1
|
Attiq A, Afzal S, Wahab HA, Ahmad W, Kandeel M, Almofti YA, Alameen AO, Wu YS. Cytokine Storm-Induced Thyroid Dysfunction in COVID-19: Insights into Pathogenesis and Therapeutic Approaches. Drug Des Devel Ther 2024; 18:4215-4240. [PMID: 39319193 PMCID: PMC11421457 DOI: 10.2147/dddt.s475005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 receptors (ACE2R) are requisite to enter the host cells for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACE2R is constitutive and functions as a type I transmembrane metallo-carboxypeptidase in the renin-angiotensin system (RAS). On thyroid follicular cells, ACE2R allows SARS-CoV-2 to invade the thyroid gland, impose cytopathic effects and produce endocrine abnormalities, including stiff back, neck pain, muscle ache, lethargy, and enlarged, inflamed thyroid gland in COVID-19 patients. Further damage is perpetuated by the sudden bursts of pro-inflammatory cytokines, which is suggestive of a life-threatening syndrome known as a "cytokine storm". IL-1β, IL-6, IFN-γ, and TNF-α are identified as the key orchestrators of the cytokine storm. These inflammatory mediators upregulate transcriptional turnover of nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK), paving the pathway for cytokine storm-induced thyroid dysfunctions including euthyroid sick syndrome, autoimmune thyroid diseases, and thyrotoxicosis in COVID-19 patients. Targeted therapies with corticosteroids (dexamethasone), JAK inhibitor (baricitinib), nucleotide analogue (remdesivir) and N-acetyl-cysteine have demonstrated effectiveness in terms of attenuating the severity and frequency of cytokine storm-induced thyroid dysfunctions, morbidity and mortality in severe COVID-19 patients. Here, we review the pathogenesis of cytokine storms and the mechanisms and pathways that establish the connection between thyroid disorder and COVID-19. Moreover, cross-talk interactions of signalling pathways and therapeutic strategies to address COVID-19-associated thyroid diseases are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrel Sheikh, 6860404, Egypt
| | - Yassir A Almofti
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Biochemistry, Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, 12217, Sudan
| | - Ahmed O Alameen
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Sudan
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
2
|
Yu H, Han J, Wu X, Qiu Y, Yu H, Xu J, Hao J, Peng Y, Jin R, Zhou F. Hypothyroidism in induction chemotherapy of children with acute lymphoblastic leukaemia: A single-centre study. Int J Cancer 2023. [PMID: 37144811 DOI: 10.1002/ijc.34535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Hypothyroidism as a long-term complication in cancer survivors has been an issue, but few studies have focused on changes in thyroid hormone levels during chemotherapy for leukaemia. This retrospective study was conducted to assess the characteristics of children with acute lymphoblastic leukaemia (ALL) and hypothyroidism during induction chemotherapy and to investigate the prognostic value of hypothyroidism in ALL. Patients with a detailed thyroid hormone profile at ALL diagnosis were enrolled. Hypothyroidism was defined as low serum levels of free tetraiodothyronine (FT4) and/or free triiodothyronine (FT3). The Kaplan-Meier method was used to create survival curves, and multivariate Cox regression analysis was used to screen prognostic factors associated with progression-free survival (PFS) and overall survival (OS). There were 276 children eligible for the study, and 184 patients (66.67%) were diagnosed with hypothyroidism, including 90 cases (48.91%) with functional central hypothyroidism and 82 cases (44.57%) with low T3 syndrome. Hypothyroidism was correlated with the dosages of L-Asparaginase (L-Asp) (P = .004) and glucocorticoids (P = .010), central nervous system (CNS) status (P = .012), number of severe infections (grade 3, 4 or 5) (P = .026) and serum albumin level (P = .032). Hypothyroidism was an independent prognostic factor for PFS in ALL children (P = .024, 95% CI: 1.1-4.1). We conclude that hypothyroidism is commonly present in ALL children during induction remission, which is related to chemotherapy drugs and severe infections. Hypothyroidism was a predictor of poor prognosis in childhood ALL.
Collapse
Affiliation(s)
- Hui Yu
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Juan Han
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yining Qiu
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yu
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Xu
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Hao
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yun Peng
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Fen Zhou
- Department of Paediatrics, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Viruses and Endocrine Diseases. Microorganisms 2023; 11:microorganisms11020361. [PMID: 36838326 PMCID: PMC9967810 DOI: 10.3390/microorganisms11020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Viral infections have been frequently associated with physiological and pathological changes in the endocrine system for many years. The numerous early and late endocrine complications reported during the current pandemic of coronavirus disease 2019 (COVID-19) reinforce the relevance of improving our understanding of the impact of viral infections on the endocrine system. Several viruses have been shown to infect endocrine cells and induce endocrine system disturbances through the direct damage of these cells or through indirect mechanisms, especially the activation of the host antiviral immune response, which may lead to the development of local or systemic inflammation or organ-specific autoimmunity. In addition, endocrine disorders may also affect susceptibility to viral infections since endocrine hormones have immunoregulatory functions. This review provides a brief overview of the impact of viral infections on the human endocrine system in order to provide new avenues for the control of endocrine diseases.
Collapse
|
4
|
MURATA T, CHIBA S, KAWAMINAMI M. Changes in the expressions of annexin A1, annexin A5, inhibin/activin subunits, and vitamin D receptor mRNAs in pituitary glands of female rats during the estrous cycle: correlation analyses among these factors. J Vet Med Sci 2022; 84:1065-1073. [PMID: 35705304 PMCID: PMC9412066 DOI: 10.1292/jvms.22-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022] Open
Abstract
Pituitary gonadotropin secretion is regulated by several pituitary factors as well as GnRH and ovarian hormones. To elucidate the regulatory mechanisms of pituitary gonadotropin secretions, we observed changes in the mRNA levels of pituitary factors, namely annexin A1 (Anxa1) and Anxa5, inhibin/activin subunits, follistatin (Fst), and vitamin D receptor (Vdr), in female rat pituitary glands during the estrous cycle. Additionally, levels of LHβ subunit (Lhb), FSHβ subunit (Fshb), and GnRH receptor (Gnrh-r) mRNA were examined. During proestrus, Anxa1, Anxa5, Vdr, and inhibin α-subunit (Inha) exhibited the lowest levels, while during estrus, activin βB-subunit (Actbb), Lhb, and Gnrh-r were the lowest. Moreover, Fshb exhibited the highest value during metestrus, whereas Fst did not differ significantly. Correlation analyses revealed 16 statistically significant gene combinations. In particular, four combinations, namely Anxa5 and Inha, Anxa5 and Actbb, Inha and Vdr, and Inha and Actbb, were highly significant (P<0.0001), while four combinations, Anxa1 and Anxa5, Anxa1 and Vdr, Anxa5 and Vdr, and Lhb and Gnrh-r, were moderately significant (P<0.001). The remaining eight combinations that exhibited statistical significance were Anxa1 and Inha, Anxa1 and Actbb, Vdr and Actbb, Anxa1 and Fshb, Inha and Lhb, Actbb and Fshb, Actbb and Lhb, and Fst and Fshb (P<0.05). These results highlight strong correlations among Anxa1, Anxa5, Vdr, Inha, and Actbb, thereby suggesting that an interaction among ANXA1, ANXA5, and VDR may lead to further communications with inhibin and/or activin in the pituitary gland.
