Brazil.
| | | | | |
Collapse
|
15
|
Reis WL, Giusti-Paiva A, Ventura RR, Margatho LO, Gomes DA, Elias LLK, Antunes-Rodrigues J. Central nitric oxide blocks vasopressin, oxytocin and atrial natriuretic peptide release and antidiuretic and natriuretic responses induced by central angiotensin II in conscious rats. Exp Physiol 2007; 92:903-11. [PMID: 17513344 DOI: 10.1113/expphysiol.2007.037911] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The presence of nitric oxide synthase (NOS), the enzyme that catalyses the formation of nitric oxide (NO), in the circumventricular organs and magnocellular neurones suggests an important role of NO in the modulation of vasopressin (AVP) and oxytocin (OT) release. Intracerebroventricular (I.C.V.) injection of angiotensin II (Ang II) stimulates the release of AVP, OT and atrial natriuretic peptide (ANP), with the resultant antidiuretic and natriuretic effects. This study investigated the interaction between nitrergic and angiotensinergic pathways on the release of AVP, OT and ANP and on urinary volume and sodium excretion in water-loaded rats. Unanaesthetized, freely moving, male Wistar rats received two water loads followed by an injection into the lateral ventricle of an inhibitor of NOS (L-NAME), a NO donor [3-morpholinylsydnoneimine chloride (SIN-1) or S-nitroso-N-acetyl penicillamine (SNAP)] or vehicle (isotonic saline) and, 20 min after, they received a second I.C.V. injection of Ang II or vehicle. Injections of L-NAME or Ang II produced an increase in plasma levels of AVP, OT and ANP, a reduction in urinary volume and an increase in sodium excretion. Pretreatment with L-NAME enhanced the Ang II-induced increase in AVP, OT and ANP release, as well as the antidiuresis and natriuresis. Injection of SIN-1 or SNAP did not modify hormonal plasma levels and urinary parameters. In contrast SNAP blocked the AVP, OT and ANP release, as well as antidiuretic and natriuretic responses induced by ANG-II. Thus, the central nitrergic system can act to inhibit AVP, OT and ANP secretion and the antidiuretic and natriuretic effects in response to Ang II.
Collapse
Affiliation(s)
- Wagner Luis Reis
- Laboratory of Neuroendocrinology, Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
McMullan S, Goodchild AK, Pilowsky PM. Circulating angiotensin II attenuates the sympathetic baroreflex by reducing the barosensitivity of medullary cardiovascular neurones in the rat. J Physiol 2007; 582:711-22. [PMID: 17363385 PMCID: PMC2075328 DOI: 10.1113/jphysiol.2007.128983] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/15/2007] [Indexed: 11/08/2022] Open
Abstract
Chronic intravenous angiotensin II (Ang II) has been widely used to establish centrally mediated hypertension in experimental animals, and disruption of Ang II activity is a frontline treatment for hypertensive disease. However, the acute central actions of circulating Ang II are poorly understood. We examined the effects of intravenous pressor doses of Ang II on autonomic activity in anaesthetized rats under neuromuscular blockade, and compared baroinhibition evoked by Ang II pressor ramps to equipressor responses evoked by phenylephrine (PE). Baroinhibition of splanchnic sympathetic nerve activity was attenuated during Ang II trials compared with PE, and rats remained sensitive to electrical stimulation of the aortic depressor nerve at higher arterial pressures during Ang II trials. This was not due to a direct effect of Ang II on aortic nerve baroreceptors. In a separate series of experiments, we provide direct evidence that bulbospinal barosensitive neurones in the rostral ventrolateral medulla are differentially sensitive to pressure ramps evoked by Ang II or PE vasoconstriction. Nineteen out of 41 units were equally sensitive to increased arterial pressure evoked by Ang II or PE. In 17 of 41 units, barosensitivity was attenuated during Ang II trials, and in five of 41 cases units that had previously been barosensitive increased their firing rate during Ang II trials. These results show, for the first time, that circulating Ang II acutely modulates central cardiovascular control mechanisms. We suggest that this results from activation by Ang II of a central pathway originating at the circumventricular organs.