Collapse
Affiliation(s)
- Takuya MURATA
- Laboratory of Veterinary Physiology, Faculty of Veterinary
Medicine, Okayama University of Science, Ehime, Japan
| | - Shuichi CHIBA
- Laboratory of Veterinary Physiology, Faculty of Veterinary
Medicine, Okayama University of Science, Ehime, Japan
| | - Mitsumori KAWAMINAMI
- Laboratory of Veterinary Physiology, Faculty of Veterinary
Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
5
|
Stagi S, Municchi G, Ferrari M, Wasniewska MG. An Overview on Different L-Thyroxine (l-T 4) Formulations and Factors Potentially Influencing the Treatment of Congenital Hypothyroidism During the First 3 Years of Life. Front Endocrinol (Lausanne) 2022; 13:859487. [PMID: 35757415 PMCID: PMC9218053 DOI: 10.3389/fendo.2022.859487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital hypothyroidism (CH) is a relatively frequent congenital endocrine disorder, caused by defective production of thyroid hormones (THs) at birth. Because THs are essential for the development of normal neuronal networks, CH is also a common preventable cause of irreversible intellectual disability (ID) in children. Prolonged hypothyroidism, particularly during the THs-dependent processes of brain development in the first years of life, due to delays in diagnosis, inadequate timing and dosing of levothyroxine (l-thyroxine or l-T4), the non-compliance of families, incorrect follow-up and the interference of foods, drugs and medications affecting the absorption of l-T4, may be responsible for more severe ID. In this review we evaluate the main factors influencing levels of THs and the absorption of l-T4 in order to provide a practical guide, based on the existing literature, to allow optimal follow-up for these patients.
Collapse
Affiliation(s)
- Stefano Stagi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
- *Correspondence: Stefano Stagi,
| | - Giovanna Municchi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Marta Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | | |
Collapse
|
6
|
Foradori CD, Mackay L, Huang CCJ, Kemppainen RJ. Expression of Rasd1 in mouse endocrine pituitary cells and its response to dexamethasone. Stress 2021; 24:659-666. [PMID: 33840368 PMCID: PMC8405551 DOI: 10.1080/10253890.2021.1907340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Dexamethasone-induced Ras-related protein 1 (Rasd1) is a member of the Ras superfamily of monomeric G proteins that have a regulatory function in signal transduction. Rasd1, also known as Dexras1 or AGS1, is rapidly induced by dexamethasone (Dex). While prior data indicates that Rasd1 is highly expressed in the pituitary and that the gene may function in regulation of corticotroph activity, its exact cellular localization in this tissue has not been delineated. Nor has it been determined which endocrine pituitary cell type(s) are responsive to Dex-induced expression of Rasd1. We hypothesized that Rasd1 is primarily localized in corticotrophs and furthermore, that its expression in these cells would be upregulated in response to exogenous Dex administration. Rasd1 expression in each pituitary cell type both under basal conditions and 1-hour post Dex treatment were examined in adult male mice. While a proportion of all endocrine pituitary cell types expressed Rasd1, a majority of corticotrophs and thyrotrophs expressed Rasd1 under basal condition. In vehicle treated animals, approximately 50-60% of corticotrophs and thyrotrophs cells expressed Rasd1 while the gene was detected in only 15-30% of lactotrophs, somatotrophs, and gonadotrophs. In Dex treated animals, Rasd1 expression was significantly increased in corticotrophs, somatotrophs, lactotrophs, and gonadotrophs but not thyrotrophs. In Dex treated animals, Rasd1 was detected in 80-95% of gonadotrophs and corticotrophs. In contrast, Dex treatment increased Rasd1 expression to a lesser extent (55-60%) in somatotrophs and lactotrophs. Corticotrophs of the pars intermedia, which lack glucocorticoid receptors, failed to display increased Rasd1 expression in Dex treated animals. Rasd1 is highly expressed in corticotrophs under basal conditions and is further increased after Dex treatment, further supporting its role in glucocorticoid negative feedback. In addition, the presence and Dex-induced expression of Rasd1 in endocrine pituitary cell types, other than corticotrophs, may implicate Rasd1 in novel pituitary functions.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chen-Che J Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Robert J Kemppainen
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Croce L, Gangemi D, Ancona G, Liboà F, Bendotti G, Minelli L, Chiovato L. The cytokine storm and thyroid hormone changes in COVID-19. J Endocrinol Invest 2021; 44:891-904. [PMID: 33559848 PMCID: PMC7871522 DOI: 10.1007/s40618-021-01506-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND COVID-19 is now a worldwide pandemic. Among the many extra-pulmonary manifestations of COVID-19, recent evidence suggested a possible occurrence of thyroid dysfunction. PURPOSE The Aim of the present review is to summarize available studies regarding thyroid function alterations in patients with COVID-19 and to overview the possible physio-pathological explanations. CONCLUSIONS The repercussions of the thyroid of COVID-19 seem to be related, in part, with the occurrence of a "cytokine storm" that would, in turn, induce a "non-thyroidal illness". Some specific cytokines and chemokines appear to have a direct role on the hypothalamus-pituitary-thyroid axis. On the other hand, some authors have observed an increased incidence of a destructive thyroiditis, either subacute or painless, in patients with COVID-19. The hypothesis of a direct infection of the thyroid by SARS-Cov-2 stems from the observation that its receptor, ACE2, is strongly expressed in thyroid tissue. Lastly, it is highly probable that some pharmaceutical agents largely used for the treatment of COVID-19 can act as confounding factors in the laboratory evaluation of thyroid function parameters.
Collapse
Affiliation(s)
- L Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- PHD Course in Experimental Medicine, University of Pavia, 27100, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - D Gangemi
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - G Ancona
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - F Liboà
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - G Bendotti
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - L Minelli
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
8
|
Castillo-Campos A, Gutiérrez-Mata A, Charli JL, Joseph-Bravo P. Chronic stress inhibits hypothalamus-pituitary-thyroid axis and brown adipose tissue responses to acute cold exposure in male rats. J Endocrinol Invest 2021; 44:713-723. [PMID: 32734320 DOI: 10.1007/s40618-020-01328-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Cold exposure activates the hypothalamus-pituitary-thyroid (HPT) axis, response blunted by previous acute stress or corticosterone administration. Chronic stressors can decrease serum T3 concentration, and thyrotropin-releasing hormone (Trh) expression in the paraventricular nucleus (PVN), but impact on the response to cold is unknown; this was studied in rats submitted to daily repeated restraint (rRes) that causes habituation of hypothalamus-pituitary-adrenal (HPA) axis response, or to chronic variable stress (CVS) that causes sensitization and hyperreactivity. METHODS Wistar male adult rats were submitted to rRes 30 min/day, or to CVS twice a day, for 15 days. On day 16, rats were exposed 1 h to either 5 or 21 °C. Parameters of HPT and HPA axes activity and of brown adipose tissue (BAT) cold response were measured; gene expression in PVN and BAT, by RT-PCR; serum hormone concentration by radioimmunoassay or ELISA. RESULTS Compared to naïve animals, Crh and corticosterone concentrations were attenuated at the end of rRes, but increased at the end of CVS treatments. Cold exposure increased mRNA levels of Crh, Trh, and serum concentration of thyrotropin in naïve, but not in rRes or CVS rats; corticosterone increased in all groups. Cold induced expression of thermogenic genes in BAT (Dio2 and Ucp1) in naïve but not in stressed rats; Adrb3 expression was differentially regulated. CONCLUSION Both types of chronic stress blunted HPT and BAT responses to cold. Long-term stress effects on noradrenergic and/or hormonal signaling are likely responsible for HPT dysfunction and not the type of chronic stressor.
Collapse
Affiliation(s)
- A Castillo-Campos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - A Gutiérrez-Mata
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - J-L Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - P Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México.
| |
Collapse
|
9
|
Abstract
The novel coronavirus disease 2019 (COVID-19) produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sweeping the world in a very short time. Although much has been learned about the clinical course, prognostic inflammatory markers, and disease complications of COVID-19, the potential interaction between SARS-CoV-2 and the thyroid is poorly understood. In contrast to SARS-CoV-1, limited available evidence indicates there is no pathological evidence of thyroid injury caused by SARS-CoV-2. However, subacute thyroiditis caused by SARS-CoV-2 has been reported for the first time. Thyroid dysfunction is common in patients with COVID-19 infection. By contrast, certain thyroid diseases may have a negative impact on the prevention and control of COVID-19. In addition, some anti-COVID-19 agents may cause thyroid injury or affect its metabolism. COVID-19 and thyroid disease may mutually aggravate the disease burden. Patients with SARS-CoV-2 infection should not ignore the effect on thyroid function, especially when there are obvious related symptoms. In addition, patients with thyroid diseases should follow specific management principles during the epidemic period.
Collapse
Affiliation(s)
- Wenjie Chen
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuang Tian
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jingqiang Zhu
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Wei
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Mokrani MC, Duval F, Erb A, Gonzalez Lopera F, Danila V. Are the thyroid and adrenal system alterations linked in depression? Psychoneuroendocrinology 2020; 122:104831. [PMID: 33068950 DOI: 10.1016/j.psyneuen.2020.104831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Disturbances in the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes have been frequently found in major depression. Given that glucocorticoids may inhibit thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) secretion, it has been hypothesized that hypercortisolemia could lead to HPT axis abnormalities. So far, data on interactions between the HPA and HPT axes in depression remain inconclusive. METHODS In order to investigate this issue, we examined circadian rhythms of serum TSH and cortisol (sampled at 4 -hly intervals throughout a 24 -h span), TSH responses to 0800 h and 2300 h protirelin (TRH) tests and cortisol response to dexamethasone suppression test (DST) in 145 unmedicated inpatients meeting DSM-IV criteria for major depressive disorder (MDDs) and 25 healthy hospitalized control subjects (HCs). RESULTS The secretion of TSH and cortisol exhibited a significant circadian rhythm both in HCs and MDDs. However, compared to HCs, MDDs showed: 1) reduced TSH mesor and amplitude values; 2) blunted 2300 h-ΔTSH and ΔΔTSH values (i.e. differences between 2300 h and 0800 h TRH-TSH responses); and 3) increased cortisol mesor and post-DST cortisol values. DST nonsuppresssors (n = 40, 27 %) showed higher cortisol mesor than DST suppressors (n = 105, 73 %). There was no difference between DST suppressors and nonsuppressors in their TSH circadian parameters and TRH-TSH responses. In addition, cortisol values (circadian and post-DST) were not related to TRH test responses. CONCLUSION Our results do not confirm a key role for hypercortisolemia in the HPT axis dysregulation in depression.
Collapse
Affiliation(s)
| | - Fabrice Duval
- APF2R, Centre Hospitalier, Pôle 8/9, 68250 Rouffach, France.
| | - Alexis Erb
- APF2R, Centre Hospitalier, Pôle 8/9, 68250 Rouffach, France
| | | | - Vlad Danila
- APF2R, Centre Hospitalier, Pôle 8/9, 68250 Rouffach, France
| |
Collapse
|
11
|
Han PF, Che XD, Li HZ, Gao YY, Wei XC, Li PC. Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin J Traumatol 2020; 23:96-101. [PMID: 32201231 PMCID: PMC7156956 DOI: 10.1016/j.cjtee.2020.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the deepening of research, proteomics has developed into a science covering the study of all the structural and functional characteristics of proteins and the dynamic change rules. The essence of various biological activities is revealed from the perspectives of the biological structure, functional activity and corresponding regulatory mechanism of proteins by proteomics. Among them, phospholipid-binding protein is one of the hotspots of proteomics, especially annexin A1, which is widely present in various tissues and cells of the body. It has the capability of binding to phospholipid membranes reversibly in a calcium ion dependent manner. In order to provide possible research ideas for researchers, who are interested in this protein, the biological effects of annexin A1, such as inflammatory regulation, cell signal transduction, cell proliferation, differentiation and apoptosis are described in this paper.