Collapse
Affiliation(s)
- Simon McMullan
- Hypertension and Stroke Research Laboratory, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
17
|
Moncrief K, Hamza S, Kaufman S. Splenic reflex modulation of central cardiovascular regulatory pathways. Am J Physiol Regul Integr Comp Physiol 2007; 293:R234-42. [PMID: 17395787 DOI: 10.1152/ajpregu.00562.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The splenorenal reflex induces changes in mean arterial pressure (MAP) and renal function. We hypothesized that, in addition to spinal pathways previously identified, these effects are also mediated through central pathways. We investigated the effect of elevated splenic venous pressure on central neural activation in intact, renal-denervated, and renal + splenic-denervated rats. Fos-labeled neurons were quantified in the nucleus of the tractus solitarius (NTS), paraventricular nucleus (PVN), supraoptic nucleus (SON), and subfornical organ (SFO) after 1-h partial splenic vein occlusion (SVO) in conscious rats bearing balloon occluders around the splenic vein, telemetric pressure transducers in the gastric vein (splenic venous pressure), and abdominal aorta catheters (MAP). SVO stimulated Fos expression in the PVN and SON, but not NTS or SFO of intact rats. Renal denervation abolished this response in the parvocellular PVN, while renal + splenic denervation abolished activation in the magnocellular PVN and the SON. In renal-denervated animals, SVO depressed Fos expression in the NTS and increased expression in the SFO, responses that were abolished by renal + splenic denervation. In intact rats, SVO also induced a fall in right atrial pressure, an increase in renal afferent nerve activity, and an increase in MAP. We conclude that elevated splenic venous pressure does induce hypothalamic activation and that this is mediated through both splenic and renal afferent nerves. However, in the absence of renal afferent input, SVO depressed NTS activation, probably as a result of the accompanying fall in cardiac preload and reduced afferent signaling from the cardiopulmonary receptors.
Collapse
Affiliation(s)
- Karli Moncrief
- Department of Physiology, University of Alberta, 473 Heritage Medical Research Centre, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
18
|
Thomas MA, Lemmer B. The use of heat-induced hydrolysis in immunohistochemistry on angiotensin II (AT1) receptors enhances the immunoreactivity in paraformaldehyde-fixed brain tissue of normotensive Sprague–Dawley rats. Brain Res 2006; 1119:150-64. [PMID: 17010318 DOI: 10.1016/j.brainres.2006.08.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/10/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
The research on components of the renin-angiotensin system delivered a broad image of angiotensin II-binding sites. Especially, immunohistochemistry (IHC) provided an exact anatomical localization of the AT(1) receptor in the rat brain. Yet, controversial results between in vitro receptor autoradiography and IHC as well as between immunohistochemical studies using various antisera started a vehement discussion concerning specificity and cross-reactivity of these antisera. In particular the magnocellular subdivision of the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) provided controversial results on the localization of AT(1) receptors. Both areas are known for angiotensin II-induced release of vasopressin (VP) and oxytocin (OXT). To evaluate the significance of the appropriate method of antigen retrieval and its relevance for the detection of AT(1) receptors we performed IHC on AT(1) receptors in paraformaldehyde-fixed and paraffin-embedded brain tissue of Sprague-Dawley rats using either the detergent Triton X-100 or microwave oven heating. This study demonstrates that heat-induced hydrolysis enhances the quality and quantity of immunoreactivity (IR) in IHC on AT(1) receptors. In the organum vasculosum lamina terminalis and in the parvocellular subdivisions of the PVN we report a distribution of AT(1)-like-IR similar to that observed with other methods. However, in addition, we provide evidence that distinct AT(1)-like-IR is also localized in few magnocellular neurons of the PVN and in few parvocellular neurons of the dorsal SON but not in magnocellular neurons of the SON. Moreover, parallel IHC indicates that few magnocellular OXT- or VP-releasing neurons of the PVN as well as parvocellular OXT-releasing neurons of the SON do also contain AT(1) receptors.