Collapse
Affiliation(s)
- Peng-Fei Han
- Department of Orthopaedic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Xian-Da Che
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China
| | - Hong-Zhuo Li
- Department of Orthopaedic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Yang-Yang Gao
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China
| | - Xiao-Chun Wei
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China
| | - Peng-Cui Li
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China,Corresponding author.
| |
Collapse
|
12
|
Sinniah A, Yazid S, Bena S, Oliani SM, Perretti M, Flower RJ. Endogenous Annexin-A1 Negatively Regulates Mast Cell-Mediated Allergic Reactions. Front Pharmacol 2019; 10:1313. [PMID: 31798445 PMCID: PMC6865276 DOI: 10.3389/fphar.2019.01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Mast cell stabilizers like cromoglycate and nedocromil are mainstream treatments for ocular allergy. Biochemical studies in vitro suggest that these drugs prevent mast cell degranulation through the release of Annexin-A1 (Anx-A1) protein. However, the direct effect of Anx-A1 gene deletion on mast cell function in vitro and in vivo is yet to be fully investigated. Hence, we aim to elucidate the role of Anx-A1 in mast cell function, both in vivo and in vitro, using a transgenic mouse model where the Anx-A1 gene has been deleted. Bone marrow-derived mast cells (BMDMCs) were cultured from wild-type animals and compared throughout their development to BMDMCs obtained from mice lacking the Anx-A1 gene. The mast cell differentiation, maturity, mediator, and cytokine release were explored using multiple biochemical techniques, such as Western blots, ELISA, and flow cytometry analysis. Electron microscopy was used to identify metachromatic granules content of cells. For in vivo studies, Balb/C wild-type and Anx-A1-deficient mice were divided into the following groups: group 1, a control receiving only saline, and group 2, which had been sensitized by prior exposure to short ragweed (SRW) pollen by topical contact with the conjunctival mucosae. Allergic conjunctivitis was evaluated blind after 24 h by trained observers scoring clinical signs. Electron micrographs of BMDMCs from Anx-A1-null mice revealed more vacuoles overall and more fused vacuoles than wild-type cells, suggesting enhanced secretory activity. Congruent with these observations, BMDMCs lacking the Anx-A1 gene released significantly increased amounts of histamine both spontaneously as well as in response to Ig-E-FcεRI cross-linking compared to those from wild-type mice. Interestingly, the spontaneous release of IL-5, IL-6, IL-9, and monocyte chemoattractant protein-1 (MCP-1) were also markedly increased with a greater production observed upon IgE cross-linking. This latter finding is congruent with augmented calcium mobilization in BMDMCs lacking the Anx-A1 gene. In vivo, when compared to wild-type animals, Anx-A1-deficient mice exposed to SRW pollen displayed exacerbated signs and symptoms of allergic conjunctivitis. Taken together, these results suggest Anx-A1 is an important non-redundant regulator of mast cell reactivity and particularly in allergen mediated allergic reactions.
Collapse
Affiliation(s)
- Ajantha Sinniah
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Samia Yazid
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stefania Bena
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sonia M Oliani
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rod J Flower
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Annexins in Translational Research: Hidden Treasures to Be Found. Int J Mol Sci 2018; 19:ijms19061781. [PMID: 29914106 PMCID: PMC6032224 DOI: 10.3390/ijms19061781] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The vertebrate annexin superfamily (AnxA) consists of 12 members of a calcium (Ca2+) and phospholipid binding protein family which share a high structural homology. In keeping with this hallmark feature, annexins have been implicated in the Ca2+-controlled regulation of a broad range of membrane events. In this review, we identify and discuss several themes of annexin actions that hold a potential therapeutic value, namely, the regulation of the immune response and the control of tissue homeostasis, and that repeatedly surface in the annexin activity profile. Our aim is to identify and discuss those annexin properties which might be exploited from a translational science and specifically, a clinical point of view.
Collapse
|
14
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
15
|
Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 2015; 224:R139-59. [PMID: 25563352 DOI: 10.1530/joe-14-0593] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription of Trh in vivo and in vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
16
|
Sotelo-Rivera I, Jaimes-Hoy L, Cote-Vélez A, Espinoza-Ayala C, Charli JL, Joseph-Bravo P. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats. J Neuroendocrinol 2014; 26:861-9. [PMID: 25283355 DOI: 10.1111/jne.12224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/13/2014] [Accepted: 09/25/2014] [Indexed: 11/27/2022]
Abstract
The activity of the hypothalamic-pituitary-thyroid (HPT) axis is rapidly adjusted by energy balance alterations. Glucocorticoids can interfere with this activity, although the timing of this interaction is unknown. In vitro studies indicate that, albeit incubation with either glucocorticoid receptor (GR) agonists or protein kinase A (PKA) activators enhances pro-thyrotrophin-releasing hormone (pro-TRH) transcription, co-incubation with both stimuli reduces this enhancement. In the present study, we used primary cultures of hypothalamic cells to test whether the order of these stimuli alters the cross-talk. We observed that a simultaneous or 1-h prior (but not later) activation of GR is necessary to inhibit the stimulatory effect of PKA activation on pro-TRH expression. We tested these in vitro results in the context of a physiological stimulus on the HPT axis in adult male rats. Cold exposure for 1 h enhanced pro-TRH mRNA expression in neurones of the hypophysiotrophic and rostral subdivisions of the paraventricular nucleus (PVN) of the hypothalamus, thyrotrophin (TSH) serum levels and deiodinase 2 (D2) activity in brown adipose tissue (BAT). An i.p. injection of corticosterone stimulated pro-TRH expression in the PVN of rats kept at ambient temperature, more pronouncedly in hypophysiotrophic neurones that no longer responded to cold exposure. In corticosterone-pretreated rats, the cold-induced increase in pro-TRH expression was detected only in the rostral PVN. Corticosterone blunted the increase in serum TSH levels and D2 activity in BAT produced by cold in vehicle-injected animals. Thus, increased serum corticosterone levels rapidly restrain cold stress-induced activation of TRH hypophysiotrophic neurones, which may contribute to changing energy expenditure. Interestingly, TRH neurones of the rostral PVN responded to both corticosterone and cold exposure with an amplified expression of pro-TRH mRNA, suggesting that these neurones integrate stress and temperature distinctly from the hypophysiotrophic neurones.
Collapse
Affiliation(s)
- I Sotelo-Rivera
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|
17
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
18
|
Miler M, Sošić-Jurjević B, Nestorović N, Ristić N, Medigović I, Savin S, Milošević V. Morphological and functional changes in pituitary-thyroid axis following prolonged exposure of female rats to constant light. J Morphol 2014; 275:1161-72. [PMID: 24797691 DOI: 10.1002/jmor.20293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/28/2014] [Accepted: 04/13/2014] [Indexed: 01/16/2023]
Abstract
Light regulates numerous physiological functions and synchronizes them with the environment, in part by adjusting secretion of different hormones. We hypothesized that constant light (CL) would disturb pituitary-thyroid axis. Our aim was to determine morphological and functional changes in this endocrine system in such extreme conditions and, based on the obtained results, to propose the underlying mechanism(s). Starting from the thirtieth postnatal day, female Wistar rats were exposed to CL (600 lx) for the following 95 days. The controls were maintained under the regular laboratory lighting conditions. After decapitation, pituitaries and thyroids were prepared for further histomorphometric, immunohistochemical, and immunofluorescence examinations. Concentration of thyroid stimulating hormone (TSH), total T4 and T3 (TH) were determined. Thyroid tissue of light-treated rats was characterized by microfollicular structure. We detected no change in total thyroid volume, localization and accumulation of thyroglobulin, thyroid peroxidase, and sodium-iodide symporter in the follicular epithelium of CL rats. The volume of follicular epithelium and activation index were increased, while volume of the colloid and serum levels of TH decreased. In the pituitary, the relative intensity of TSH β-immunofluorescence signal within the cytoplasm of thyrotrophs increased, but their average cell volume and the relative volume density decreased. Serum TSH was unaltered. We conclude that exposure of female rats to CL induced alterations in pituitary-thyroid axis. Thyroid tissue was characterized by microfollicular structure. Serum TH levels were reduced without accompanying increase in serum TSH. We hypothesize that increased secretion and clearance of TH together with unchanged or even decreased hormonal synthesis, resulted in decreased serum TH levels in CL group. We assume this decrease consequently led to increased synthesis and/or accumulation of pituitary TSH. However, decreased average TSH cell volume and relative volume density, together with unchanged serum TSH, point to additional, negative regulation of thyrotrophs.
Collapse
Affiliation(s)
- Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
19
|
Geary LA, Nash KA, Adisetiyo H, Liang M, Liao CP, Jeong JH, Zandi E, Roy-Burman P. CAF-secreted annexin A1 induces prostate cancer cells to gain stem cell-like features. Mol Cancer Res 2014; 12:607-21. [PMID: 24464914 DOI: 10.1158/1541-7786.mcr-13-0469] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Annexin A1 (AnxA1), a phospholipid-binding protein and regulator of glucocorticoid-induced inflammatory signaling, has implications in cancer. Here, a role for AnxA1 in prostate adenocarcinoma was determined using primary cultures and a tumor cell line (cE1), all derived from the conditional Pten deletion mouse model of prostate cancer. AnxA1 secretion by prostate-derived cancer-associated fibroblasts (CAF) was significantly higher than by normal prostate fibroblasts (NPF). Prostate tumor cells were sorted to enrich for epithelial subpopulations based on nonhematopoietic lineage, high SCA-1, and high or medium levels of CD49f. Compared with controls, AnxA1 enhanced stem cell-like properties in high- and medium-expression subpopulations of sorted cE1 and primary cells, in vitro, through formation of greater number of spheroids with increased complexity, and in vivo, through generation of more, larger, and histologically complex glandular structures, along with increased expression of p63, a basal/progenitor marker. The differentiated medium-expression subpopulations from cE1 and primary cells were most susceptible to gain stem cell-like properties as shown by increased spheroid and glandular formation. Further supporting this increased plasticity, AnxA1 was shown to regulate epithelial-to-mesenchymal transition in cE1 cells. These results suggest that CAF-secreted AnxA1 contributes to tumor stem cell dynamics via two separate but complementary pathways: induction of a dedifferentiation process leading to generation of stem-like cells from a subpopulation of cancer epithelial cells and stimulation of proliferation and differentiation of the cancer stem-like cells. IMPLICATIONS AnxA1 participates in a paradigm in which malignant prostate epithelial cells that are not cancer stem cells are induced to gain cancer stem cell-like properties.
Collapse
Affiliation(s)
- Lauren A Geary
- Department of Pathology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, HMR 210B, Los Angeles, CA 90033.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Makani V, Sultana R, Sie KS, Orjiako D, Tatangelo M, Dowling A, Cai J, Pierce W, Butterfield DA, Hill J, Park J. Annexin A1 complex mediates oxytocin vesicle transport. J Neuroendocrinol 2013; 25:1241-1254. [PMID: 24118254 PMCID: PMC3975805 DOI: 10.1111/jne.12112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Oxytocin is a major neuropeptide that modulates the brain functions involved in social behaviour and interaction. Despite of the importance of oxytocin for the neural control of social behaviour, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesised in the cell bodies of hypothalamic neurones in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighbouring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behaviour. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150) and microtubule motor that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localisation with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localisation of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localisation of oxytocin vesicles. The result of the present study suggest that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body.