Collapse
Affiliation(s)
- Martin Alexander Thomas
- Institute of Pharmacology and Toxicology, Ruprecht-Karls University of Heidelberg, 68169 Mannheim, Germany.
| | | |
Collapse
|
19
|
Ashwell KWS, Lajevardi SE, Cheng G, Paxinos G. The hypothalamic supraoptic and paraventricular nuclei of the echidna and platypus. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:197-217. [PMID: 16809908 DOI: 10.1159/000094358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 03/30/2006] [Indexed: 11/19/2022]
Abstract
The monotremes are an intriguing group of mammals that have major differences in their reproductive physiology and lactation from therian mammals. Monotreme young hatch from leathery skinned eggs and are nourished by milk secreted onto areolae rather than through nipples. Parturition and lactation are in part controlled through the paraventricular and supraoptic nuclei of the hypothalamus. We have used Nissl staining, enzyme histochemistry, immunohistochemistry for tyrosine hydroxylase, calbindin, oxytocin, neurophysin and non-phosphorylated neurofilament protein, and carbocyanine dye tracing techniques to examine the supraoptic and paraventricular nuclei and the course of the hypothalamo-neurohypophysial tract in two monotremes: the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus). In both monotremes, the supraoptic nucleus consisted of loosely packed neurons, mainly in the retrochiasmatic position. In the echidna, the paraventricular nucleus was quite small, but had similar chemoarchitectural features to therians. In the platypus, the paraventricular nucleus was larger and appeared to be part of a stream of magnocellular neurons extending from the paraventricular nucleus to the retrochiasmatic supraoptic nucleus. Immunohistochemistry for non-phosphorylated neurofilament protein and carbocyanine dye tracing suggested that hypothalamo-neurohypophysial tract neurons in the echidna lie mainly in the retrochiasmatic supraoptic and lateral hypothalamic regions, but most neurophysin and oxytocin immunoreactive neurons in the echidna were found in the paraventricular, lateral hypothalamus and supraoptic nuclei and most oxytocinergic neurons in the platypus were distributed in a band from the paraventricular nucleus to the retrochiasmatic supraoptic nucleus. The small size of the supraoptic nucleus in the two monotremes might reflect functional aspects of monotreme lactation.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
20
|
Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev 2004; 84:169-208. [PMID: 14715914 DOI: 10.1152/physrev.00017.2003] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammals control the volume and osmolality of their body fluids from stimuli that arise from both the intracellular and extracellular fluid compartments. These stimuli are sensed by two kinds of receptors: osmoreceptor-Na+ receptors and volume or pressure receptors. This information is conveyed to specific areas of the central nervous system responsible for an integrated response, which depends on the integrity of the anteroventral region of the third ventricle, e.g., organum vasculosum of the lamina terminalis, median preoptic nucleus, and subfornical organ. The hypothalamo-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting vasopressin and oxytocin in response to osmotic and nonosmotic stimuli. Since the discovery of the atrial natriuretic peptide (ANP), a large number of publications have demonstrated that this peptide provides a potent defense mechanism against volume overload in mammals, including humans. ANP is mostly localized in the heart, but ANP and its receptor are also found in hypothalamic and brain stem areas involved in body fluid volume and blood pressure regulation. Blood volume expansion acts not only directly on the heart, by stretch of atrial myocytes to increase the release of ANP, but also on the brain ANPergic neurons through afferent inputs from baroreceptors. Angiotensin II also plays an important role in the regulation of body fluids, being a potent inducer of thirst and, in general, antagonizes the actions of ANP. This review emphasizes the role played by brain ANP and its interaction with neurohypophysial hormones in the control of body fluid homeostasis.
Collapse
Affiliation(s)
- José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
21
|
Gautron L, Chaigniau M, Layé S. Specific localization of signal transducer and activator of transcription 1 immunoreactivity in oxytocin neurons of the rat hypothalamus. Brain Res 2004; 994:260-4. [PMID: 14642652 DOI: 10.1016/j.brainres.2003.09.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transcription factor STAT1 participates in signaling pathways and cellular responses triggered by several cytokines, growth factors and hormones. The present work demonstrates for the first time the immunohistochemical distribution of STAT1 in the rat hypothalamus. STAT1 immunoreactivity was observed in somas, dendrites and axons of neurons throughout the supraoptic and paraventricular nuclei and co-localized specifically with oxytocin. These findings indicate that STAT1 is positioned to participate in specific neuroendocrine regulation in the nonpathological rat brain.
Collapse
Affiliation(s)
- Laurent Gautron
- Laboratoire des Régulations Neuroendocriniennes, EA 2972, Université Bordeaux I, Avenue des Facultés, 33405 Talence, Bordeaux, France
| | | | | |
Collapse
|
22
|
Latchford KJ, Ferguson AV. Angiotensin II activates a nitric-oxide-driven inhibitory feedback in the rat paraventricular nucleus. J Neurophysiol 2003; 89:1238-44. [PMID: 12612036 DOI: 10.1152/jn.00914.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) has been shown to play major obligatory roles in autonomic and neuroendocrine regulation. Angiotensin II (ANG) acts as a neurotransmitter regulating the excitability of magnocellular neurons in this nucleus. We report here that ANG also activates a nitric-oxide-mediated negative feedback loop in the PVN that acts to regulate the functional output of magnocellular neurons. Thus in addition to its depolarizing actions on magnocellular neurons, ANG application results in an increase in the frequency of inhibitory postsynaptic potentials in a population of these neurons without effect on the amplitude of these events. ANG was also without significant effect on the mean frequency or amplitude of mini synaptic currents analyzed in voltage-clamp experiments. This increase in inhibitory input after ANG can be abolished by the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methylester, demonstrating a requisite role for nitric oxide in the activation of this pathway. The depolarization of magnocellular neurons that show increased inhibitory postsynaptic potential (IPSP) frequency in response to ANG is significantly smaller than that observed in neurons in which IPSPs frequency was unaffected (3.2 +/- 1.1 vs. 8.0 +/- 0.5 mV, P < 0.05). Correspondingly, after nitric oxide synthase inhibition, the depolarizing effects of ANG on magnocellular neurons are augmented (2.0 +/- 0.7 vs. 6.7 +/- 0.7 mV, P < 0.05). The depolarization was also enhanced in the presence of the GABAergic antagonist bicuculline (1.9 +/- 1.2 vs. 11.9 +/- 2.3, P < 0.001). These data demonstrate that there exists within the PVN an intrinsic negative feedback loop that modulates neuronal excitability in response to peptidergic excitation.
Collapse
Affiliation(s)
- Kevin J Latchford
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
23
|
Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM, Johnson AK. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol 2003; 284:R259-76. [PMID: 12529279 DOI: 10.1152/ajpregu.00317.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite recent therapeutic advances, the prognosis for patients with heart failure remains dismal. Unchecked neurohumoral excitation is a critical element in the progressive clinical deterioration associated with the heart failure syndrome, and its peripheral manifestations have become the principal targets for intervention. The link between peripheral systems activated in heart failure and the central nervous system as a source of neurohumoral drive has therefore come under close scrutiny. In this context, the forebrain and particularly the paraventricular nucleus of the hypothalamus have emerged as sites that sense humoral signals generated peripherally in response to the stresses of heart failure and contribute to the altered volume regulation and augmented sympathetic drive that characterize the heart failure syndrome. This brief review summarizes recent studies from our laboratory supporting the concept that the forebrain plays a critical role in the pathogenesis of ischemia-induced heart failure and suggesting that the forebrain contribution must be considered in designing therapeutic strategies. Forebrain signaling by neuroactive products of the renin-angiotensin system and the immune system are emphasized.