Collapse
Affiliation(s)
- Vishruti Makani
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
| | - Khin Sander Sie
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Doris Orjiako
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Marco Tatangelo
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Abigail Dowling
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | - William Pierce
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | | | - Jennifer Hill
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Joshua Park
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
- To whom correspondence should be addressed. Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, , Phone: (419) 383-4085, Fax: (419) 383-3008
| |
Collapse
|
21
|
D'Acunto CW, Gbelcova H, Festa M, Ruml T. The complex understanding of Annexin A1 phosphorylation. Cell Signal 2013; 26:173-8. [PMID: 24103589 DOI: 10.1016/j.cellsig.2013.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022]
Abstract
Annexin A1 (ANXA1) is the first characterized member of the annexins superfamily. It binds the cellular membrane phospholipids in Ca(2+) regulated manner. Annexin A1 has been found in several tissues and many physiological roles as hormones secretion, vesiculation, inflammatory response, apoptosis and differentiation have been shown. Its subcellular localization and binding with many partner proteins are altered accordingly with its physiological role. The Annexin A1 membrane localization is crucial for binding to receptors, suggesting a paracrine and juxtacrine extracellular action. Annexin A1 is subjected to several post-translational modifications. In particular the protein is phosphorylated on several residues both on the N-terminal functional domain and on the C-terminus core. Different kinases have been identified as responsible for the phosphorylation status of selective residues. The specific change in the phosphorylation status on the different sites alters ANXA1 localization, binding properties and functions. This review shows the physiological relevance of the ANXA1 phosphorylation leading to the conclusion that numerous and different roles of Annexin A1 could be associated with different phosphorylations to alter not only intracellular localization and bindings to its partners but also the extracellular receptor interactions.
Collapse
Affiliation(s)
- Cosimo Walter D'Acunto
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28, Czech Republic.
| | | | | | | |
Collapse
|
22
|
Abstract
Thyroid hormones are extremely important for metabolism, development, and growth during the lifetime. The hypothalamo-pituitary-thyroid axis is precisely regulated for these purposes. Much of our knowledge of this hormonal axis is derived from experiments in animals and mutations in man. This review examines the hypothalamo-pituitary-thyroid axis particularly in relation to the regulated 24-hour serum TSH concentration profiles in physiological and pathophysiological conditions, including obesity, primary hypothyroidism, pituitary diseases, psychiatric disorders, and selected neurological diseases. Diurnal TSH rhythms can be analyzed with novel and precise techniques, eg, operator-independent deconvolution and approximate entropy. These approaches provide indirect insight in the regulatory components in pathophysiological conditions.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Leiden University Medical Center, Department of Endocrinology and Metabolic Diseases, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|
23
|
Yazid S, Sinniah A, Solito E, Calder V, Flower RJ. Anti-allergic cromones inhibit histamine and eicosanoid release from activated human and murine mast cells by releasing Annexin A1. PLoS One 2013; 8:e58963. [PMID: 23527056 PMCID: PMC3601088 DOI: 10.1371/journal.pone.0058963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/08/2013] [Indexed: 01/12/2023] Open
Abstract
Background and Purpose Although the ‘cromones’ (di-sodium cromoglycate and sodium nedocromil) are used to treat allergy and asthma, their ‘mast cell stabilising’ mechanism of pharmacological action has never been convincingly explained. Here, we investigate the hypothesis that these drugs act by stimulating the release of the anti-inflammatory protein Annexin-A1 (Anx-A1) from mast cells. Experimental approach We used biochemical and immuno-neutralisation techniques to investigate the mechanism by which cromones suppress histamine and eicosanoid release from cord-derived human mast cells (CDMCs) or murine bone marrow-derived mast cells (BMDMCs) from wild type and Anx-A1 null mice. Key results CDMCs activated by IgE-FcRε1 crosslinking, released histamine and prostaglandin (PG) D2, which were inhibited (30–65%) by 5 min pre-treatment with cromoglycate (10 nM) or nedocromil (10 nM), as well as dexamethasone (2 nM) and human recombinant Anx-A1 (1–10 nM). In CDMCs cromones potentiated (2–5 fold) protein kinase C (PKC) phosphorylation and Anx-A1 phosphorylation and secretion (3–5 fold). Incubation of CDMCs with a neutralising anti-Anx-A1 monoclonal antibody reversed the cromone inhibitory effect. Nedocromil (10 nM) also inhibited (40–60%) the release of mediators from murine bone marrow derived-mast cells from wild type mice activated by compound 48/80 and IgE-FcRε1 cross-linking, but were inactive in such cells when these were prepared from Anx-A1 null mice or when the neutralising anti-Anx-A1 antibody was present. Conclusions and Implications We conclude that stimulation of phosphorylation and secretion of Anx-A1 is an important component of inhibitory cromone actions on mast cells, which could explain their acute pharmacological actions in allergy. These findings also highlight a new pathway for reducing mediator release from these cells.
Collapse
Affiliation(s)
- Samia Yazid
- Division of Molecular Therapy, Institute of Ophthalmology, London, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. ACTA ACUST UNITED AC 2012; 179:61-70. [PMID: 22960404 DOI: 10.1016/j.regpep.2012.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is essential for energy homeostasis and is differentially modulated by physical and by psychological stress. Contradictory effects of stressful behavioral paradigms on TSH or thyroid hormone release are due to type, length and controllability of the stressor. We hypothesized that an additional determinant of the activity of the HPT axis is the energy demand due to physical activity. We thus evaluated the response of thyrotropin releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus (PVN) in Wistar male rats submitted to the elevated plus maze (EPM), the open field test (OFT), or restraint, and sacrificed within 1h after test completion; the response to OFT was compared during light (L) or dark (D) phases. Locomotion and anxiety behaviors were similar if animals were tested in L or D phases but their relation to the biochemical parameters differed. All paradigms increased serum corticosterone concentration; the levels of corticotropin releasing hormone receptor 1 and of glucocorticoid receptor (GR) mRNAs in the PVN were enhanced after restraint or OFT-L. Levels of proTRH mRNA increased in the PVN after exposure to EPM-L or OFT-D; serum levels of thyrotropin (TSH) and T(4) only after OFT-D. In contrast, restraint decreased TRH mRNA and serum TSH levels, while it increased TRH content in the mediobasal hypothalamus, implying reduced release. Expression of proTRH in the PVN varied proportionally to the degree of locomotion in OFT-D, while inversely to anxiety in the EPM-L, and to corticosterone in EPM-L and OFT-D. TRH mRNA levels were analyzed by in situ hybridization in the rostral, middle and caudal zones of the PVN in response to OFT-D; they increased in the middle PVN, where most TRH hypophysiotropic neurons reside; levels correlated positively with the velocity attained in the periphery of the OF and negatively, with anxiety. Variations of serum TSH levels correlated positively with locomotor activity in EPM-L and OFT-L or -D, while negatively to serum corticosterone levels in all paradigms. These results support the proposal that the hypophysiotropic PVN TRH neurons are activated by short term physical activity but that this response may be blunted by the inhibitory effect of stress.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca MOR, México
| | | | | | | | | | | |
Collapse
|
25
|
Yazid S, Norling LV, Flower RJ. Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system. Prostaglandins Other Lipid Mediat 2012; 98:94-100. [DOI: 10.1016/j.prostaglandins.2011.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 02/02/2023]
|
26
|
Abstract
Many different drugs affect thyroid function. Most of these drugs act at the level of the thyroid in patients with normal thyroid function, or at the level of thyroid hormone absorption or metabolism in patients requiring exogenous levothyroxine. A small subset of medications including glucocorticoids, dopamine agonists, somatostatin analogues and rexinoids affect thyroid function through suppression of TSH in the thyrotrope or hypothalamus. Fortunately, most of these medications do not cause clinically evident central hypothyroidism. A newer class of nuclear hormone receptors agonists, called rexinoids, cause clinically significant central hypothyroidism in most patients and dopamine agonists may exacerbate 'hypothyroidism' in patients with non-thyroidal illness. In this review, we explore mechanisms governing TSH suppression of these drugs and the clinical relevance of these effects.
Collapse
Affiliation(s)
- Bryan R Haugen
- University of Colorado Denver, School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, MS 8106, PO box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Matsuda M, Tsutsumi K, Kanematsu T, Fukami K, Terada Y, Takenawa T, Nakayama KI, Hirata M. Involvement of Phospholipase C-Related Inactive Protein in the Mouse Reproductive System Through the Regulation of Gonadotropin Levels1. Biol Reprod 2009; 81:681-9. [DOI: 10.1095/biolreprod.109.076760] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
28
|
Yazid S, Solito E, Christian H, McArthur S, Goulding N, Flower R. Cromoglycate drugs suppress eicosanoid generation in U937 cells by promoting the release of Anx-A1. Biochem Pharmacol 2009; 77:1814-26. [PMID: 19428336 PMCID: PMC2888050 DOI: 10.1016/j.bcp.2009.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 12/15/2022]
Abstract
Using biochemical, epifluorescence and electron microscopic techniques in a U937 model system, we investigated the effect of anti-allergic drugs di-sodium cromoglycate and sodium nedocromil on the trafficking and release of the anti-inflammatory protein Annexin-A1 (Anx-A1) when this was triggered by glucocorticoid (GC) treatment. GCs alone produced a rapid (within 5 min) concentration-dependent activation of PKCα/β (Protein Kinase C; EC 2.7.11.13) and phosphorylation of Anx-A1 on Ser27. Both phosphoproteins accumulated at the plasma membrane and Anx-A1 was subsequently externalised thereby inhibiting thromboxane (Tx) B2 generation. When administered alone, cromoglycate or nedocromil had little effect on this pathway however, in the presence of a fixed sub-maximal concentration of GCs, increasing amounts of the cromoglycate-like drugs caused a striking concentration-dependent enhancement of Anx-A1 and PKCα/β phosphorylation, membrane recruitment and Anx-A1 release from cells resulting in greatly enhanced inhibition of TxB2 generation. GCs also stimulated phosphatase accumulation at the plasma membrane of U937 cells. Both cromoglycate and nedocromil inhibited this enzymatic activity as well as that of a highly purified PP2A phosphatase preparation. We conclude that stimulation by the cromoglycate-like drugs of intracellular Anx-A1 trafficking and release (hence inhibition of eicosanoid release) is secondary to inhibition of a phosphatase PP2A (phosphoprotein phosphatase; EC 3.1.3.16), which probably forms part of a control loop to limit Anx-A1 release. These experiments provide a basis for a novel mechanism of action for the cromolyns, a group of drugs that have long puzzled investigators.
Collapse
Affiliation(s)
- Samia Yazid
- Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|
29
|
Townsend J, Westcott K, Tortonese DJ. Gonadotrophin subunit and GnRH receptor gene expression in the pars distalis of the equine pituitary. Gen Comp Endocrinol 2009; 160:236-42. [PMID: 19114046 DOI: 10.1016/j.ygcen.2008.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/10/2008] [Accepted: 11/19/2008] [Indexed: 12/28/2022]
Abstract
In the horse, pronounced changes in fertility occur annually in response to photoperiod. However, the mechanisms regulating gonadotrophin synthesis and release in this species remain unclear. Here, we investigated the expression of gonadotrophin subunits and GnRH receptor (GnRH-R) mRNA in the pituitary glands of Thoroughbred horses during the breeding (BS) and non-breeding (NBS) season. Seasonal effects on the prevalence of gonadotrophs in the pars distalis were also examined. GnRH-R and common alpha-, LHbeta- and FSHbeta-subunit mRNA contents were determined by Northern analysis and the prevalence of LH-gonadotrophs assessed by immunohistochemistry in pituitaries from sexually active females (mares) in the BS, and sexually inactive mares in the NBS. These variables were then measured in castrated male horses (geldings). In mares, pituitary content of FSHbeta mRNA was significantly higher in the NBS (P<0.01). Conversely, the content of common alpha-subunit mRNA was significantly higher during the BS (P<0.05). In contrast, GnRH-R and LHbeta mRNA abundance were unaffected by season. Interestingly, whereas no seasonal effects were apparent on the number of LH-gonadotrophs/field, the proportion of LH cells (in relation to all other cells) was higher in BS than NBS animals (P<0.05); this resulted from an increased number of non-gonadotroph cells during the NBS (P<0.05). In geldings, no significant seasonal effects were detected for any of the variables investigated (P>0.05). These results reveal robust seasonal effects on common alpha-subunit and FSHbeta gene expression in the pituitary of the mare, in the absence of detectable changes in the content of LHbeta or GnRH-R mRNA.