Collapse
Affiliation(s)
- Robert B Felder
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Song D, Liu H, Sharkey KA, Lee SS. Hyperdynamic circulation in portal-hypertensive rats is dependent on central c-fos gene expression. Hepatology 2002; 35:159-66. [PMID: 11786972 DOI: 10.1053/jhep.2002.30417] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Portal hypertension is associated with hyperdynamic circulation, but the pathogenesis remains unclear. To clarify the role of central cardiovascular regulatory mechanisms, several protocols were conducted in rats with portal hypertension due to portal vein stenosis (PVS). Neuronal activation was quantified by immunohistochemical staining for Fos, the protein product of the c-fos gene. Fos expression in several brain nuclei with cardiovascular-regulatory roles was examined at 1, 3, 5, and 10 days following PVS surgery. This was correlated with development of cardiovascular changes measured at the same time points. Finally, Fos expression in the nucleus tractus solitarius (NTS) was blocked by local microinjection of c-fos antisense oligonucleotides twice daily for 5 days following PVS. The results showed that Fos-positive neurons were significantly increased in the paraventricular nucleus of hypothalamus, supraoptic nucleus, ventrolateral medulla, and NTS, detectable at day 1 and persistently increased at every day examined in the PVS rats. However, the hyperdynamic circulation developed between days 3 to 5. Administration of c-fos antisense oligonucleotides eliminated the hyperdynamic circulation in PVS rats, but had no effect on sham-operated controls. We conclude that the activation of central cardiovascular-regulatory nuclei, through a c-fos-dependent pathway, is necessary for development of hyperdynamic circulation in portal-hypertensive rats.
Collapse
Affiliation(s)
- Daisheng Song
- Liver Unit, Gastroenterology Research Group, and Neuroscience Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
25
|
Morris M, Means S, Oliverio MI, Coffman TM. Enhanced central response to dehydration in mice lacking angiotensin AT(1a) receptors. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1177-84. [PMID: 11247842 DOI: 10.1152/ajpregu.2001.280.4.r1177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective was to determine the central nervous system (CNS) responses to dehydration (c-Fos and vasopressin mRNA) in mice lacking the ANG AT(1a) receptor [ANG AT(1a) knockout (KO)]. Control and AT(1a) KO mice were dehydrated for 24 or 48 h. Baseline plasma vasopressin (VP) was not different between the groups; however, the response to dehydration was attenuated in AT(1a) KO (24 +/- 11 vs. 10.6 +/- 2.7 pg/ml). Dehydration produced similar increases in plasma osmolality and depletion of posterior pituitary VP content. Neuronal activation was observed as increases in c-Fos protein and VP mRNA. The supraoptic responses were not different between groups. In the paraventricular nucleus (PVN), c-Fos-positive neurons (57.4 +/- 10.7 vs. 98.4 +/- 7.4 c-Fos cells/PVN, control vs. AT(1a) KO) and VP mRNA levels (1.0 +/- 0.1 vs. 1.4 +/- 0.1 microCi, control vs. AT(1a) KO) were increased with greater responses in AT(1a) KO. A comparison of 1- to 2-day water deprivation showed that plasma VP, brain c-Fos, and VP mRNA returned toward control on day 2, although plasma osmolality remained high. Data demonstrate that AT(1a) KO mice show a dichotomous response to dehydration, reduced for plasma VP and enhanced for PVN c-Fos protein and VP mRNA. The results illustrate the importance of ANG AT(1a) receptors in the regulation of osmotic and endocrine balance.
Collapse
MESH Headings
- Animals
- Crosses, Genetic
- Dehydration/genetics
- Dehydration/physiopathology
- Female
- Gene Expression Regulation/physiology
- Genes, fos
- Genotype
- Immunohistochemistry
- In Situ Hybridization
- Male
- Mice
- Mice, Knockout
- Neurons/physiology
- Pituitary Gland/physiology
- Pituitary Gland/physiopathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/deficiency
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/physiology
- Transcription, Genetic
- Vasopressins/analysis
- Vasopressins/genetics
Collapse
Affiliation(s)
- M Morris
- Department of Pharmacology and Toxicology, Box 927, Wright State University School of Medicine, Dayton, OH 45401, USA.
| | | | | | | |
Collapse
|
26
|
Ferguson AV, Latchford KJ. Local circuitry regulates the excitability of rat neurohypophysial neurones. Exp Physiol 2000; 85 Spec No:153S-161S. [PMID: 10795918 DOI: 10.1111/j.1469-445x.2000.tb00019.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of angiotensin II (AII) and glutamate has long since been recognized in neuroendocrine regulation. However, the mechanisms by which AII and glutamate modulate the excitability of the paraventricular nucleus (PVN) have largely remained a mystery until recently. It is now apparent that AII and glutamate are potent stimulators of both magnocellular and parvocellular neurones in the rat PVN. While glutamate, the predominant excitatory neurotransmitter in the CNS, ubiquitously excites PVN neurones, AII appears to mediate excitability of the PVN by both direct and indirect mechanisms. Interestingly, both of these neurotransmitters, upon exciting the PVN, activate an inhibitory feedback system, which is capable of diminishing the initial stimulus. Physiologically, this moderates the output signals from the PVN, and probably also regulates neuropeptide release from the neurohypophysis. The importance of this negative-feedback loop is evident in the pathophysiological implications of a disruption in the system. Evidence suggests that a breakdown in this system may be responsible in part for the onset and maintenance of both congestive heart failure and hypertension. Future studies will continue to characterize both the actions of glutamate and AII in the PVN, and to further elucidate the mechanisms which control the excitability of the PVN.
Collapse
Affiliation(s)
- A V Ferguson
- Department of Physiology, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
27
|
Woodside B, Amir S. Chapter V Nitric oxide signaling in the hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 2000:147-176. [DOI: 10.1016/s0924-8196(00)80059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Krukoff TL. Central actions of nitric oxide in regulation of autonomic functions. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:52-65. [PMID: 10407125 DOI: 10.1016/s0165-0173(99)00010-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identification of nitric oxide (NO) as a gaseous, nonconventional neurotransmitter in the central nervous system has led to an explosion of studies aimed at learning about the roles of NO, not only at a cellular level, but also in regulating the activity of specific physiological systems that are coordinated by the brain. In the 1980s, publications began to appear which pointed to a role for NO in regulating peripheral autonomic function. In the 1990s, it became apparent that NO also acts centrally to affect autonomic responses. In this review, I will discuss the state of the current knowledge about the central role of NO in physiological functions which are related specifically to the control of sympathetic output. Studies which do not differentiate a central from a peripheral role for NO in these functions have not been included. After a brief discussion about the cellular events in which NO is involved, the distribution of NO-producing neurons in central autonomic areas of the brain will be presented. The more general actions of central NO in regulating sympathetic activity, as assessed with i.c.v. injections of pharmacological agents, will be followed by more specific sites of action achieved with microinjections into discrete brain areas. The review will be concluded with discussions about central NO in two physiological states of sympathetic imbalance, hypertension and stress.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Cell Biology and Anatomy, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
29
|
Giles ME, Fernley RT, Nakamura Y, Moeller I, Aldred GP, Ferraro T, Penschow JD, McKinley MJ, Oldfield BJ. Characterization of a specific antibody to the rat angiotensin II AT1 receptor. J Histochem Cytochem 1999; 47:507-16. [PMID: 10082752 DOI: 10.1177/002215549904700409] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We raised a polyclonal antibody against a decapeptide corresponding to the carboxyl terminus of the rat angiotensin II AT1 receptor. This antibody was demonstrated to be specific for the rat receptor according to a number of approaches. These included (a) the ultrastructural localization of immunogold-labeled receptor on the surfaces of zona glomerulosa cells in the adrenal cortex, (b) the specific labeling of Chinese hamster ovarian (CHO) cells transfected with AT1 receptors, (c) the identification of a specific band on Western blots, (d) the immunocytochemical co-localization of angiotensin receptors on neurons in the lamina terminalis of the brain shown to be responsive to circulating angiotensin II, as shown by the expression of c-fos, and (e) the correlation between the expression of the mRNA of the AT1 receptor and AT1 receptor immunoreactivity.(J Histochem Cytochem 47:507-515, 1999)
Collapse
MESH Headings
- Adrenal Cortex/metabolism
- Angiotensin II/metabolism
- Animals
- Antibodies/metabolism
- Blotting, Western
- Brain/metabolism
- CHO Cells
- Cricetinae
- Immunohistochemistry
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/immunology
- Receptors, Angiotensin/metabolism
Collapse
Affiliation(s)
- M E Giles
- The Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|