Collapse
Affiliation(s)
- Julie Townsend
- Department of Anatomy, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
30
|
Abstract
The glucocorticoids are the most potent anti-inflammatory drugs that we possess and are effective in a wide variety of diseases. Although their action is known to involve receptor mediated changes in gene transcription, the exact mechanisms whereby these bring about their pleiotropic action in inflammation are yet to be totally understood. Whilst many different genes are regulated by the glucocorticoids, we have identified one particular protein-annexin A1 (Anx-A1)-whose synthesis and release is strongly regulated by the glucocorticoids in many cell types. The biology of this protein, as revealed by studies using transgenic animals, peptide mimetics and neutralizing antibodies, speaks to its role as a key modulator of both of the innate and adaptive immune systems. The mechanism whereby this protein exerts its effects is likely to be through the FPR receptor family-a hitherto rather enigmatic family of G protein coupled receptors, which are increasingly implicated in the regulation of many inflammatory processes. Here we review some of the key findings that have led up to the elucidation of this key pathway in inflammatory resolution.
Collapse
|
31
|
Buckingham JC, John CD, Solito E, Tierney T, Flower RJ, Christian H, Morris J. Annexin 1, glucocorticoids, and the neuroendocrine-immune interface. Ann N Y Acad Sci 2007; 1088:396-409. [PMID: 17192583 PMCID: PMC1855441 DOI: 10.1196/annals.1366.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Annexin 1 (ANXA1) was originally identified as a mediator of the anti-inflammatory actions of glucocorticoids (GCs) in the host defense system. Subsequent work confirmed and extended these findings and also showed that the protein fulfills a wider brief and serves as a signaling intermediate in a number of systems. ANXA1 thus contributes to the regulation of processes as diverse as cell migration, cell growth and differentiation, apoptosis, vesicle fusion, lipid metabolism, and cytokine expression. Here we consider the role of ANXA1 in the neuroendocrine system, particularly the hypothalamo-pituitary-adrenocortical (HPA) axis. Evidence is presented that ANXA1 plays a critical role in effecting the negative feedback effects of GCs on the release of corticotrophin (ACTH) and its hypothalamic-releasing hormones and that it is particularly pertinent to the early-onset actions of the steroids that are mediated via a nongenomic mechanism. The paracrine/juxtacrine mode of ANXA1 action is discussed in detail, with particular reference to the significance of the secondary processing of ANXA1, the processes that control the intracellular and transmembrane trafficking of the protein of the molecule and the mechanism of ANXA1 action on its target cells. In addition, the role of ANXA1 in the perinatal programming of the HPA axis is discussed.
Collapse
Affiliation(s)
- Julia C Buckingham
- Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Campus, London W12 0NN, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lechan RM, Fekete C. Role of melanocortin signaling in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Peptides 2006; 27:310-25. [PMID: 16310285 DOI: 10.1016/j.peptides.2005.01.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 01/23/2005] [Indexed: 10/25/2022]
Abstract
The melanocortin signaling system is orchestrated by two, independent groups of neurons in the hypothalamic arcuate nucleus with opposing functions that synthesize either alpha-melanocyte stimulating hormone (alpha-MSH) or agouti-related protein (AGRP). These neurons exert regulatory control over hypophysiotropic TRH neurons in the hypothalamic paraventricular nucleus (PVN) at least in part through direct, overlapping, monosynaptic projections to the PVN. Alpha-MSH has an activating effect on hypophysiotropic TRH neurons via the phosphorylation of CREB, and when administered exogenously, can completely reverse fasting-induced suppression of TRH mRNA in the PVN. AGRP has a potent inhibitory effect on the hypothalamic-pituitary-thyroid axis in normally fed animals, mediated through actions at melanocortin 4 receptors. Inhibition of the HPT axis by fasting may be explained by inhibition of melanocortin signaling as a result of a reduction in alpha-MSH and increase in AGRP. Neuropeptide Y may also modulate the effects of the melanocortin signaling system during fasting by potentiating the inhibitory actions of AGRP on hypophysiotropic TRH neurons to prevent the phosphorylation of CREB and through direct inhibitory effects on alpha-MSH-producing neurons in the arcuate nucleus.
Collapse
Affiliation(s)
- Ronald M Lechan
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts-New England Medical Center, Boston, MA 02111, USA. rlechan@tufts-nemc
| | | |
Collapse
|
33
|
Mulla A, Christian HC, Solito E, Mendoza N, Morris JF, Buckingham JC. Expression, subcellular localization and phosphorylation status of annexins 1 and 5 in human pituitary adenomas and a growth hormone-secreting carcinoma. Clin Endocrinol (Oxf) 2004; 60:107-19. [PMID: 14678296 DOI: 10.1111/j.1365-2265.2004.01936.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Annexin 1 (ANXA1), a 37-kDa protein, plays an important role as a mediator of glucocorticoid action in the anterior pituitary gland and has been implicated in the processes of tumorigenesis in a number of other tissues. As a prelude to examining the potential role of ANXA1 in the pathophysiology of pituitary tumours, this study examined the expression, phosphorylation status and distribution of ANXA1 and the closely related protein, annexin 5 (ANXA5), in a series of pituitary adenomas and in two carcinomas. PATIENTS AND DESIGN Forty-two human pituitary adenomas were examined. Parallel studies were performed on normal pituitary tissue, obtained postmortem, a GH-secreting carcinoma and a grade 4 astrocytoma. MEASUREMENTS The tissue was processed for analysis of ANXA1 mRNA and protein expression by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis and immunogold electron-microscopic histochemistry. Parallel measures of ANXA5 mRNA and protein were also made. RESULTS ANXA1 mRNA and protein were detected in all but three adenomas studied; the protein was localized mainly, but not exclusively, to nonendocrine cells. ANXA5 expression was more variable and was contained within both endocrine and nonendocrine cells of these tumours. In comparison with the adenomas, the GH-secreting carcinoma showed abundant expression of both ANXA1 and ANXA5, with intense ANXA1 staining in some but not all tumour/endocrine cells. A serine-phosphorylated species of ANXA1 was detected in all pituitary tumours studied; by contrast, tyrosine-phosphorylated ANXA1 was detected in only four adenomas and in the GH carcinoma. ANXA1 and ANXA5 were also expressed in abundance in the astrocytoma. CONCLUSIONS The results demonstrate expression of both ANXA1 and ANXA5 in human pituitary tumours and thus raise the possibility that these proteins influence the growth and/or functional activity of the tumours.
Collapse
Affiliation(s)
- Abeda Mulla
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | | | | | | | | | | |
Collapse
|